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Abstract: This paper examines the propagation of radio waves in so-called urban street canyons
through formulations based on Geometrical Optics (GO) and the Uniform Theory of Diffraction
(UTD). As this type of environment comprises a street flanked by tall buildings more or less equally
spaced on both sides (creating a canyon-like morphology), estimating the attenuation that radio
signals may experience in these scenarios is crucial to the planning of urban device-to-device (D2D)
wireless communication. In this sense, the results obtained through the analysis based on GO/UTD
(in the horizontal plane containing the transmitter and receiver) are validated by a comparison
with experimental measurements, showing good agreement. This work demonstrates how the use
of GO/UTD-based formulations can contribute to a simpler and computationally more efficient
planning of D2D mobile communication systems in which the considered propagation environment
can be modeled as an urban street canyon comprising rectangular and equispaced buildings.

Keywords: street canyons; urban propagation; Geometrical Optics; Uniform Theory of Diffraction;
device-to-device communications

1. Introduction

With mobile services becoming increasingly vital and big data being integrated into
everyday life, the demand for mobile traffic services that offer high data rates is only set to
increase. Against this backdrop and with high densities of device users, it seems pertinent
to consider device-to-device (D2D) communication, i.e., bypassing the conventional cellular
infrastructure when appropriate devices are nearby. In contrast to rooftop cellular networks,
since the mobile terminals have direct communication links, the transmitters and receivers
of D2D systems are typically located at street level (i.e., the antennae are lower, generally
below the rooftops) [1–3]. As a result, conventional propagation models are not adequate
for predicting the specific parameters of radio channels in these scenarios. This highlights
the need to develop new channel models that consider low-height antennas, especially in
urban street canyons, i.e., streets flanked by tall, approximately equispaced structures on
either side that produce a canyon-like effect.

The numerous efforts seeking to predict radio wave propagation within urban street
canyons have led to the development of a variety of models. For example, [4] first proposed
a path loss model to predict propagation in such urban street canyons. The authors hereby
considered various regions separately in their theoretical analysis, specifically the line-
of-sight (LOS) region, the sudden corner attenuation region, and the non-line-of-sight
(NLOS) region. This original diffraction model was further developed by [5] to consider
by-four corners, with [6] going on to propose an alternative model that parameterizes
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the corner distance, corner loss, and attenuation coefficient. Finally, multiple-diffraction
along the horizontal plane in street canyon-like scenarios was analyzed in [7,8] using
the Parabolic Equation Model (PEM) with Recursive Convolution Nonlocal Boundary
Conditions (PEM-RCNBC).

The above-mentioned models are generally complex from a theoretical point of view
and, consequently, are computationally demanding. Therefore, in this work, D2D radio
wave propagation within urban street canyons is analyzed in the horizontal plane using
straightforward, mathematically simple, and computationally efficient Geometrical Optics
(GO) [9] and, in particular, the Uniform Theory of Diffraction (UTD) [10]. Different typical
scenarios are hereby evaluated, and the obtained results are properly compared with
measurements.

2. Considered Scenarios and Theoretical Analysis

Three different scenarios modeling a simplified street canyon (including both LOS and
NLOS situations) are analyzed in the horizontal plane using GO/UTD-based formulations,
so that contributions from direct and reflected rays (if applicable), as well as contributions
from single, double, triple, and quadruple diffractions, are considered at the receiver. In
this sense, the rectangular obstacles that comprise the analyzed environment are assumed
to be infinitely high, and thus the effects in the vertical plane can be ignored. Moreover, as
the analyzed schemes are symmetrical in the horizontal plane with respect to the central
longitudinal axis of the street, only the contributions of one of the two symmetrical sides are
assessed. Consequently, to obtain the total signal that reaches the receiving point, a replica
of all considered contributions is later added, taking into account those corresponding to
the other side. The scenarios considered, as well as the theoretical development carried out
through GO/UTD-based formulations, are shown below.

