
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Normalizing flows and diffusion models for discrete and geometric data

Hoogeboom, E.

Publication date
2023
Document Version
Final published version

Link to publication

Citation for published version (APA):
Hoogeboom, E. (2023). Normalizing flows and diffusion models for discrete and geometric
data. [Thesis, fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/normalizing-flows-and-diffusion-models-for-discrete-and-geometric-data(0afac307-6942-414c-b0f7-8b5321f9f7eb).html

Normalizing Flows and Diffusion Models for Discrete and Geometric Data

A C A D E M I S C H P R O E F S C H R I F T
ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. Peter-Paul Verbeek
ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de AgnietenKapel
op 16 maart 2023.

door Emiel Hoogeboom
geboren te Nijmegen

Copyright © 2023 Emiel Hoogeboom, Amsterdam, Netherlands

Promotor: prof. dr. M. Welling University of Amsterdam
Co-promotor: dr. H. van Hoof University of Amsterdam
Leden comité: dr. Jan-Willem van der Meent University of Amsterdam

prof. dr. J. M. Mooij University of Amsterdam
dr. E. Nalisnick University of Amsterdam
prof. dr. R. E. Turner University of Cambridge
prof. dr. O. Winther Technical University of Denmark (DTU)

S U M M A RY

Deep generative modelling is becoming increasingly popular and influential. The
applications of this technology are wide-ranging, from photo-editing, speech
synthesis to drug discovery. In this thesis, we analyze and improve the flexibil-
ity of two types of generative models: normalizing flows and diffusion mod-
els.

Specifically, in the first part of this thesis we aim to make normalizing flows
more expressive by inventing new ways to construct invertible convolutional
layers. We shall see that different constructions can be chosen, originating from
linear algebra and Fourier analysis.

Further, we explore methods to define normalizing flows and diffusion models
for discrete spaces. We find new model formulations that can be optimized suc-
cessfully. Certain variants of these new models have a practical by-product: they
can be effectively applied to lossless compression. Furthermore, we shall see that
one of these new discrete diffusion models connects a number of well-known
generative models. It bridges the gap between discrete diffusion, autoregressive
models, and masked language models.

Finally, we design a normalizing flow and diffusion model for molecule genera-
tion in 3D. To model the discrete atom types, we will incorporate our new tech-
niques to operate on discrete spaces. In addition, since molecules live in physical
space, we will demonstrate that it is important to consider the Euclidean sym-
metries of the positional information.

vii

S A M E N VAT T I N G

Diep generatief modelleren is een onderwerp dat steeds populairder en invloed-
rijk wordt. Deze technologie is breed toepasbaar, van fotobewerking, spraak ge-
neratie tot de ontdekking van nieuwe medicijnen. In deze scriptie analyseren en
verbeteren we de flexibiliteit van twee type generatieve modellen: normalizing
flows en diffusion models.

In het eerste deel van de scriptie is het doel om normalizing flows expressiever
te maken, door nieuwe manieren uit te vinden om inverteerbare convolutional
layers te construeren. We zullen zien dat verschillende constructies mogelijk zijn,
met als oorsprong lineaire algebra en Fourier analyse.

Vervolgens onderzoeken we methodes om normalizing flows en diffusion mo-
dels te definiëren voor discrete ruimtes. We vinden nieuwe beschrijvingen voor
dit soort modellen die succesvol geoptimaliseerd kunnen worden. Sommige van
deze modellen hebben een praktische bijkomstige eigenschap: ze kunnen effec-
tief worden toegepast voor lossless compressie. Verder zullen we zien dat één
van deze nieuwe discrete diffusie modellen een aantal bekende generatieve mo-
dellen verenigd: Namelijk discrete diffusion, autoregressive models en masked
language models.

Als laatste ontwikkelen we een normalizing flow en een diffusion model om
moleculen in 3D te genereren. Om de discrete atoom nummers te modelleren
gebruiken we onze nieuwe technieken voor modellen met discrete ruimtes. Bo-
vendien zullen we laten zien dat het belangrijk is om rekening to houden met
Euclidische symmetriën van de positionele informatie omdat moleculen zich in
onze 3D ruimte bevinden.

viii

A C K N O W L E D G M E N T S

First I would like to thank my supervisor Max Welling, who encouraged me and
helped me to learn and develop myself. Most of all, Max endured – and dare
I say enjoyed – my many jokes throughout our meetings. Although these jokes
were of course incredibly funny, beauty is in the eye of the beholder. Max is a
very smart and passionate researcher, and I think for me there could not have
been a better supervisor.

