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Abstract

The Newton method is one of the most powerful tools used to solve systems
of nonlinear equations. Its set-valued generalization, considered in this work,
allows one to solve also nonlinear equations with geometric constraints and
systems of inequalities in a unified manner. The emphasis is given to systems
of linear inequalities. The study of the well-posedness of the algorithm and
of its convergence is fulfilled in the framework of modern variational analysis.
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1. Introduction

The Newton method is one of the most powerful tools used to solve sys-
tems of nonlinear equations

f(x) = 0, (1)

where f : Rn → Rn is a continuously differentiable map [15]. The method
generates the following sequence of points

xk+1 = xk + x̄k, k = 0, 1, . . . , (2)

where x̄k is a solution to the system of linear equations

∇f(xk)x̄k = −f(xk). (3)
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In this paper we study Newton-type methods suitable to solve inclusions

0 ∈ F (x), (4)

where F : Rn ⇉ Rn is a set-valued map. The methods generate sequences
of points (2), where x̄k is a solution to an inclusion, a generalization of
linear system (3). This generalization involves set-valued map derivatives
[2]. Namely, instead of (3) we solve an inclusion

− vk ∈ Λ(xk, vk)(x̄k), (5)

where vk is a nearest to zero point belonging to the set F (xk), and the graph
of the set-valued map Λ(xk, vk)(⋅) is a cone tangent in some sense to the
graph of F at the point (xk, vk). The condition of non-singularity of the
matrix ∇f(xk), essential to solve linear system (3) and to prove convergence
theorems, is substituted by the condition of metric regularity [14, 18] (see
also the survey [3]). This property in the case of linear operators goes back to
the open mapping theorem and in the case of smooth maps to the Lyusternik
theorem. It was successfully applied to justify the well-posedness and conver-
gence of the Newton method for nonsmooth equations [11]. In this paper we
show that the metric regularity of Lipschitzian set-valued maps is equivalent
to the well-posedness of a Newton method for perturbed maps.

Similar issues are discussed in [6, 8, 9, 10, 12, 13] for so-called generalized
equations

y ∈ f(x) + F (x). (6)

For example, in [8] the equivalence of the Aubin continuity of the map (f +
F )−1 and the existence of Newton sequences defined by

y ∈ f(xk) +∇f(xk)(xk+1 − xk) + F (xk+1)

and converging to a solution of (6), is established. Note that the extension
of Newton’s method to generalized equations operates with linearization of
the smooth function f while leaving F untouched. Our approach involves
”linearization” of F and is close to the one from [4], where the derivative of F
is defined via the Clarke tangent cone [7] and the Newton method is applied
to prove an open mapping theorem for set-valued maps. A continuous version
of Newton’s method involving set-valued map derivatives can be found in [19]
(see also [1]).
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The Newton-type method developed in this paper is a general tool suitable
to solve in a unified manner systems of nonlinear equations with geometric
constraints and systems of nonlinear inequalities (see Sec. 5). It also solves
(exactly) a generic system of linear inequalities in a finite number of iterations
(see Sec. 6).

The paper is organized in the following way. In the second section we
briefly review some constructions and results from set-valued and variational
analysis. In the third section, for Lipschitzian set-valued maps, we give a
characterization of metric regularity in terms of the Newton method well-
posedness. The rate of convergence of Newton’s method for set-valued maps
is studied in Sec. 4. In the fifth section we apply this method to a system of
equations and inequalities. Finally, in the last section the Newton method is
applied to a system of linear inequalities.

2. Set-valued derivatives and metric regularity

Throughout this paper we denote by Rn the real n-dimensional space and
by ⟨⋅, ⋅⟩ and ∥ ⋅ ∥ the usual inner product and Euclidean norm, respectively.
We use the notation Bn = {x ∈ ℝn ∣ ∥x∥ ≤ 1} for the closed unit ball in Rn.
The convex hull and the closure of a subset C ⊂ Rn are denoted by coC and
clC, respectively. The distance between a point x and the set C is denoted
by d(x,C) = inf{∥x − c∥ ∣ c ∈ C}. The projection of a vector x onto C is
defined by ¼(x,C) = {c ∈ C ∣ ∥x − c∥ = d(x,C)}. Let A be a matrix. Its
transposed is denoted by AT .

Recall some basic definitions from set-valued and variational analysis. Let
F : Rn ⇉ Rm be a set-valued map. Its graph is denoted gphF and is defined
by

gphF = {(x, v) ∈ Rn ×Rm ∣ v ∈ F (x)}.
The inverse map F−1 : Rm ⇉ Rn is defined by

F−1(v) = {x ∈ Rn ∣ (x, v) ∈ gphF}.
We say that F is Lipschitzian if there exists L ≥ 0 such that

F (x1) ⊂ F (x2) + L∥x1 − x2∥Bm,

for all x1 ∈ Rn and x2 ∈ Rn. A set-valued map F is said to be locally
Lipschitzian if for any x ∈ Rn there exist ² > 0 and L > 0 such that

F (x1) ⊂ F (x2) + L∥x1 − x2∥Bm
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for all x1, x2 ∈ x+ ²Bn.
The contingent cone to a set C ⊂ Rn at a point x ∈ C is defined by

T (x,C) = {v ∣ lim inf
¸↓0

¸−1d(x+ ¸v, C) = 0}.