2.1. LOS Case

Figure 1 shows the scheme of the first scenario analyzed, which in this case represents
an LOS situation in a street canyon comprising two perfectly conducting rectangular blocks
on each side. The figure shows the transmitter point (Tx) and the line (ω) along which the
different receiver points (Rx) are located. In addition, the different distance parameters that
are taken into account when developing the GO/UTD formulations are also shown. In the
following subsections, the expressions of the different contributions reaching the receiver
are obtained.
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2.1.1. Direct Ray

In Figure 2, the contribution of the direct ray (Edir) is shown in blue.
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Thus, its expression is:

Edir =
E0
Rt

e−jkRt (1)

where E0 is the relative amplitude of a spherical wave and k is the wave number.

2.1.2. Single Diffractions

In Figures 3–6, the four possible single diffractions between the Tx and Rx (Edif1, Edif2,
Edif3, and Edif4) can be observed, considering only the lower side of the street canyon
propagation scheme. The GO/UTD expressions for each contribution are given below.
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Edi f 1 =
E0
R0

e−jkR0D
(

ϕ′ =
π

2
+ α; ϕ =

3π

2
− µ; L =

R0t
R0 + t

)√
R0

t(R0 + t)
e−jkt (2)

where D(ϕ′, ϕ, L) is the UTD diffraction coefficient for a perfectly conducting wedge [11].

Edi f 2 =
E0
R1

e−jkR1D
(

ϕ′ = β; ϕ = π − ρ; L =
R1z

R1 + z

)√
R1

z(R1 + z)
e−jkz (3)

Edi f 3 =
E0
R0′

e−jkR0′D
(

ϕ′ =
π

2
+ α′; ϕ =

3π

2
− µ′; L =

R0′p
R0′ + p

)√
R0′

p(R1 + p)
e−jkp (4)

Edi f 4 =
E0
R1′

e−jkR1′D
(

ϕ′ = β′; ϕ = π − ρ′; L =
R1′l

R1′ + l

)√
R1′

l(R1′ + l)
e−jkl (5)
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2.1.3. Double Diffractions

In this case, the double diffractions considered (Edif_d1, Edif_d2, Edif_d3, and Edif_d4)
are shown in Figures 7–9. The GO/UTD expressions for each contribution are also shown.

Edi f _d1 = E(1)D
(

ϕ′ = 0; ϕ = π − ρ; L =
(R0 + v)z
R0 + v + z

)√
R0 + v

z(R0 + v + z)
e−jkz (6)
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where

E(1) =
E0
R0

e−jkR0D
(

ϕ′ =
π

2
+ α; ϕ =

3π

2
; L =

R0v
R0 + v

)√
R0

v(R0 + v)
e−jkv (7)

Edi f _d2 = E(1)D
(

ϕ′ = 0; ϕ =
3π

2
− µ′; L =

(R1 + d3)p
R1 + d3 + p

)√
R1 + d3

p(R1 + d3 + p)
e−jkp (8)

with

E(1) =
E0
R1

e−jkR1D
(

ϕ′ = β; ϕ = π; L =
R1d3

R1 + d3

)√
R1

d3(R1 + d3)
e−jkd3 (9)

Edi f _d3 = E(1)D
(

ϕ′ = 0; ϕ = π − ρ′; L =
(R0′ + v)l
R0′ + v + l

)√
R0′ + v

l(R0′ + v + l)
e−jkl (10)

where

E(1) =
E0
R0′

e−jkR0′D
(

ϕ′ =
π

2
+ α′; ϕ =

3π

2
; L =

R0′v
R0′ + v

)√
R0′

v(R0′ + v)
e−jkv (11)
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2.1.4. Triple Diffractions

Similarly, Figures 10 and 11 show the triple diffractions considered (Edif_t1 and
Edif_t2), with their GO/UTD expressions shown below.

Edi f _t1 = E(2)D
(

ϕ′ = 0; ϕ =
3π

2
− µ′; L =

(R0 + v + d3)p
R0 + v + d3 + p

)√
R0 + v + d3

p(R0 + v + d3 + p)
e−jkp (12)

where

E(2) = E(1)D
(

ϕ′ = 0; ϕ = π; L =
(R0 + v)d3
R0 + v + d3

)√
R0 + v

d3(R0 + v + d3)
e−jkd3 (13)

E(1) =
E0
R0

e−jkR0D
(

ϕ′ =
π

2
+ α; ϕ =

3π

2
; L =

R0v
R0 + v

)√
R0

v(R0 + v)
e−jkv (14)

