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Abstract—Autonomous adaptive locomotion over irregular ter-
rain is one important topic in robotics research. In this article, we
focus on the development of a quadruped locomotion controller
able to generate locomotion and reaching visually acquired
markers. The developed controller is modeled as discrete, sen-
sory driven corrections of a basic rhythmic motor pattern for
locomotion according to visual information and proprioceptive
data, that enables the robot to reach markers and only slightly
perturb the locomotion movement. This task involves close-loop
control and we will thus particularly focus on the essential issue of
modeling the interaction between the central nervous system and
the peripheral information in the locomotion context. This issue
is crucial for autonomous and adaptive control, and has received
little attention so far. Trajectories are online modulated according
to these feedback pathways thus achieving paw placement. This
modeling is based on the concept of dynamical systems whose
intrinsic robustness against perturbations allows for an easy
integration of sensory-motor feedback and thus for closed-loop
control.

The system is demonstrated on a simulated quadruped robot
which online acquires the visual markers and achieves paw
placement while locomotes.

I. INTRODUCTION

Autonomous visually-guided adaptive locomotion over ir-

regular terrain is a very challenging task which is not yet

completely solved. Mainly, research in the field addresses the

problem of pre-computing desired trajectories [11], [14], [9],

and adaptation to unpredicted changes is still an unsatisfactory

solved problem.
The work presented in this article is part of a larger project

which aims at developing a closed loop control architecture

based on dynamical systems for the autonomous generation,

modulation and planning of complex motor behaviors for

legged robots with many DOFs. We apply autonomous differ-

ential equations to model how behaviors related to locomotion

are programmed in the oscillatory feedback systems of Cen-

tral Pattern Generators (CPGs) in the nervous systems.These

systems are solved using numerical integration.
Control approaches based on CPGs and nonlinear dynam-

ical systems are widely used in robotics to achieve tasks

which involve rhythmic motions including autonomous adap-

tive dynamic walking over irregular terrain [13], [10], [7],

juggling [15], drumming [16], and basis field approaches for

limb movements [12].

This dynamical systems approach model for CPGs presents

multiple interesting properties comparatively to other meth-

ods [9]. These include: low computation cost which is well-

suited for real time; the stability properties of the limit cycle

behavior (i.e. perturbations are quickly forgotten); intrinsic

robustness against small perturbations; the smooth online

modulation of trajectories through changes in the dynamical

systems parameters and phase-locking between the different

oscillators for different DOFs. Further, these systems, once

coupled, produce coordinated multidimensional rhythms of

motor activity, under the control of simple input signals.

To tackle both the complexity of movement generation and

the complexity inherent to the design of dynamical systems,

we assume that any movement can be decomposed in simple

rhythmic and discrete primitives that we model by simple,

stable, dynamical systems. This movement decomposition and

the chosen primitives are supported by current neurological

and human motor control findings.

As a main application we address the topical issue of robust,

adaptive visually-guided quadruped locomotion in unknown,

rough terrain. As a first step in this direction, we focus on

visually-guided feet placement, that is to develop a controller

able to generate quadruped locomotion and to smoothly mod-

ulate these trajectories to reach visually acquired markers.

The motor pattern generator (MPG) is implemented as

two embedded dynamical discrete and rhythmic systems. The

controller is modeled as discrete, sensory driven corrections

of a basic rhythmic motor pattern for locomotion according

to visual information and proprioceptive data, that enables

the robot to reach markers and only slightly perturb the

locomotion movement. This task involves close-loop control

and we will thus particularly focus on the integration of

sensory-motor information in the architecture. Trajectories are

online modulated according to these feedback pathways thus

achieving paw placement.

We propose a visual system able to accurately recognize

and localize a size-known square with a predefined pattern

inside. This visual system applies different image processing

and image analysis techniques and the overall result is a robust

method able to calculate the marker position with a high

accuracy.
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We present results using a simulated ers-7AIBO robot in

Webots [5] that show how the developed system successfully

recognizes, localizes and reaches markers while locomotes.

Different markers are chosen to show different reaching posi-

tions. Different markers were also successfully ignored.

Quadruped walking control using CPGs exploring sensory

feedback integration into the locomotion control has been

extensively explored by Hiroshi Kimura and his colleagues.

