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Abstract. Online generation of trajectories in robots is a very complex task that involves the combination of different types
of movements, i.e., distinct motor primitives. The later are used to model complex behaviors in robots, such as locomotion in
irregular terrain and obstacle avoidance. In this paper, we consider two motor primitives: rhythmic and discrete. We study the
effect on the robots’ gaits of superimposing the two motor primitives, considering two distinct types of coupling. Additionally,
we simulate two scenarios, where the discrete primitive is inserted in all of the four limbs, or is inserted in ipsilateral pairs
of limbs. Numerical results show that amplitude and frequency of the periodic solutions, corresponding to the gaits trot and
pace, are almost constant for diffusive and synaptic couplings.
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INTRODUCTION

Online generation of trajectories in articulated robots with many degrees-of-freedom such as biped, quadruped or
hexapod robots, has been an interesting and complex research issue in the last few decades. Biological inspired models
to produce rhythmic movements in robots has brought new insights and developments on this issue. Central Pattern
Generators (CPGs) are networks of neurons located at the spinal level of vertebrates responsible for the rhythmic
patterns observed during animals’ locomotion [10, 2, 9]. Mathematically, CPGs are modeled by nonlinear dynamical
systems.These dynamical systems play a major role on online generation of trajectories since they allow their smooth
modulation through simple changes in the parameter values of the equations, have low computational cost, are robust
against perturbations, and allow phase-locking between the different oscillators [14, 5, 4].

Schöner et al [12] propose a set of organizational principles that allow an autonomous vehicle to perform stable
planning. Matos et al [8] propose a bio-inspired robotic controller able to generate locomotion and to easily switch
between different types of gaits. Matos et al [13] present a CPG design, based on coupled oscillators, generating the
required stepping movements of a limb for omnidirectional motion.

In this paper, we assume a modular generation of robot movements, supported by current neurological and human
motor control findings, specially considering the concepts of central pattern generators (CPGs). We continue our
previous work [8, 13], considering the CPG model quad-robot (Figure 1) for quadruped robots’ movements. CPG
quad-robot is a network of four coupled CPG-units, each of which consists of two motor primitives: rhythmic and
discrete. We study the variation in the amplitude and the frequency values of the periodic solutions produced by the
CPG model quad-robot when the discrete primitive is inserted as an offset of the rhythmic part. The goal is to show
that these discrete corrections may be performed since that they do not affect the required amplitude and frequency of
the resultant trajectories, nor the gait, in the cases studied here. To our best knowledge, this type of study has never
been addressed or explored in the literature. Amplitude and frequency may be identified, respectively, with the range
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of motion and the velocity of the robot’s movements, when considering implementations of the proposed controllers
for generating trajectories for the joints of real robots.

CPG LOCOMOTION MODEL

In this section, we present the CPG model quad-robot. We give the general class of systems of ODEs that model CPG
quad-robot and resume the symmetry techniques that allow classification of periodic solutions produced by this CPG
model, and identified with quadruped locomotor patterns.

CPG quadruped model design

Figure 1 shows the CPG model quad-robot for generating locomotion for quadrupeds robots. It consists of four
coupled CPG-units. The CPG-units (or cells) are denoted by circles and the arrows represent the couplings between
cells. Network quad-robot has

FIGURE 1. CPG locomotor model for quadrupeds, quad-robot. LF (left fore leg cell), RF (right fore leg cell), LH (left hind leg
cell), RH (right hind leg cell).

Γquad−robot = Z2(ω)×Z2(κ)

symmetry. quad-robot has the bilateral symmetry of animals (Z2(κ)) and a translational symmetry (Z2(ω)), from
back to front, i.e, cell RF is coupled to cell RH, and the same applies for cells LF and LH. The observed symmetry of
CPG models for locomotion of animals or robots is fairly accepted by most researchers (see [14] and [11], for CPG
models of legged robots).

CPG model equations

The class of systems of differential equations of the CPG model for the quadruped model quad-robot is of the
form:

ẋLH = F(xLH ,xRH ,xLF ,xRF)
ẋRH = F(xRH ,xLH ,xRF ,xLF)
ẋLF = F(xLF ,xRF ,xLH ,xRH)
ẋRF = F(xRF ,xLF ,xRH ,xLH)

(1)

where xi ∈ Rk are the cell i variables, k is the dimension of the internal dynamics for each cell, and F : (Rk)4 → Rk

is an arbitrary mapping. The fact that the dynamics of each cell is modeled by the same function F indicates that the
cells are assumed to be identical.