Another important person for me is Rianne van den Berg. Rianne’s involvement
and enthusiasm in early projects helped me grow my confidence and learned
me how to explore new ideas. After an initial period where I believed my super-
visor to be superhuman, Rianne’s confidence in me allowed me to see that my
supervisor was human after all, albeit it a quite clever one.

Further I would like to thank Jorn Peters. Jorn was a big influence in me starting
a PhD in the first place, and working together has always been an incredibly
positive experience. Taco Cohen has also been a large factor in me applying for a
PhD position. Taco supervised Jorn and me for a project in our Master’s program
that inspired us and gave a taste for what research would be like.

I am thankful for the people I collaborated closely with: Daniel Worrall, who
often surprised me and enhanced projects with new insights from his impres-
sive knowledge on fundamental topics. Jakub Tomczak, who showed me the
effectiveness of coffee meetings as research meetings, and the joy in doing re-
search. Auke Wiggers, who really impressed me with his coding skills and with
whom I had many valuable conversations about both positives and my possible
improvements. Victor Garcia Satorras, who taught me the elegance and impact
of simplicity. Didrik Nielsen, who I really resonated with in ways of thinking
and who showed me the importance of a good experimental code-base. Thomas
Andy Keller, who has a very brilliant way of thinking while staying (almost
too) modest. And Alexey Gritsenko, a many-talented person who taught me
many things about new coding frameworks during my internship. I would like
to further thank all the other people I worked together with: Jasmijn Bastings,
Patrick Forré, Fabian Fuchs, Priyank Jaini, Ben Poole, Ingmar Posner, Tim Sal-
imans, Clément Vignac, Ole Winther. I have thoroughly enjoyed the conversa-
tions and discussions which have learned me the many perspectives of scientific
research.

To the students I supervised: Christina Winkler, Jesse de Wringer, Alexandra
Lindt and Simon Passenheim, thank you all for the time and the enthusiasm
with which each of you dived into very difficult topics. I am extremely proud of
your achievements.

To my fellow Delta lab members: Sadaf Gulshad, Sindy Löwe, Artem Moskalev,
Giorgio Patrini, Elise van der Pol, Ivan Sosnovik, Wenling Shang, and those al-
ready mentioned above, and to the managers Zeynep Akata and Herke van Hoof,
thank you all for an amazing time. To my amazing colleagues at Bosch, especially

ix

Dan Zhang, Kanil Patel and Willam Beluch, thank you for the supervision and
wonderful Weissbier evenings in Stuttgart.

To the (possibly former) members of AMLab: Félice Arends, Tim Bakker, Jim
Boelrijk, Erik Bekkers, Babak Esmaeili, Marco Federici, Rob Hesselink, Shi Hu,
Maximilian Ilse, Thomas Kipf, Wouter Kool, David Kuric, Putri van der Lin-
den, Fiona Lippert, Christos Louizos, Jan-Willem van de Meent, Benjamin Miller,
Eric Nalisnick, Changyong Oh, Peter O’Connor, Theodora Pandeva, Matthias
Reisser, Rob Romijnders, David Ruhe, Darmesh Tailor, Karen Ullrich, Sharvaree
Vadgama, Bas Veeling, Qi Wang, Shihan Wang, Maurice Weiler, those already
mentioned above, and those I have forgotten to mention. Thank you all for the
nice retreats, conference visits and Oerknal drinks.

At last, I would like to thank my friends and family. I am very happy with the
relationship that I have with you. To highlight a few, I really admire that my
parents Gert and Leonore, and my bonus-parents Kay and Madeleine, raised me
in the way that that they did. Further, thank you to Lars for all the fashion advice
throughout the years. Although I am a hopeless case, thank you for trying. And
thank you to Floris, I know that if there is anything I need, that I can always
depend on you.

And finally to Yura, thank you for all the support, help and putting things in
perspective. You really enhance the person that I am. I am very excited for the
new phase in our life that we are entering together. And to Mea, I could have
never imagined that I would be so crazy about someone who only poops, sleeps
and roars.