Feet placement has also been extensively studied before but

usually accuracy is the main requirement. However, we ad-

dress paw placement in the framework of dynamical systems

with superposition of discrete and rhythmic movements. We

build on previous work, where controllers were developed

for combining discrete and rhythmic motor primitives in

drumming and dancing tasks [16], [17]. In this article, we

focus the issue of modeling the interaction between the central

nervous system and the peripheral information. This issue is

crucial for autonomous and adaptive control, and has received

little attention so far. The intrinsic robustness of the dynamical

systems approach against perturbations allows for an easy

integration of sensory-motor feedback and thus for closed-

loop control. The proposed work tries to serve these purposes

and focus on the integration of sensory-motor information in

the developed dynamical architecture.

[6] proposed a very similar architecture for a quadruped

hand placement. Herein, we extend and change the proposed

model. First, we effectively introduce sensor-motor feedback

through the visual system which modulates the generated

trajectories. Second, the controller is slightly changed because

the discrete system is embedded onto the rhythmic one. This

approach is more consistent with our previous work [16], [17]

and we assure that trajectories are in fact generated by attractor

solutions.

In this article, we first present the overall system architecture

and the set of rules used to integrate the sensory information.

In section III, we present the locomotion controller architecture

able to generate locomotion and how we integrate sensory

feedback onto the architecture. Next, we detail the proposed

visual system. In Section IV, we present the simulation results

obtained and some limitations of the proposed method. We

conclude by discussing the main results we obtained, possible

improvements to the system and the work we are currently

working on.

II. SYSTEM ARCHITECTURE

Our aim is to propose a control architecture that is able

to generate locomotion for a quadruped robot and change the

generated trajectories such that a limb may reach a visually

acquired marker. These trajectories should be smoothly mod-

ulated when simple control parameters change. Further, this

controller should be as simple as possible in order to enable

the inclusion of other higher controls (herein we address feet

placement but see [8] for balance control or [7] for sensory

feedback inclusion).

The proposed controller is modeled as discrete, sensory

driven corrections of a basic rhythmic motor pattern for

locomotion in order to achieve reaching of a marker. The

rhythmic movement induces the velocity and step length of the

robot and its parameters are kept fixed. The discrete movement

specifies the offsets around which the rhythmic movement

occurs. However, these offsets change and depend on the

visually detected marker, on the current joint values and on

the robot internal model. Thus, trajectories generated by this

architecture are modulated by sensory feedback.

The overall system architecture is depicted in fig. 1.
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Fig. 1. The overall system architecture.

The MPG is implemented as two embedded dynamical

systems and superimposes discrete and rhythmic motor prim-

itives. This enables to independently control these primitives

thus keeping the individual intrinsic stability and robustness

properties against perturbations and allow for an easy integra-

tion of sensor-motor feedback and thus for closed-loop control.

Within the MPG, the discrete system specifies an offset

for the rhythmic movement, that enables the robot to reach

markers and only slightly perturb the locomotion movement.

This offset, g, is given by

gi = gi,d +(θi −ψi) , (1)

where i are the DOFs; gi,d is the default offset value for

locomotion behavior only; θi is the joint angle calculated

by an inverse kinematics (IK) algorithm corresponding to the

marker coordinates localized by the visual system and ψi is

the joint angle corresponding to the end-effector position at

the beginning of the stance phase in case no marker had been

localized (that is, limb exhibiting rhythmic movement with

the default offset value). Note that marker detection occurs

during the swing phase of the limb that must reach the marker.

Thus, marker localization can be described in the robot internal

frame and directly sent to the IK algorithm that calculates

the required joint angles for reaching the marker. However,

reaching occurs only at the beginning of that limb stance

phase.

The final trajectories xi specify the planned joint values

needed to generate locomotion and reaching. These are sent

online for each DOF and the lower level control is done by

PID controllers.

Fig. 2 shows the set of rules and procedures that define if

the update of the offset, gi, should occur.

First, computer vision techniques recognize if the acquired

RGB image contains the correct marker. Second, a localization

module determines the marker center (X ,Y,Z) coordinates in
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Fig. 2. Update of the offset values, gi , of the discrete system.

the robot internal frame. The next procedure is to determine

if the marker is reachable in the current limb step by one of

the fore legs. A marker is considered to be reachable if: (1) it

can be reached in the current step (X < X_Max); and (2) it is

a physically feasible place to be reached without making the

robot fall (Y _Min < Y < Y _Max).

