
Grid Data Mining for Outcome prediction in Intensive 
Care Medicine 

Abstract. This paper introduces a distributed data mining approach suited to 
grid computing environments based on a supervised learning classifier system. 
SCM and MVM methods for Distributed Data Mining (DDM) are explored and 
compared with the Centralized Data Mining (CDM) approach. Experimental 
tests were conducted with a real world data set from the intensive care medicine 
in order to predict the outcome of the patients. The results demonstrate that the 
performance of the DDM methods are better than the CDM method.  

Keywords: Intensive Care Medicine, Outcome Prediction, Distributed Data 
Mining, Centralized Data Mining. 

1   Introduction 

Recently, there is a significant progress in the research related to distribute data 
mining. Digital data stored in the distributed environments is doubling within a few 
years. More advanced and feasible distributed data mining algorithms and strategies 
are required in the current fast growing environment.  

Learning Classifier System (LCS) is a concept formally introduced by John 
Holland as a genetic based machine learning algorithm [1]. Manuel Santos [2] 
developed the DICE system, a parallel and distributed architecture for LCS. In his 
work he attempted to parallelize the genetic algorithm and LCS message operations to 
increase system’s performance. A. Giani, Dorigo and Bersini also did significant re 
attained in the experimental work research in the area of parallel LCS [3]. Their 
implementation also tried to increase the performance of the system. All 
implementations of parallel LCS consider a single data and generate a single model. 

This work is part of two major projects – the Gridclass project – whose main goal 
is to implement the UCS in a grid environment and – the INTCare project – whose 
main goal is to implement an intelligent decision support system for Intensive Care 
Units where the data distribution among distinct sites is an important issue.  Gridclass 
system does not paralyze any part of the UCS. Various instances of the UCS are 
executed in different distributed sites with different set of data. All the experimental 
work was done using the Grid gain platform; a java based distributed computing 
middleware [4].  

The key objective of this work is to construct a global data mining model from 
different local models of the grid and compare DDM and CDM methods. Grid 
computing architecture is considered the best distributed framework for solving the 
distributed data mining task [5, 6]. Each node of the grid environment executes 
different UCS and those nodes send local data mining models to the central site for 
developing a global model. This paper introduces two different methods for merging 
local models from each distributed sites. The different strategies are: Specific 
Classifier Method (SCM), Majority Voting Method (MVM).  
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The Intensive Medicine is a specific environment where the patients normally are 
in weak conditions. The decisions are normally mad by some stress or by a necessity 
of quickly response. For the doctors is very difficult make decision in this conditions 
especially when they don't have the required clinical data about the patients. In order 
to help them some projects were created and INTCare [7, 8] is one of them. One of 
the main goals of INTCare is the outcome prediction in Intensive Care Units. In order 
to meet this objective, a new platform was developed that allows the clinical data 
collect in real-time and in electronic format. This data will used in a distributed data 
mining approach suited to grid computing environments based on a supervised 
learning classifier system. 

Remaining sections of this paper are organized as follows: Section 2 gives the 
background details of the intensive care unit data, section 3 describes the way of data 
acquisition from ICU and section 4 explains the global model construction methods 
such as specific classifier method and majority voting method. Section 5 shows the 
experimental set up and results of DDM and CDM. Section 6 discusses the 
performance of DDM vs. CDM. Further section 6 shows some related works and final 
section presents main conclusions.        

2   Background 

2.1   Intensive Care Units 

The Intensive Care Units (ICU) is the place where the knowledge and treatments 
associated Intensive Medicine is applied. The main purposes of ICU are diagnose, 
monitor and treat patients with serious illnesses and recover them for their health and 
quality of life prior [9]. ICUs are concerned with these patients, and focus their efforts 
on the resuscitation of patients who are terminally ill or in treating patients who are 
vulnerable to an organic dysfunction, benefiting from the preventive care for each 
system dysfunction according to the principles of restoration to normal physiology 
[10], maintaining a serious and continuous monitoring of the patient. In the ICUs are 
used as decision support systems the disease severity index and prediction models, to 
predict the risk of in-hospital mortality through a set of prognostic variables that uses 
the predictive index of disease severity [11]. The models predict the mortality risk for 
a number of patients with a certain degree of physiological dysfunction.  The most 
famous outcome prediction index is SAPS  that is based on the worst results recorded 
in the first 24 hours after admission [12]. The Systems that use this type of indices 
usually selects the patient, evaluates and records the predictor variables, calculates the 
severity index and returns the rate of mortality. 



