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Abstract: The paper studies numerical methods that preserve a Lyapunov function of a dynamical
system, i.e., numerical approximations whose energy decreases, just like in the original differential
equation. With this aim, a discrete gradient method is implemented for the numerical integration of
a system of ordinary differential equations. In principle, this procedure yields first-order methods,
but the analysis paves the way for the design of higher-order methods. As a case in point, the
proposed method is applied to the Duffing equation without external forcing, considering that,
in this case, preserving the Lyapunov function is more important than the accuracy of particular
trajectories. Results are validated by means of numerical experiments, where the discrete gradient
method is compared to standard Runge–Kutta methods. As predicted by the theory, discrete gradient
methods preserve the Lyapunov function, whereas conventional methods fail to do so, since either
periodic solutions appear or the energy does not decrease. Moreover, the discrete gradient method
outperforms conventional schemes when these do preserve the Lyapunov function, in terms of
computational cost; thus, the proposed method is promising.

Keywords: geometric numerical integration; dynamical systems; Lyapunov function; stability;
numerical methods; ordinary differential equations; discrete gradient

MSC: 65P40; 37M15

1. Introduction

The main aim of this paper is the study of numerical methods that preserve a Lyapunov
function of a gradient dynamical system. The solutions, or integral curves, of a gradient system,
follow trajectories that are tangent to a scalar function of the states, which is usually known
as the Lyapunov function of the system. The flow of a gradient system has a rather simple
qualitative behavior, e.g., all isolated minima of the Lyapunov function are asymptotically
stable equilibria of the system. Dynamical analysis by Lyapunov’s method is a well-established
discipline, and plenty of references abound on the topic [1–4]. The Lyapunov function has
the remarkable property that it is decreasing along trajectories of the dynamical system.
Gradient systems are pervasive, both as models of physical systems and as representations
of mathematical algorithms. For example, an ideal pendulum is a conservative system,
namely the energy is a constant magnitude, but every actual mechanical system dissipates
energy due to friction, until all potential and kinetic energies vanish, thus, energy acts as the
Lyapunov function of the system. Remarkably, many mathematical algorithms are formulated
in continuous time whose operation is based on the existence of the Lyapunov function, for
example, in the fields of optimization, estimation, and control [5–9].

Numerical methods for the integration of Ordinary Differential Equations (ODEs)
constitute a well-established field [10], and methods that provide rather accurate solutions
for a wide variety of problems have long been known. However, no matter how small the
approximation error of a numerical method is, it can lead to a solution that does not portray
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the qualitative features of the continuous model, when the integration extends through long
time periods. A classic example is the Kepler problem [11], whose approximate solutions by
conventional numerical methods do not respect the elliptical orbits describing the motion of
the planets, as established by Kepler’s first law. The inability of basic numerical methods to
reflect crucial qualitative properties of dynamical systems led to the development of a new
approach, namely Geometric Numerical Integration [12], which is an active line of research
that links the methodology of dynamical systems analysis to the design of numerical
methods [13] that preserve the qualitative properties of the continuous system. In this
regard, the main objective is to consider the qualitative characteristics of the trajectories of
the dynamical system, for example, energy decreasing, stability, and conservation of the
Hamiltonian, among others. The task would then be the design of numerical methods so
that the discrete trajectories of the method have the same properties as the exact solutions.

Within the field of Geometric Numerical Integration, there exists a substantial num-
ber of results concerning the study of systems with first integrals [14–16]. A differential
geometric approach to this topic implies the discretization of Hamiltonian systems [17],
since in a system with a conserved quantity, a symplectic form can always be defined.
Among the number of methods defined for this class of systems, symplectic and projection
methods have been well studied [12]. However, when it comes to the conservation of the
Lyapunov function of a gradient dynamical system, the choice is limited—to the best of our
knowledge—to three categories: discrete gradient methods [18], projection methods [19],
and particular instances of Runge–Kutta methods [20]. The inattention to stability issues
is striking since the dynamic analysis of ODEs is far from new in the field of numerical
analysis. Indeed, the concept of A-stability [21] amounts to the preservation of the stability
of the solution of linear scalar equations as test systems. In this regard, the conservation of
the Lyapunov function can be viewed as a generalization of the concept of A-stability in a
nonlinear context.

Projection methods [19] inherit the design of analogous methods for Hamiltonian sys-
tems, which are based upon projecting the approximate solution onto the manifold that the
trajectories of the exact solutions lie in. Although the formulation of these methods is explicit
in principle, they require solving the nonlinear equation that defines the projection at each time
step. Moreover, from a conceptual point of view, we think that there is arguably something
unsatisfactory in this differential geometric approach, since the Lyapunov function, unlike
the Hamiltonian, does not define a manifold, i.e., the distribution of admissible trajectory
directions is not integrable. For its part, the application of Runge–Kutta methods to gradient
systems [20] led to proving that some Radau implicit methods, originally proposed for stiff
and Hamiltonian systems, are also able to preserve the Lyapunov function under certain
conditions and restrictions on the step size. Both projection methods and implicit Runge–Kutta
integrators rely on non-constructive theorems, so they cannot guarantee the preservation
of the Lyapunov function unless some ad-hoc adjustment of the step size is performed. In
summary, although these methods are promising, their implementation is complicated and
can lead to a substantial computational cost, so they are not suitable for all situations. It must
be emphasized that, rather than advocating against other techniques, our results encourage
further attention to discrete gradient methods, at least for particular applications. Nonetheless,
some considerations on future lines of research for comparative assessments of all these
methods are made in the conclusions.

