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Abstract. This article describes the development of a gait optimiza-
tion system that allows a fast but stable robot quadruped crawl gait.

We focus in the development of a quadruped robot walking gait
locomotion that combine bio-inspired Central Patterns Generators
(CPGs) and Genetic Algorithms (GA). The CPGs are modelled as
autonomous differential equations, that generate the necessary limb
movement to perform the walking gait, and the Genetic Algorithm
perform the search of the CPGs parameters.

This approach allows to explicitly specify parameters such as am-
plitude, offset and frequency of movement and to smoothly modulate
the generated trajectories according to changes in these parameters.
It is therefore easy to combine the CPG with an optimization method.
A genetic algorithm determines the best set of parameters that gener-
ates the limbs movements. We intend to obtain a walking gait loco-
motion that minimizes the vibration and maximizes the wide stability
margin and the forward velocity.

The experimental results, performed on a simulated Aibo robot,
demonstrated that our approach allows low vibration with a high ve-
locity and wide stability margin for a quadruped walking gait loco-
motion.

1 Introduction

Robot locomotion is a challenging task that involves the control of
a great number of degrees of freedom (DOF’s). Several previous
works, [11, 22, 15], proposed biologic approaches to modulate the
gait locomotion of quadruped robots, combining biometric sensory
information with motion oscillators such as CPGs.

The problem of finding the best possible locomotion is a prob-
lem currently addressed in the literature [2, 6, 14]. Usually optimiza-
tion systems are applied to improve the performance of the Aibo
quadruped robot locomotion. The competition in Robocup is one of
the motivation engines, for these works. In the following, we briefly
describe some relevant works in this domain.

In [2] it is presented a Genetic Algorithm robust to the noise in the
parameters evolution and that also avoids premature local optima.
The evaluation is made on a robot soccer field, and the robot com-
municates by wireless with an external computer where the learning
algorithm is executed. The goal of the fitness is to maximize the robot
velocity. As a result of this learning algorithm the robot moves with
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a velocity of 0.290 (m/s).
A comparison between several learning locomotion algorithms,

including Genetic Algorithm and Policy Gradient Algorithm, is pre-
sented in [14]. This is also an online learning performance that uses
three Aibo robots for decreasing the time spending on each test. The
optimization goal is to determine the best 12 parameters of an ellipti-
cal locus scheme of locomotion, such that the robot takes less time to
walk a certain distance. Each learning has a previous hand-tuned set
of parameters and the best results were achieved the by the hill climb-
ing and Policy Gradient Algorithm. The average speed achieved by
the Policy Gradient Algorithm was 0.291 (m/s).

In [6] it is presented an evolutionary algorithm based on a genetic
algorithm. The genetic operators are chosen by an adaptation mech-
anism. The locomotion is implemented in real time and it is evalu-
ated by analyzing the forward-backward motion, the side-walk, the
rotation motion and the vibration. For measuring the vibration they
use accelerometers of the robot. For each sensor and during a test
the standard deviation (std) of accelerometer measurements is calcu-
lated. The evaluation tests are performed in a robot soccer field, and
the evaluation calculus is made in an external computer using an ex-
ternal camera for motoring the translation and rotational movements.

In [10] it is presented an evolutionary algorithm (EA) to optimize
a vector of parameters for locomotion of an ERS110 robot. The EA
uses a steady-state algorithm that applies the mutation and/or the re-
combination of operators to create new individuals from sets of par-
ents. To avoid local minima an individual can be a parent during a
predefined number of times. The solution obtained by the EA moves
the robot with a velocity of 0.167 m/s.

In [13] it is presented an optimization system for the locomotion of
Aibo 210 based on the Powell’s method. It optimizes 12 parameters
of a locus locomotion scheme. Optimization is made online. In each
iteration the robot moves between two landmarks, and the goal is to
maximize the forward velocity. They achieved an average speed of
0.2269 (m/s) for the rectangular locus and an average speed of 0.25
(m/s) for the trapezoid locus.

In this work, we propose an approach to optimize a walk gait lo-
comotion, using Central Pattern Generators (CPGs) and a genetic al-
gorithm.

CPGs are neural networks located in the spine of vertebrates, that
generate coordinated rhythmic movements, namely locomotion [8].
In this work, a locomotion controller, based on CPGs, generates
trajectories for hip robot joints [15]. These CPGs are modelled as
coupled oscillators and solved using numeric integration. They have
been previously applied in drumming [4] and postural control [1].