Denote by

N̂(x,C) = {v∗ ∈ Rn ∣ ⟨v∗, v⟩ ≤ 0, v ∈ T (x,C)}

the polar cone to C at x. If x ∕∈ C, we put N̂(x,C) = ∅. The Mordukhovich
normal cone to C at x [14, 18] is defined by

N(x,C) = Limsup
x′→x

N̂(x′, C),

where the upper limit of a set-valued map F : Rn ⇉ Rm is given by

Limsup
x′→x

F (x′) = {v = lim
n→∞

vk ∣ (xk, vk) ∈ gphF, xk → x}.

The set-valued map DF (x̂, v̂) : X ⇉ Rm defined by

gphDF (x̂, v̂) = T ((x̂, v̂), gphF )

is called the contingent derivative of F at the point (x̂, v̂) ∈ gphF [2]. In
other words v ∈ DF (x̂, v̂)(x) if and only if (x, v) ∈ T ((x̂, v̂), gphF ). The
Mordukhovich coderivative of F at the point (x̂, v̂) ∈ gphF [14, 18] is defined
by

D∗F (x̂, v̂)(v∗) = {x∗ ∈ Rn ∣ (x∗,−v∗) ∈ N((x̂, v̂), gphF )}.
Recall the notion of metric regularity and its coderivative characteri-

zation. A set-valued map F : Rn ⇉ Rm is metrically regular around
(x̂, v̂) ∈ gphF if there exists ² > 0 as well as a number ¹ > 0 such that

d(x, F−1(v)) ≤ ¹d(v, F (x)), x ∈ x̂+ ²Bn, v ∈ v̂ + ²Bm.

Recall also the following coderivative characterization of the metric reg-
ularity property for set-valued maps [14, 18].

Theorem 2.1 (Mordukhovich criterion). A set-valued map F : Rn ⇉ Rm

with closed graph is metrically regular around (x̂, v̂) ∈ gphF if and only if
the inclusion 0 ∈ D∗F (x̂, v̂)(v∗) implies that v∗ = 0.
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3. Newton’s method and metric regularity

In this section we show that for Lipschitzian set-valued map F : Rn ⇉ Rm

the metric regularity can be characterized in terms of well-posedness of the
Newton method for perturbed set valued maps F (x)− ṽ, where the vectors
ṽ ∈ Rm have a sufficiently small norm.

We need the following definition. We say that the Newton method for
perturbed set-valued map F is well-posed around (x̂, v̂) ∈ gphF with mod-
ulus ¹ if there exists ´ > 0 such that for all x ∈ x̂ + ´Bn and ṽ ∈ v̂ + ´Bm

there is v ∈ ¼(0, F (x)− ṽ) satisfying the condition

DF−1(v + ṽ, x)(−v) ∩ ¹∥v∥Bn ∕= ∅. (7)

This condition implies that the largest possible Newton inclusion (5) for
the perturbed map x → F (x) − ṽ (the generalization of Newton’s equation
(3)) has at least one solution, x̄, satisfying the boundedness condition x̄ ∈
¹Bn.

Now we establish the principal result of this section.

Theorem 3.1. Assume that the set-valued map F : Rn ⇉ Rm with closed
values is Lipschitzian with the constant LF > 0 in a neighbourhood of a point
x̂. Then the following conditions are equivalent:

1. The map F is metrically regular around (x̂, v̂) ∈ gphF .

2. Newton’s method for perturbed set-valued map F is well-posed around
(x̂, v̂) ∈ gphF .

Proof. Let F be metrically regular around (x̂, v̂) ∈ gphF with modulus ¹.
Set ´ = ²/(4 + 2LF ), where ² is from the definition of metric regularity.
Consider x ∈ x̂+ ´Bn, ṽ ∈ v̂ + ´Bm, and v ∈ ¼(0, F (x)− ṽ). Then we have

∥v + ṽ − v̂∥ ≤ ∥ṽ − v̂∥+ ∥v∥ = ∥ṽ − v̂∥+ d(ṽ, F (x))

≤ 2∥ṽ − v̂∥+ LF∥x− x̂∥ ≤ ²

2
.

Condition (7) is satisfied due to the following lemma that is a set-valued
version of Proposition 3.2 from [11].

Lemma 3.2. If F is metrically regular around (x̂, v̂) ∈ gphF with modulus
¹, then

DF−1(w, x)(v̄) ∩ ¹∥v̄∥Bn ∕= ∅,
whenever x ∈ x̂+ ²

2
Bn, w ∈ (

v̂ + ²
2
Bm

) ∩ F (x), and v̄ ∈ Rm.
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Proof. Consider a sequence tj ↓ 0. From the metric regularity condition we
have

d(x, F−1(w + tj v̄)) ≤ ¹d(w + tj v̄, F (x)) ≤ ¹tj∥v̄∥.
Therefore there exists a sequence

x̄j ∈ t−1
j (F−1(w + tj v̄)− x),

satisfying the inequality
∥x̄j∥ ≤ ¹∥v̄∥.