Discrete gradient methods yield integrators for ODEs, based upon the fact that the
equation of a gradient system can be written in linear-gradient form, i.e., as the product of
a definite-negative matrix by the gradient of a Lyapunov function. Then, discrete gradient
methods can be stated with a simple rationale: define an approximation of the definite-
negative matrix and a discrete gradient, which has similar properties to that of the gradient
of the Lyapunov function. By construction, these methods lead to an implicitly defined map
that, when considered as a discrete dynamical system, preserves the Lyapunov function of
the continuous system. Discrete gradient methods for systems with Lyapunov functions
have been described mostly as an aside of methods for Hamiltonian systems [14,16,18,22].
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Thus the development of discrete gradient methods for dissipative, rather than conservative,
systems is limited, and examples of systematic application to real systems are hardly found
in the literature, as far as we know. In previous work, we explored the application of
discrete gradient methods to a particular system, namely Hopfield neural networks [23,24],
which are computational methods used for optimization.

The main novelty of this paper is the contribution towards establishing a general
systematic methodology for the development of discrete gradient methods, specifically
tailored for systems with a Lyapunov function. After a review of the background about
discrete gradient methods in Section 2, the contribution of this paper begins in Section 3,
where we describe the methodology of implementation of discrete gradient methods,
analyzing the order of the obtained method and illustrating its main properties by means
of simple examples. Then, in Section 4, we present some systematic numerical experiments
showing the performance of the proposed technique, and comparing its performance to
standard Runge–Kutta methods. As a result, some favorable properties of the obtained
method are brought to light. Finally, some conclusions and lines for further research are
stated in Section 5.

2. Numerical Methods That Preserve the Lyapunov Function

In this section, we define and discuss key aspects of discrete gradient methods, after
establishing the definitions that will be used in the paper.

2.1. Gradient Systems

First of all, we establish the notation for the dynamical system that must be dealt
with, which is a finite-dimensional initial value problem (IVP), i.e., a system of ODEs with
initial values:

d~y
dt

= ~f (~y) =

 f1(~y)
...

fn(~y)

, ~y(t0) = ~y0 ∈ Rn (1)

Since we do not pursue existence and uniqueness issues; we take for granted all
needed smoothness assumptions. The systems of interest are those that possess—at least—
one asymptotically stable equilibrium (see e.g., [1,25] for definitions of stability concepts).
An equilibrium or fixed point ~y∗ fulfills ~f (~y∗) =~0; thus, a trajectory that starts at ~y0 = ~y∗

is the trivial trajectory ~y(t) = ~y∗. The statement that ~y∗ is asymptotically stable amounts
to saying that all trajectories ~y(t) that start in a certain neighbourhood B with ~y∗ ∈ B
converge towards ~y∗, i.e., lim

t→∞
~y(t) = ~y∗ if ~y0 ∈ B.

One of the aims of qualitative analysis of ODEs is to prove that equilibrium is stable
without computing the explicit solution, which can be accomplished by finding a suitable
Lyapunov function V:

Definition 1. Given the system in Equation (1), the function V ∈ C1(Rn,R) is a Lyapunov
function for the equilibrium ~y∗ if the following conditions hold in a neighbourhood B such that
~y∗ ∈ B:

(a) V(~y∗) = 0 and V(~y) > 0 if ~y 6= ~y∗.

(b)
d
dt

V(~y(t)) < 0 for all ~y ∈ B − {~y∗}.

Condition (a) remains trivially equivalent if the minimum at ~y∗ is achieved at any
value V(~y∗) other than zero, by considering the Lyapunov function W = V −V(~y∗). Since
this can be done without loss of generality, we no longer remark on this detail in the
examples. Moreover, by the chain rule, condition (b) is equivalent to stating the following

relation of the gradient and the ODE:
dV
dt

= ∇V(~y) · ~f (~y) ≤ 0 with V bounded below.
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Note that it is obvious that
dV
dt

= 0 at an equilibrium ~y∗ since ~f (~y∗) =~0. The existence of a
Lyapunov function characterizes the stability of an equilibrium [25]:

Theorem 1. Let ~y∗ be an equilibrium point of the system in Equation (1) and V a Lyapunov
function in a neighborhood B of ~y∗. Then, ~y∗ is asymptotically stable.

A Lyapunov function is often called the energy of the system; by analogy with dissi-
pative physical systems where the energy decreases, thus, it may be used as a Lyapunov
function. Rigorously speaking, the definition of the Lyapunov function does not require
the inequality in condition (b) of Definition 1 to be strict, and, when the inequality is strict,
we should specify that the system has strict Lyapunov function. In this paper, we always
assume that the Lyapunov function is strict, so we do not make this distinction. Likewise,
we loosely refer to a stable point, dropping the assumed precision that such stability is
asymptotic. It is worth remarking that, although converse theorems guarantee the existence
of a Lyapunov function when a stable equilibrium exists, there is no general method for
finding the explicit expression of a Lyapunov function. In this paper, we assume that a
Lyapunov function is explicitly known.

The main aim of this paper is to find numerical methods that preserve the Lyapunov
function of a system given by Equation (1). Formally, we construct a discrete dynamical
system defined by a time-stepping formula~z = ϕh(~y) such that~z is a suitable approximation
of ~y(t + h) if ~y is an approximation of ~y(t). The required preservation of the Lyapunov
function V is subsumed by the condition V(~z) < V(~y) as long as~z 6= ~y, which is the discrete
counterpart of condition (b) in Definition 1: both inequalities express that the Lyapunov
function decreases through time, either in a discrete or a continuous setting. It will also be of
interest to determine if the time-stepping scheme produces a sequence that converges to some
stable equilibrium of the original system, thus, reproducing asymptotic stability.

2.2. Discrete Gradient Methods

The history of stability preserving methods can be traced back at least three decades, to
the seminal paper [26] and, later, the book [13]. It is, thus, well known that numerical methods
may destroy the structural properties of the original ODE, but note that there is a hierarchy of
how subtle this effect can be. On the one hand, an equilibrium may cease to be a fixed point
of the discrete method, or it may become an unstable equilibrium. These spurious solutions
can easily be detected by a (more or less) straightforward analysis of the method, including
linearization around the equilibrium. More importantly, there are established criteria to
construct (local) stability-preserving numerical methods. A much more severe problem arises
when the equilibrium is still locally asymptotically stable, but the numerical method fails
to decrease the Lyapunov function or, in other words, the basins of attraction change. This
alteration of geometrical properties has a global nature; hence, its study is notoriously difficult.
Discrete gradient methods guarantee that the Lyapunov function of the ODE decreases along
sequences of points obtained by the numerical method so that, at least from the point of view
of energy minimization, the geometric structure is preserved.