Edi f _t2 = E(2)D
(

ϕ′ = 0; ϕ = π − ρ′; L =
(R1 + d3 + v)l
R1 + d3 + v + l

)√
R1 + d3 + v

l(R1 + d3 + v + l)
e−jkl (15)

with

E(2) = E(1)D
(

ϕ′ = 0; ϕ =
3π

2
; L =

(R1 + d3)v
R1 + d3 + v

)√
R1 + d3

v(R1 + d3 + v)
e−jkv (16)

E(1) =
E0
R1

e−jkR1D
(

ϕ′ = β; ϕ = π; L =
R1d3

R1 + d3

)√
R1

d3(R1 + d3)
e−jkd3 (17)
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2.1.5. Quadruple Diffractions

On the other hand, Figure 12 shows the contribution diffracted on the four corners of
the two rectangular blocks considered (Edif_q). In this sense, the GO/UTD expression is
shown below.

Edi f _q = E(3)D
(

ϕ′ = 0; ϕ = π − ρ′; L =
(R0 + 2v + d3)l
R0 + 2v + d3 + l

)√
R0 + 2v + d3

l(R0 + 2v + d3 + l)
e−jkl (18)

where

E(3) = E(2)D
(

ϕ′ = 0; ϕ =
3π

2
; L =

(R0 + v + d3)v
R0 + v + d3 + v

)√
R0 + v + d3

v(R0 + v + d3 + v)
e−jkv (19)

E(2) = E(1)D
(

ϕ′ = 0; ϕ = π; L =
(R0 + v)d3
R0 + v + d3

)√
R0 + v

d3(R0 + v + d3)
e−jkd3 (20)

E(1) =
E0
R0

e−jkR0D
(

ϕ′ =
π

2
+ α; ϕ =

3π

2
; L =

R0v
R0 + v

)√
R0

v(R0 + v)
e−jkv (21)
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Figure 12. Quadruple diffraction (Edif_q) of the considered LOS scenario.

2.1.6. Reflected Rays

Finally, in Figures 13 and 14 (not to scale), we can observe the groups of rays re-
flected on the two obstacles (Eref1 and Eref2, respectively), whose GO expressions are
shown below.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 13. Reflected rays over the first obstacle (Eref1) of the considered LOS scenario. 

 
Figure 14. Reflected rays over the second obstacle (Eref2) of the considered LOS scenario. 

𝐸𝑟𝑒𝑓1 = ෍ 𝐸02𝑅𝑟 𝑅𝑒ି௝௞ଶோ௥థ
଴ = ෍ 𝐸02𝑅𝑟 𝑒ି௝௞ଶோ௥థ

଴  (22)

where R is the reflection coefficient for a perfectly conducting surface (R=1 for vertical/hard 
polarization and R= -1 for horizontal/soft polarization). 

𝐸𝑟𝑒𝑓2 = ෍ 𝐸02𝑅𝑟′ 𝑅𝑒ି௝௞ଶோ௥ᇱథ
଴ = ෍ 𝐸02𝑅𝑟′ 𝑒ି௝௞ଶோ௥ᇱథ

଴    (23)

2.1.7. Total Signal 
Therefore, the total signal at the receiver, taking into account all the contributions 

(considering also the upper part of the street canyon), is 𝐸𝑡 = 𝐸𝑑𝑖𝑟 + 2(𝐸𝑑𝑖𝑓1 + 𝐸𝑑𝑖𝑓2 + 𝐸𝑑𝑖𝑓3 + 𝐸𝑑𝑖𝑓4 + 𝐸𝑑𝑖𝑓_𝑑1 + 𝐸𝑑𝑖𝑓_𝑑2 + 𝐸𝑑𝑖𝑓_𝑑3 + 𝐸𝑑𝑖𝑓_𝑡1 + 𝐸𝑑𝑖𝑓_𝑡2+ 𝐸𝑑𝑖𝑓_𝑞 + 𝐸𝑟𝑒𝑓1 + 𝐸𝑟𝑒𝑓2) 
(24)

2.2. First NLOS Case 
Figure 15 shows the scheme of the second scenario analyzed, which in this case rep-

resents an NLOS situation in a distribution comprising two perfectly conducting rectan-
gular blocks located right in the middle of the path between Tx and Rx. In the following 
subsections, the GO/UTD expressions of the different contributions reaching the receiver 
are obtained. 