If the marker is reachable, the offsets gi of the leg that will

reach the marker are updated according to the robot internal

model and the actual state of the touch sensors.

Offsets gi of the reaching limb are set equal to the default

values (i.e. values required for locomotion behavior only

without reaching) after the marker has been touched during

a certain fixed time. This time was set to 3/4 (0.7 s) of the

swing of the hind limb that succeeds the limb that reached

the marker. This condition was necessary to achieve a better

locomotion in terms of balance and to enable the locomotion

to normally continue after reaching the marker.

III. LOCOMOTION CONTROLLER

In this section we present our model of the MPG used to

generate the trajectories for one DOF. The rhythmic movement

is generated by an Hopf oscillator. The discrete primitive is

generated by a stable dynamical system such that it integrates

visual sensory information and proprioceptive data onto the

controller that generates the trajectories.

A. Motor Pattern Generator
1) Rhythmic Movement Generation: Rhythmic movements

are generated by the following Hopf oscillator

ẋi = β
(
μi − r2

i

)
(xi − yi)−ωzi, (2)

żi = β
(
μi − r2

i

)
zi +ω (xi − yi) , (3)

where ri =
√

(xi − yi)
2 + z2

i , amplitude of the oscillations are

given by R =
√μi, ω specify the oscillations frequency (in rad

s−1) and relaxation to the limit cycle is given by 1
2β μi

.

This Hopf oscillator contains a bifurcation from a stable

fixed point at xi = yi (when μi < 0) to a structurally stable,

harmonic limit cycle, for μi > 0. The fixed point xi has

an offset given by yi, which is the state variable of the

discrete system. The y variable evolution will be specified and

explained in the next subsection.

We apply an Hopf oscillator because it can be completely

analytically solved, which facilitates the smooth modulation

of the generated trajectories according to changes in the

amplitude, goal and frequency parameters. This is interesting

for trajectory generation in a robot.

In [16] it was shown how the generated trajectories can

easily and smoothly be modulated by modifying on the fly

the offset values (y variable).

2) Discrete Movement Generation: It is important that this

discrete movement generator applies to the control of a real

robot. Thus, the generated movement must be able to: 1)

smoothly adapt to the control parameters and 2) allow trajec-

tory modulation through changes in these control parameters.

In our case, the discrete system specify the offsets around

which the oscillations are generated in the hip and knee joints.

Further, the solution of this discrete system must smoothly

adapt to variations of a parameter gi which changes and

depends on the visually detected marker, on the current joint

values, on the touch sensors and on the internal robot model.

Therefore, to generate the discrete movements, we define a

nonlinear dynamical system whose solution, given by yi, is

the offset of the output xi (2).

ẏi = yi, (4)

v̇i =
−b2

4
(yi −gi)−b vi, (5)

where speed of convergence is controlled by b to a unique

attractive goal g.

B. Controller Architecture

Each DOF is controlled by one generic MPG. In order

to ensure phase-locked synchronization between the different

DOFs of the robot, we bilaterally couple the Hopf oscillators

of the hips MPGs, those couplings being illustrated by right-

left arrows on fig. 1 and unilaterally couple each hip MPG to

the corresponding Knee MPG. This is achieved by modifying

(2) and (3) of all the hips DOFs as follows:[
ẋi[1]
żi[1]

]
=

[
β μi ω
−ω β μ i

][
xi[1] − yi[1]

zi[1]

]
−β r2

i[1]

[
xi[1] − yi[1]

zi[1]

]

+ ∑
j �=i

R(θ j[1]
i[1] )

[
xj[1] − yj[1]

zj[1]

]

For the knee joints, we modify (2) and(3) as follows:[
ẋi[3]
żi[3]

]
=

[
β μi ω
−ω β μ i

][
xi[3] − yi[3]

zi[3]

]
−β r2

i[3]

[
xi[3] − yi[3]

zi[3]

]

+
1

2
R(ψ j[1]

i[3] )
[

xj[1] − yj[1]
zj[1]

]

where ri[k] is the norm of vector (xi[k],zi[k])T (k = 1,3). The

linear terms are rotated onto each other by the rotation matrices
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TABLE I
PHASE DIFFERENCES BETWEEN HIP OSCILLATORS (i[1]) FOR A WALKING GAIT.

