
Chapter 1
Relating material and space-time metrics within
relativistic elasticity: a dynamical example

EGLR Vaz, Irene Brito and J Carot

Abstract Given a space-time and a continuous medium with elastic properties de-
scribed by a 3-dimensional material space, one can ask whether they are compati-
ble in the context of relativistic elasticity. Here a non-static, spherically symmetric
spacetime metric is considered and we investigate the conditions for that metric to
correspond to different 3-dimensional material metrics.

1.1 General results

Let (M,g) be a spacetime. The material space X is a 3-dimensional manifold en-
dowed with a Riemannian metric γ , the material metric; points in X can then be
thought of as the particles of which the material is made of. Coordinates in M will
be denoted as xa for a = 0,1,2,3, and coordinates in X as yA, A = 1,2,3. The ma-
terial metric γ is not a dynamical quantity of the theory and it roughly describes
distances between neighboring particles in the relaxed state of the material.

The spacetime configuration of the material is said to be completely specified
whenever a submersion ψ : M → X is given; if one chooses coordinate charts in M
and X as above, then yA = yA(xb) and the physical laws describing the mechanical
properties of the material can then be expressed in terms of a hyperbolic second
order system of PDE. The differential map ψ∗ : TpM→ Tψ(p)X is then represented in
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4800 058 Guimarães, Portugal, e-mail: ireneb@mct.uminho.pt

J Carot
Departament de Fsica, Universitat de les Illes Balears,
Cra Valldemossa pk 7.5, E-07122 Palma de Mallorca, Spain, e-mail: jcarot@uib.es

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55616219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Material and space-time metrics in relativistic elasticity

the above charts by the rank 3 matrix
(
yA

b

)
p , yA

b = ∂yA/∂xb which is sometimes
called relativistic deformation gradient. The kernel of ψ∗ is spanned by a single
timelike vector which we take as u = ua∂a, satisfying yA

bub = 0, uaua =−1, u0 > 0.
u is called the velocity field of the matter, and in the above picture in which the
points in X are material points, the spacetime manifold M is then made up by the
worldlines of the material particles.

The material space is said to be in a locally relaxed state at an event p ∈ M if,
at p, it holds kab ≡ (ψ∗γ)ab = hab where hab = gab + uaub. Otherwise, it is said to
be strained, and a measurement of the difference between kab and hab is the strain,
whose definition varies in the literature; thus, while it can be defined simply as Sab =
− 1

2 (kab−hab) =− 1
2 (kab−uaub−gab), we shall follow instead the convention in [1]

and use Kab ≡ kab−uaub. The strain tensor determines the elastic energy stored in an
infinitesimal volume element of the material space (or energy per particle), hence
that energy will be a scalar function of Kab. This function is called constitutive
equation of the material, and its specification amounts to the specification of the
material. We shall represent it as v = v(I1, I2, I3), where I1, I2, I3 are any suitably
chosen set of scalar invariants1 associated with and characterizing Kab completely.
Following [1] we shall choose

I1 =
1
2

(TrK−4) I2 =
1
4

[
TrK2− (TrK)2

]
+3 I3 =

1
2

(detK−1) . (1.1)

Notice that for Kab = gab (equivalently kab = hab) the strain tensor Sab is zero, in
which case one has I1 = I2 = I3 = 0.

The energy density ρ will then be the particle number density ε times the con-
stitutive equation, that is ρ = εv(I1, I2, I3) = ε0

√
detK v(I1, I2, I3) where ε0 is the

particle number density as measured in the material space, or rather, with respect to
the volume form associated with kab = (ψ∗γ)ab, and ε is that with respect to hab.

In the case of elastic matter, it can be seen using the standard variational prin-
ciple for the Lagrangian density Λ =

√
−gρ (see for instance [2] or [3]) that de-

composing the energy-momentum with respect to u (the velocity of the matter)
yields Tab = ρuaub + phab +Pab, where hab = gab +uaub, Pab = hm

a hn
b(Tmn−3phmn),

ρ = Tabuaub, p = 1
3 habTab which satisfy habub = 0, Pabub = gabPab = 0. The above

energy-momentum tensor is of the diagonal Segre type {1,111} or any of its de-
generacies so that an orthonormal tetrad exists {ua,xa,ya,za} (with uaua = −1,
xaxa = yaya = zaza = +1 and the mixed products zero) such that:

Tab = ρuaub + p1xaxb + p2yayb + p3zazb, p =
1
3
(p1 + p2 + p3),

hab = xaxb + yayb + zazb, etc. (1.2)

One can show that the Dominant Energy Condition (DEC) is fulfilled if and only if
ρ ≥ 0, |pA| ≤ ρ, A = 1,2,3.

1 Recall that one of the eigenvalues is 1, therefore, there exist three other scalars (in particular
they could be chosen as the remaining eigenvalues) characterizing Ka

b completely along with its
eigenvectors.
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1.2 Spherical symmetry and material metrics

For a spherically symmetric spacetime, coordinates xa = t,r,θ ,φ exist (and are
non-unique) such that the line element can be written as

ds2 =−a(r, t)dt2 +b(r, t)dr2 + r2dθ
2 + r2 sin2

θdφ
2 (1.3)

with a and b positive. This metric possesses three Killing vectors, namely ξ1 =
−cosφ ∂θ + cotθ sinφ ∂φ , ξ2 = ∂φ and ξ3 = −sinφ ∂θ − cotθ cosφ ∂φ which
generate the 3-dimensional Lie algebra so(3).