The proposed CPG is based on Hopf oscillators, and allows to
explicitly and smoothly modulate the generated trajectories accord-
ing to changes in the CPG parameters such as amplitude, offset and
frequency. In order to achieve the desired walk gait movement, it is
necessary to appropriately tune these parameters. In this work, these
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parameters are optimized using a Genetic Algorithm. Optimization
is done online in a simulated ers-7 AIBO robot using Webots [17].

This optimization is a non-linear problem where continuity and
convexity conditions are not guaranteed. Thus, searching for a global
optimum is a difficult task that requires approaches based on stochas-
tic algorithms like evolutionary algorithms, in particular, genetic al-
gorithms. These are search algorithms that mimic the process of nat-
ural selection [5]. Thus, unlike conventional algorithms, in general,
only the information regarding the objective to optimize is required.
Moreover, they are based on a population that evolves over time, pos-
sibly in the direction of the optimum.

This article is structured as follows. In Section 2, we explain how
we generate locomotion . Section 3 presents the optimization sys-
tem and it is discussed the objective function. Simulated results are
described in Section 4. The paper ends with a discussion and conclu-
sions in Section 5.

2 LOCOMOTION GENERATION
In this section we describe the system used to generate locomotion.
Firstly, a brief description of gaits focusing in the generated gait is
done. Next, a description of the modelled CPGs is done, including
the network of Hopf oscillators.

2.1 Gait Description
During locomotion, quadruped walking animals have to usually
move their legs in a manner that provides the suitable forward force
at a minimal energy expenditure while maintaining their equilibrium.
This coordinated cyclic manner of lifting and placing the legs on the
ground, called a gait, is important for equilibrium stability and the
step cycle sequence is typical for vertebrates: left forelimb (LF), right
hindlimb (RH), right forelimb (RF), and left hindlimb (LH).

Quadrupedal gaits are classified according to the duration of their
stance phases [16], i.e. their duty factor values, and their relative
phases. In general, the duty factor β reduces as the speed increases.

In this work we will address a crawl gait. This is a symmetric gait,
meaning that the two legs of the same girdle are 0.5 out of phase.
This gait is singular (two or more legs are simultaneously lifted or
placed during a stride) and regular (all the legs have the same duty
factor).

In general, the number of step cycles per second increases as the
speed of locomotion increases [7]. This corresponds to a reduction in
the step cycle duration almost exclusively due to a shortening of the
stance phase (limb in contact with the ground), whereas the swing
phase (no ground contact) is kept nearly constant.

Herein, we assume that at all walking speeds the onset of swing in
a foreleg occurs just after the onset of stance in the ipsilateral hind
leg [7]. In order to achieve this, we use the wave gait rule: the gait
phase (ϕLH ) follows the value of the duty factor (β ). The use of this
rule improves the stability of the locomotion [9, 16, 12]. Stability
is measured by calculating the stability margin [9] which decreases
approximately linearly with the velocity increase (see results).

2.2 Rhythmic Movement Generation
The rhythmic movements of each hip joint of a limb, i, are generated
by a Hopf oscillator, given by

ẋi = α
(

µ− r2
i

)
(xi−Oi)−ωzi, (1)

żi = α
(

µ− r2
i

)
zi +ω (xi−Oi) , (2)

where ri =
√

(xi−Oi)
2 + z2

i , amplitude of the oscillations are given

by A =
√µ , ω specifies the oscillations frequency (in rad s−1) and

relaxation to the limit cycle is given by 1
2α µ .

This oscillator contains an Hopf bifurcation from a stable fixed
point at (xi,zi) = (Oi,0) (when µ < 0) to a structurally stable, har-
monic limit cycle, for µ > 0.

The following expression for ω allows an independent control of
speed of the ascending and descending phases of the rhythmic signal
[18], meaning an independent control of the stance ωst and the swing
durations ωsw,

ω =
ωst

1+ e−qzi
+

ωsw

1+ e−qzi
. (3)

The stance phase frequency, ωst , is determined based on the constant
swing frequency, ωsw, and on the desired duty factor, β as follows:

ωst =
1−β

β
ωsw (4)

Each CPG takes a set of parameters for the modulation of the gen-
erated trajectories for the specified joint. These are:

• µ , switches on/off the rhythmic solution, and for µ > 0 modulates
the amplitude of oscillations;

• β , changes the walking velocity since it controls the stance dura-
tion of the generated movement.

All these parameters will be tuned by the optimization system de-
scribed in section 3, controlling the parameters for a locomotion that
maximizes a fitness. The parameters α , ωsw and a are set a priori.
Parameter ωsw specifies the swing phase duration, which is kept con-
stant. Its value depends on the desired speed of movements and on
the capabilities of the robotic platform.