Figure 13. Reflected rays over the first obstacle (Eref1) of the considered LOS scenario.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 22 
 

 

 
Figure 13. Reflected rays over the first obstacle (Eref1) of the considered LOS scenario. 

 
Figure 14. Reflected rays over the second obstacle (Eref2) of the considered LOS scenario. 

𝐸𝑟𝑒𝑓1 = ෍ 𝐸02𝑅𝑟 𝑅𝑒ି௝௞ଶோ௥థ
଴ = ෍ 𝐸02𝑅𝑟 𝑒ି௝௞ଶோ௥థ

଴  (22)

where R is the reflection coefficient for a perfectly conducting surface (R=1 for vertical/hard 
polarization and R= -1 for horizontal/soft polarization). 

𝐸𝑟𝑒𝑓2 = ෍ 𝐸02𝑅𝑟′ 𝑅𝑒ି௝௞ଶோ௥ᇱథ
଴ = ෍ 𝐸02𝑅𝑟′ 𝑒ି௝௞ଶோ௥ᇱథ

଴    (23)

2.1.7. Total Signal 
Therefore, the total signal at the receiver, taking into account all the contributions 

(considering also the upper part of the street canyon), is 𝐸𝑡 = 𝐸𝑑𝑖𝑟 + 2(𝐸𝑑𝑖𝑓1 + 𝐸𝑑𝑖𝑓2 + 𝐸𝑑𝑖𝑓3 + 𝐸𝑑𝑖𝑓4 + 𝐸𝑑𝑖𝑓_𝑑1 + 𝐸𝑑𝑖𝑓_𝑑2 + 𝐸𝑑𝑖𝑓_𝑑3 + 𝐸𝑑𝑖𝑓_𝑡1 + 𝐸𝑑𝑖𝑓_𝑡2+ 𝐸𝑑𝑖𝑓_𝑞 + 𝐸𝑟𝑒𝑓1 + 𝐸𝑟𝑒𝑓2) 
(24)

2.2. First NLOS Case 
Figure 15 shows the scheme of the second scenario analyzed, which in this case rep-

resents an NLOS situation in a distribution comprising two perfectly conducting rectan-
gular blocks located right in the middle of the path between Tx and Rx. In the following 
subsections, the GO/UTD expressions of the different contributions reaching the receiver 
are obtained. 

Figure 14. Reflected rays over the second obstacle (Eref2) of the considered LOS scenario.

Ere f 1 =
φ

∑
0

E0
2Rr

Re−jk2Rr =
φ

∑
0

E0
2Rr

e−jk2Rr (22)

where R is the reflection coefficient for a perfectly conducting surface (R = 1 for vertical/hard
polarization and R = −1 for horizontal/soft polarization).

Ere f 2 =
φ

∑
0

E0
2Rr′

Re−jk2Rr′ =
φ

∑
0

E0
2Rr′

e−jk2Rr′ (23)
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2.1.7. Total Signal

Therefore, the total signal at the receiver, taking into account all the contributions
(considering also the upper part of the street canyon), is

Et = Edir + 2(Edi f 1 + Edi f 2 + Edi f 3 + Edi f 4 + Edi f _d1 + Edi f _d2 + Edi f _d3 + Edi f _t1 + Edi f _t2
+Edi f _q + Ere f 1 + Ere f 2)

(24)

2.2. First NLOS Case

Figure 15 shows the scheme of the second scenario analyzed, which in this case repre-
sents an NLOS situation in a distribution comprising two perfectly conducting rectangular
blocks located right in the middle of the path between Tx and Rx. In the following sub-
sections, the GO/UTD expressions of the different contributions reaching the receiver
are obtained.
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2.2.1. Quadruple Diffraction

Figure 16 shows the considered quadruple diffraction (Edif_q), followed by its GO/UTD
expression.
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Edi f _q = E(3)D
(

ϕ′ = 0; ϕ = π + ρ′; L =
(R0 + 2v + d3)l
R0 + 2v + d3 + l

)√
R0 + 2v + d3

l(R0 + 2v + d3 + l)
e−jkl (25)

where

E(3) = E(2)D
(

ϕ′ = 0; ϕ =
3π

2
; L =

(R0 + d3 + v)v
R0 + d3 + 2v

)√
R0 + d3 + v

v(R0 + d3 + 2v)
e−jkv (26)
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E(2) = E(1)D
(

