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Abstract: The relative contribution of mutation and selection to the amino acid substitution rates
observed in empirical matrices is unclear. Herein, we present a neutral continuous fitness-stability
model, inspired by the Arrhenius law (qij = aije−|∆∆Gij |). The model postulates that the rate of
amino acid substitution ( i→ j ) is determined by the product of a pre-exponential factor, which is
influenced by the genetic code structure, and an exponential term reflecting the relative fitness of
the amino acid substitutions. To assess the validity of our model, we computed changes in stability
of 14,094 proteins, for which 137,073,638 in silico mutants were analyzed. These site-specific data
were summarized into a 20 square matrix, whose entries,

∣∣∣∆∆Gij

∣∣∣, were obtained after averaging
through all the sites in all the proteins. We found a significant positive correlation between these
energy values and the disease-causing potential of each substitution, suggesting that the exponential
term accurately summarizes the fitness effect. A remarkable observation was that amino acids that
were highly destabilizing when acting as the source, tended to have little effect when acting as the
destination, and vice versa (source→ destination). The Arrhenius model accurately reproduced the
pattern of substitution rates collected in the empirical matrices, suggesting a relevant role for the
genetic code structure and a tuning role for purifying selection exerted via protein stability.

Keywords: amino acid substitution; fitness; genetic code; mutation; protein evolution; protein stability;
replacement matrices; selection

1. Introduction

An important way in which proteins evolve is through the accumulation of amino
acid changes. Spontaneous missense mutations at the DNA level are at the origin of the
evolutionary process. In this regard, the rate of amino acid substitution can be directly
influenced by the structure of the genetic code. That is, amino acids that can be reached
by a single nucleotide mutation replace each other much more often than those that are
separated by two or three nucleotides of difference between their codons. In addition,
selective pressures exerted at different levels can also influence the rates of amino acid
substitutions. For instance, one obvious influence comes from the impact that a given
replacement has on the thermodynamic stability of the protein, which is largely determined
by the extent to which the two amino acids involved in the substitution are exchangeable
in terms of physicochemical properties. Another source of influence, perhaps more subtle
because unrelated to protein activity, are the differences in translational efficiencies of the
different codons [1], as well as the different metabolic costs of different amino acids [2,3],
to name a few.

Protein evolution, thus, is the result of a myriad of complex and interlinked processes
that collectively determine the pattern of amino acid substitutions. These patterns of amino
acid substitutions have been successfully summarized into global substitution matrices,
denoted as Q:

Q =
(
qij

)
i,j∈S, (1)

Int. J. Mol. Sci. 2023, 24, 796. https://doi.org/10.3390/ijms24010796 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24010796
https://doi.org/10.3390/ijms24010796
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-3497-9945
https://doi.org/10.3390/ijms24010796
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24010796?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 796 2 of 15

where S is the so-called set of states, in our case formed by the 20 proteinogenic amino
acids. These matrices can be empirically constructed by averaging rate substitutions over
numerous sites in large sets of proteins. The first empirical Q matrix was constructed
by Dayhoff and coworkers using the maximum parsimony principle [4]. This amino
acid substitution matrix was later updated by Jones and colleagues, who, using the same
parsimony approach, analyzed a much larger collection of protein sequences to obtain an
updated matrix, known as QJTT matrix [5]. Since the parsimony approach was known for
underestimation of the true number of multiple amino acid substitutions on single branches
of a tree, maximum likelihood inference has been successfully employed to estimate these
replacement matrices. Thus, the most widely used empirical matrices, QWAG [6] and
QLG [7], were computed using the maximum likelihood approach.

In parallel to the development of empirical amino acid substitution matrices, the
factors influencing amino acid substitution rates have received much attention [8–11]. Thus,
to understand the fitness effect of mutations, two kinds of models have been proposed. The
first kind of model computes the fitness as the fraction of protein found in the native state,
which is a sigmoidal function of the folding free energy [12]. These models, focused on the
destabilizing effect of mutations, are referred to as stability-constrained fitness models [9].
On the contrary, the second kind of model places the focus on the effect that structural
changes have on fitness, regardless of the effect the structural change may have on stability.
These kind of models are appropriately called structurally-constrained protein evolution
models [9,10].