Without loss of generality x̄j converges to a vector

x̄ ∈ DF−1(w, x)(v̄) ∩ ¹∥v̄∥Bn.

This ends the proof.

To prove that the well-posedness of Newton’s method for perturbed set-
valued maps implies the metric regularity, fix ṽ ∈ Rm and consider the
function

½(x) = d(0, F (x)− ṽ).

It suffices to show that if ½(x̃) > 0, x̃ ∈ x̂ + ´
4(1+¹+¹L)

Bn, and ṽ ∈ v̂ +
´

4(1+¹+¹L)
Bm, then there exists x′ ∈ F−1(ṽ) such that ∥x̃ − x′∥ ≤ 2¹½(x̃).

(Here ´ > 0 is from the definition of the well-posedness of the Newton method
for perturbed set-valued map F (x) − ṽ.) Indeed, if such x′ exists, then the
metric regularity of F follows from the inequality

d(x̃, F−1)(ṽ) ≤ ∥x̃− x′∥ ≤ 2¹½(x̃) = 2¹d(ṽ, F (x̃)).

We need some auxiliary results. The following lemma contains an esti-
mate for the lower Dini derivative of ½(⋅) along the Newton’s direction and,
to certain extent, can be considered as a set-valued version of Proposition 3
from [5].

Lemma 3.3. Let v ∈ ¼(0, F (x)− ṽ) and x̄ ∈ DF−1(v+ ṽ, x)(−v). Then the
inequality

lim inf
t↓0

t−1(½(x+ tx̄)− ½(x)) ≤ −½(x) (8)

holds.
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Proof. Since (x̄,−v) ∈ T ((x, v+ ṽ), gphF ) and F is Lipschitzian, we see that
there exists

p(t) ∈ F (x+ tx̄)− (v + ṽ − tv)

satisfying
lim inf

t↓0
t−1∥p(t)∥ = 0.

Observe that
½(x+ tx̄) = d(0, F (x+ tx̄)− ṽ)

≤ ∥v − tv + p(t)∥ ≤ (1− t)½(x) + ∥p(t)∥.
Therefore we have

t−1(½(x+ tx̄)− ½(x)) ≤ −½(x) + t−1∥p(t)∥.

Since the function ½(⋅) is Lipschitzian, we obtain (8).

Set x0 = x̃.

Lemma 3.4. Assume that ½(x0) > 0, x0 ∈ x̂ + ´
4(1+¹+¹L)

Bn, and ṽ ∈ v̂ +
´

4(1+¹+¹L)
Bm. Then there exists a sequence generated by the Newton method

xk+1 = xk + tkx̄k, vk ∈ ¼(0, F (xk)− ṽ), k = 0, 1, . . . (9)

where
x̄k ∈ DF−1(vk + ṽ, xk)(−vk) ∩ ¹∥vk∥Bn, tk > 0, (10)

such that ∥vk∥ > ∥vk+1∥, k = 0, 1, . . ., and there exists the limit limk→∞ xk =
x! satisfying the inequalities

∥x0 − x!∥ ≤ 2¹(½(x0)− ½(x!)) (11)

and

∥x̂− x!∥ ≤ (1 + 2¹LF )∥x0 − x̂∥+ 2¹∥ṽ − v̂∥ − 2¹½(x!) < ´. (12)

Proof. By Lemma 3.3 there exists tk > 0 such that

∥vk+1∥ = ½(xk+1) ≤
(
1− tk

2

)
½(xk) =

(
1− tk

2

)
∥vk∥.
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Therefore we have ∥vk∥ > ∥vk+1∥, and tk∥vk∥ ≤ 2(∥vk∥ − ∥vk+1∥), k =
0, 1, . . .. Set º = limk→∞ ∥vk∥. Observe that

∥xk+1 − xk∥ = tk∥x̄k∥ ≤ tk¹∥vk∥ ≤ 2¹(∥vk∥ − ∥vk+1∥).

From this we obtain

∥xk+p − xk∥ ≤
k+p−1∑

j=k

∥xj+1 − xj∥ ≤ 2¹

k+p−1∑

j=k

(∥vj∥ − ∥vj+1∥)

= 2¹(∥vk∥ − ∥vk+p∥) ≤ 2¹(∥vk∥ − º).

Therefore there exists the limit limk→∞ xk = x!. Putting k = 0 and passing
to the limit as p goes to infinity, we get (11). From (11) and the inequality

½(x0) = d(ṽ, F (x0)) ≤ ∥ṽ − v̂∥+ LF∥x̂− x0∥

we obtain
∥x̂− x!∥ ≤ ∥x̂− x0∥+ ∥x0 − x!∥
≤ ∥x̂− x0∥+ 2¹(½(x0)− ½(x!))