ϕ′ = 0; ϕ = π; L =
(R0 + v)d3
R0 + v + d3

)√
R0 + v

d3(R0 + 2v + d3)
e−jkd3 (27)

E(1) =
E0
R0

e−jkR0D
(

ϕ′ =
π

2
− α; ϕ =

3π

2
; L =

R0v
R0 + v

)√
R0

v(R0 + v)
e−jkv (28)

2.2.2. Total Signal

Therefore, in this case, the total signal at the receiver, taking into account that only the
contribution of the quadruple diffraction is considered and also adding the one correspond-
ing to the lower part of the street canyon, is

Et = 2Edi f _q (29)

2.3. Second NLOS Case

Finally, Figure 17 shows the scheme of the third scenario analyzed, where, in this
case, perfectly conducting rectangular blocks located on both sides of the path between Tx
and Rx and in between (NLOS situation) are combined. In the following subsections, the
GO/UTD expressions of the different contributions reaching the receiver are developed.
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2.3.1. Double Diffraction

Figure 18 shows the double diffraction considered (Edif_d). Its GO/UTD expression
is shown below.
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Edi f _d = E(1)D
(

ϕ′ = 0; ϕ = π + ρ; L =
(R22 + v)l
R22 + v + l

)√
R22 + v

l(R22 + v + l)
e−jkl (30)

where

E(1) =
E0

R22
e−jkR22D

(
ϕ′ =

π

2
− α; ϕ =

3π

2
; L =

R22v
R22 + v

)√
R22

v(R22 + v)
e−jkv (31)

2.3.2. Triple Diffractions

Likewise, in Figures 19–21, the triple diffractions considered (Edif_t1, Edif_t2, and
Edif_t3) can be observed. Their GO/UTD expressions are shown below.

Edi f _t1 = E(2)D
(

ϕ′ = 0; ϕ = π + ρ; L =
(R1 + R3 + v)l
R1 + R3 + v + l

)√
R1 + R3 + v

l(R1 + R3 + v + l)
e−jkl (32)

where

E(2) = E(1)D
(

ϕ′ =
π

2
− τ; ϕ =

3π

2
; L =

(R1 + R3)v
R1 + R3 + v

)√
R1 + R3

v(R1 + R3 + v)
e−jkv (33)

E(1) =
E0
R1

e−jkR1D
(

ϕ′ = β; ϕ = π + τ; L =
R1R3

R1 + R3

)√
R1

R3(R1 + R3)
e−jkR3 (34)

Edi f _t2 = E(2)D
(

ϕ′ = 0; ϕ = π + ρ; L =
(R0 + R4 + v)l
R0 + R4 + v + l

)√
R0 + R4 + v

l(R0 + R4 + v + l)
e−jkl (35)

with

E(2) = E(1)D
(

ϕ′ =
π

2
−Ω; ϕ =

3π

2
; L =

(R0 + R4)v
R0 + R4 + v

)√
R0 + R4

v(R0 + R4 + v)
e−jkv (36)

E(1) =
E0
R0

e−jkR0D
(

ϕ′ =
π

2
+ β′; ϕ =

3π

2
−Ω; L =

R0R4
R0 + R4

)√
R0

R4(R0 + R4)
e−jkR4 (37)

Edi f _t3 = E(2)D
(

ϕ′ = 0; ϕ = π + ρ; L =
(R1 + R5 + v)l
R1 + R5 + v + l

)√
R1 + R5 + v

l(R1 + R5 + v + l)
e−jkl (38)

where

E(2) = E(1)D
(

ϕ′ =
π

2
− θ; ϕ =

3π

2
; L =

(R1 + R5)v
R4 + R5 + v

)√
R1 + R5

v(R1 + R5 + v)
e−jkv (39)

E(1) =
E0
R1

e−jkR1D
(

ϕ′ = β; ϕ = π − θ; L =
R1R5

R0 + R4

)√
R1

R5(R1 + R5)
e−jkR5 (40)
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2.3.3. Quadruple Diffractions

Finally, Figures 22–27 show the contributions that have been diffracted four times over
the rectangular blocks of the considered scenario (Edif_q1, Edif_q2, Edif_q3, and Edif_q4).
Their GO/UTD expressions are presented below.