Many of these fitness-based models elaborate on the seminal work of Halpern and
Bruno [8], who introduced a site-invariant model of codon-to-codon mutation, combined
with site-specific estimates of equilibrium frequencies of each amino acid. In this way, the
rates of amino acid replacement could be determined for each site, according to the effect
of selection on the probability of fixation of mutations, following the Kimura equation [13].
Much more recently, following a similar approach consisting in separating the mutational
process from the fixation process, Norn and coworkers proposed a stability-constrained
model of protein evolution where the fitness was assumed to be proportional to the fraction
of folded protein, which was determined by computing the change in thermodynamic
stability (∆∆G), using a reduced non-redundant set of 52 protein structures [11]. Despite
all these efforts, the precise influence that the diverse determinants exert on the amino
acid substitution rate remains an open research topic. Furthermore, none of the models
previously described have been analyzed using data from a whole proteome.

The goal of the current work was twofold. On the one hand, to generate proteomic-
scale data regarding the site-specific effect of mutations on protein stability. On the other
hand, to make use of these data so as to build a model of amino acid substitution in
proteins that would allow assessment of the relative impact of thermodynamic stability
on substitution rates; that is, to what extent the values of the empirical Q matrices are
determined by the effect of the substitution on the protein stability.

2. Results
2.1. Conservative versus Radical Amino Acid Substitution

Weber and Whelan have recently examined different criteria to classify amino acid
substitutions as either conservative or radical, based on physicochemical properties of the
amino acids involved [14]. They concluded that when a substitution implied a change in
polarity or volume category, this was the criterion to consider the substitution radical. In
every other case the substitution would be conservative. They considered this to be the best
rationalization for understanding protein evolution [14]. Herein, we propose a different
approach to the conservative–radical classification of amino acid substitutions, based on
their effects on protein stability.

To this end, proteins were subjected to computational mutagenesis scans in all their
positions. That is, for each single site in every protein, we computed the effect (∆∆G) of all
possible amino acid mutations using the FoldX suit [15,16]. In this way, 7,214,402 sites from
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14,094 different proteins were analyzed, obtaining a 7,214,402 × 19 matrix of site-specific
energy values (Table S1). All the information contained in this matrix was summarized in a
20 × 20 matrix (Table 1):

∆∆G =
(
∆∆Gij

)
i,j∈S (2)

where the element corresponding to row i and column j gives the median in the energy
change when an amino acid i (source amino acid) is substituted by an amino acid j (des-
tination amino acid). A high value of the element (i, j) implied a destabilizing effect for
the change of amino acid i to amino acid j. On the other hand, negative values meant
stabilizing changes, which, not surprisingly, were less common (Table 1 and Figure 1).

Table 1. Median for substitution of the source amino acid (rows) for the destination amino acid
(columns) in kcal/mol. Substitutions are labelled as radical, according to the kcal/mol criterion, but
as conservative when the polarity-volume criterion is used, shown in green. Those considered as
radical, regardless of the criterion used, are shown in red. On the other hand, substitutions classified
as conservative by both criteria are shown in blue. Finally, substitutions considered conservative
by the energy criterion, but as radical when the polarity–volume criterion was used, are indicated
in purple.