≤ (1 + 2¹LF )∥x̂− x0∥+ 2¹∥ṽ − v̂∥ − 2¹½(x!) < ´. (13)

The lemma is proved.

The point x! (here ! stands for the least infinite ordinal) constructed in
the proof of Lemma 3.4 may be not a solution to the inclusion 0 ∈ F (x)− ṽ.
In this case we apply the same procedure with x0 = x! and construct x2!,
and so on. If ½(xn!) > 0, then from (11) we have

∥x(n+p)! − xn!∥ ≤ 2¹(½(xn!)− ½(x(n+p)!)).

Therefore the sequence xn!, n = 0, 1, . . ., converges to a point x!2
. If we have

already constructed a point x®, where ® is a countable ordinal, then using the
above procedure we can construct x®+! and x!®, etc. More generally, let A be
a set of ordinals. If x®1 ∈ cl{x® ∣ ® ∈ A}, ½(x®1) = inf{½(x®) ∣ ® ∈ A} > 0,
and x®1 ∈ x̂+ ´Bn, then we can construct an element x®1+1 defined by

x®1+1 = x®1 + t®1x̄®1 , v®1 ∈ ¼(0, F (x®1)− ṽ), (14)

x̄®1 ∈ DF−1(v®1 + ṽ, x®1)(−v®1) ∩ ¹∥v®1∥Bn, t®1 > 0. (15)
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Thus we obtain a net (Moore-Smith sequence) {x® ∣ ® < !1} generated by
the Newton method. Here !1 is the first uncountable ordinal. If ½(x®) = 0
the process stops. To show that this net is correctly defined we have to
prove the inclusion x® ∈ x̂ + ´Bn, whenever x̃ ∈ x̂ + ´

4(1+¹+¹L)
Bn, and

ṽ ∈ v̂+ ´
4(1+¹+¹L)

Bm. This can be done using transfinite induction. Let {x®}
be a net generated by Newton’s method. Assume that

∥x̃− x®∥ ≤ 2¹(½(x̃)− ½(x®)), (16)

whenever ® < ®′. If ®′ is a successor, i.e. there exists ®1 such that ®′ = ®1+1,
then by the induction hypothesis we have

∥x̃− x®1∥ ≤ 2¹(½(x̃)− ½(x®1)),

and, as in the proof of Lemma 3.4, we obtain

∥x®1 − x®′∥ ≤ 2¹(½(x®1)− ½(x®′
)),

where x®1+1 is defined by (14) and (15). Adding the last two inequalities we
get

∥x̃− x®′∥ ≤ 2¹(½(x̃)− ½(x®′
)). (17)

Therefore (see (13)) we have

∥x̂− x®′∥ ≤ ∥x̂− x0∥+ 2¹(½(x0)− ½(x®′
)) < ´. (18)

If ®′ is a limit ordinal, then x®′
= limj→∞ x®j , ®j < ®′. Passing to the limit

in the inequality
∥x̃− x®j∥ ≤ 2¹(½(x̃)− ½(x®j)),

we obtain (17) and, as a consequence, (18). Thus, the net generated by
Newton’s method is well-defined. Define a partial order in the set of all
points generated by Newton’s method from the initial point x0 = x̃. We say
that x®1 is less than x®2 if x®1 and x®2 belong to the same net generated by
Newton’s method and ®1 < ®2. Obviously a net is a totally ordered subset.
By the Hausdorff maximal principle in any partially ordered set, every totally
ordered subset is contained in a maximal totally ordered subset. Let {x®}®∈A
be a maximal net generated by Newton’s method from the initial point x̃.
There exists a point x′ = x®1 ∈ cl{x®} satisfying ½(x®1) = inf{½(x®) ∣ ® ∈
A}. If ½(x®1) > 0, then since cl{x®}®∈A ⊂ x̂ + ´Bn, the point x®1+1 defined
by (14) and (15) is greater than {x®}®∈A. This contradicts the maximality
of the net {x®}®∈A. Thus ½(x′) = 0. This ends the proof.
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4. Newton’s method for set-valued maps: convergence analysis

Let F : Rn ⇉ Rm be a set-valued map with closed values. We shall
study the convergence of the following set-valued version of Newton’s method.
Given a point (xk, vk) ∈ gphF , we define the next iterate as

xk+1 = xk + tkx̄k, vk+1 ∈ ¼(0, F (xk+1)), (19)

where x̄k is a solution to the inclusion

− vk ∈ Λ(xk, vk)(x̄k), (20)

and Λ(x, v) : Rn ⇉ Rm is a positively homogeneous set-valued map satisfying
the inclusion Λ(x, v)(x̄) ⊂ DF (x, v)(x̄) for all (x, v) ∈ gphF and x̄. The
vector x̄k is chosen from the condition

x̄k ∈ ¼(0,Λ(xk, vk))−1(−vk)). (21)

If Λ(xk, vk))−1(−vk) is convex, (21) uniquely defines x̄k.
In the sequel this method is called Newton method, if tk = 1. If tk ∈]0, 1],

the method is called damped Newton method. For example, the step-length
tk can be chosen from the condition

d(0, F (xk + tkx̄k)) = min
t∈[0,1]

d(0, F (xk + tx̄k)). (22)

Let x ∕∈ F−1(0), v ∈ ¼(0, F (x)), and x̄ ∈ (Λ(x, v))−1(v̄). Then there
exists p(t) ∈ Rn such that

v + tv̄ + p(t) ∈ F (x+ tx̄)

and
∥p(t)∥ = t½(x, v, x̄, v̄, t),

where
½(x, v, x̄, v̄, t) = t−1d(v + tv̄, F (x+ tx̄)). (23)

Note that if F is Lipschitzian, then

lim inf
t↓0

½(x, v, x̄, v̄, t) = 0.