Symmetries and gaits

The Theorem H/K gives a method for classifying all possible symmetry types of periodic solutions for a given
coupled cell network [6]. These periodic solutions are then identified with animals locomotor rhythms. Let H and K
be the subgroups of spatiotemporal and spatial symmetries and let x(t) be a periodic solution of an ODE ẋ = f (x),
with period normalized to 1, and with symmetry group Γ. Symmetries of spatial type K fix the solution pointwise,
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i.e., let γ ∈ Γ, then γx(t) = x(t). On the other hand, spatiotemporal symmetries H fix the solution setwise, i.e.,
γx(t) = x(t−θ)↔ x(t +θ) = x(t), where θ is the phase shift associated to γ . If θ = 0, then γ is a spatial symmetry.
In order for (H,K) to correspond to symmetries of a periodic solution x(t) to (1) for some function F the quotient
H/K must be cyclic. There are twelve pairs of symmetry types (H,K) such that H/K is cyclic. In Table 1, we show
six of those pairs, the corresponding periodic solutions and their identification with quadruped locomotor patterns,
such as trot, pace, transverse gallop, pronk, bound, rotary gallop. The other six pairs are not yet identified with any
of the known quadruped rhythms. In Table 1, we write the symmetry pairs and the corresponding periodic solutions
corresponding to common quadruped gaits. We explain using the gait pace how its identification with one periodic

TABLE 1. Periodic solutions, and corresponding symmetry pairs,
identified with quadruped gaits, where period of solutions is normal-
ized to 1. S is half period out of phase.

H K Left limbs Right limbs Name

Γquad−robot Γquad−robot (xLH ,xLH ) (xLH ,xLH ) pronk

Γquad−robot Z2(ωκ) (xLH ,xS
LH ) (xS

LH ,xLH ) trot

Γquad−robot Z2(κ) (xLH ,xS
LH ) (xLH ,xS

LH ) bound

Γquad−robot Z2(ω) (xLH ,xLH ) (xS
LH ,x

S
LH ) pace

Z2(ωκ) 1 (xLH ,xS
RH ) (xRH ,xS

LH ) rot. gal.

Z2(ω) 1 (xLH ,xS
LH ) (xRH ,xS

RH ) trans. gal.

solutions, produced by (1), with symmetry (H,K) = (Γquad−robot,ω) is done. Let ω be the permutation that switches
signals sent to front and back quadruped legs. Applying ω to the pace does not change that gait, since the fore and
hind legs receive the same set of signals. The permutation ω is called a spatial symmetry for the pace. Symmetry
Γquad−robot forces the signals to be left to left and right legs to be the same, up to a phase shift of 1/2.

NUMERICAL SIMULATIONS

We simulate the CPG model quad-robot. In each CPG-unit, the discrete part y(t) is inserted as an offset of the
rhythmic part x(t). The coupling is either diffusive or synaptic. Additionally, we consider two possible combinations
for the insertion of the discrete primitive. It may be done in the four limbs, or in the ipsilateral limbs. We vary
T ∈ [0,25], in steps of 0.1, for a given periodic solution. For a fixed T , when a stable periodic orbit is obtained, its
amplitude and frequency are computed. These values are then plotted.

The system of ordinary differential equations that models the discrete primitive is the VITE model given by [1]:

v̇ = δ (T − p− v)
ṗ = G max(0,v)

(2)

This set of differential equations generates a trajectory converging to the target position T , at a speed determined by
the difference vector T − p, where p models the muscle length, and G is the go command. δ is a constant controlling
the rate of convergence of the auxiliary variable v. This discrete primitive controls a synergy of muscles so that the
limb moves to a desired end state, given a volitional target position. Moreover, the brain does not encode a trajectory,
that emerges from the dynamics of the motor primitive, but a desired final state.