A R N D C Q E G H I L K M F P S T W Y V

A . −0.12 0.15 0.41 0.32 −0.07 0.09 0.72 0.25 0.28 −0.16 −0.15 −0.30 −0.12 2.43 0.22 0.53 0.04 −0.05 0.50
R 0.66 . 0.58 0.97 0.82 0.33 0.63 1.16 0.66 0.60 0.17 0.13 0.08 0.24 2.88 0.74 0.94 0.43 0.33 0.93
N 0.35 −0.06 . 0.34 0.42 0.08 0.25 0.67 0.34 0.40 −0.08 −0.08 −0.17 −0.07 2.47 0.39 0.66 0.16 0.01 0.69
D 0.32 0.12 0.17 . 0.43 0.12 0.07 0.62 0.32 0.43 0.01 0.05 −0.07 0.00 1.81 0.42 0.65 0.23 0.09 0.69
C 0.20 0.45 0.36 0.89 . 0.41 0.78 1.14 0.61 0.31 −0.14 0.22 −0.28 0.65 2.69 0.54 0.45 1.56 1.00 0.29
Q 0.38 −0.03 0.34 0.62 0.53 . 0.23 0.91 0.37 0.20 −0.13 −0.06 −0.29 −0.05 2.57 0.49 0.63 0.11 0.05 0.58
E 0.29 0.02 0.34 0.43 0.53 0.03 . 0.81 0.29 0.17 −0.18 −0.07 −0.27 −0.12 1.90 0.47 0.57 0.05 −0.03 0.49
G 2.12 1.91 2.10 2.37 2.36 2.31 2.47 . 2.47 3.59 2.26 2.04 2.05 2.31 5.31 2.06 3.11 2.57 2.43 3.65
H 0.36 −0.11 0.23 0.66 0.42 0.04 0.32 0.92 . 0.21 −0.33 −0.18 −0.50 −0.39 2.61 0.48 0.58 −0.11 −0.23 0.51
I 2.02 1.43 2.03 2.80 1.88 1.61 2.10 3.06 1.62 . 0.06 1.20 0.05 0.83 3.95 2.49 1.73 1.54 1.23 0.81
L 1.67 1.13 1.73 2.34 1.81 1.35 1.70 2.61 1.46 0.78 . 0.93 −0.01 0.44 3.97 2.07 1.91 0.98 0.77 1.48
K 0.50 0.05 0.46 0.79 0.71 0.21 0.46 1.02 0.51 0.21 0.01 . −0.09 0.07 2.52 0.62 0.80 0.26 0.16 0.75
M 1.24 0.82 1.27 1.68 1.49 0.95 1.16 2.04 1.16 0.76 0.19 0.65 . 0.42 3.65 1.48 1.58 0.66 0.63 1.34
F 2.78 2.32 2.89 3.70 2.73 2.52 3.03 3.78 2.30 1.91 0.90 2.07 0.63 . 4.59 3.13 2.95 0.94 0.50 2.42
P 0.90 0.63 0.90 0.80 1.00 0.70 0.58 1.02 0.77 0.94 0.68 0.65 0.64 0.64 . 0.94 1.06 0.75 0.71 1.12
S −0.01 −0.24 −0.01 0.12 0.09 −0.15 −0.04 0.29 0.10 0.26 −0.18 −0.24 −0.29 −0.18 1.90 . 0.26 0.00 −0.11 0.48
T 0.15 −0.18 0.11 0.31 0.20 −0.08 0.06 0.55 0.11 −0.07 −0.28 −0.21 −0.37 −0.19 1.88 0.21 . 0.03 −0.10 0.11
W 2.49 2.12 2.64 3.24 2.56 2.32 2.67 3.43 2.13 1.86 0.99 1.96 0.73 0.51 4.16 2.93 2.76 . 0.82 2..30
Y 1.97 1.53 2.00 2.71 2.03 1.77 2.15 2.97 1.66 1.38 0.42 1.29 0.26 −0.06 4.12 2.46 2.27 0.45 . 1.79
V 0.94 0.42 0.99 1.44 0.91 0.60 0.92 1.93 0.73 −0.27 −0.18 0.28 −0.17 0.17 2.87 1.37 0.71 0.61 0.38 .

The matrix shown in Table 1 is an asymmetric one. This asymmetry becomes evident
in a very visual way when Figure 1B,C are compared. For instance, phenylalanine was a
good replacement for other amino acids (little destabilizing when a destination), but it was
the least readily replaced (highly destabilizing when a source). On the other hand, although
proline was revealed as an amino acid always involved in radical substitutions, those
changes where proline was the replacement for other residues tended to be much more
destabilizing than when proline was the substituted residue. In general, Ser, Thr, Asp, Glu
and Ala were amino acids most often involved in conservative substitutions when acting as
sources, while those most often involved in radical substitutions were Gly, Phe, Trp, Tyr, Ile,
Leu and Met. Regarding the conservative/radical nature of substitutions when focusing on
the replacing (destination) amino acid, Met, Leu and Phe tended to be good replacements
for most residues (conservative), while Ser, Thr, Asp, Gly and Pro were among the most
radical substitutions when acting as destinations. Although these observations may point
to true evolutionary trends, they must be treated with caution, since FoldX, as well as
other programs based on energy functions, may sometimes overestimate the stability of
hydrophobic residues, which then may appear, unrealistically, as intrinsically more stable
than polar amino acids [17].
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Figure 1. Changes in thermodynamic stability of the amino acid substitutions. For each single site
in every protein from the human proteome, the thermodynamic effect (∆∆G) of all possible amino
acid substitutions was computed, which allowed us to calculate the median value for each of the
380 possible amino acid substitutions. The distribution of these median values is shown in (A). Box
plots of these median values, depending on either the source (B) or the destination (C) amino acid,
are also shown.