If v̄ = −v, then we have

d(0, F (x+ tx̄)) ≤ ∥(1− t)v + p(t)∥ ≤ (1− t)∥v∥+ t½(x, v, x̄,−v, t). (24)
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The rate of convergence of Newton’s method depends on the properties of
function ½.

Theorem 4.1. Assume that the following conditions are satisfied:

1. There exists ¹ > 0 such that for all x ∈ Rn, v ∈ ¼(0, F (x)) and v̄ ∈ Rm

the set (Λ(x, v))−1(v̄) ∩ ¹∥v̄∥Bn is nonempty.

2. There exists a monotone increasing function ! : [0,+∞[→ [0,+∞[
such that lim®↓0 !(®) = 0 and ½(x, v, x̄,−v, t) ≤ ∥v∥!(t∥v∥) for all
x ∈ Rn ∖ F−1(0), v ∈ ¼(0, F (x)), and x̄ ∈ ¼(0, (Λ(x, v))−1(−v).

Then for any initial point x0 there exists a monotone non-decreasing se-
quence tk > 0, such that tk = 1 for large k, and the corresponding damped
Newton method/Newton method, starting at x0, converges to a point x0 +
2¹d(0, F (x0))Bn. If the gphF is closed, then x∞ ∈ F−1(0) and the con-
vergence is R-superlinear. If !(®) = O(®), ® ↓ 0, then the convergence is
R-quadratic. If, in addition, F is locally Lipschitzian, then the convergence
is Q-quadratic.

Proof. From the first condition of the theorem we see that the Newton
method is well-defined. Suppose that the points (xj, vj, x̄j), j = 0, k, are
already generated by the Newton method. To construct the point xk+1, put

½k(t) = ½(xk, vk, x̄k,−vk, t).

Since ½k(t) ≤ ∥vk∥!(t∥vk∥), we have limt↓0 ½k(t) = 0. There exists a vector
pk(t) satisfying

(1− t)vk + pk(t) ∈ F (xk + tx̄k), ∥pk(t)∥ ≤ t½k(t),

(see (23) and (23)). Set tk = min{1, !−1(1/2)/∥vk∥} and xk+1 = xk + tkx̄k.
Observe that

d(0, F (xk+1)) = ∥vk+1∥ ≤ ∥(1− tk)vk + pk(tk)∥
≤ (1− tk)∥vk∥+ ½k(tk) ≤ (1− tk)∥vk∥+ tk∥vk∥!(tk∥vk∥)

= (1− tk + tk!(tk∥vk∥)∥vk∥.
If tk < 1, then we obtain

∥vk+1∥ ≤ (1− tk/2)∥vk∥. (25)
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If tk = 1, then the inequality

∥vk+1∥ ≤ ∥vk∥!(∥vk∥) < ∥vk∥/2 (26)

holds. From (25) we see that the sequence ∥vk∥ is monotone decreasing and
the sequence tk is monotone increasing, whenever tk < 1. Thus tk = 1 for
large k.

Since ∥x̄k∥ ≤ ¹∥vk∥, we have

∥xk+1 − xk∥ = tk∥x̄k∥ ≤ ¹tk∥vk∥ ≤ 2¹(∥vk∥ − ∥vk+1∥).
By induction we obtain

∥xk+p − xk∥ ≤ 2¹(∥vk∥ − ∥vk+p∥). (27)

This implies that there exists the limit x∞ = limk→∞ xk. If the graph of F
is closed, then the function x → d(0, F (x)) is lower semi-continuous and we
have

0 = lim
k→∞

∥vk∥ = lim
k→∞

d(0, F (xk)) ≥ lim inf
x′→x∞

d(0, F (x′)) ≥ d(0, F (x∞)).

Hence 0 ∈ F (x∞). Passing to the limit, as p goes to infinity, in (27), we get

∥xk − x∞∥ ≤ 2¹∥vk∥
and

∥x0 − x∞∥ ≤ 2¹d(0, F (x0)).

From (26) we obtain

∥xk+1 − x∞∥ ≤ 2¹∥vk+1∥ ≤ 2¹∥vk∥!(∥vk∥),
i.e. the convergence is R-superlinear. If !(®) = O(®), ® ↓ 0, then there
exists a constant M > 0 such that

∥xk+1 − x∞∥ ≤ 2¹∥vk+1∥ ≤ 2¹M∥vk∥2,
and the convergence is R-quadratic. Now assume that F is Lipschitzian with
the constant LF , then we have

∥xk+1 − x∞∥ ≤ 2¹M∥vk∥2 = 2¹Md2(0, F (xk)) ≤ 2¹ML2
F∥xk − x∞∥2.