Edi f _q1 = E(3)D
(

ϕ′ = 0; ϕ = π + ρ; L =
(R0 + 2v + R3)l
R0 + 2v + R3 + l

)√
R0 + 2v + R3

l(R0 + 2v + R3 + l)
e−jkl (41)
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where

E(3) = E(2)D
(

ϕ′ =
π

2
− τ; ϕ =

3π

2
; L =

(R0 + R3 + v)v
R0 + R3 + 2v

)√
R0 + R3 + v

v(R0 + R3 + 2v)
e−jkv (42)

E(2) = E(1)D
(

ϕ′ = 0; ϕ = π + τ; L =
(R0 + v)R3
R0 + v + R3

)√
R0 + v

R3(R0 + v + R3)
e−jkR3 (43)

E(1) =
E0
R0

e−jkR0D
(

ϕ′ =
π

2
+ β′; ϕ =

3π

2
; L =

R0v
R0 + v

)√
R0

v(R0 + v)
e−jkv (44)

Edi f _q2 = E(3)D
(

ϕ′ = 0; ϕ = π + ρ; L =
(R0 + 2v + R5)l
R0 + 2v + R5 + l

)√
R0 + 2v + R5

l(R0 + 2v + R5 + l)
e−jkl (45)

with

E(3) = E(2)D
(

ϕ′ =
π

2
− θ; ϕ =

3π

2
; L =

(R0 + R5 + v)v
R0 + R5 + 2v

)√
R0 + R5 + v

v(R0 + R5 + 2v)
e−jkv (46)

E(2) = E(1)D
(

ϕ′ = 0; ϕ = π − θ; L =
(R0 + v)R5
R0 + v + R5

)√
R0 + v

R5(R0 + v + R5)
e−jkR5 (47)

E(1) =
E0
R0

e−jkR0D
(

ϕ′ =
π

2
+ β′; ϕ =

3π

2
; L =

R0v
R0 + v

)√
R0

v(R0 + v)
e−jkv (48)

Edi f _q3 = E(3)D
(

ϕ′ = 0; ϕ = π + ρ; L =
(R1 + R6 + R3 + v)l
R1 + R6 + R3 + v + l

)√
R1 + R6 + R3 + v

l(R1 + R6 + R3 + v + l)
e−jkl (49)

where

E(3) = E(2)D
(

ϕ′ =
π

2
+ τ; ϕ =

3π

2
; L =

(R1 + R6 + R3)v
R1 + R6 + R3 + v

)√
R1 + R6 + R3

v(R1 + R6 + R3 + v)
e−jkv (50)

E(2) = E(1)D
(

ϕ′ =
π

2
; ϕ = π + τ; L =

(R1 + R6)R3
R1 + R6 + R3

)√
R1 + R6

R3(R1 + R6 + R3)
e−jkR3 (51)

E(1) =
E0
R1

e−jkR1D
(

ϕ′ = β; ϕ =
π

2
; L =

R1R6
R1 + R6

)√
R1

R6(R1 + R6)
e−jkR6 (52)

Edi f _q4 = E(3)D
(

ϕ′ = 0; ϕ = π + ρ; L =
(R1 + R6 + R5 + v)l
R1 + R6 + R5 + v + l

)√
R1 + R6 + R5 + v

l(R1 + R6 + R5 + v + l)
e−jkl (53)

with

E(3) = E(2)D
(

ϕ′ =
π

2
− θ; ϕ =

3π

2
; L =

(R1 + R6 + R5)v
R1 + R6 + R5 + v

)√
R1 + R6 + R5

v(R1 + R6 + R5 + v)
e−jkv (54)

E(2) = E(1)D
(

ϕ′ =
π

2
; ϕ =

π

2
+ θ; L =

(R1 + R6)R5
R1 + R6 + R5

)√
R1 + R6

R5(R1 + R6 + R5)
e−jkR5 (55)
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E(1) =
E0
R1

e−jkR1D
(

ϕ′ = β; ϕ =
π

2
; L =

R1R6
R1 + R6

)√
R1

R6(R1 + R6)
e−jkR6 (56)