The asymmetry of the matrix indicated that, for a given amino acid, the effect on
protein stability of amino acid substitutions depended on whether the amino acid was a
source or a destination. Even more pertinent, the qualitative observations noted in the
previous paragraph seemed to suggest an inverse effect. To quantitatively support this
observation, the 20 proteinogenic amino acids were ranked from the least to the most
destabilizing, either when acting as a source (x-variable), or when acting as a destination
(y-variable), and a weak (R-squared = 0.22) but significant (p-value = 0.039) negative
correlation of these ranks was then observed (Figure S1).
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2.2. Relationship between ∆∆G and Human Diseases

Data collected in Table 1 represent a statistical summary of the effect of amino acid
substitution on protein stability, for each of the 380 possible amino acid replacements
averaged across the entire human proteome. Thus, we next took advantage of this statistical
information to address the relative relevance of protein structure destabilization as the
cause of diseases linked to missense mutations in humans. To this end, for each source–
destination amino acid substitution we computed its disease-causing potential, defined as
the number of such substitutions reported to cause disease. The disease-associated amino
acid residues (DARs) [18] were divided by the number of the same source–destination
substitutions observed among a collection of single amino acid polymorphisms (SAAPs)
common in humans (allele frequencies above 0.01), and thought to be mostly neutral [19,20].
As observed in Figure 2, there was a very significant (p-value = 1.7 × 10−14) positive
correlation between the ∆∆G values that we computed and the log of the disease-causing
potential of amino acid substitutions. Thus, ∆∆G explained over 32 % of the variance in
the log(DAR/SAAP).
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Figure 2. The destabilizing effect of amino acid substitution on protein structure correlates positively
with the disease-causing potential.

Although this positive correlation between ∆∆G and the disease-causing potential
is highly significant, its use as predictive correlation is discouraged, since its coefficient
of determination is rather low (below 0.5). However, it is high enough to suggest that
Table 1 may summarize the trend of the effect of each amino acid substitution on protein
thermodynamic stability well. Therefore, we next built a theoretical model inspired by
chemical kinetic theory, with the aim of evaluating the relevance of changes in protein
stability in determining the amino acid substitution rates.

2.3. Arrhenius Kinetic Model for Amino Acid Substitutions

We started by considering a proteome evolving through the time according to a
homogenous continuous–time Markov process. For each amino acid substitution, we had a
pair of amino acids involved (i.e., Ai and Aj) which, in a figurative sense, could be imagined
as reactants of a chemical reaction:

Ai � Aj, (3)

That is, through time amino acid Ai can be changed to amino acid Aj, which can later
be replaced again by Ai, and so on. According to the Markov theory, for a time-reversible
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process, such as the one we were considering, the amount of change from the state i to the
state j at the equilibrium must be equal:

πiqij = πjqji, (4)

where πi is the relative frequency of the amino acid i and qij is the instantaneous rate
of substitution of the amino acid i by the amino acid j. Equation (4), which is known as
detailed balance, implies that amino acid frequencies of extant proteins are found at a
steady state. Although this is a widely accepted assumption, it should be noted that some
authors have pointed to the possibility that such frequencies could still be evolving [21].
Thus, following our chemical kinetic analogy, the first member of Equation (4) would be the
differential rate law equation for the substitution of the state i by the state j, where πi and
qij play the role of concentration and rate constant, respectively. Analogously, the second
member of Equation (4) would be the differential rate law for the change of amino acid j
for amino acid i. Therefore, according to the Arrhenius law:

qij = a e
−Eij

b , (5)

where a is the so-called pre-exponential factor, which, in our evolutionary context, can be
interpreted as the maximal absolute rate of substitution when thermodynamic stability does
not exert any constraint. On the other hand, Eij is the activation energy for the substitution
of the amino acid i by the amino acid j. The activation energy is often thought of as the
magnitude of the energy barrier that, in our model, opposes the change from amino acid i
to amino acid j. Since strong changes in the thermodynamic stability (∆∆G) of a protein are
evolutionarily disadvantaged, we can define:

E =
(
Eij

)
i,j∈S =|∆∆G|. (6)

A high positive value of ∆∆Gij implies a destabilizing effect for the change of amino
acid i to amino acid j. On the other hand, negative values mean stabilizing changes,
which, in terms of biological fitness, can be as detrimental as destabilizing mutations [22],
particularly for metamorphic proteins [23]. Thus, E, the energy barrier, is understood as the
obstacle that makes it difficult for a given substitution to be accepted, and was quantified
as the absolute value of Table 1. Finally, b is equivalent to the product RT, used in physical
chemistry as a scaling factor for energy values, since many processes and phenomena
depend not on energy alone, but on the ratio of energy and RT. From now on, we refer to
this parameter as “evolutionary-temperature”.