The rationale behind discrete gradient methods is a rather simple idea, namely to
replace the derivative of the Lyapunov function with a finite increment. This idea is useful
for discretizing the system because the ODE and the Lyapunov function are related: every
ODE, as in Equation (1) for which a Lyapunov function V is known, can be rewritten in
linear-gradient form [18]:

d~y
dt

= L(~y)∇V(~y) (2)

where L is a negative-definite matrix and both L and V are continuously differentiable.
Incidentally, it is worth mentioning that this decomposition is not unique, and the different
ways to write L(~y) can be regarded as different metric structures [27].
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Remark 1. Care must be taken when negative-definiteness is considered for non-symmetric matrices
since, in this case, negative eigenvalues of L do not guarantee the intended relation v>Lv < 0 for
any vector v 6= 0. Let us, thus, emphasize that, along the paper, a matrix L is negative-definite if its
symmetric part L + L> is.

After rewriting the ODE in Equation (1) in linear-gradient form, a discrete gradient
method results from the choice of discrete analogs to the matrix L and the gradient ∇V:

Definition 2. Given a differentiable function V ∈ C1(Rn,R), the function ∇V ∈ C1(R2 n,Rn)
is a discrete gradient of V if it satisfies:

∇V(~y,~z) · (~z−~y) = V(~z)−V(~y)

∇V(~y,~y) = ∇V(~y)
(3)

In fact, the second condition is implied by the first in the differentiable case [22], but
we include it anyway to emphasize consistency.

Definition 3. A discrete gradient method is a time-advancing numerical scheme defined by

~z−~y
h

= L̃(~y,~z, h) ∇V(~y,~z) (4)

where ∇V is a discrete gradient of V and the matrix L̃(~y,~z, h) of continuously differentiable
functions is negative-definite and satisfies the consistency condition

L̃(~y,~y, 0) = L(~y) (5)

The aim of a discrete gradient method is to compute~z ≈ ~y(t + h) from the previous
step ~y ≈ ~y(t) so the sequence ~y(t) is an approximation of the solution of the system
given by Equation (2). It is trivial to prove that a discrete gradient method is consistent,
as a consequence of the requirements on L̃ and ∇V. Remarkably, the methods given by
Equation (4) are implicit, at least in principle, since the next step~z appears on the right-hand
side of the formula.

3. Construction and Analysis of Discrete Gradient Methods

Once the parameters L̃ and∇V have been set, a particular instance of discrete gradient
method results by substituting this parameter choice into Equation (4). This is a critical
design process as there is a wide range of definitions that are compatible with the conditions
given by Equations (3) and (5). In this section, we aim to contribute a first step toward the
analysis of different parameter choices, with no claim to be exhaustive

3.1. Metric Matrix

Our usage of the name metric matrix to refer to the negative-definite matrix L̃, derives
from the fact that every system in linear-gradient form is indeed a gradient system for some
metric [27]. The matrix L̃ is, in this formulation, the expression in some coordinates of the
corresponding metric tensor, with a changed sign.

The range of freedom for choosing the matrix L̃ within Definition 3 is very wide. To
begin with, the trivial choice L̃(~y,~z, h) = L(~y) is possible, where the dependence on the
next step~z is neglected. A less radical simplification results when dismissing the step size
h in the definition of L̃. We adopt this latter assumption throughout this paper, so we often
write L̃(~y,~z) for this matrix.

Assuming analyticity of the functions included in the matrix L̃, it can be expanded as
a Taylor series:

L̃(~y,~z) = L(~y) + M1(~y) (z− y) + (z− y)> M2(~y) (z− y) + . . . (6)
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where the only requisite for matrices of functions Mn is that the resulting matrix L̃ is
negative-definite. Note that writing higher-order terms would require the cumbersome
multi-index notation or the introduction of tensors.

We undertook the application of discrete gradient methods to scalar linear ODEs
dy
dx = −λy, mimicking the classical analysis of L-Stability. Such systems are obviously in
linear-gradient form by setting constant L(y) = −λ and the Lyapunov function V(y) = 1

2 y2.
As explained below, the discrete gradient is unique in the scalar case, and the trivial choice
L̃ = L leads to the well-known, second-order trapezoidal rule. With the aim of determining
conditions for achieving higher order, we substituted the expansion in Equation (6) into a
discrete gradient method and compared the result with the expansion of the exact solution
y(t) = e−λt. The result was negative in the sense that no choice of matrices Mn can provide
an order higher than two unless the matrix L̃ is also dependent on the step size h. In fact,
the only second-order method is the trapezoidal rule itself, arising from Mn = 0, i.e., the
trivial choice L̃ = L. This discouraging result suggests that the search for optimal methods
should not be guided exclusively by order conditions in general cases. Contrarily, we think
that discrete gradient methods are well suited to particular classes of systems, where the
preservation of dynamical properties is aimed rather than order alone.

Keeping the analysis within the one-dimensional case, but now allowing the matrix
L(y) of the continuous system to be non-constant, the above expansion leads to the second-
order condition:

∂L̃
∂z

∣∣∣∣∣
z=y

=
1
2

dL
dy

This result suggests some formulas where the role of the variables ~y,~z is symmetrical,
such as

L̃(~y,~z) = L
(

1
2
(~z +~y)

)
L̃(~y,~z) =

1
2
(L(~z) + L(~y))

L̃(~y,~z) = L
(√

~y~z
) (7)

Interestingly, only based on empirical arguments, we adopted the latter setting in our
analysis of Hopfield neural networks [24].

