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Abstract. Legged robots are often used in a large variety of tasks, in different environments. Nevertheless, due to the large
number of degrees-of-freedom to be controlled, online generation of trajectories in these robots is very complex. In this paper,
we consider a modular approach to online generation of trajectories, based on biological concepts, namely Central Pattern
Generators (CPGs). We introduce a new CPG model for hexapod robots’ rhythms, based in the work of Golubitsky et al
(1998). Each neuron/oscillator in the CPG consists of two modules/primitives: rhythmic and discrete. We study the effect on
the robots’ gaits of superimposing the two motor primitives, considering two distinct types of coupling. We conclude, from the
simulation results, that the amplitude and frequency of periodic solutions, identified with hexapods’ tripod and metachronal
gaits, remain constant for the two couplings, after insertion of the discrete part.
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INTRODUCTION

In the last few years, there has been a large development in the modeling of online generation of trajectories in legged
robots. Models producing rhythmic robots’ patterns, inspired in biology, are now common. Locomotion in vertebrates
is commonly structured in three layers [8], the top are the brainstem command systems, the structures that decide
which motor pattern is to be activated at each moment of time. The middle layer consists of the steering and posture
control systems. The bottom layer includes the Central Pattern Generators (CPGs). CPGs are networks of neurons
located at the spinal level of vertebrates responsible for the rhythmic patterns observed during animals’ locomotion.
Mathematically, CPGs are commonly modeled by coupled nonlinear dynamical systems [6, 7, 4]. Dynamical sys-
tems have nice properties, such as smooth modulation, low computational cost, phase-locking between oscillators,
extremely useful to online modulation of trajectories [10, 3]. Matos et al [10] propose a bio-inspired robotic controller
able to generate locomotion and to easily switch between different types of gaits. Campos et al [3], present a two-layer
architecture to model hexapod robots’ locomotion. The bottom layer consists of the CPG for generating hexapods’
gaits and the second layer sets up the parameter values for each gait. They study smooth gait transition in the model,
using a modulatory drive signal regulating CPG’s activity. Authors also propose a lateral posture control, based on
dynamical systems, that corrects the robot posture and keeps its balance, when subject to changes in the lateral tilt. In
this paper, we study the CPG model hexapod-robot for modular generation of an hexapod robot movements, using
a biological approach [1]. CPG hexapod-robot is a network of twelve coupled CPG-units, each of which consists
of two motor primitives: rhythmic and discrete. We study the variation in the amplitude and the frequency values of
the periodic solutions produced by the CPG model hexapod-robot, and identified with common hexapods’ gaits. We
consider two types of couplings between the CPG units, diffusive and synaptic. The main goal is to show that these
discrete corrections may be performed since that they do not affect the gait, meaning that the amplitude and frequency
of the resultant trajectories is kept constant. Amplitude and frequency may be identified, respectively, with the range
of motion and the velocity of the robot’s movements, when considering implementations of the proposed controllers
for generating trajectories for the joints of real robots.
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CPG MODEL FOR HEXAPODS

In this section we introduce a CPG model for online generation of trajectories of hexapod robots. It is based in the work
of Golubitsky et al [7]. We give the general class of systems of ODEs that model CPG hexapod-robot and resume the
symmetry techniques that allow classification of periodic solutions produced by this CPG model and identified with
common hexapod locomotor rhythms.

Figure 1 shows the CPG model hexapod-robot(Fig 1) for generating locomotion for hexapods robots. It consists
of twelve coupled oscillators. The oscillators (or cells) are denoted by circles and the arrows represent the couplings
between cells. Each cell is a CPG unit and is divided onto two motor primitives, discrete and rhythmic, modeled by
simple nonlinear dynamical systems. There are two types of couplings that force the network to have

FIGURE 1. CPG locomotor model for hexapods, hexapod-robot. LF (left fore leg), LM (left middle leg), LH (left hind leg), RF
(right fore leg), RM (right middle leg), RH (right hind leg).

Γhexapod−robot = Z6(ω)×Z2(κ)

symmetry. The CPG model hexapod-robot has the bilateral symmetry of animals (Z2(κ)) and a translational sym-
metry (Z6(ω)), from back to front, i.e, RF is coupled to cell RH, and the same applies for cells on the left side.