We started by examining whether the relationship between the two variables (qij and
Eij) was compatible with a negative exponential, as hypothesized (Equation (5)). Fitting the
data to the linearized Arrhenius equation showed a significant linear relationship between
the variables ln(qij) and Eij (Figure S2). Despite the high statistical significance of the fit
(p-value = 1.3 × 10−9), the energy barrier variable, E, only explained roughly 10% of the
variance observed for ln(qij). This high dispersion of ln(qij) was not unexpected, since
we were assuming a single and equal value for the parameter a, regardless of the pair
of amino acids involved in the substitution. Since the value of a was interpreted as the
maximal instantaneous rate of substitution, attainable in the hypothetical case that there
were no thermodynamic stability constraints (E = 0), it seemed reasonable that different
pairs of amino acids should exhibit different values of the pre-exponential factor affecting
their instantaneous rate of substitution. For instance, those amino acid pairs referred to as
“singlet”, i.e., those whose codons differed by just one nucleotide, were expected to present
higher values of the parameter a than nonsinglet amino acid pairs.

Therefore, we next considered five negative exponential curves, differing in the value
of their pre-exponential factors (a ∈ {0.01, 0.05, 0.1, 0.2, 0.4}) and with evolutionary-
temperature, b, constant and equal to 1. Then, the 380 possible amino acid substitutions
were partitioned into five different categories of ordered pairs, according to their proximity
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to the five Arrhenius curves (Figure 3). To assess the degree of variation in empirical
amino acid substitution matrices that could be explained by our kinetic model, we next
computed, for each amino acid substitution pair, the predicted q̂ij value, according to the
corresponding Arrhenius kinetic model described above (Table S2). These predicted values
were then compared against the empirical qij values described in the literature [4,5,7,24].
As can be observed in Table 2 and Figure 4, much of the variation in empirical amino acid
substitution matrices could now be explained by the Arrhenius model described above.
More concretely, the Arrhenius model was able to account for 51, 73 and 82 % of the
variance in the empirical instantaneous substitution rates collected into the QDSO78, QJTT
and QLG matrices, respectively (Figure 4).
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Table 2. Correlation matrix for different Q-matrices. The table displays the correlation coefficients for
different empirical matrices and the matrix computed using the Arrhenius kinetic model presented
in the current work (QArrh).

QDSO78 QJTT QLG QArrh

QDSO78 1
QJTT 0.7898 1
QLG 0.7065 0.9166 1

QArrh 0.7122 0.8533 0.9073 1
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matrices, have been plotted against the matrix computed according to the Arrhenius model. The
correlation coefficients are given in Table 2, and the p-values were less than 2.2 × 10−16 in the three
cases. The R2 values were 0.510, 0.730 and 0.823, respectively.

2.4. The Structure of the Genetic Code Is a Key Determinant of the Amino Acid Substitution Rates

The Arrhenius kinetic model, that we evaluated in the previous section, distinguished
five groups of amino acid substitutions (Table S2), which differed in their pre-exponential
factor values (parameter a from Equation (5)). Since this parameter could be interpreted as
the maximal absolute rate of substitution when protein stability did not exert any constraint,
it seemed reasonable to postulate a relevant role for the structure and configuration of
the standard genetic code as determinant of the exponential factor values. To address
such a hypothesis, and shed some light on what features of the genetic code could be
more relevant in determining the correct assignment of the pre-exponential factor in our
Arrhenius kinetic model, we next resorted to machine learning.

Thus, different supervised multiclass classification techniques were implemented and
evaluated on a 5-fold cross validation. Table 3 shows the performance of these predictive
models in terms of accuracy, sensitivity, specificity and area under the receiver operating
characteristic curve (AUROC). Random forests provided the best performance. Never-
theless, in terms of accuracy, all the assayed models performed significantly better than
a random classifier. Figure 5A shows the accuracy distribution for random guesses on
100,000 samples of the same size as the testing set and with the same class strata. As ex-
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pected, the random accuracy was normally distributed with a mean of 0.234 and standard
deviation of 0.041. The much higher accuracy of the random forest classifier (0.421 ± 0.025,
mean ± sd) suggested that the structure of the genetic code indeed played a relevant role
in determining the amino acid substitution groups. To further gain an understanding of
what characteristics of the genetic code were the ones that had the greatest weight when
determining the substitution group, we built a variable importance plot for the random
forest classifier. As is shown in Figure 5B, the difference in the number of triplets coding for
the source and destination amino acids, and the mean number of transversions involved in
the codon substitution, were the main predictors for the random forest model.