The rigorous foundation of the analysis of discrete gradient methods according to the
choice of the metric matrix L̃ is a problem still open, to the best of our knowledge, and an
interesting avenue for further research.

3.2. Discrete Gradient

With regard to the discrete gradient, there is a unique discrete gradient for one-
dimensional systems, and it is given by

∇V(~y,~z) =
V(~z)−V(~y)

~z−~y
(8)

However, in higher dimensions, a wide variety of discrete gradients exist (see [18] and
references therein). Some of the most commonly used include:

• The mean value discrete gradient:

∇V(~y,~z) =
∫ 1

0
∇V((1− t)~y + t~z)
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• The midpoint discrete gradient:

∇V(~y,~z) = ∇V
(

1
2
(~y +~z)

)
+

V(~z)−V(~y)−∇V
(

1
2 (~y +~z)

)
· (~z−~y)

|~z−~y|2 (~z−~y)

• The coordinate increment discrete gradient also called the Itoh–Abe discrete gradi-
ent [28]:

∇V(~y,~z) =



V(z1, y2, . . . , yn)−V(y1, y2, . . . , yn)

z1 − y1

V(z1, z2, y3, . . . , yn)−V(z1, y2, . . . , yn)

z2 − y2
...

V(z1, . . . , zn−2, zn−1, yn)−V(z1, . . . , zn−2, yn−1, yn)

zn−1 − yn−1

V(z1, . . . , zn)−V(z1, . . . , zn−1, yn)

zn − yn



(9)

where a particular ordering y1, y2, . . . , yn of the coordinates of the vector ~y ∈ Rn

is assumed.

As mentioned in [18], both the mean value and the midpoint discrete gradient are
second-order approximations to∇V

(
1
2 (~y +~z)

)
, whereas the coordinate increment discrete

gradient only provides a first-order approximation to the midpoint of the segment between
the points ~y and~z. However, it is not clear whether this property translates into a higher-
order method or is somehow relevant in practice. The coordinate increment discrete
gradient can be interpreted as a piecewise linear path joining ~y and~z, each piece parallel
to one of the coordinate axes, rather than along the straight segment ~y−~z. In this paper,
we will focus on the coordinate increment discrete gradient because it is easier to implement
computationally. The mean value discrete gradient requires the computation of n integrals,
whereas the application of the midpoint discrete gradient leads to a rather complicated
expression for the method. In contrast, the coordinate increment discrete gradient results
in explicit methods for some systems, such as Hopfield neural networks, where the matrix
L is diagonal, and the Lyapunov function is multilinear. Nevertheless, the analysis and
comparison of different discrete gradients well deserves more attention.

In the rest of this section, we undertake a study of discrete gradient methods, first
by a preliminary order analysis, then by constructing different methods for simple scalar
systems (this methodology is inspired by [29]) and observing that a suitable choice of the
matrix L̃ allows in some cases for rewriting the method in explicit form.

3.3. Order Analysis

The order of the obtained numerical method can be studied by the usual systematic
procedure [10]: comparing the Taylor series expansion around h = 0 of both the exact solution
of the system of differential equations and the approximate solution obtained by the numerical
method. Note that the discrete gradient method is consistent by construction [18], so it achieves
at least order one, i.e., the error after a single step is given by ~y(t + h)−~z = C h2 + O(h3),
where C is the error constant of the method. A straightforward—but tedious—computation
yields the error constant of the second order term:

CGD =

(
1
2

Jc − Jd
∣∣∣
h=0

)
f (~y) (10)
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where J c(~y) is the Jacobian matrix of f at ~y:

J c =
∂ f
∂~y

=

[
∂ fi
∂yj

]
ij

=

[
∂(L(~y) · ∇V(~y))i

∂yj

]
ij

i, j = 1, . . . , n (11)

and Jd is the Jacobian of L̃ · ∇V, i.e.,:

J d =
∂
(

L̃ · ∇V
)

∂z
=

∂
(

L̃ · ∇V
)

i
∂zj


ij

i, j = 1, . . . , n (12)

so that the condition Jc = 2 Jd
∣∣∣
h=0

would ensure that the obtained discrete gradient method

is second order. In principle, a suitable choice of parameters L̃ and ∇V could lead to a
higher-order method. When this paper was already in preparation, a systematic analysis of
discrete gradient methods was published [22], although in the somewhat different context
of Hamiltonian systems. Adapting this framework to gradient-like systems is an interesting
avenue for future research. Nevertheless, it must be emphasized that the search for higher
accuracy, without any other consideration, defeats the purpose of structure-preserving
methods. In this paper, we will not further pursue the analysis of order and error, focusing
on the preservation of the Lyapunov function and stability.

3.4. The Scalar Linear ODE

For the purpose of illustration, in this section, we show the mechanism of obtaining a
discrete gradient method as described above. As a case in point, consider the scalar linear
homogeneous ODE:

dy
dt

= −a y , y(0) = y0 (13)

with a > 0. By direct integration, it is straightforward to compute the analytical solution
y(t) = y0 e−a t, which shows that the origin is asymptotically stable whenever a > 0, since

lim
t→∞

y(t) = 0. We can also state that V =
1
2

y2 is a Lyapunov function for this system because:

α(y) =
dV
dt

=
dV
dy

dy
dt

= y (−a y) = −a y2 < 0 (14)

for all y 6= 0. To construct a discrete gradient method, the equation is cast into linear-
gradient form, thus, obtaining the definitions L(y) = −a, ∇V = y. Therefore, the discrete
gradient is

∇V(y, z) =
V(z)−V(y)

z− y
=

1
2

z2 − y2

z− y
=

1
2
(z + y) (15)

and, with the trivial choice L̃ = L = −a, the discrete gradient method results:

z = y + h L̃(y, z)∇V(y, z) = y +
h
2
(−a z− a y) = y +

h
2
( f (z) + f (y)) (16)

Now it is obvious that, in this case, the discrete gradient method turns out to be simply
the trapezoidal rule, which is a second-order method. The fact that the trapezoidal rule
preserves the stability of scalar linear ODEs for any step size h is already explained by
the classical theory of numerical methods for stiff systems since it is well-known that the
trapezoidal rule is A-stable, thus, nothing new seems to be provided by the proposal of
discrete gradient methods. However, the point is that the choice of the matrix L̃ is not
unique, so a different definition L̃, possibly depending on~z and h, would lead to a different
method. In addition, if we are not interested in preserving a particular Lyapunov function,
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but only the qualitative stability of the system, we could choose a different Lyapunov
function, thus, leading to a different discrete gradient method.