3   Data Acquisition in ICU 

3.1   KDD Process in ICU 

In order to obtain the maximum number of electronic data we develop an Electronic 
Nursing Record (ENR) that integrate a high number of hospital data sources like 
Electronic Health Process (EHR), lab results, allow data acquisition, data monitoring 
and data validation, electronically, online and in real-time. After the data be collected, 
these will be prepared and transformed to be used in distributed data mining approach 
suited to grid computing. The Fig. 1 shows the data sources and the Knowledge 
Discovery in Database (KDD) process used in the ICU. 
 

 
Fig. 1. ICU Knowledge Discovery in Database Process 

3.2   Data Set Description 

The data used in this approach were collected in real-time and were related with 
patient who had an entire stay with a full monitoring in ICU in the firsts five days. 
This data correspond to three months and thirty two patients. The input variables 
consist of: Admission data; Critical Events (CE); SOFA; and Accumulated Critical 
Events (ACE). The admission data (i.e. age, admission type and admission from) and 
Critical Events (CE), derived from four physiologic variables Blood pressure (BP), 
heart rate (HR) and oxygen saturation (SPo2) that were collected by the bedside 
monitors and urine output (UR) [13] . The Table 1 presents the values that are in the 
dataset and are obtained at the patient admission and after patient discharge. 

 
Table 1. Possible values of patient admission data  

Variable Description Range 
Hour relating to 5 days of stay [1-120] 

Age The age of patient admitted in ICU 1 - [18; 46]; 2- [47; 65];  
3 - [66; 75]; 4 - >= 76 

Admission 
Type The type of admission {Urgent (U); Programmed (P)}; 

Admission 
From Admission origin of the patient 

1 - Surgery block, 2 - Recovery 
room, 3 - Emergency room, 4 - 

Nursing room, 5 - Other ICU, 6 - 



Other hospital, 7 - Other sources 

Outcome Patient final discharge {Survivor (0); Deceased (1)} 

For each variable (VAR): BP, HR, SPo2 and HR were calculated the AEC, EC and 
a set of ratios, the Table 2 show the descriptions of each ratio and the possible values. 
CE was defined by a panel of experts [14]. If a physiological parameter is out of its 
normal range [15] for more than 10 minutes or the result is lower than the minimum 
acceptable, it is considered a CE.  In consequence of CE we have the Accumulated 
Critical Events (ACE) that was derived as a new variable and is an hourly sum of CE 
of one patient during its staying.The score used in this data set was SOFA, which can 
quantify the level of failure (0-4) to each organ system (neurologic, cardiovascular, 
hepatic, renal, respiratory, coagulation). In this case, we transformed the data and 
considered 0 to normal values and 1 if an organ failure happened. 

 
Table 2. Possible values of events, ratios, and scores  

Variable Description Range 
EC Number of critical events of each VAR occurred per hour [0; + ∞] 

AEC Number of accumulated critical events of each VAR occurred [0; + ∞] 

ec_ac_var 
/ 

EC_max 

Number of accumulated critical events of each VAR occurred 
[0; 1] 

Maximum number of critical events possible in an hour 

ec_ac_var 
/ 

Horas 

Number of accumulated critical events of VAR occurred 
[0; 1] 

Hours of stay 

tot_ec_ac Number of total critical events accumulated of all 4 variables [0; + ∞] 

tot_ec_ac 
/ 

ec_max 

Number of total critical events accumulated of all 4 variables 
[0; 1] 

Maximum number of critical events possible in an hour of all var 

tot_ec_ac 
/ 

Horas 

Number of total critical events accumulated of all 4 variables 
[0; 1] 

Hours of stay 

sofa_organ SOFA value for each organ system Failure (1) 
Normal  (0) 

 
Incorrect values were detected and corrected by ignoring values considered absurd 

by the medical experts. The resulting data of this prepared data process were used by 
Data Mining. 