2.3 Interlimb Coordination

We have four CPGs, one for each Hip joint. These four CPGs are
coupled in order to achieve the limb coordination required in a walk-
ing gait pattern. The applied coupling scheme is depicted in fig 1 and
is given by

[
ẋi
żi

]
=

[
α

(
µ− r2

i
) −ω

ω α
(
µ− r2

i
)
][

xi−Oi
zi

]
+ ∑

j 6=i
R(θ j

i )
[

x j−O j
z j

]
. (5)

The linear terms are rotated onto each other by the rotation matrix
R(θ j

i ), where θ j
i is the required relative phase among the i and j

hip oscillators to perform the gait (we exploit the fact that R(θ) =
R−1(−θ)).

The final result is a network of oscillators with controlled phase
relationships, able to generate more complex, synchronized behavior
such as locomotion. Due to the properties of this type of coupling
among oscillators, the generated trajectories are stable and smooth
and thus potentially useful for trajectory generation in a robot.

The generated xi solution of this nonlinear oscillator is used as the
control trajectory for a Hip joint of the robot limbs. These trajectories
encode the values of the joint’s angles (◦) and are sent online for the
lower level PID controllers of each limb joint. The knee joints are
controlled as simple as possible. When the limb performs the swing
phase, the knee flexes to a fixed angle. When performing the stance
phase, the knee extends to other angle.



Figure 1. Each leg lags one quarter of a cycle, in the sequence: Left Fore,
Right Hind, Right Fore, Left Hind

3 OPTIMIZATION SYSTEM

In this section, we explain how the limbs trajectories are optimized,
in order to obtain the best walking pattern locomotion. We intend to
maximize the velocity and wide stability margin, and to minimize
the vibration of the robot. A scheme of the optimization system is
depicted in fig 2.

CPGs generate trajectories for the robot limbs, modulated accord-
ing to a set of parameters. A chromosome is constituted by the re-
quired set of these parameters such that the robot performs the de-
sired locomotion gait.

Initially, a random initial population of chromosomes is generated.
After the evaluation of all chromosomes of the population, a genetic
algorithm generates a new population to be tested. The stopping cri-
terion of the optimization system is the performed number of itera-
tions.
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Figure 2. Optimization Locomotion System

3.1 Optimization of Parameters

As previously described, trajectories are generated and modulated by
the proposed network of CPGs, by explicitly changing the CPGs pa-
rameters. These are the Amplitude (µ), the Offset(O), and the stance
knee value, for each limb. Further, there is the swing frequency (ωsw)
for the overall network. Meaning a total of 13 parameters.

Fore and hind limb trajectories (LF, RF) (LH, RH) have the same
amplitude, offset and frequency but a different relative phase. they
have a relative phase of π among them.

Taking in regard these considerations, we can minimize the num-
ber of parameters it is required to optimize. The set of parameters
is given by: amplitude of the front limbs (µFL), amplitude of the
hind limbs (µHL), front limbs knee angle (KFL),hind limbs knee an-
gle (KHL), front limbs offset (OFL), hind limbs offset (OHL) and
the frequency of Swing (ωsw). This yields a total of 7 parameters
to tune.The limits of each parameters are defined in tab 1.

3.2 Limits of the parameters
The range of each parameter is defined in tab 1. These boundaries di-
rectly depend on the physics limits of the Aibo Ers-7 robot. The val-
ues of µFL and µHL are limited by the maximum range that the AIBO
Hip joints may have. Noteh that amplitude is given by

√µ . Offset
values OFL and OHL for the hips are limited by the same ranges and
the calculated amplitude values, µFL and µHL, respectively .

We calculate the maximum and minimum values for each knee
stance angle, such that leg collision does not occur during locomo-
tion. This is given by

KFLmax1 =−(OFL +
√

µFL/2)+50 (6)

KFLmax2 =−(OFL−√µFL/2)+50 (7)

KFLmin1 =−(OFL +
√

µFL/2)+20 (8)

KFLmin2 =−(OFL−√µFL/2)+20 (9)

KHLmax1 =−(OHL +
√

µHL/2)+40 (10)

KHLmax2 =−(OHL−√µHL/2)+40 (11)

KHLmin1 =−(OHL +
√

µHL/2)−5 (12)

KHLmin2 = (OHL−√µHL/2)−5 (13)

where OFL and OHL are the offsets of the fore and hind
hip joints, respectively. Finally, knee angles are given by
[max(min1,min2)min(max1,max2)].