Last but not least, I want to thank me. I could not have done it without you ;)

x

C O N T E N T S

1 introduction 1
1.1 Research Questions and Contributions 1
1.2 Impact on the Field . 3

2 publications 5
3 background 7

3.1 Clarification on Probability Notation 7
3.2 (Amortized) Variational Inference 8
3.3 Generative Modelling . 10
3.4 Normalizing Flows . 11
3.5 Diffusion Models . 12

i normalizing flows 17
4 linear convolutional flows 19

4.1 Introduction . 19
4.2 Background . 20

4.2.1 Convolutions as Matrix Multiplications 20
4.2.2 Autoregressive Convolutions 20
4.2.3 Matrix Exponential . 22

4.3 Invertible Convolutional Flows . 23
4.3.1 Emerging Convolutions . 23
4.3.2 Periodic Convolutions . 25
4.3.3 Convolution Exponentials . 27

4.4 Application: Convolutional Sylvester Flows 31
4.5 Related Work . 34
4.6 Experiments . 34

4.6.1 Linear Convolutional Flows as Mixing Layers 35
4.6.2 Convolutional Sylvester Flows 37

4.7 Conclusion . 38
5 flows for discrete variables 39

5.1 Introduction . 39
5.2 Related Work . 39
5.3 Integer Discrete Flows . 41

5.3.1 Integer Discrete Coupling . 41
5.3.2 Discrete Base Distribution . 42
5.3.3 Lossless Compression with a IDFs 43

5.4 Dequantization as a Latent Variable Model 44
5.5 Argmax Flows . 45

5.5.1 Choices for the Probabilistic Inverse 47
5.5.2 Cartesian Products of Argmax Flows 50

5.6 Experiments . 51
5.6.1 Lossless Compression with IDFs 51
5.6.2 Categorical Modelling with Argmax Flows 53

5.7 Conclusion . 56

ii diffusion models 59
6 diffusion for discrete variables 61

xi

xii contents

6.1 Introduction . 61
6.2 Multinomial Diffusion . 61

6.2.1 The Diffusion Process . 62
6.2.2 The Learned Denoising Process 62

6.3 Autoregressive Diffusion Models . 64
6.3.1 Conventional Autoregressive Models 64
6.3.2 Order Agnostic ARDMs . 65
6.3.3 Parallelized ARDMs . 67
6.3.4 Depth Upscaling ARDMs . 68

6.4 Bridging the gap between Discrete Diffusion and Autoregressive
Models . 70

6.5 Related Work . 73
6.6 Experiments . 74
6.7 Conclusion . 80

iii equivariant generative models 81
7 equivariant generation of 3d molecules 83

7.1 Introduction . 83
7.2 Background . 84

7.2.1 Equivariance . 84
7.2.2 Equivariant Generative Models 85
7.2.3 Representation of Molecules 85

7.3 Related Work . 86
7.4 E-NFs: E(3) Equivariant Normalizing Flows 87

7.4.1 The Normalizing Flow . 87
7.4.2 The Dynamics . 88
7.4.3 The Base Distribution . 89
7.4.4 Modelling discrete properties 90

7.5 EDMs: E(3) Equivariant Diffusion Models 91
7.5.1 The Diffusion Process . 91
7.5.2 The Learned Denoising Process 92
7.5.3 The Zeroth Likelihood Term and Categorical Features . . . 94

7.6 Experiments . 96
7.7 Conclusion . 99

8 conclusion 101

bibliography 103

iv appendix 117
a appendix for linear convolutional flows 119
b appendix for flows for discrete variables 123
c appendix for diffusion for discrete variables 133
d appendix for equivariant generative models 147

1 | I N T R O D U C T I O N

The deep learning paradigm has transformed multiple fields and is currently be-
ing explored in many more scientific areas. Arguably, this success started with
the ImageNet competition where a model takes as input an image and needs
to predict which of the 1000 categories that image belongs to, with categories
such as ‘koala’, ‘pufferfish’ and ‘toaster’. Let the variable x refer to an image, for
example a vector where each entry represents a pixel value. From a probability
perspective, this task can be framed as modelling the probability of a certain
class y given an image x, in short: what is p(y|x)? In 2012, a deep convolutional
network [104] outperformed its non-deep learning based competitors. Further-
more, from that moment onwards each subsequent year was also won by a deep
learning method.