3.5. The Logistic Equation

Consider next the IVP given by the generalization of the usually called logistic differ-
ential equation:

dy
dt

= a y (1− y) , y(0) = y0 (17)

By straightforward integration, the exact solution can be computed:

y(t) =
1

1 +
(

1
y0
− 1
)

e−at
(18)

for any initial condition y0 6= 0, whereas the trivial solution y(t) = 0 involves a fixed
point. We also choose y0 > 0 to avoid the need to consider unbounded solutions. There are
several ways to check that the equilibrium y∗ = 1 is asymptotically stable, for example, the
Jacobian of the ODE given by Equation (17) is negative at y = 1 or the limit when t→ ∞ of
the exact solution given by Equation (18) is 1.

The construction of a discrete gradient method as in Equation (4) requires, first, writing
the system in linear-gradient form from the knowledge of a Lyapunov function V; and then
choosing the method parameters, L̃(y, z, h) and ∇V(y, z), while fulfilling the conditions
that guarantee the consistency of the method. Interestingly, even such a simple example as
the logistic ODE can lead to completely different discrete gradient methods.

Firstly, observe that the function V =
1
2
(1− y)2 fulfills the conditions required by

Definition (1) to be a Lyapunov function. In particular, its time derivative is

dV
dt

= ∇V · f = −(1− y) ay (1− y) = −ay (1− y)2 < 0 (19)

whenever y > 0, y 6= 1. Therefore, V is a Lyapunov function of Equation (17) at y∗ = 1 that
is valid for any initial value y0 > 0. Then, the ODE can be rewritten in linear-gradient form
as in Equation (2) by defining L(y) = −a y, so that the system is expressed as

dy
dt

= a y (1− y) = L(y)∇V (20)

with L(y) negative-definite for y > 0, as required. Then, the discrete gradient is defined by
the unique choice existing in the scalar case:

∇V(y, z) =
V(z)−V(y)

z− y
=

1
2
(1− z)2 − (1− y)2

z− y
=

=
1
2
−2 (z− y) + (z2 − y2)

z− y
=
−2 + (z + y)

2

= −
(

1− z + y
2

) (21)

The last equality of Equation (21) has been included to point out a plausible inter-
pretation of the discrete gradient as a sort of midpoint gradient, since it is identical to the

gradient of V, replacing the variable y with the average
z + y

2
. With regard to the choice of

L̃(y, z, h), there are several consistent options. For simplicity, we adopt the trivial setting
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L̃ = L. Therefore, if we substitute the chosen parameters in Equation (4), the method is
obtained:

z = y + h L̃(y, z, h) · ∇V(y, z) = y− a h y
(
−2 + z + y

2

)
= y + a h y− a h

2
y z− a h

2
y2

(22)

which after straightforward algebra yields an explicit expression for z:

z =

(
1 + a h− a h

2
y
)

y

1 +
a h
2

y
(23)

In this particular case, the choice of L̃ has allowed for obtaining an explicit method.
However, the procedure has some generality, at least restricted to one-dimensional ODEs:
it can be proved that if the Lyapunov function V is quadratic and the matrix L̃ is trivially
set to L̃ = L, the discrete gradient method can be cast into explicit form.

Remark 2 (Relation to known methods). Note that apparently Equation (23) cannot be derived
as a conventional Runge–Kutta method (although proving this, in general, would require some
work). In contrast, the nonlocal substitution y2 → yz and the use of the discrete gradient remind
us of nonstandard finite difference schemes [30], while providing a systematic methodology for their
construction.

Consider now the function V = −1
2

y2 +
1
3

y3 as a candidate for the Lyapunov function
of the same system, and observe that it fulfills the conditions required by Definition (1). In
particular, the time derivative is

dV
dt

= ∇V · f = −y (1− y) ay (1− y) = −ay2 (1− y)2 < 0 (24)

whenever y 6= 0, 1. Therefore V is a Lyapunov function of Equation (17) for the stable
equilibrium point y∗ = 1, which is valid for any initial value y0 > 0. Then, the ODE can
be rewritten in linear-gradient form as in Equation (2) by defining L(y) = −a so that the
linear gradient form dy

dt = ay (1− y) = L(y)∇V holds too with these new parameters and
L(y) is negative-definite, as required. The one-dimensional discrete gradient has the same
form as before, but the Lyapunov function V is different, to begin with, leading to

∇V(y, z) =
V(z)−V(y)

z− y
=
−1

2
(z2 − y2) +

1
3
(z3 − y3)

z− y
=

= −1
2
(z + y) +

1
3
(z2 + zy + y2)

(25)

With regard to the choice of L̃(y, z, h), for simplicity we again adopt the trivial setting
L̃ = L. Therefore, if we substitute the chosen parameters in Equation (4), the new method
is obtained:

z = y + h L̃(y, z, h) · ∇V(y, z) = y− ah
[
−1

2
(z + y) +

1
3
(z2 + zy + y2)

]
(26)

In this case, we obtain an implicit method. In order to apply Newton’s method to
obtain the solutions, we can rewrite the method as a function of z as shown below:

F(z) =
(

1
3

ah
)

z2 +

(
1− 1

2
ah +

1
3

ahy
)

z +
(
−1− 1

2
ah +

1
3

ahy
)

y = 0 (27)
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We have implemented the explicit discrete gradient method (DG-E) given by Equation (23)
and the implicit scheme (DG-I) from Equation (27). Both are applied to the same logistic ODE,
choosing the parameter as a = 1000 and the initial value y0 = 5. The resulting trajectories
are shown in Figure 1 for different values of the step size h. When h is small enough, all
methods provide qualitatively correct solutions, as shown in Figure 1a. Aside from both
discrete gradient methods derived above, the Euler rule has been included for comparison. To
have a glimpse at the approximation accuracy achieved by each method, the global error has
been computed by subtracting the discrete sequence from the exact solution and averaging
over all the computed steps. The obtained results for 20 different values of the step size in
the interval h ∈ [10−6, 10−4] are shown in Figure 1b, in logarithmic scale. Two straight lines
with slopes 1 and 2 are added to ease the comparison. It is clear that both the Euler rule and
DG-E are first-order methods. Unexpectedly, DG-I turns out to be a second-order method,
even though the construction procedure has been identical. As said above, order analysis of
discrete gradient methods is an interesting avenue for further research.

(a) Trajectories for h = 10−4. (b) Error estimation.

(c) Trajectory for DG-E with h = 7× 10−4. (d) Trajectory for DG-I with h = 7× 10−4.

Figure 1. Solutions for the logistic equation obtained by the Euler method, the explicit method in
Equation (23) (DG-E), the implicit method in Equation (27) (DG-I), and the exact solution.

The picture changes radically when the step size is increased, even modestly to
h = 7× 10−4. To begin with, the trajectory computed by the Euler rule blows up to infinity,
so it is not represented. Remarkably, the problem is not that of insufficient order: we tested
an implicit Runge–Kutta method of order 2 (the basis of the ode23s function in the Matlab
ODE Suite), and it also produced unbounded solutions. This is a significant finding as
methods designed for stiff differential equations are often assumed to reproduce better the
qualitative behavior, which is not the case here. Regarding the explicit discrete gradient
method DG-E, its trajectory remains bounded, at least within the computed range, but the
qualitative behavior is completely wrong, as shown in Figure 1c. Instead of convergence
to the equilibrium, undamped oscillations appear that destroy stability. In contrast, the
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correct behavior is ultimately achieved by DG-I with the same step size, despite an initial
transient, plotted in Figure 1d.

The apparent contradiction between the proved preservation of the Lyapunov function
and the oscillatory solution provided by DG-E is explained by the local nature of the chosen

Lyapunov function V =
1
2
(1− y)2. The condition

dV
dt

< 0 checked in Equation (19) only
holds for y < 0. This fact is dismissed in the original system since the region y < 0 cannot be
reached from a positive initial value. However, the discretization does take a step so large
that the solution becomes negative. Another approach that offers insight into the different
behavior of the discretizations is the analysis of the basins of attraction, i.e., the sets of initial
values such that trajectories converge towards the equilibrium. Basins of attraction of ODEs
are continuous, so the restriction y > 0 for the validity of the first Lyapunov function is
irrelevant for the continuous system. In contrast, basins of attraction of discrete dynamical
systems, such as the one defined by a numerical method, may be formed by disconnected
sets. If the discrete steps of the numerical method drive the system to a region where dV

dt < 0
is no longer true, the discrete gradient construction does not enforce stability. This suggests
the first rule that must guide the construction of discrete gradient methods: find a Lyapunov
function for which the requirement dV

dt < 0 holds universally (except for∇V = 0, of course),
or at least, throughout a domain as large as possible.

4. Numerical Experiments

In this section, we show the result of several numerical experiments designed to show
the satisfactory performance of the designed discrete gradient method, assessed in terms of
its ability to preserve the qualitative properties of the dynamical system. We are primarily
interested in preserving the stability of the system, which will be evidenced by decreasing
values of the considered Lyapunov function along solution trajectories of the numerical
approximation. As a suitable case study, we first propose the Duffing equation [19], for
which a Lyapunov function is known.

The proposed method is compared with three conventional methods: the explicit Euler
rule, a second-order Runge–Kutta method (RK2) that forms the basis of the ode23s function
in the Matlab ODE Suite), and a fourth-order Runge–Kutta method (RK4), which the Matlab
ode45 function is based upon. Note that ode23s is an implicit method, well suited to stiff
equations; thus, it is a strong competitor when the preservation of qualitative features is
considered, whereas ode45 is an explicit method design with a higher order of accuracy
in mind. To carry out a fair comparison among methods, all experiments are carried out
with a fixed step size. Needless to say, our work on the implementation of discrete gradient
methods will eventually comprise variable step size mechanisms for error control.

For the sake of brevity, we have left aside a number of methods that could eventually
have the same stability properties as discrete gradient methods. We have already mentioned
the specialized Runge–Kutta methods that preserve the Lyapunov function [20], with the
shortcoming that these favorable properties can only be proved for small enough step
size. It is also worth mentioning the family of Rosenbrock–Wanner schemes [31], which
were proposed mainly in the context of Differential-Algebraic Equations. It has been
proved that these methods have favorable stability properties when implemented with
complex coefficients [32]. Of particular interest for our work, is that these methods have
been applied to the ODEs that result from the spatial discretization of Partial Differential
Equation [33]. The behavior of all these alternative methods is often strongly dependent
on time step-adjusting mechanisms, which we tried to avoid in this work, to keep the
exposition as simple as possible.