Table 1. Parameter Limits

Parameters Lower Upper

µFL 0.0001 3600

OFL(◦) −1600+ µFL/2 400−µFL/2

µHL 0.0001 3600

OHL(◦) −400+ µFL/2 1600−µHL/2

ωsw(rad/s) 1 12

KFL(◦) max(KFLmin1,KFLmin2) min(KFLmax1,KFLmax2)

KHL(◦) max(KFLmin1,KFLmin2) min(KHLmax1,KHLmax2)

3.3 Genetic Algorithm
Genetic Algorithms (GA) start from a pool of points, usually referred
to as chromosomes. Chromosomes represent potential optimal solu-
tions of the problem being solved. In order to implement a GA, it
is necessary to define the representation of the search space and a
fitness function which permits the comparison between the differ-
ent chromosomes. Furthermore, genetic operators and the selection
mechanism must also be defined.



One or several optimal combinations of amplitude and offset for
the hip oscillators, offset for the knees and swing frequency are nec-
essary in order to generate the desired forward locomotion move-
ment, as explained before. Each chromosome consists in 7 CPG free
parameters, as shown in fig. 3, that span our vector space for the op-
timization.

Chromosome

Figure 3. A chromosome is made of seven free parameters.

In our optimization system, we begin the GA search by randomly
generating an initial population of chromosomes.

The GA selection operator assures that chromosomes are copied
to the next generation with a probability associated to their fitness
values. Therefore, this operator mimics the survival of the fittest in
the natural world. Although selection assures that in the next gener-
ation the best chromosomes will be present with a higher probabil-
ity, it does not search the space, because it just copies the previous
chromosomes. The search results from the creation of new chromo-
somes from old ones by the application of genetic operators. The
crossover operator, takes two randomly selected chromosomes; one
point along their common length is randomly selected, and the char-
acters of the two parent strings are swapped, thus generating two
new chromosomes. The mutation operator, randomly selects a posi-
tion in the chromosome and, with a given probability, changes the
corresponding value. This operator does assure that new parts of the
search space are explored, which selection and crossover could not
fully guarantee.

In this work, real representation of the variables was considered.
So, each vector consists of a vector of real values representing the
decision variables of the problem. Genetic operators were chosen
taking into account this representation. In order to recombine and
mutate chromosomes, the Simulated Binary Crossover (SBX) and
Polynomial Mutation were considered, respectively. These operators
simulate the working of the traditional binary operators [3]. In or-
der to select chromosomes for the application of genetic operators, a
tournament selection was implemented.

3.4 Fitness Specification

The performance of each chromosome is evaluated according to the
robot body vibration ( fa), the forward velocity (v) and the Wide Sta-
bility Margin WSM.

3.4.1 Vibration

We consider that a good gait should have less vibration, because the
robot is subjected to less strain. In order to calculate the total vibra-
tion we sum the standard deviation of the measures of the (ax,ay,az)
accelerometers built-in onto the robot, similarly to [19, 6, 20], as fol-
lows:

fa = std(ax)+ std(ay)+ std(az) (14)

3.4.2 Wide Stability Margin

For stability, we calculate the wide stability margin [21] (WSM). This
is a measure of the locomotion stability that provides the shortest dis-
tance between the projection of the center of mass in the ground and
the polygon formed by the vertical projection in the ground of robot
feet contact points. A gait is considered better when has a higher
WSM.

3.4.3 Velocity

We calculate the forward velocity using the traveled distance of the
robot during the evaluation of each chromosome of the population,
i.e. during 12 seconds. A gait is considered better if it achieves higher
velocities.

We intend to determine the best gait considering minimization of
the body vibration and maximization of the velocity and wide stabil-
ity margin. The normalize fitness is given by:

fitnesstotal = Wa ∗ fa
fa,max

+Wv ∗ 1
v
∗ vmin +Wwsm ∗ e−

wsm
wsmmax , (15)

where Wa,Wv and Wwsm are the vibration, velocity and WSM weights,
respectively.

For each fitness component to have the same significance, we nor-
malize the values of the fitness components. We have determined
that vmin = 10(mm/s), fa,max = 0.4 and wsmmax = 65. These are the
maximum values that the fitness components may achieve.