Thus the convergence is Q-quadratic.
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Let f : Rn → Rn be a continuous function. Define the map F (x) =
{f(x)}. In this case the second condition of the theorem implies

∥f(x+ tx̄)− f(x) + tf(x)∥ = o(t), t ↓ 0,

for all x̄ ∈ ¼(0, (Λ(x, f(x)))−1(−f(x)), i.e. the function f is directionally
differentiable along Newton’s directions. This assumption is quite natural
(see Proposition 2 from [5]). For non-Lipschitzian functions, like f(x) = x1/3

at x = 0, this condition generally does not hold. Note that in the single-
valued case Theorem 4.1 is not contained in Theorems 3.3 and 3.4 from [11]
and does not generalize them.

5. Systems of nonlinear equations with geometric constraints

Let f : Rn × Rl → Rm be a continuously differentiable function. Its
derivative is supposed to be Lipschitzian with a constant L∇f . Consider the
nonlinear equation

f(x, u) = 0. (28)

The problem is to find a solution (x, u) such that the variable u satisfies the
geometric constraints

u ∈ U, (29)

where U ⊂ Rl is a closed convex set. Let K be the recessive cone of U , i.e.
K = {u ∈ Rl ∣ u+ U ⊂ U} (see [17]).

Figure 1: Trajectories of the Newton method (Example 1).

Consider, for example, functions g : Rn → Rm−l and ℎ : Rn → Rl and
the system of equations and inequalities (cf. [16])

g(x) = 0, ℎ(x) ≤ 0.

It can be rewritten as (28) and (29) in the following way:

g(x) = 0, ℎ(x) + u = 0, u ≥ 0.

In this case U = K = {u ∈ Rl ∣ u ≥ 0}.
System (28) and (29) is equivalent to the inclusion 0 ∈ F (x) = f(x, U).

Let v = f(x, u) ∈ ¼(0, F (x)). To apply the Newton method to this inclusion,
put

Λ(x, u)(v̄) = ∇xf(x, u)x̄+∇uf(x, u)K.

13



Let (x̂, û) ∈ Rn × U be such that f(x̂, û) = 0. Assume that

((∇uf(x̂, û))
T )−1K∗ ∩ ker∇xf(x̂, û) = {0}.

Then from the Mordukhovich criterion (Theorem 2.1) we see that the set-
valued map F is metrically regular around (x̂, 0). By Theorem 3.1 the New-
ton method is well defined around (x̂, 0) and

d(0, (Λ(x, u))−1(v̄)) ≤ LΛ∥v̄∥, (30)

whenever (x, u) ∈ (x̂, û) + ´Bn+l and ´ > 0 is sufficiently small. Let v ∈
¼(0, F (x)). There exist x̄ ∈ Rn and w̄ ∈ K such that

−v = Λ(x, u)(x̄) = ∇xf(x, u)x̄+∇uf(x, u)w̄

and
(∥x̄∥2 + ∥w̄∥2) 1

2 ≤ LΛ∥v∥
Since u+ tw̄ ∈ U , t > 0, we have

½(x, v, x̄,−v, t) = t−1d(v − tv, F (x+ tx̄)) ≤ t−1∥v − tv − f(x+ tx̄, u+ tw̄)∥

≤ tL∇f (∥x̄∥2 + ∥w̄∥2) ≤ tL∇f (LΛ∥v∥)2.
Following the proof of Theorem 4.1 we see that the Newton method, starting
in a sufficiently small neighbourhood of x̂, converges Q-quadratically to the
set F−1(0). As we can see from the following example, the neighbourhood,
where the method converges quadratically, is really small even in very simple
situations.

Example 1

Apply the Newton method to the system

x2
1 + x2

2 = 1 x2
1 − x2 ≤ 0.

Typical trajectories are shown in Fig. 1. At the initial stage the trajectories
zigzag. Such behaviour corresponds to linear convergence. Only near the set
F−1(0) we observe quadratic convergence. Damped Newton methods exhibit
fast convergence in a wider area. We illustrate this in the next section where
a system of linear inequalities is considered and this phenomenon is especially
evident.

14



6. Systems of linear inequalities

Consider a system of linear inequalities

⟨ai, x⟩ − bi ≤ 0, i = 1,m, (31)

where ai ∈ Rn and bi ∈ R, i = 1,m. It is assumed that ∥ai∥ = 1, i = 1,m.
Define the set-valued map

F (x) = {v ∈ R ∣ ⟨ai, x⟩ − bi ≤ v, i = 1,m}.

System (31) and the inclusion

0 ∈ F (x) (32)

are equivalent. Assume that the following hypotheses are satisfied:

(H1) For any subset of indices 1 ≤ i1 ≤ . . . ≤ in ≤ m the vectors aij ∈ Rn,
j = 1, n, are linearly independent.