All experiments have been performed with Matlab installed on a laptop equipped
with an Intel Core i5-10210U processor at a base frequency of 1.6 GHz, and 8 GB of RAM.
Since our aim was a proof of concept and comparison between different methods, we have
not carried out an extensive optimization of either the code or the implementation.
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The chosen methods are applied to the Duffing equation that can be written as a
first-order system of ODEs d~y

dt = f (~y) according to:

dy1

dt
= y2

dy2

dt
= y1 − b y3

1 − a y2

(28)

with b 6= 0 and a > 0. The system has three fixed points: P0 = (0, 0), P1 =
(√

1/b, 0
)
, and

P2 =
(
−
√

1/b, 0
)
. A straightforward linearization shows that P0 is a saddle point, whereas

P1 and P2 are stable equilibria. It is known that a Lyapunov function is defined by

V(y1, y2) =
1
2

(
y2

2 − y2
1 +

b
2

y4
1

)
(29)

which has (local) minima at P1 and P2, since the gradient vanishes and the Hessian of V is
positive definite at both these points. The gradient of V is the vector field:

∇V =

(
−y1 + b y3

1
y2

)
(30)

that leads to the energy-decreasing condition:

dV
dt

= ∇V · f (y) = −a y2
2 ≤ 0

Then, the system can be cast into the linear-gradient form, i.e.:

d~y
dt

=

(
0 1
−1 −a

)(
−y1 + b y3

1
y2

)
(31)

which entails the definition of the negative-definite matrix L:

L =

(
0 1
−1 −a

)
(32)

Our implementation starts by computing the coordinate increment discrete gradient
for the particular system given by Equation (28):

∇V(y, z) =
1
2

(z1 + y1)(−1 +
b
2
(z2

1 + y2
1))

z2 + y2


whereas we adopt the simplest approximation L̃ = L. Then, the discrete gradient method
results:

z1 = y1 +
h
2
(z2 + y2)

z2 =
h
2

[
−(z1 + y1)

(
−1 +

b
2
(z2

1 + y2
1)

)
− a(z2 + y2)

]
This implicit equation for~z will be solved by Newton iteration until convergence at

each time step.
All the experiments have been carried out considering y0 = (0.3, 0) as the initial point.

We have designed three types of experiments. Firstly, we show the phase portrait that
is obtained by applying each of the methods for different values of the step size h and
compare it with the exact solution. Contrarily to the simple systems of the previous section,
we do not have the benefit of an analytical solution, but we consider that the approximation
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obtained by Euler’s method with h = 10−8 is exactly up to machine precision. The results
of this set of experiments are shown in Figures 2–4. It can be seen how the behavior of the
discrete gradient method reproduces the phase portrait of the exact solution regardless of
the step size. In contrast, Euler’s rule does not converge with step sizes greater than 10−5.
As for the Runge–Kutta methods, both the order two and order four schemes fail when
working with h = 10−3. Both explicit methods, Euler and RK4, produce trajectories that
blow up towards unbounded values; thus, they are not shown in the figures. This is the
case for both methods with h = 10−3 in Figure 4 and the Euler’s method with h = 10−4 in
Figure 3. Despite Euler’s rule producing a bounded trajectory that converges to the stable
equilibrium for a small enough step size, the phase portrait is not correct. It is noticeable in
Figure 2a) that the turns of the trajectory are closer than in other plots, suggesting that the
numerical method is introducing a spurious dissipation.

(a) Euler method (b) Discrete gradient

(c) RK of order 2 (d) RK of order 4

Figure 2. Phase portrait for h = 10−5.

(a) Discrete gradient (b) RK of order 2 (c) RK of order 4

Figure 3. Phase portrait for h = 10−4.
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(a) Discrete gradient (b) RK of order 2

Figure 4. Phase portrait for h = 10−3.

On the other hand, taking into account that the fundamental objective of the designed
method is the conservation of the Lyapunov function, we have designed another set of
experiments focused on showing the behavior of the Lyapunov function with respect to
time. Table 1 shows the values of the maximum increment of V for each method and each
step size used. We also plot in Figures 5–8 the trajectories of the value of V for different
step sizes. In general, it can be seen on the graphs that the Lyapunov function is decreasing
along trajectories of the discrete gradient method, as expected by construction. The small
positive increments shown in the table are within the range of machine precision, so they
are attributed to rounding rather than the numerical method. In contrast, much larger
increases in the Lyapunov function are visible in Figure 6 when using Euler’s method
with h = 10−5, even though for this step size, the trajectories of the solution converge
to the equilibrium. For large step sizes such as h = 10−3, only the implicit RK2 among
conventional methods provides bounded trajectories. However, the evolution of V shown
in Figure 8 reveals, even more clearly than the phase portrait, that the behavior of the
system is qualitatively corrupted. Periodic oscillations of V prove that the system is not
approaching equilibrium and the Lyapunov function is no longer decreasing.

(a) Euler method (b) Discrete gradient

(c) RK of order two (d) RK of order four

Figure 5. Lyapunov function h = 10−6.
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(a) Euler method (b) Discrete gradient

(c) RK of order two (d) RK of order four

Figure 6. Lyapunov function h = 10−5.

(a) Euler method (b) Discrete gradient

(c) RK of order two (d) RK of order four

Figure 7. Lyapunov function for h = 10−4.
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(a) Discrete gradient (b) RK of order two

Figure 8. Lyapunov function for h = 10−3.

Table 1. Results of numerical experiments for the Duffing ODE.

Step Size h Method Comp. Time max ∆V

10−3 Euler - ∞

RK4 - ∞

RK2 0.0146 0.0510

GD 0.0069 1.3010× 10−18

5× 10−4 Euler 0.0027 ∞

RK4 0.0533 8.6736× 10−19

RK2 0.0295 0.0091

GD 0.0104 1.3010× 10−18

10−4 Euler 0.0027 ∞

RK4 0.3558 8.6736× 10−19

RK2 0.1299 8.6736× 10−19

GD 0.0399 1.3010× 10−18

5× 10−5 Euler 0.0027 ∞

RK4 0.6885 1.3010× 10−18

RK2 0.2429 1.3010× 10−18

GD 0.1270 1.3010× 10−18

10−5 Euler 0.6185 2.8800× 10−4

RK4 3.2979 1.3010× 10−18

RK2 1.2253 1.3010× 10−18

GD 0.5220 1.3010× 10−18

5× 10−6 Euler 1.3717 7.2× 10−5

RK4 7.0309 1.3010× 10−18

RK2 2.4288 1.3010× 10−18

GD 1.2380 1.3010× 10−18

10−6 Euler 3.4330 2.88× 10−6

RK4 24.2176 1.7347× 10−18

RK2 11.5226 1.3010× 10−18

GD 4.7109 1.7347× 10−18
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Even when competitor conventional methods converge to a stable equilibrium, the
proposed method is favorable in terms of computational cost. This is illustrated in Figure 9,
showing the real computation time for the different step sizes. The computing times are
also shown in Table 1 for each combination of step size and method.