4   Global Model Construction 

Gridclass uses the UCS for data mining proposes. Two levels of data mining models 
are generated in the Gridclass system. The first level is related to the models 



generated in each distributed sites and the second level correspond to the model 
generated in the central site. The first data mining models are known as local models. 
The second level is known as global model and is generated from all the local models 
in the first level. The global model represents all the data in the distributed 
environment. 

During the training process, Gridclass system generates data mining models based 
on the training data and a predefined set of classifier [16]. If a predefined set of 
classifiers is provided, then the system can perform incremental learning. The 
incremental learning process improves the performance therefore the system can 
provide more generalized learning model. If a predefined set of classifiers is not 
provided, then the system generates the data mining models only from training data. 
Data mining models are maintained by genetic algorithm and covering operations in 
UCS system [17, 18, 19].  

There are many challenges for constructing a global model, because wrong 
combination of the classifiers gathered from the local models, will affect negatively 
the performance of global model. The main difficulty is to derive the significance of 
each classifier and predict their values in the global model. All training data are 
completely independent even though there should be many similar classifiers with 
different sets of parameter values (benefits). Therefore the parameter evaluation of the 
classifiers in the global model is important. 

Remaining sections demonstrate some solutions that are suitable for constructing 
the global model. Each strategy establishes different sort of combinations of local 
models in the global model. Those strategies help to understand the significance of 
availability of different sort of local classifiers in the global model. Each strategy has 
peculiar significance for the development of the global model. The performance of 
global model is evaluated from the testing accuracies of the global model 

4.1 Specific Classifier Method (SCM) 

Specific Classifier Method (SCM) only preserves discrete classifiers in the global 
model [20]. SCM induce the global model without repeating similar classifiers and 
simultaneously keeping all the benefits of the local classifiers.  

In SCM the initial process is to collect all the classifiers from the distributed sites 
and store them in a central location. The collected classifiers have to be evaluated 
based on the criteria of SCM and those classifiers that are eligible to be integrated the 
global model will be stored in the global model. While classifiers are evaluated, each 
classifier needs to be matched with all other classifiers in the collected local model. 
When one classifier finds another similar classifier in the collected local models then 
that classifier updates its parameters with parameters of matched classifier.  Finally, 
the induced global model will be tested using a data set that was generated from the 
global data set. 



4.2 Majority Voting Method (MVM) 

Majority Voting Method (MVM) is another strategy for constructing the global model 
from distributed local models. The goal of the MVM is to eradicate weak classifiers 
from the global model and construct a strong model in the central system (global 
model). Initially, MVM gathers all local models and stores them in the central system, 
then goes on to find all discrete classifiers from the accumulated local models as 
SCM. Later, the system calculates a threshold value (cut_ off_ threshold) from the 
collected classifiers and uses it to benchmark the classifiers in the population [20]. If 
the accuracy of a classifier is greater than the cut_ off_ threshold value then that 
classifier will be stored in the global model.  