θFLL−FRL θFLL−HLL θFLL−HRL θFRL−HLL θFRL−HRL θHLL−HRL

(o) -180 -270 -90 -90 90 180

R(θ j[1]
i[1] ) and R(ψ j[1]

i[3] ), where θ j[1]
i[1] is the desired relative phase

among the i[1]’s and j[1]’s MPGs and ψ j[1]
i[3] is the desired

relative phase among the i[3]’s and j[1]’s MPGs (i, j = FLL,

FRL, HLL, HRL). In our case, we set these values according

to table I, which defines the phases required for performing

a walking gait (we exploit the fact that R(θ) = R−1(−θ)).
The ψ j[1]

i[3] were all set to −90o. Due to the properties of this

type of coupling among oscillators, the generated trajectories

are always smooth and thus potentially useful for trajectory

generation in a robot.

A current limitation of the proposed locomotion controller

is that the movement of the end-effectors does not have the

ideal shape. This movement should not be oscillatory and

should be different during stance and swing phases. This is

mainly due to the fact that a MPG generates both hip and

knee trajectories. Currently, we are addressing this problem by

generating knee trajectories not by a MPG but by a set of rules

which define the best shape for the end-effector movement.

Inclusion of feedback loops for robustness and independent

control of swing and stance duration [7], [6], are presently

being take into consideration.

IV. VISUAL SYSTEM

In order to choose which marker to use, meaning which

vision cue to detect and track, there are several issues to

be considered, such as: the clutter environment degree; the

processing time; the illumination drifts; the accuracy of the

position and pose estimation of the marker.

The spectrum of techniques for object tracking, a crucial

research issue in robot vision especially for the applications

where the environment is in continuous changing and un-

controlled, has been increasing over the past decade. The

most common approaches are based mainly on the detection

of one of the following cues: edges, color and texture [1],

[2]. Presently, techniques for texture detection still demand a

high processing time, and for that reason this cue was not

considered in this work.

For objects tracking avoiding the problems that are present

in clutter environments, namely drift in light conditions and

presence of an uncontrolled number of colors, the most com-

mon approaches use specific markers and use edges cues [3].

The author uses a size-known square marker for fast tracking

and for high accuracy of the position and pose estimation of

the markers. This algorithm considers only one parameter to

adapt the system to different light conditions, which can be de-

termined automatically with a generic illumination calibration

technique.

A. Tracking Vision Module
To obtain a high degree of robustness and at the same

time real-time constrains the approach followed in our work is

based on the [3] using the size-known square marker of Fig. 3.
The tracking module is responsible for accurately determine

the position of the marker (Xm,Y m,Zm) and the type of

marker. This module makes extensively use of computer vision

techniques for edge detection, pattern recognition and camera

position and pose estimation. Fig. 4 shows the architecture

of the tracking vision module. At this stage, the system is

searching for a specified marker and the camera is already

calibrated, meaning the intrinsic and extrinsic parameters are

known.

Fig. 3. Marker used in our work.

Fig. 4. Tracking vision module architecture. Adapted from [4].

B. Search for Markers
This procedure looks for blobs that can be fitted by four line

segments. Since the pattern is a black and white image, the

first step consists on a thresholding procedure. For each blob

identified in the image the outline contours are extracted and

a four straight lines fitting procedure is applied to identify the

candidates of markers. The equation parameters of the lines

and the intersection of the lines (vertex) are used in the pose

estimation procedure.

C. Pattern Matching
After the detection of the border outline the system is able

to identify the pattern image. For that a template matching is

performed with patterns previously specified by the user.
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The pattern images are 16x16 pixels in gray level at different

rotations: 0o, 90o, 180o and 270o. Fig. 5 shows the store

patterns for the marker used.

Fig. 5. Stored patterns for the marker used.

D. Position and Pose estimation of Markers

In order to determine the position and the pose estimation

of the markers a set of coordinates must be specified. Fig. 6

presents those used in this work following Kato work [3].

Fig. 6. System coordinates. Adapted from [4].

The transformation from the marker coordinates to the

camera coordinates is given by (6).

⎡
⎢⎢⎣

Xc

Yc

Zc

1

⎤
⎥⎥⎦ =

[
V3x3 W3x1

0 0 0 1

]⎡
⎢⎢⎣

Xm

Ym

Zm

1

⎤
⎥⎥⎦ = Tcm

⎡
⎢⎢⎣

Xm

Ym

Zm

1

⎤
⎥⎥⎦ (6)

Observing the image coordinates of the four marker vertices

it is possible, by means of geometrical calculations, to estimate

the Tcm matrix using the relation of (7), and minimizing the

error (8) described by iterative optimization.