Edi f _q5 = E(3)D
(

ϕ′ = 0; ϕ = π + ρ; L =
(R0 + R7 + R3 + v)l
R0 + R7 + R3 + v + l

)√
R0 + R7 + R3 + v

l(R0 + R7 + R3 + v + l)
e−jkl (57)

where

E(3) = E(2)D
(

ϕ′ =
π

2
+ τ; ϕ =

3π

2
; L =

(R0 + R7 + R3)v
R0 + R7 + R3 + v

)√
R0 + R7 + R3

v(R0 + R7 + R3 + v)
e−jkv (58)

E(2) = E(1)D
(

ϕ′ =
π

2
− µ; ϕ =

3π

2
− τ; L =

(R0 + R7)R3
R0 + R7 + R3

)√
R0 + R7

R3(R0 + R7 + R3)
e−jkR3 (59)

E(1) =
E0
R0

e−jkR0D
(

ϕ′ =
π

2
+ β; ϕ =

3π

2
− µ; L =

R0R7
R0 + R7

)√
R0

R7(R0 + R7)
e−jkR7 (60)

Edi f _q6 = E(3)D
(

ϕ′ = 0; ϕ = π + ρ; L =
(R0 + R7 + R5 + v)l
R0 + R7 + R5 + v + l

)√
R0 + R7 + R5 + v

l(R0 + R7 + R5 + v + l)
e−jkl (61)

with

E(3) = E(2)D
(

ϕ′ =
π

2
− θ; ϕ =

3π

2
; L =

(R0 + R7 + R5)v
R0 + R7 + R5 + v

)√
R0 + R7 + R5

v(R0 + R7 + R5 + v)
e−jkv (62)

E(2) = E(1)D
(

ϕ′ =
π

2
− µ; ϕ = π − θ; L =

(R0 + R7)R5
R0 + R7 + R5

)√
R0 + R7

R5(R0 + R7 + R5)
e−jkR5 (63)

E(1) =
E0
R0

e−jkR0D
(

ϕ′ =
π

2
+ β; ϕ =

3π

2
− µ; L =

R0R7
R0 + R7

)√
R0

R7(R0 + R7)
e−jkR7 (64)
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2.3.4. Total Signal

Regarding the above, the total signal at the receiver, taking into account all the contri-
butions (including the additional symmetrical part of the street canyon), is

Et = 2(Edi f _d + Edi f _t1 + Edi f _t2 + Edi f _t3 + Edi f _q1 + Edi f _q2 + Edi f _q3 + Edi f _q4 + Edi f _q5
+Edi f _q6)

(65)

3. Results

This section presents the results obtained in the different scenarios considered us-
ing the GO/UTD formulations described above. We assume a frequency of 9.375 GHz,
E0 = 0.002555, and vertical/hard polarization.

3.1. LOS Case

In this case, the parameters dd = 0.6 m, v = 0.03 m, and d2 = 0.8 m (when applicable)
are considered. Figures 28 and 29 show the theoretical received power results (for one and
two obstacles, respectively, and two values of h: 0.032 m and 0.05 m), calculated with the
developed GO/UTD formulations, as a function of the distance from the transmitter. In
addition, to compare the goodness of these results, the measurements presented in [8] for
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the same scenarios and parameters are included in the figure. Additionally, for comparison
purposes, the curves obtained with the PEM-RCNBC method are also shown in the plots.
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Figure 28. Comparison between the theoretical GO/UTD results for the LOS case (one obstacle) and
the measurements presented in [8].
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Figure 29. Comparison between the theoretical GO/UTD results for the LOS case (two obstacles) and
the measurements presented in [8].

3.2. First NLOS Case

In this first NLOS case, the parameters dd = 0.42 m, v = 0.03 m, d2 = 0.92 m (when
applicable), and h = 0.0375 m are considered. Thus, Figure 30 shows the theoretical results
of received power for one and two obstacles achieved with the GO/UTD formulations
obtained as a function of the distance from the transmitter. In this case, to validate these
results, the measurements presented in [7] for the same scenarios and parameters are
included in the figure. Moreover, the values obtained with the PEM-RCNBC method are
also included in the figure.
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Figure 30. Comparison between the theoretical GO/UTD results for the first NLOS scenario and the
measurements presented in [7].