The class of systems of differential equations of the CPG model hexapod-robot is of the form:

ẋLH1 = F(xLH1 ,xRH1 ,xLF2 )

ẋRH1 = F(xRH1 ,xLH1 ,xRF2 )

ẋLM1 = F(xLM1 ,xRM1 ,xLH1 )

ẋRM1 = F(xRM1 ,xLM1 ,xRH1 )

ẋLF1 = F(xLF1 ,xRF1 ,xLM1 )

ẋRF1 = F(xRF1 ,xLF1 ,xRM1 )

ẋLH2 = F(xLH2 ,xRH2 ,xLF1 )

ẋRH2 = F(xRH2 ,xLH2 ,xRF1 )

ẋLM2 = F(xLM2 ,xRM2 ,xLH2 )

ẋRM2 = F(xRM2 ,xLM2 ,xRH2 )

ẋLF2 = F(xLF2 ,xRF2 ,xLM2 )

ẋRF2 = F(xRF2 ,xLF2 ,xRM2 )

(1)

where xi ∈ Rk is the cell i variables, k is the dimension of the internal dynamics for each cell, and F : (Rk)3 → Rk is
an arbitrary mapping, all cells/neurons are identical.

The Theorem H/K [6] allows the identification of symmetry types of periodic solutions, produced by a given cou-
pled cell network. These periodic solutions are then identified with animals locomotor rhythms. Let x(t) be a periodic
solution of an ODE ẋ = f (x), with period normalized to 1, and with symmetry group Γ. Let H and K be subgroups
of Γ. Symmetries K fix the solution pointwise, i.e., let γ ∈ Γ, then γx(t) = x(t). They are called spatial symmetries.
On the other hand, H fixes the solution setwise, i.e., γx(t) = x(t− θ)↔ x(t + θ) = x(t), where θ is the phase shift
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associated to γ . H is the subgroup of spatio-temporal symmetries of the solution. If θ = 0, then γ is a spatial symmetry.
In order for (H,K) to correspond to symmetries of a periodic solution x(t) to (1) for some function F the quotient H/K
must be cyclic. As an example, we present four of those pairs of symmetry types (H,K) such as H/K is cyclic. In
Table 1, we show those pairs and their identification with common hexapod rhythms, pronk, lurch, metachronal, and
tripod. Table 2, exhibits the corresponding periodic solutions. We briefly explain the identification of the hexapod tri-

TABLE 1. Symmetry pairs of periodic
solutions, produced by the coupled cells
system (1), and corresponding gaits.

H K Gait

Γhexapod−robot Γhexapod−robot pronk

Γhexapod−robot Z2(ωκ) tripod

Γhexapod−robot Z2(ω
2) lurch

Z2(ωκ) 1 metach.

TABLE 2. Periodic solutions of system (1),
identified with hexapods gaits, where period of
solutions is normalized to 1. We only show the
first six cells, the others can be easily computed.
S is half period out of phase.

Left Middle Right Gait

(xLH ,xLH ) (xLH ,xLH ) (xLH ,xLH ) pronk

(xLH ,xS
LH ) (xS

LH ,xLH ) (xLH ,xS
LH ) tripod

(xLH ,xLH ) (xS
LH ,x

S
LH ) (xLH ,xLH ) lurch

(xLH ,xS
LH ) (xS/3

LH ,x4S/3
LH ) (x2S/3

LH ,x5S/3
LH ) metac.

pod to a periodic solution of CPG hexapod-robot with symmetry pairs (H,K) = (Γhexapod−robot,Z2(ωκ)). Consider
x(t)=(x1(t),...,x12(t)) be a periodic solution produced by CPG model hexapod-robot. In order to understand transforma-
tion ωκ , we first apply κ to x(t), obtaining x̂(t)=(x2(t),x1(t),x4(t),x3(t),x6(t),x5(t),x8(t),x7(t),x10(t),x9(t),x12(t),x11(t)). After, we apply
ω to x̂(t), resulting in solution x̃(t)=(x4(t),x3(t),x6(t),x5(t),x8(t),x7(t),) (x10(t),x9(t),x12(t),x11(t),x2(t),x1(t)). Thus, spatial symmetry
ωκ forces the final solution to have the form x̄(t)=(x1(t),x2(t),x2(t),x1(t),x1(t),x2(t),) (x2(t),x1(t),x1(t),x2(t),x2(t),x1(t)) Applying ωκ
to the tripod does not change that gait since the groups of cells (1,4,5,8,9,12) and (2,3,6,7,10,11) receive the same
set of signals. Spatio-temporal symmetries Γhexapod−robot force signals sent to the to groups of cells above to be equal
and to be half period out of phase.