5 Experimental work 

Experimental work intents to compare the performance of DDM and CDM 
therefore different sizes of iteration, population size and node are considered in the 
distributed site. ICU data set has 3570 records of data and each record has 31 fields 
and each field has different ranges of the values. ICU data was divided for training 
and testing, i.e. randomly selected 70% of original data was considered as centralized 
training data and randomly selected 30% of original data was considered as 
centralized testing data. For the DDM training and testing data was made from the 
centralized training and centralized testing datasets. Based on the number of nodes in 
the distributed site centralized training and centralized testing data was equally 
divided. Centralized training dataset has 2380 records and centralized testing dataset 
has 1190. Two set of nodes were considered (Ten and twenty) in the distributed site 
therefore for 10 nodes 238 records of data in each training dataset and 119 records of 
data in each testing dataset. For the 20 nodes tests, 119 records of data were 
considered in each training dataset and 59 records of in each testing dataset.  
Similarly, considerable size of population and number of iterations of the CDM, 
population size and number of iterations were divided according to the number of 
nodes in the DDM. Three sets of iterations were considered for CDM that are 100000, 
200000 and 300000 and four set of population sizes were selected for CDM that are 
500, 1000, 2000 and 4000. For the ten nodes in the DDM considered iterations are 
10000, 20000 and 30000 and considered populations are 50, 100, 200 and 400. For 
the twenty nodes, considered iterations are 5000, 10000 and 15000 and considered 
population sizes were 25, 50, 100 and 200. To compare the performance of each 
approach, we considered the accuracies (the average of 10 executions). The 
configuration parameters used in the UCS are:  ProbabilityOfClassZero = 0.5, V = 20, 
GaThreshold = 25, MutationProb = 0.05, CrossoverProb = 0.8, 
InexperienceThreshold = 20, InexperiencePenalty = 0.01, CoveringProbability = 
0.33, ThetaSub = 20, ThetaSubAccuracyMinimum = 0.99, ThetaDel =20, ThetaDelFra 
= 0.10.  



5.1 DDM Experiments 

Table 3 shows the global model testing accuracies attained for the SCM and MVM 
strategies. Based on the testing accuracies, it is difficult to say which the best method 
for constructing the global model. But based on the global population size MVM is 
the best because the global population size of the MVM is always smaller than the 
global population size of the SCM. Testing accuracies increase in proportion to the 
population size as expected, for example, almost 71% of accuracy is achieved with 
global population size of 500, near to 80% of accuracy is achieved with global 
population size of 1000, approximately 87% of accuracy is achieved with global 
population size of 2000, and nearly 93% of accuracy is achieved with global 
population size of 4000. Higher population sizes were not considered in order to 
avoid overfitting phenomena. 

  
Table 3. Testing accuracies of global models generated using SCM and MVM. 

Number of 
Nodes Iterations 

Local 
Population  

Size 

Accuracy Global Population Size 

SCM MVM SCM MVM 

10 10,000 50 0.716 ± 
0.0110 

0.7132 ± 
0.01252 

485.8 ± 
4.87 

381.3 ± 
10.187 

10 10,000 100 0.7987 ± 
0.01586 

0.7987 ± 
0.0175 

955 ± 
5.35 

655.7 ± 
9.2141 

10 10,000 200 0.8784 ± 
0.01715 

0.876 ± 
0.01511 

1884.8 ± 
12.23 

1070.8 ± 
20.48 

10 10,000 400 0.925 ± 
0.009 

0.92606 ± 
0.0088 

3730.9 ± 
17.615 

1710.7 ± 
33.40 

10 20,000 50 0.7116 ± 
0.0203 

0.723 ± 
0.0318 

486.4 ± 
3.687 

383.2 ± 
9.635 

10 20,000 100 0.80 ± 
0.0159 

0.807 ± 
0.0217 

958.8 ± 
7.08 

648.2 ± 
11.698 

10 20,000 200 0.8794 ± 
0.060 

0.8722 ± 
0.01589 

1885 ± 
11.72 

1067.5 ± 
21.36 

10 20,000 400 0.925 ± 
0.0099 

0.9229 ± 
0.0123 

3724 ± 
12.18 

1713 ± 
42.62 

10 30.000 50 0.712 ± 
0.018 

0.7188 ± 
0.0151 

484 ± 
2.366 

382.5 ± 
12.020 

10 30,000 100 0.807 ± 
0.0173 

0.8024 ± 
0.0167 

958.7 ± 
4.80 

654.8 ± 
10.695 

10 30.000 200 0.875 ± 
0.019 

0.8723 ± 
0.0179 

1890.2 ± 
9.96 

1063. ± 
31.287 

10 30,000 400 0.9244 ± 
0.0085 

0.925 ± 
0.01153 

3720.1 ± 
20.82 

1705.5 ± 
24.24 

20 5,000 25 0.7203 ± 
0.0192 

0.7345 ± 
0.0232 

488.2 ± 
3.119 

394.1 ± 
6.789 

20 5,000 50 0.8028 ± 
0.0176 

0.797 ± 
0.0177 

959.1 ± 
6.55 

676.1 ± 
17.47 

20 5,000 100 0.879 ± 
0.0186 

0.8781 ± 
0.01084 

1890 ± 
11.2570 

1111.9 ± 
28.68 



5.2 CDM Experiments 

The testing accuracies of the CDM are smaller than the testing accuracies of DDM. 
The testing accuracies of the CDM also show the impact of the population size 
because the testing accuracies are increasing proportional to the population size. 