Table 3. Supervised multiclass classification of amino acids substitutions. A 5-fold cross-validation
approach was employed to evaluate the performance of 5 models, using as metric the accuracy,
sensitivity, specificity and area under the receiver operating characteristic curve (AUROC). The
p-value column indicates the probability of obtaining an accuracy equal to, or higher than, that of the
corresponding model, when the predictions were made randomly on a dataset with the same size
and structure as the testing set.

Model Accuracy Sensitivity Specificity AUROC p-Value

k-NN (k = 1) 0.375 ± 0.035 0.312 ± 0.031 0.835 ± 0.009 0.570 ± 0.019 0.00059
Decision trees 0.391 ± 0.038 0.331 ± 0.038 0.839 ± 0.009 0.665 ± 0.027 0.00018
Bagging trees 0.391 ± 0.032 0.327 ± 0.023 0.842 ± 0.008 0.671 ± 0.013 0.00018

Random forests 0.421 ± 0.025 0.357 ± 0.026 0.849 ± 0.005 0.682 ± 0.012 0.00001
Boost trees 0.385 ± 0.019 0.315 ± 0.023 0.838 ± 0.005 0.662 ± 0.016 0.00018Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 17 
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3. Discussion

Complex patterns of amino acid substitution developed during protein evolution.
These patterns are captured in the so-called empirical substitution matrices. Since these
matrices reflect the outcome of the forces that collectively control the patterns of amino
acid substitutions, they have been invaluable to detect homologs [25], reconstruct phy-
logenies [7], infer the primary structure of ancestral forms [26], trace the co-evolution of
different positions within a protein [27], etc. Although in recent years there have been
remarkable advances in the development of alignment-free sequence comparison methods
to address protein evolution [28,29], the mainstream approaches in the field are still based
on sequence alignment methods that make extensive use of substitution matrices [30].
Nevertheless, despite the great practical utility of these matrices in bioinformatics and
evolutionary biology, they fail to provide insight into the mechanisms shaping the global
pattern of amino acid substitution encapsulated within them. Thus, we still do not know
the relative importance of the selective pressures acting on the biophysical properties of
proteins, on the one hand, and the structure of the genetic code and mutational biases, on
the other [9,14].

Work carried out over the last decade has shown, in the context of protein evolu-
tion, the usefulness of introducing the perspective of thermodynamic stability [31–34].
However, none of these studies addressed the effect of mutations on protein stability at a
proteomic scale. Thus, to what extent stability shapes protein evolution and determines
the observed amino acid substitution rates, remains an open question [9]. Since global
substitution matrices are constructed by averaging rate values observed over numerous
sites in many proteins, unraveling the relationship between these rates and changes in
stability must require averaging ∆∆G across many sites in many proteins as well. In a
promising recent work, Norn and coworkers, using the Rosetta modeling suite, addressed
the thermodynamic effect (∆∆G) of all the possible amino acid mutations in 52 protein
structures [11]. Herein, using super-computational resources and taking advantage of
the AlphaFold project [35,36], we assessed the changes in stability (∆∆G) for all possible
mutations at all sites in 14,094 different human proteins. To the best of our knowledge,
this is the first work to report on site-specific changes in stability on an entire proteome
(Table S1). In order to use all this wealth of data in a model that may provide insights on
the relative importance of stability constraints, site-specific ∆∆G values were averaged
over sites and proteins (Table 1). The significant positive correlation observed between the
median ∆∆G and the disease-causing potential (Figure 2), indicated that these ∆∆G values
acceptably summarized the effect of the considered substitutions on protein stability, and
reinforced the idea that mutations leading to extreme values of ∆∆G are preferential targets
of purifying selection. In this way, ∆∆G can be envisioned as an energy barrier that opposes
the fixation of the considered mutation. This view is reminiscent of a well-known kinetic
function, namely, the Arrhenius law (see Equation (5)). Indeed, the values of the Q matrices
are instantaneous rates, making the proposed kinetic analogy appropriate. Nevertheless,
it should be pointed out that we are not claiming that the amino acid substitution rates
behave according to the kinetic theory of collisions. That is, the Arrhenius analogy we
present herein is just that, an analogy. In any case, this analogy can be useful, as we discuss
shortly, in dissecting the relative contribution of mutational rates and purifying selection.
However, a brief consideration of the Arrhenius law is necessary.