NUMERICAL SIMULATIONS

We simulate the CPG model hexapod-robot. In each CPG-unit, we consider two distinct approaches to superimpose
discrete and rhythmic primitives. The discrete part y(t) is inserted as an offset of the rhythmic part x(t). The resulting
system bifurcates between a unique point attractor and a limit cycle according to one single parameter, μ (see below). It
is believed that this design enables to produce more complex movements modeled as periodic movements around time
varying offsets. We also consider two distinct couplings between the oscillators: diffusive and synaptic. We start from
a stable periodic solution, purely rhythmic. Then, we vary parameter T in steps of 0.1 in the interval [−25,25]. For
each value of T we simulate until a stable periodic solution is obtained and then compute its amplitude and frequency
values. Then, we restart the simulations for a new value of T . Numerical results are illustrated.

The system of ordinary differential equations that models the discrete primitive is the VITE model given by [2]:

v̇ = δ (T − p− v)
ṗ = G max(0,v)

(2)

This set of differential equations generates a trajectory converging to the target position T , at a speed determined by
the difference vector T − p, where p models the muscle length, and G is the go command. δ is a constant controlling

506

Downloaded 23 Nov 2011 to 193.136.12.238. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



the rate of convergence of the auxiliary variable v. This discrete primitive controls a synergy of muscles so that the
limb moves to a desired end state, given a volitional target position.

The equations for the rhythmic motor primitive are known as modified Hopf oscillators [9, 10, 3] and are given by:

ẋ = α(μ− r2)x−ωz = f (x,z)
ż = α(μ− r2)z+ωx = g(x,z)

(3)

where r2 = x2+z2,
√

μ is the amplitude of the oscillation. For μ < 0 the oscillator is at a stationary state, and for μ > 0
the oscillator is at a limit cycle. At μ = 0 it occurs a Hopf bifurcation. Parameter ω is the intrinsic frequency of the
oscillator, α controls the speed of convergence to the limit cycle. ωswing and ωstance are the frequencies of the swing
and stance phases, ω(z) = ωstance

exp(−az)+1 +
ωswing

exp(az)+1 is the intrinsic frequency of the oscillator. With this ODE system,
we can explicitly control the ascending and descending phases of the oscillations as well as their amplitudes, by just
varying parameters ωstance, ωswing and μ .

The coupled systems of ODEs that model CPG hexapod-robot for synaptic and diffusive couplings are given by:

ẋi = f2(xi,zi)
żi = g2(xi,zi)+ k1h1(zi+1,zi)+

+k2h2(zi+2,zi)+ k3h3(zi+3,zi)
(4)

where f2(xi,zi) = f1(xi,zi,yi), g2(xi,zi) = g1(xi,zi,yi) and r2
i = (xi− yi)

2 + z2
i , Indices are taken modulo 4. Function

hl(z j,zi), l = 1,2,3, represents synaptic coupling when written in the form hl(z j,zi) = z j, l = 1,2,3, and diffusive
coupling when written as hl(z j,zi) = z j− zi, l = 1,2,3.

We simulate the CPG model (4). Parameter values used in the simulations are μ = 10.0, α = 5, ωstance = 6.2832
rads−1, ωswing = 6.2832 rads−1, a = 50.0, G = 1.0, δ = 10.0. Figure 2 shows amplitude and frequency values of
the periodic solutions produced by CPG hexapod-robot and identified with the tripod hexapod rhythms. The values
of T not plotted in the graphs are those for which the solution, after insertion of the discrete part, goes to a stable
equilibrium. Note that we obtain analogous graphs for the metachronal. By observation of the graphs, we conclude
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FIGURE 2. Amplitude (left) and frequency (right) of the periodic solutions produced by CPG hexapod-robot and identified
with tripod, for varying T ∈ [0,25] in steps of 0.1, for diffusive and synaptic couplings.

that the amplitude and frequency values of the achieved stable periodic solutions, obtained after inserting the discrete
to the rhythmic primitive, are not or are only slightly affected. Therefore, it is possible to use them for generating
trajectories for the joint values of real robots, since varying the joint offset will not affect the required amplitude and
frequency of the resultant trajectory, nor the gait.

CONCLUSION

We present a new CPG model for the locomotion rhythms of an hexapod robot, consisting of twelve CPG-units.
We study the effect on two periodic solutions, produced by this CPG model hexapod-robot, identified with tripod
and metachronal of superimposing discrete and rhythmic primitives. We simulate the CPG model for synaptic and
diffusive couplings. We compute the amplitude and the frequency values of the stable periodic solutions, obtained
after inserting the discrete part into the rhythmic one, for values of the discrete primitive target parameter T ∈ [0,25].
Numerical results show that amplitude and frequency values are almost constant for the two couplings.
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