The existence of symmetries has some important consequences on physics (see
[4]). For example, matter 4-velocity, pressure, density, anisotropic tensor all stay
invariant along the above KVs, together with the projection tensor hab = gab +uaub.
One can also show that any timelike vector field v that remains invariant along the
three Killing vectors is necessarily of the form v = vt(t,r) ∂t + vr(t,r) ∂r.

Let us now consider in more detail the problem of elasticity in a spherically
symmetric spacetime (M, ḡ) with associated material space (X , γ̄). We shall demand
that the submersion ψ : M −→ X mentioned in section 1 preserves the KVs, that is
ψ∗(ξ A) = ηA are also KVs on X . This implies that the metric γ̄ is also spherically
symmetric and therefore coordinates yA = (y, θ̃ , φ̃) exist with y = y(t,r), θ̃ = θ and
φ̃ = φ , and are such that ηA = ξ A are KVs of the metric γ̄ . Thus, the line element
ds̄2 of ḡ is obtained from (1.3), with a and b substituted by ā and b̄, respectively.
The line element of γ̄ may be written as:

dΣ̄
2 = f 2(y)(dy2 + y2dθ

2 + y2sin2
θdφ

2), (1.4)

This last expression is completely general, as any 3-dimensional spherically sym-
metric metric is necessarily conformally flat, as it is immediate to show. Notice
also that the relation between γ̄ and the flat material metric γ used in [1], is simply
γ̄AB = f 2(y)γAB. Writing k̄ = ψ∗(γ̄), one has:

k̄a
b =


− f 2(y)(ẏ2/ā) − f 2(y)(ẏy′/ā) 0 0
f 2(y)(ẏy′/b̄) f 2(y)(y′2/b̄) 0 0

0 0 f 2(y)y2/r2 0
0 0 0 f 2(y)y2/r2

 , (1.5)

where a dot indicates a derivative with respect to t and a prime a derivative with
respect to r. The velocity field of the matter, defined by the conditions ūayA

a = 0,
ḡabūaūb = −1 and ū0 > 0, can be expressed as ūa = Γ̄ ā−1/2 (1,−ẏ/y′,0,0), with
Γ̄ ≡ [1− (b̄/ā)(ẏ/y′)2]−

1
2 .

The projection tensor h̄a
b = δ a

b + ūaūb follows now easily from these expressions.
We will use the an orthonormal tetrad {ū, x̄, ȳ, z̄}, with ū given above and such

that the remaining vectors are eigenvectors of the pulled back material metric k̄a
b:

x̄a =
(
−(āb̄1/2)(ẏ/y′)Γ̄ ,Γ̄ /

√
b̄,0,0

)
, ȳa = (0,0,1/r,0), z̄a = (0,0,0,1/(r sinθ)),

so that ḡab = −ūaūb + x̄ax̄b + ȳaȳb + z̄az̄b. It is now immediate to see that the pres-
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sure tensor has the same eigenvectors as k̄ab and can be written as p̄ab = p̄1x̄ax̄b +
p̄2(ȳaȳb + z̄az̄b). Therefore, (1.2) yields T̄ab = ρ̄ ūaūb + p̄1x̄ax̄b + p̄2(ȳaȳb + z̄az̄b),
where ρ̄ is the energy density, p̄1, the radial pressure and p̄2, the tangential pres-
sure. These and other related issues are studies in depth in [4].

In order to know whether the spacetime metric ḡ can be associated with different
conformally related material metrics, it will be assumed that gab = ḡab, with g and
ḡ associated, respectively, with a flat (γ )and a non flat (γ̄) material metric, related
by γ̄ = f 2γ .

Therefore the expressions relating the eigenvalues of k̄ and k are: s̄ = f 2y2/r2 =
f 2s, η̄ = f 2y′2/(Γ 2b) = f 2η . These expressions are used to relate the invari-
ants in (1.1), namely Ī1, Ī2, Ī3, with the corresponding ones I1, I2, I3 through the
conformal factor f , as follows:

Ī1 = f 2 (I1 +3/2)−3/2, Ī2 = f 4 (I1 + I2−3/2)− f 2 (I1 +3/2)+3,

Ī3 = f 6 (I3 +1/2)−1/2.
(1.6)

The above expressions for s̄ and η̄ lead to the following relations

ρ̄ = f 3 v̄
v

ρ ε̄ = ρ0s̄
√

η̄ = f 3
ε. (1.7)

Taking the above expressions for the invariants together with (1.7) one obtains

∂ ρ̄

∂ Ī1
=

1
f 2

∂ρ

∂ I1
− ∂ρ

∂ I2

(
1
f 2 −

1
f 4

)
,

∂ ρ̄

∂ Ī2
=

1
f 4

∂ρ

∂ I2
,

∂ ρ̄

∂ Ī3
=

1
f 6

∂ρ

∂ I3
. (1.8)

These expressions lead to the following relationship for the energy-momentum ten-
sors:

T̄ a
b = f 3 v̄

v
T a

b . (1.9)

However the assumption on equal metric tensors leads to equal energy-momentum
tensors, so that the following relation for constitutive equations must hold:

v̄ =
1
f 3 v. (1.10)

It is now straightforward to conclude that ρ̄ = ρ.
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