The Arrhenius equation gives the rate constant, k, of a chemical reaction as the product
of a pre-exponential (“frequency”) factor A and an exponential term:

k = A e
−Ea
RT , (7)

where R is the gas constant and Ea is the so-called activation energy, there is an energy
barrier opposing the conversion of reagents into products. In physical chemistry, this
equation is used to characterize the temperature dependence of reaction rates. Temperature
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affects both the exponential term, as well as the pre-exponential factor [37]. Indeed, using
the transition state theory, introduced by Henry Eyring [38], it can be shown that:

A =
kβ

h
ee

∆S‡
R T, (8)

However, often A is treated as temperature independent [39]. The justification of this
widespread practice boils down to the fact that temperature has a much greater impact on
the exponential term than on the pre-exponential factor. Now, going back to our model
on instantaneous substitution rates, we started by assuming that the main contribution to
the variance of qij was due to the exponential term (variable Eij), while keeping a constant
pre-exponential factor, equal for all the amino acid substitution pairs (Equation (5)). That is:

aij ≈ a, ∀ i, j ∈ S, (9)

In a way, this working hypothesis assumes that the role of selection (at the protein
level) is more of a determinant than the role of mutations (at the DNA level). However,
such a model could only explain around 10% of the qij variance (Figure S2). In contrast,
when the pre-exponential factor was allowed to vary, most of the variance of qij could
be satisfactorily explained by the variable Eij (Figure 3). These results suggested that the
overall instantaneous rate of substitution, qij could be expressed as the product of the
following two factors: one, represented by the pre-exponential term (aij), which collects
all the terms affecting the rates of codon mutations leading from i to j, and the other
term, e−Eij , takes values between 0 and 1, and can be envisioned as the probability of
the indicated ( i→ j ) codon mutation going to fixation. That is, the exponential term
captures the relative fitness effect of this amino acid substitution. In this respect, our kinetic
Arrhenius model represents a neutral continuous fitness-stability model able to explain
empirical amino acid substitution matrices (Figure 4), and, therefore, useful to provide
insight into the evolutionary processes shaping the complex pattern of observed amino
acid substitutions [4,5,7]. In this sense, our results not only suggest a prominent role for
genetic code configuration and a tuning role for the stability effect via selection, but also
point to the diffcodon and transversion (see Section 4 for definitions) as the most relevant
features influencing the substitution rate through their effects on the pre-exponential term
(Figure 5).

The fact that empirical matrices have been so successful in practice, for evolutionary
biologists and bioinformaticians, should encourage us to search for mechanistic models
able to reproduce the empirical data and explain, in terms of evolutionary processes, the
origins of the underlying patterns. The kinetic Arrhenius model we present herein is a
neutral continuous fitness-stability model that seems to fulfil these conditions.

It should be noted that the Arrhenius model proposed herein is, regarding the mathe-
matical relationship between variables, not very different from the Kimura equation for
the transition probability [13] and its interpretation in terms of a stationary Markov pro-
cess [8,40]. Thus, the current work further supports, on a proteomic scale, the sigmoidal
relationship between variables previously proposed. The models based on Kimura’s for-
mula have been in use for a long time, and they are based on selection mechanisms widely
accepted in population genetics. However, all these models rest on the premise that the
fitness of an organism carrying a mutation in a protein is a function of the fraction of that
protein that is folded [11]. Thus, although the idea is appealing, experimental evidence
supporting the validity of such a premise is rather scant. Since correlation does not imply
causation, further work is still required to firmly establish the biological mechanisms under-
lying the relationship between instantaneous rates of substitution and protein stability. In
this respect, the accompanying site-specific data regarding the stability of over 137,000,000
in silico mutants aimed to be of help.
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4. Materials and Methods
4.1. Protein Dataset

The human reference proteome was obtained from UniProt [41]. From the set formed
by the canonical representative peptide of each gene, those with molecular sizes either
below 100 or above 2670 residues were filtered out. This selection finally yielded a dataset
consisting of 7,214,402 residues from 14,094 different proteins. For each of these proteins, a
file with protein data bank (pdb) format was obtained from the AlphaFold protein structure
database [35,42].