 
Table 4. Testing accuracies for the CDM method. 

Iteration  Population Size Accuracy 

100,000 500 0.56232  ± .17046 
100,000 1000 0.6035 ± 0.182586 
100,000 2000 0.6585 ± 0.1992 
100,000 4000 0.7086 ± 0.2138 
200,000 500 0.565 ± 0.170825 
200,000 1000 0.5974 ± 0.1808 
200,000 2000 0.64885 ± 0.1962 
200,000 4000 0.7114 ± 0.2146 
300,000 500 0.5585 ± 0.1689 
300,000 1000 0.5996 ± 0.1814 
300,000 2000 0.6507 ± 0.1965 
300,000 4000 0.7156 ± 0.216 

6 Discussion and Related work 

The main goal of this work is to induce global data mining models and compare 
the performance of CDM versus the DDM methods. Two strategies described above 

20 5,000 200 0.932 ± 
0.0130 

0.927 ± 
0.00674 

3733 ± 
14.2126 

1779.7 ± 
31.16 

20 10,000 25 0.72 ± 
0.018 

0.721 ± 
0.0158 

486 ±  
4.13 

391.7 ±  
6.412 

20 10,000 50 0.805 ± 
0.0192 

0.8061 ± 
0.0197 

962.6 ± 
4.501 

669.3 ± 
16.97 

20 10,000 100 0.8824 ± 
0.0167 

0.884 ± 
0.0151 

1892 ±  
9.04 

1101.8 ± 
16.87 

20 10,000 200 0.9298 ± 
0.0153 

0.9369 ± 
0.0118 

3729.9 ± 
13.194 

1757.3 ± 
33.50 

20 15,000 25 0.7197 ± 
0.0965 

0.7158 ± 
0.0212 

486.6 ± 
4.5509 

389.6 ± 
7.29 

20 15,000 50 0.8091 ± 
0.0129 

0.8054 ± 
0.0134 

961.6 ± 
7.381 

673.2 ± 
38.473 

20 15,000 100 0.8695 ±  
0.0135 

0.8699 ± 
0.0132 

1886 ± 
10.286 

1110.7 ± 
10.69 

20 15,000 200 0.9325 ±  
0.00977 

0.9325 ± 
0.01022 

3738.8 ± 
20.339 

1777.6 ±  
019.18 



were able to construct the global model from the distributed local models. The global 
model in the CDM method is obviously representing the overall problem (dataset) in 
the distributed site because that model is generated from global data without any 
intervention. Global model of the DDM and learning model of the CDM were tested 
with the same data. Though table 1 and 2 shows that DDM have best accuracies than 
CDM.  For example, 500 global population size of the DDM has around 71% of 
testing accuracy but the testing accuracy of the 500 population size of the CDM is 
about 55%, 1000 global population size of the DDM has around 80% of testing 
accuracy but the testing accuracy of the 1000 population size of the CDM is about 
60%, 2000 global population size of the DDM has around 87% of testing accuracy but 
the testing accuracy of the 500 population size of the CDM is about 65% and 4000 
global population size of the DDM has around 93% of testing accuracy but the testing 
accuracy of the 500 population size of the CDM is about 71%.  

7 Conclusions and Future Work 

This paper presented the performance of CDM and DDM approaches using ICU real 
data in order to predict the outcome of critical care patients. The experimental results 
clearly show that the performance of the DDM is better than the performance of 
CDM. The DDM strategies of SCM and MVM achieved similar testing accuracies but 
the global population size of MVM is smaller than the global population size of the 
SCM. The results are very important in areas were distributed data should be 
considered without discharging the local models induction as is the ICU. 

Further work will include more methods to construct the global models from the 
distributed local learning models. 
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