The equations for the rhythmic motor primitive are known as the modified Hopf oscillators [7] and are given by:

ẋ = α(μ− r2)x−ωz = f (x,z)
ż = α(μ− r2)z+ωx = g(x,z)

(3)

where r2 = x2+z2,
√

μ is the amplitude of the oscillation. For μ < 0 the oscillator is at a stationary state, and for μ > 0
the oscillator is at a limit cycle. At μ = 0 it occurs a Hopf bifurcation. Parameter ω is the intrinsic frequency of the
oscillator, α controls the speed of convergence to the limit cycle. ωswing and ωstance are the frequencies of the swing
and stance phases, ω(z) = ωstance

exp(−az)+1 +
ωswing

exp(az)+1 is the intrinsic frequency of the oscillator. With this ODE system,
we can explicitly control the ascending and descending phases of the oscillations as well as their amplitudes, by just
varying parameters ωstance, ωswing and μ . These equations have been used to model robots’ trajectories [4, 11, 8, 13].
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The coupled systems of ODEs that model CPG quad-robot where the discrete part is inserted as an offset of the
rhythmic primitive, for synaptic and diffusive couplings, are given by:

ẋi = f2(xi,zi)
żi = g2(xi,zi)+ k1h1(zi+1,zi)+

+k2h2(zi+2,zi)+ k3h3(zi+3,zi)
(4)

where f2(xi,zi) = f1(xi,zi,yi), g2(xi,zi) = g1(xi,zi,yi) and r2
i = (xi− yi)

2 + z2
i . Indices are taken modulo 4. Function

hl(z j,zi), l = 1,2,3, represents synaptic coupling when written in the form hl(z j,zi) = z j, l = 1,2,3, and diffusive
coupling when written as hl(z j,zi) = z j− zi, l = 1,2,3. Parameter values used in the simulations are μ = 10.0, α = 5,
ωstance = 6.2832 rads−1, ωswing = 6.2832 rads−1, a = 50.0, G = 1.0, δ = 10.0. Figures 2, 3 show amplitude and
frequency values of the periodic solutions produced by CPG quad-robot and identified with the quadruped rhythms
of pace. In Figure 3 the discrete primitive is inserted only in ipsilateral pairs of limbs. The values of T not plotted in
the graphs are those for which the stable solution, obtained after the insertion of the discrete part, goes to equilibrium.
Note that we obtain analogous graphs for the trot.
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FIGURE 2. Amplitude (LEFT) and frequency (RIGHT) of the periodic solutions produced by CPG quad-robot and identified
with pace, for varying T ∈ [0,25] in steps of 0.1, in cases for diffusive and synaptic couplings.
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FIGURE 3. Similar to Figure 2, when the discrete primitive is inserted in ipsilateral limbs.

The graphs show that both couplings provide good results. By ’good’, we mean that the amplitude and frequency
values of the achieved (stable) periodic solutions, obtained after superimposing the discrete to the rhythmic primitive,
are not affected. Therefore, it is possible to use them for generating trajectories for the joint values of real robots, since
varying the joint offset will not affect the required amplitude and frequency of the resultant trajectory, nor the gait.
Additionally, when the discrete primitive is inserted only in ipsilateral pairs of limbs, the offset is seen only in the
limbs considered.

CONCLUSION

We study the effect on the periodic solutions produced by a CPG model for quadruped robots movements of superim-
posing two motor primitives: discrete and rhythmic. These periodic solutions are identified with the quadruped gaits
of trot and pace. The CPG model consists of four coupled CPG units, where each CPG unit combines the two motor
primitives, discrete and rhythmic.

We simulate the CPG model considering the discrete primitive as an offset of the rhythmic primitive, and two distinct
coupling functions. Additionally, we simulate two scenarios, where the discrete primitive is inserted in all of the four
limbs, or is inserted in ipsilateral pairs of limbs. For each case, we compute the amplitude and the frequency values
of the periodic solutions identified with trot and pace, for values of the discrete primitive target parameter T ∈ [0,25].
Numerical results show that amplitude and frequency values are almost constant, for both couplings. Results are also
obtained in a robotic experiment using a simulated AIBO robot that walks over a ramp. The proposed controller
generates movements for locomotion and posture correction which are modulated according to the measured lateral
tilt of the body. Restriction on page number did not allow us to describe the experiment here.
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