(H2) For any subset of indices 1 ≤ i1 ≤ . . . ≤ in+1 ≤ m the vectors
(aij ,−1) ∈ Rn+1, j = 1, n+ 1, are linearly independent.

(H3) For any subset of indices 1 ≤ i1 ≤ . . . ≤ in+1 ≤ m the set {x ∈ Rn ∣
⟨aij , x⟩ = bij , j = 1, n+ 1} is empty.

(H4) For any subset of indices 1 ≤ i1 ≤ . . . ≤ in+2 ≤ m the set {(x, v) ∈
Rn+1 ∣ ⟨aij , x⟩ − v = bij , j = 1, n+ 2} is empty.

Figure 2: Newton’s method for a system of linear inequalities (Example 2).

Figure 3: Damped Newton’s method for a system of linear inequalities, I.

Figure 4: Damped Newton’s method for a system of linear inequalities, II.
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Figure 5: Damped Newton’s method for a system of linear inequalities, III.

An arbitrary system of inequalities can be transformed to a system sat-
isfying (H1) - (H4) by a small perturbation of the data. Let x ∈ Rn. Put

v(x) = max
i=1,m

(⟨ai, x⟩ − bi)

and
I(x) = {i ∣ v(x) = ⟨ai, x⟩ − bi}.

By ∣I(x)∣ we denote the cardinality of the set I(x). Note that the hypotheses
(H2) and (H4) imply that ∣I(x)∣ ≤ n + 1 and that the number of points x
satisfying ∣I(x)∣ = n+ 1 is finite.

Lemma 6.1. Let x ∈ Rn be such that v(x) > 0 and let I(x) = {i1, . . . , in+1}.
Then either there exists l = 1, n+ 1 such that the solution x̄ of the system
⟨aij , x̄⟩ = 1, j ∕= l, satisfies the inequality ⟨ail , x̄⟩ > 0, or system (31) has no
solution.

Proof. Assume that for any l = 1, n+ 1 the solution x̄(l) to the system
⟨aij , x̄⟩ = 1, j ∕= l (by hypothesis (H1) x̄(l) exists and is unique) satisfies
the inequality

⟨ail , x̄(l)⟩ ≤ 0. (33)

Show that system (31) has no solution. Set y(l) = x− v(x)x̄(l). From (33) we
have ⟨ail , x− ȳ(l)⟩ ≤ 0. From this we obtain

0 < v(x) = ⟨ail , x⟩ − bil ≤ ⟨ail , y(l)⟩ − bil , (34)

for any l = 1, n+ 1. Show that if the set Y = {y ∣ ⟨aij , y⟩ ≤ bij , j = 1, n+ 1}
is non-empty, then it contains at least one point y(l). Let y ∈ Y . Since
x ∕∈ Y , we see that there exists a non-empty set I0 ⊂ I(x) and a point
y0 ∈ Y belonging to the segment connecting the points y and x, such that
⟨aij , y0⟩ = bij , ij ∈ I0. If ∣I0∣ = n, then y0 coincides with one of the points y(l),
l = 1, n+ 1. Otherwise consider a non-zero vector z ∈ {z ∣ ⟨aij , z⟩ = 0, ij ∈
I0}. If for all t ∈ R the inequalities ⟨aij , y0+ tz⟩ < 0, ij ∈ I(x)∖ I0 hold, then
⟨aij , z⟩ = 0, j = 1, n+ 1. By hypothesis (H1) we have z = 0, a contradiction.
Therefore there exists a set I1 ⊃ I0, ∣I1∣ > ∣I0∣, and a number t0 such that
the point y1 = y0 + t0z ∈ Y satisfies the equalities ⟨aij , y1⟩ = bij , ij ∈ I1.
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By induction we construct a set of indices Is, ∣Is∣ ≥ n and a point ys ∈ Y
satisfying the equalities ⟨aij , ys⟩ = bij , ij ∈ Is. By hypothesis (H3) ∣Is∣ = n.

Thus ys coincides with one of the vectors y(l), l = 1, n+ 1, and y(l) ∈ Y .
On the other hand, from (34) we have ⟨ail , y(l)⟩ > bil , a contradiction. The
lemma is proved.

Let x ∈ Rn be such that v(x) > 0. If ∣I(x)∣ ≤ n, then we set J(x) = I(x).
If ∣I(x)∣ = n+1, then by Lemma 6.1 either there exists l such that ⟨ail , x̄⟩ > 0,
where x̄ is a unique solution of the system ⟨aij , x̄⟩ = 1, j ∕= l, or the set of
solutions of system (31) is empty. Put J(x) = I(x) ∖ {il}. We set

Λ(x, v(x))(x̄) = {v̄ ∣ ⟨ai, x̄⟩ = v̄, i ∈ J(x)}.

It is easy to see that the set Λ(x, v)(x̄) is contained in DF (x, v)(x̄).

Example 2

The Newton method (19) and (21) applied to inclusion (32) usually gen-
erates an iterative process with a linear rate of convergence. Consider the
system of two inequalities x2 ≥ 3x1 and x2 ≥ −3x1. The trajectory starting
at (−1,−10) is shown in Fig. 2.