⎡
⎣h x̂ci

h ŷci

h

⎤
⎦ = P Tcm

⎡
⎢⎢⎣

Xmi

Ymi

Zmi

1

⎤
⎥⎥⎦ , i = 1,2,3,4, (7)

err =
1

4
∑

i=1,2,3,4

{(xi − x̂i)2 +(yi − ŷi)2} (8)

where P is the camera perspective projection.

E. Discussion

The vision tracking module has been developed to work

in the AIBO simulator of cyberbotics [5] and in the AIBO

memory stick. For that, an image processing framework

(camera calibration, morphological and spatial filters, image

binarization, blob analysis and pattern recognition techniques),

independent of the platform, was developed. This framework

was also integrated with the new versions of webots simulator

from cyberbotics.

The low spatial resolution of the patterns templates de-

creases the number of patterns to use and impedes the de-

tection of missing details in the patterns. One of the main

advantage is the low processing time to perform the matching:

around 20ms for the controller under OPEN-R. The best

patterns are those that are asymmetric and do not have fine

detail on them [4].

Concerning the thresholding procedure the threshold value

used to convert the acquired image to a binary image was

100. However, to counterbalance poor lighting, which would

affect the desaturation of the image, as it could result in

areas that are actually white being assumed as black, an

illumination calibration procedure can be used and this value

can be determined on-line.

V. RESULTS

In this section, we describe experiments done in a simulated

ers-7 AIBO robot using Webots [5]. This simulator is based on

ODE, an open source physics engine for simulating 3D rigid

body dynamics. The model of the AIBO is as close to the real

robot as the simulation enable us to be. Thus, we simulate

the exact number of DOFs, mass distributions and the visual

system.

The ers-7 AIBO dog robot is a 18 DOFs quadruped robot

made by Sony. The locomotion controller generates the joint

angles of the hip and knee joints in the sagittal plane, that is

8 DOFs of the robot, 2 DOFs in each leg. Flap joint angles

were simply set according to the returned values from the IK

algorithm. Only walk gait is generated and tested.

The AIBO has a camera built into its head. The neck joints,

which position the AIBO head, have been moved to values

such that the camera is able to acquire a marker within the

current step of the locomotion. The other DOFs are not used

for the moment, and remain fixed to an appropriately chosen

value during the experiments.

At each sensorial cycle, sensory information is acquired, dy-

namic equations are calculated and integrated thus specifying

servo positions. The dynamics of the CPGs are numerically

integrated using the Euler method with a fixed time step of

1 ms. Parameters were chosen in order to respect feasibility

of the experiment and are given in table II. We recorded the

actual trajectories from the joints incremental encoders �̃x and

the planned trajectories �x.

A. First Experiment

In a first attempt to verify the proposed approach and its

integration with the visual system, two different marks are

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2370



TABLE II
PARAMETER VALUES USED IN THE EXPERIMENTS.

β ω (rad s−1) μi
1

2β μi
(s)

FLS 0.1 2.044 6.25 0.8
FRS 0.1 2.044 6.25 0.8
HLS 0.025 2.044 25 0.8
HRS 0.025 2.044 25 0.8
FLK 0.011 2.044 56.25 0.8
FRK 0.011 2.044 56.25 0.8
HLK 0.051 2.044 12.25 0.8
HRK 0.051 2.044 12.25 0.8

placed in spots slightly apart from the path the robot would

have in case no perturbations arose. The first mark is the

good mark (Fig. 3), meaning the one the visual system should

correctly recognize and localize. The second mark should

not be recognized by the visual system. The first mark is

positioned slightly to the right of the robot at (X ,Y,Z) =
(169.5,−78.1,−148.8) (mm) coordinates (in the internal robot

frame), which is a physically feasible place to be reached by

the robot fore right paw, but obliges some additional movement

of the flap joint.

Snapshots of the AIBO robot while locomotes and success-

fully reaching the first mark and ignoring the second one are

depicted in Fig. 7. The visual system successfully detected

the first mark and returned its localization at (X ,Y,Z) =
(169.5,−74.1,−143) (mm) (in the internal robot frame),

meaning an error quite small.