3.3. Second NLOS Case

In the second NLOS scenario analyzed, the parameters dd = 0.6 m, d3 = 0.8 m,
v = 0.03 m, h = 0.032 m, and h2 = 0.0375 m are considered. Thus, Figure 31 shows the
theoretical received power results obtained with the developed GO/UTD formulations as a
function of the distance from the transmitter. Additionally, in this case, in order to validate
the results, the measurements presented in [7] for the same scenario and parameters are
shown in the figure. On the other hand, the curve obtained with the PEM-RCNBC method
has been included in the plot.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 2 
 

 

 
Figure 31. Comparison between the theoretical GO/UTD results for the second NLOS scenario and 
the measurements presented in [7]. 

 

Distance from the transmitter (m)

1.0 1.2 1.4 1.6 1.8 2.0

R
ec

ei
ve

d 
po

w
er

 (d
Bm

)

-80

-70

-60

-50

-40

UTD
PEM
Measurements [7]

Figure 31. Comparison between the theoretical GO/UTD results for the second NLOS scenario and
the measurements presented in [7].



Electronics 2023, 12, 593 19 of 20

3.4. Analysis of the Results

To further analyze the results presented in the previous subsections, Table 1 shows the
mean error and variance between the theoretical and experimental data for all the cases
considered (for both the UTD and PEM methods).

Table 1. Mean error and variance between the theoretical and experimental results presented in the
previous subsections.

Mean Error
UTD (dB)

Mean Error
PEM (dB)

Variance UTD
(dB)

Variance PEM
(dB)

LOS case
1 obstacle

h = 0.032 m 0.75 0.72 0.18 0.25
h = 0.05 m 0.83 1.29 0.18 0.26

2 obstacles
h = 0.032 m 0.81 0.64 0.33 0.31
h = 0.05 m 0.92 1.32 0.30 0.30

First NLOS case
1 obstacle 0.65 1.00 0.28 0.35
2 obstacles 1.45 0.83 1.73 0.44

Second NLOS case 1.09 2.07 0.47 0.88

As the table shows, the mean error obtained with the UTD method proposed in this
work is lower than that achieved by the PEM solution in most cases, while also showing
a lower variance in general. These results demonstrate the good agreement between the
proposed UTD method and the experimental measurements, thereby validating the solution
presented in this paper for radio wave propagation analysis in urban street canyons.

Additionally, for the LOS case and with respect to the UTD results, the mean error
increases as both h and the number of obstacles increase. This behavior could be explained
by the fact that, as both parameters increase, it is possible that, at the experimental level,
not all diffracted and reflected contributions arrive with a sufficiently strong signal to be
considered. Therefore, the experimental curves show more pessimistic power results than
the theoretical ones (where all contributions are considered). This phenomenon is especially
noticeable when the distance from the transmitter increases. On the other hand, regarding
the first NLOS case and the UTD results, the discrepancy observed between the theoretical
and measured values at smaller distances from the transmitter, when considering two
obstacles, may be due to experimental near-field considerations with respect to the second
obstacle, where part of the field would be absorbed by the conducting object and a decreased
power characteristic of the near field would be observed. In any case, it should be noted
that there will always be some discrepancy between theoretical values and measurements
because the former are always calculated under ideal conditions, while the latter are subject
to both uncontrolled conditions and experimental errors that can influence the results.

4. Conclusions

In this work, a series of formulations based on GO and UTD have been developed to
analyze the propagation of radio waves in three urban street canyon scenarios. The results
obtained from these formulations (in the horizontal plane containing the transmitter and
receiver) have been validated by comparison with experimental measurements and the PEM
method, with the UTD method showing, in most cases, a lower mean error with respect
to the experimental data than that achieved by the PEM solution while also achieving a
lower variance in general. In this sense, it should be noted that the discrepancy between
the UTD method proposed in this paper and the measurements grows when increasing
the parameter h (for the LOS case) and the number of obstacles. In any case, in view
of these results obtained, we can conclude that the use of GO/UTD-based formulations
can contribute to a simpler and computationally more efficient planning of D2D mobile
communication systems in which the propagation environment considered can be modeled
as an urban street canyon comprising rectangular and equispaced buildings. Future work
will focus on more complex scenarios with more than one street (to consider diffraction and
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reflection from one street to another) as well as considering finitely conducting obstacles
rather than perfectly conducting obstacles.
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