Figure 9. Computational cost for different values of h.

We briefly review the application of discrete gradient methods to a different class of
systems, namely those with orbital stability [25]. In this case, the attractor is not a single
point, but a compact subset. Trajectories with initial values within the attractor remain
confined to it, which is, thus, termed an invariant set. The Lyapunov function is constant
throughout the attractor, whereas its value is higher at any point outside the attractor. As
an example of such orbitally stable systems, we propose the following ODE [34,35]:

dy1

dt
= −y2 − y1

(
1−

√
y2

1 + y2
2

)2

dy2

dt
= y1 − y2

(
1−

√
y2

1 + y2
2

)2
(33)

with the Lyapunov function V(~y) = 1
2 (y

2
1 + y2

2). We can check that the time derivative of
the Lyapunov function is:

dV
dt

= −(y2
1 + y2

2)

(
1−

√
y2

1 + y2
2

)2
≤ 0

and dV
dt = 0 at the origin and on the circle of unit radius. Consequently, trajectories that

start outside the circle approach the circle, whereas trajectories that start inside the circle
are attracted to the origin. A continuous trajectory that starts outside cannot traverse the
circle, but a discretization step risks jumping to the interior where the attractor nature of the
circle is lost.

It has been shown [34,35] that conventional numerical methods produce trajectories
that fall into the circle, thus, exhibiting a completely wrong behavior. We have implemented
a discrete gradient method for the system in Equation (33) with the easiest choice L̃ = L
and the coordinate increment discrete gradient. We have set the initial point ~y0 = (2, 0).
The results are shown in Figure 10, where a relatively small step size (h = 10−3) has been
set. It is clear that the trajectory approaches smoothly the circle and gets trapped by it,
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showing the invariant nature of the attractor. When we implement a large step size h = 0.8,
such large discretization steps cannot reproduce faithfully the circle, as shown in Figure 11.
However, the qualitative behavior is correct, and the trajectory does not fall into the origin,
but remains orbiting, thus, reproducing the dynamical properties of the continuous system.

(a) Phase portrait for h = 10−3 (b) Lyapunov function for h = 10−3

Figure 10. Discretization of a system with orbital stability by the discrete gradient method and
h = 10−3.

(a) Phase portrait for h = 0.8 (b) Lyapunov function for h = 0.8

Figure 11. Discretization of a system with orbital stability by the discrete gradient method and
h = 0.8.

5. Conclusions

We have presented a methodology for the implementation of numerical integrators that
preserve a Lyapunov function of a dynamical system, namely discrete gradient methods.
The analysis is performed on the proposed method, establishing that it is, in principle, a
first-order method, although the second-order term is computed, revealing the conditions
for the method parameters under which a second-order method would be obtained. As a
proof of concept, a discrete gradient method is applied to the logistic equation, revealing
the variety of choices that can lead to different numerical schemes with qualitatively
different behaviors. The proposed method has been applied to the integration of the
Duffing equation, which is regarded as a suitable test system: different parameter sets
lead to oscillatory and stiff systems, whereas the preservation of the Lyapunov function
is more important than the accuracy of individual trajectories. Numerical experiments
are also carried out to confirm the ability of discrete gradient methods to preserve the
Lyapunov function, and the failure of standard Runge–Kutta codes for a wide range of step
size values, since Lyapunov function increments occur, thus, stability is lost.

The proposed methodology has a number of shortcomings, first and foremost, the
need to know the explicit expression of a Lyapunov function. This is out of the scope of
the present work and must be guided by physical considerations. Interestingly, our work
proves that different Lyapunov functions for the same system lead to completely different
numerical methods. The interaction between results in the context of the application and
theoretical results on the methods themselves should lead to further advances in this
direction. Another significant limitation is the lack of a general form of the time-stepping
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formula, which must be derived ad-hoc once given the Lyapunov function. This fact
supports the notion that discrete gradient methods will find their role in the integration of
particular classes of systems, rather than lead to a commercial code of general applicability.

We are currently engaged in further research to extend the results of this paper in
several directions. First, we are developing order conditions to obtain higher-order methods.
Preliminary results show that this is possible, at least for order two, by defining the matrix L̃
dependant not only on~y and~z but also on h. Another promising line considers composition
and splitting techniques. The long-term objective would be to establish a systematic order
theory for designing discrete gradient methods of arbitrary orders, in line with the recent
paper [22]. We are also trying to generalize the conditions for obtaining explicit methods,
based on the original, implicit formulation.

This work suggests that general-purpose integrators are unable to keep pace with
methods specifically designed to preserve the Lyapunov function. Thus we are extending
our experiments to compare discrete gradient methods to both projection methods and
Radau algorithms. In particular, it has been argued [20] that Radau methods are favorable
due to their superior damping of high frequencies. In our experiments, we have detected
that some discrete gradient methods possess an enhanced ability to deal with highly
oscillatory systems. This question undoubtedly deserves deeper attention. It also must
be taken into account that the results of this paper are a proof of concept, and much more
can be done regarding the implementation refinements of discrete gradient methods. The
obvious advance is the inclusion of an error control device, which could derive from
detecting the lack of convergence of the Newton iteration. An improved discrete gradient
method could be a serious competitor in applications where preserving the qualitative
dynamical behavior is more important than the stringent accuracy of individual trajectories.
For such systems, the integrators that preserve the Lyapunov function for arbitrary step
sizes, such as discrete gradient methods, are endorsed as first-line methods by our results.
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