Fig. 7. Snapshots of the experiment: The robot successfully reaches the correct mark
to the right of its front right limb and ignores the second mark while locomotes. Time
increases from left to right.

Fig. 8 depicts the relevant variables for the robot fore left

limb of the snapshots illustrated in Fig. 7. Top panel shows the

planned �x (dashed line) and actual �̃x trajectories (solid line)

for the hip joint. The three bottom panels illustrate the end-

effector position in the robot internal frame. Swing and stance

phase are also identified.

At t = 5.37s, the mark is correctly recognized and localized

and the IK algorithm returns the required joint angles to reach

the mark at the beginning of the stance phase. The planned

trajectories for each joint are changed accordingly and the

end-effector position is as expected at t = 6.15s (time when

the mark is reached). This mark is deactivated at t = 6.85s.

B. Second Experiment

A second more complex experiment is attempted. The robot

must reach two successive marks with its fore right and left

paws. The first and second marks are placed at (X ,Y,Z) =
(195.8,−128.1,−150.2) (mm) (X ,Y,Z) = (188.9,68.7,148.5)
(mm) coordinates (in the internal robot frame), which are

−4.7

23.6

0

1

73.7

143.9

−71.6

−67.1

−139.9

−115.3

Swing Stance Swing Swing SwingStance Stance

Marker Touched

3,09 5.37 6,15 8,37 11,379,24

time(s)

Marker Detected

Fig. 8. Variables for the robot fore right limb of the snapshots illustrated in Fig. 7.
Up panel: �x (dashed line) and �̃x (solid line) (rad); Middle panel: Touch sensor; 3 Bottom
panels: x,y,z (mm) end-effector coordinates in the robot internal frame.

physically feasible places to be reached by the robot fore right

and left paws, respectively.

Fig. 9. Snapshots of the second experiment: The robot successfully reaches both
markers.

In Fig. 9 we can see a set of snapshots of the experiment,

where the robot successfully reaches the two marks. The

corresponding trajectories and relevant variables are shown in

Fig. 10 and 11 for right and left limbs, respectively.

VI. CONCLUSION

In this article, we have presented a locomotion controller

that generates quadruped locomotion and modifies online the

generated trajectories to reach visually acquired markers for

paw placement. Trajectories are online modulated by modify-

ing on the fly some control parameters according to the visual

acquired information and proprioceptive data. The controller

superimposes discrete and rhythmic movement primitives.

Our main contribution was to visually recognize and localize

a marker and to easily integrate this information onto a

controller that is able to modulate and generate locomotion
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Fig. 10. Similar to Fig. 8 but for snapshots illustrated in Fig. 9.

−4.8

13.1

0

1

73.9

120.8

63.4

67.3

−139.9

−128.5

SwingStance Stance Swing

 Left marker touched

SwingStance Stance
5.81 7.62 9.93 10.8 12.8 16.68

time(s)

 Left marker detected

Fig. 11. Similar to Fig. 10 but for fore left limb.

trajectories. The visual system uses different image processing

and image analysis techniques. The marker is a size-known

square with a predefined pattern inside. These two marker

characteristics allow the calculation of its position with a high

accuracy even with a single camera and with a low resolution

image, in a low processing time. Other main advantage of the

system is its robustness even when the illumination suffers

some drifts and the environment is complex.

We presented successful results for different experiments in

which a simulated ers-7 AIBO robot must position its fore

right and left paws onto markers with predefined character-

istics. Different markers were also tested and successfully

ignored.

Despite the good results, there is still lots of work to do

in order to completely generate adaptive locomotion able to

achieve feet placement. These include but are not restricted

to: inclusion of feedback loops to independently control swing

and stance durations [7]; accurate feet placement; predictive

adjustment of locomotion including speed and/or step length

control in advance and balance considerations. It is our believe

and motivation that the dynamical systems framework has the

properties that make it suitable to generate more complex

behavior able to adapt to the surrounding environment. As

previously stated, the current locomotion controller is not

the ideal to generate the correct end-effector movement and

current work is being done is this direction.

We are currently extending this work in order to achieve

the generation and switch among different gaits according

to the sensorial information; to integrate other sensory-motor

feedback loops for robust and stable locomotion; to achieve

head stabilization for image acquisition and combining with

previous work for posture and balance control [8]. We are also

improving the current visual system such that the marker can

be detected in advance to enable for movement planning in

anticipation.
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