3.5 Weights of the fitness

We apply weights to each component of the fitness function, sim-
ilarly to [20]. We have three weights, one for each fitness compo-
nent: Wa (vibration weight), Wv (velocity weight) and Wwsm (WSM
weight). The sum of the three components is always 1, as follows:

Wa +Wv +Wwsm = 1. (16)

We implemented a method for the computation of the weights such
that the component weights change depending on the value of the
components. Lower velocities give higher weights for the velocity
component but higher velocities give lower weights for the corre-
sponding component. This method is shown in fig 4. It is based on a
negative exponential, such that the higher the velocity, the lower the
velocity weight (Wv), as follows:

Wv = 0.7× exp−(v×0.01) (17)

We want to minimize the overall vibration but to maximize the
velocity. Then, we want lower vibrations for high velocities. This is
achieved by setting

Wa = 0.7−Wv (18)

Finally,

Wwsm = 0.3 (19)
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4 SIMULATION RESULTS
In this section, we describe the experiment done in a simulated ers-7
AIBO robot using Webots [17]. The working scneraio is shown in
fig 5. Webots is a software for the physic simulation of robots based
on ODE, an open source physics engine for simulating 3D rigid body
dynamics. The model of the AIBO is as close to the real robot as the
simulation enable us to be. We simulate the exact number of DOFs
and mass distributions.

Figure 5. Simulation experimental setup.

The ers-7 AIBO dog robot is a 18 DOFs quadruped robot made by
Sony. The locomotion controller generates trajectories for the joint
angles of the hip and knee joints in the sagittal plane, that is 8 DOFs
of the robot, 2 DOFs in each leg.

At each sensorial cycle (30 ms), sensory information is ac-
quired.Each chromosome is evaluated during 12 seconds. We apply
the Euler method with 1ms fixed integration step, to integrate the
system of equations. At the end of each chromosome evaluation the
robot is set to its initial position and rotation.

In our implementation, the optimization system ends when the
number of generations exceeds 50 generations. We depict results
when a population was established with 50 chromosomes and a pre-
set number of 50 generations was set.

The generated gaits have a fixed duty factor β = 0.75 and a relative
phase ϕLH = 0.75.

Table 2 contains the Best, Mean and standard deviation (SD) val-
ues of the solutions found (in terms of fitness function and time) over

10 runs.

Table 2. Performance of GA algorithm in the optimization system

Fitness Time (hours)
Best Mean SD Best Mean SD

0.2727 0.2973 0.0212 3.5350 4.0843 2.0975

Fig. 6 shows the evolution of all the 10 runs (lighter lines), best
(solid line) and mean (dashed line) fitness function value over 50
generations. The best individual has a fitness value of 0.2727 that
was achieved at generation 50. The best run took 3h53 min (CPU
time) and each generation took in average 294.07 seconds.
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Figure 6. Fitness evolution during 50 generations.

Table 3, shows the parameters values of the best chromosome of
the first and last generation.

Table 3. Optimization Parameters Results

Parameters 1st Generation 50th Generation

µFL 2692.6 66.26

OFL(◦) −12.77 8.19

µHL 1954.5 252.81

OHL(◦) 9.21 15.87

ωsw(rad/s) 11.87 10.62

KFL(◦) 81.64 52.65

KHL(◦) 30.34 5.00

Fitness 0.3573 0.2727

Fig. 7 depicts the evolution of the measurements of sensor data,
vibration, velocity and WSM of the best chromosome of each gener-
ation.
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Figure 7. Evolution of the sensor measurements during the 50
Generations.

Table 4 lists the values of the vibration, velocity and WSM
for the first and last generation. Velocity is 0.08623(ms−1) and
0.05098(ms−1) for the first and 50th generation, respectively. These
values may seem much worst then those achieved by previous works,
specially in the RobotCup domain. However, the robot configuration
was the required to achieve higher velocities: the robot knees were
completely folded. In our work, we just try to achieve a higher veloc-
ity for a crawl gait. In fact, it is a slow gait since three legs are kept in
ground contact. But gait specification, duty factor and relative phase,
were maintained as expected.

Table 4. Optimization Sensor Results

Generation Vibration Velocity(mm/s) wsm(mm) Fitness
1st Generation 0.177 80.623 3.508 0.357

50th Generation 0.0233 50.980020 31.253 0.271

5 Conclusion

In this article, we have addressed the locomotion optimization of a
quadruped robot that walks with a walking gait.

A locomotion controller based on dynamical systems, CPGs, gen-
erates quadruped locomotion. These CPG parameters are tuned by an
optimization system. This optimization system combines CPGs and
a genetic algorithm. As a result, sets of parameters obtained by the
genetic algorithm were adequate for the implementation of a loco-
motion walking gait with a velocity of 50.98 (mm/s), low vibration
and a high wide stability margin.

Currently, we are using other optimization methods such as evo-
lutionary strategies and electromagnetism algorithm. We will extend
this optimization work to address other locomotion related problems,
such as: the generation and switch among different gaits according
to the sensorial information and the control of locomotion direction.

We further plan to extend our current work to implementation on
the Aibo ers7 the locomotion optimization similarly to [2].
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