4.2. Thermodynamic Stability Changes

Each of the 7,214,402 amino acids found in 14,094 proteins of our dataset, was mutated
to 19 complementary amino acids and the effect of these substitutions on protein stability
(∆∆G) was computed using the force-field FoldX 5.0 [16], as implemented by ptm, an R
package designed to assist in the study of proteins [42,43]. All these computations were
carried out at the Supercomputing and Bioinnovation Center of the University of Malaga
(https://www.scbi.uma.es/site, accessed on 12 October 2022).

4.3. Estimation of Substitution Rates According to the Arrhenius Kinetic Model

A scatter plot showing the relationship between the energy barrier we computed,
∆∆Gij, and the empirical substitution rate, qij, was built. Afterwards, we considered
five negative exponential curves, differing in the value of their pre-exponential factors
(a ∈ {0.01, 0.05, 0.1, 0.2, 0.4}) and with evolutionary-temperature, b, constant and equal
to 1. Each of the 380 possible amino acid substitutions was partitioned into five different
categories according to their proximity to the five Arrhenius curves (Figure 3). In this way,
for each amino acid pair, we could compute an estimated instantaneous substitution rate,
q̂ij, using the energy barrier values from Table 1 and Equation (5). In matrix form, these
substitution rate values are denoted as:

QArrh =
(
q̂ij

)
i,j∈S, (10)

4.4. Correlation between Empirical Amino Acid Substitution Matrices

The exchangeability matrices, S, linked to the substitution matrices, Q, reported by
Dayhoff and coworkers [4] (DSO78), Jones and coworkers [5] (JTT) and Le and Gascuel [7]
(LG), were obtained from the PAML 4.8 package [44]. More specifically, the data files
‘dayhoff.dat’, ‘jones.dat’ and ‘lg.dat’, provided by PAML, were read and used to compute
QDSO78, QJTT and QLG, respectively. To this end, we used the matricial equality Q = S Π,
where Π is a diagonal matrix containing the stationary amino acid frequencies, also pro-
vided by PAML 4.8 in the referred data files. The instantaneous substitution rates predicted
by the Arrhenius kinetic model, QArrh, were taken as the independent variables while
the empirical substitution rates described above were taken as the dependent variables.
Regression analyses were conducted using standard R functions.

4.5. Machine Learning

For each of the 380 substitution pairs (aai → aaj), we extracted the following features,
all of which are related to the genetic code structure:

• diffcodon: the number of triplets coding for aaj minus the number of triplets coding for
aai.

• ccodon: the number of triplets coding for aaj times the number of triplets coding for
aai.

• transitions: number of transitions counted among the ccodon triplet pairs, divided by
the total number of nucleotide changes.

• transversions: number of transversions counted among the ccodon triplet pairs, divided
by the total number of nucleotide changes.

https://www.scbi.uma.es/site
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• min_changes: minimum number of nucleotide changes allowing the substitution being
considered. That is, among the ccodon triplet pairs the one exhibiting the minimum
number of changes is selected and that number taken.

• min_transitions: as above, but limited to transition changes.
• min_transvertions: as above, but referred to as transversion changes.
• meanGC: mean difference in the GC content of codons (codons for aaj—codons for

aai).
• minGC: minimal difference in the GC content of codons (codons for aaj—codons for

aai).
• maxGC: maximum difference in the GC content of codons (codons for aaj—codons for

aai).

All the subsequent steps, described below, were executed within the framework
of ‘tidymodels’, which consists of a collection of R packages for modeling and machine
learning [45]. Briefly, after controlling for correlation between features and standardizing
their values, data were randomly partitioned into five-fold for posterior cross-validation.
We trained k-nearest neighbor (k-NN), decision tree (DT), bagging tree (BG), random forest
(RF) and boost tree (BT) models, using the following engines: kknn, rpart, rpart, ranger
and xgboost, respectively. For model tuning, the parameters used for each model were
optimized using random grids of size 27 and the AUROC as metrics. The performance
of all the models was evaluated on the five-fold cross-validation sets using accuracy,
sensitivity, specificity and AUROC as metrics, as described in [46]. The R script used
to implement these steps can be obtained at https://bitbucket.org/jcaledo/qarrheniu
s/src/master/Scripts (accessed on 12 October 2022).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms24010796/s1.
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