Now we describe a damped Newton method (19) and (21) solving (32) in
a finite number of iterations. Let v(xk) > 0. Put

tk = min{1,min{ti(xk, x̄k) ∣ i ∕∈ I(xk), v(xk) + ⟨ai, x̄k⟩ > 0}}, (35)

where

ti(x
k, x̄k) =

v(xk)− ⟨ai, xk⟩+ bi
v(xk) + ⟨ai, x̄k⟩ .

It is easy to see that tk > 0.

Theorem 6.2. Under hypothesis (H1) - (H4) damped Newton method (19),
(21), and (35) solves system (31) in a finite number of iterations.

Proof. If the number of elements in the set I(xk) does not exceed n, then
from (21) we obtain

x̄k = −AT
k (AkA

T
k )

−1v(xk)eI(xk),
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where eI(xk) = (1, . . . , 1) ∈ RI(xk) and the I(xk)× n-matrix Ak has the rows
ai, i ∈ I(xk). If tk = 1, then we have

⟨aj, xk + tx̄k⟩ − bj < ⟨ai, xk + tx̄k⟩ − bi

= v(xk)(1− t), i ∈ I(xk), j ∕∈ I(xk), t ∈ [0, 1[.

Therefore ⟨ai, xk + x̄k⟩ − bi ≤ 0, i = 1,m. If tk < 1, then the number of
elements in the set I(xk+1) is greater than in the set I(xk). Thus, either
after at most n iterations the method solves the system of inequalities, or it
arrives at a point xk such that the set I(xk) contains n+1 elements (see Figs.
3 and 4). If the set J(xk) from the definition of Λ does not exist, then the set
of solutions of system (31) is empty (see Fig.5). Otherwise we can construct
the next iterate xk+1 (see Fig. 4). Show that v(xk+1) < v(xk). Indeed, if
I(xk) = {i1, . . . , in+1} and il ∕∈ J(xk), then we have ⟨aij , x̄k⟩ = −v(xk), j ∕= l
and ⟨ail , x̄k⟩ < 0. Therefore we get

v(xk+1) = max{(1− tk)v(xk), v(xk) + tk⟨ail , x̄k⟩}.

Thus v(xk+1) < v(xk). Set v̂ = min{v(x) ∣ ∣I(x)∣ = n + 1}. After a finite
number of iterations the algorithm arrives at a point xk satisfying v(xk) < v̂.
After that it needs at most n iterations to solve system (31).
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[4] D. Azé, C. C. Chou, On a Newton type iterative method for solving
inclusions, Math. Oper. Res., Vol. 20, (1995), pp 790800.

[5] O. Burdakov, On properties of Newton’s method for smooth and nons-
mooth equations, In: R.P. Agarwal (Ed.), Recent Trends in Optimization
Theory and Applications (1995), World Scientific, pp. 17-24.

[6] C. Cabuzel, A. Pietrus, Local convergence of Newton’s method for sub-
analytic variational inclusions, Positivity, Vol. 12, (2008), pp 525-533.

[7] F. H. Clarke, Optimization and nonsmooth analysis, Wiley, New York,
1983.

[8] A. L. Dontchev, Uniform convergence of the Newton method for Aubin
continuous maps, Serdica Math. J. Vol. 22, (1996), pp 385-398.

[9] A. L. Dontchev, R. T. Rockafellar, Newton’s method for generalized
equations: a sequential implicit function theorem. Math. Program., Vol.
123(1), (2010), pp 139-159.

[10] A. L. Dontchev, R. T. Rockafellar, Implicit functions and solution map-
pings. Springer, Dordrecht, 2010.

[11] T. Hoheisel, C. Kanzow, B. S. Mordukhovich, H. Phan, Generalized
Newton’s method for nonsmooth equations based on graphical derivatives,
SIAM J. Optim. (to appear).

[12] C. Jean-Alexis, A. Pietrus, On the convergence of some methods for
variational inclusions, Rev. R. Acad. Cien. Serie A. Mat., Vol. 102(2),
(2008), pp 355-361.

[13] D. Klatte, B. Kummer, Stability of inclusions: characterizations via
suitable Lipschitz functions and algorithms, Optimization, Vol. 55
(2006), pp 627-660.

[14] B. S. Mordukhovich, Variational analysis and generalized differentiation,
I. Basic theory, Springer, Berlin, 2006.

19



[15] J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equa-
tions in Several Variables, Academic Pess, New York, 1970.

[16] B. N. Pshenichnyi, Newton’s method for solution of systems of equalities
and inequalities, Math. Notes, Vol. 8, (1970), pp 827-830.

[17] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton,
1970.

[18] R. T. Rockafellar, R. J.-B. Wets, Variational analysis, Springer, Berlin,
2004.

[19] P. Saint-Pierre, Newton and other continuation methods for multivalued
inclusions, Set-Valued Analysis, Vol. 3, (1995), pp 143-156.

20