Since then, deep learning has been applied beyond images to different types of
data such as audio, video, text, graphs and molecules. Beyond the increasing
variety of data sources, the tasks that need to be learned on this data have also
become more challenging. One such fundamental task is generative modelling,
to create data seemingly coming from the same distribution as the given data.
From a probability perspective, generative modelling aims to learn a distribution
p(x) from which we can draw samples x ⇠ p(x) to generate new data. The
key component that makes modelling p(x) much more difficult than modelling
p(y|x) is the high-dimensionality of x, whereas y was one-dimensional. It turns
out to be very difficult to specify flexible distributions over high-dimensional
variables.

Generative models are very fundamental and their principles arise in many ap-
plications, for which it may not be obvious that they share many characteristics.
Generative models are currently being used in companies for language transla-
tion, image super-resolution, material discovery, photo editing, special effects for
video, audio from text and virtual assistants. Because of the inherent difficulty
of high-dimensional modelling, many different types of generative models exist.
At this moment, they can be roughly quantified into six categories: Autoregres-
sive Models (ARMs), Variational AutoEncoders (VAEs), Generative Adversarial
Networks (GANs), Normalizing Flows (NFs), Energy-Based Models (EBMs), and
(score-based) Diffusion Models.

1.1 research questions and contributions
In this thesis, we study two of these generative models in a variety of settings:
Normalizing Flows and Diffusion Models. Normalizing Flows are attractive be-
cause they can compute exact likelihoods instead of depending on a lowerbound.
This property originates from the use of the change-of-variables formula. Diffu-
sion models are particularly interesting because their computational cost during
training scales favourably compared to other generative models: Where previ-
ously a large cluster was required for a VAE, a Diffusion Model with comparable
quality may be trained on a single GPU. In spite of these differences, as research
progresses more and more connections between these models are found. Often,

1

2 introduction

the advantages and disadvantages of a model class do not only depend on their
broader class, but also on the particular implementation and architectures that
are used.

Research Question 1: How can we construct invertible convolutional layers for nor-
malizing flows? A large problem in normalizing flows is to find transformations
that are verifiably invertible, and for which the Jacobian determinant is efficient
to compute. For fully connected matrix multiplication, one option is to learn
matrix decompositions. However, deep learning architectures typically perform
well by virtue of parameter-sharing, such as in convolutional layers. For these
layers, no known decompositions exist.

In Chapter 4 we explore methods to build linear convolutional flows, which can be
used as building blocks in normalizing flows to improve their flexibility and per-
formance. We propose three variants all with their accompanying advantages
and disadvantages: Emerging Convolutions based on a triangular convolutional
decomposition, Periodic Convolutions based on the Fourier transform, and Convo-
lution Exponentials based on the matrix exponential. All these proposed methods
outperform existing approaches.

Research Question 2: How can we define normalizing flows for discrete variables?
Normalizing Flows are generally defined for continuous variables, since they
rely on the change-of-variables formula. This can be problematic, since many
sources of data are discrete (or discretized) such as 8-bit images, audio, video
and text.

In Chapter 5, we propose new normalizing flows to handle discrete data, both
integer-valued and categorical data: Integer Discrete Flows and Argmax Flows.
These models are competitive compared to existing approaches and allow for
new insights in discrete variable model. In addition, the integer flow is a natural
model for lossless compression, that can even be easily tuned for specific types
of data.

Research Question 3: How can we define diffusion models with discrete latent spaces?
Diffusion models have a similar problem as normalizing flows: they are generally
defined with continuous latent spaces, which can work well for integer data but
not for categorical data such as text.

In Chapter 6 we explore new diffusion models that are directly defined in dis-
crete spaces, opening up possibilities to model categorical data with diffusion
models. Furthermore, we show that their is a deep connection between discrete
diffusion models and autoregressive models, via order agnostic autoregressive
models. Specifically, we introduce two new diffusion approaches: Multinomial
Diffusion and Autoregressive Diffusion Models. Interestingly, this last type of model
is also a natural model for lossless compression.

Research Question 4: How can we create a powerful generative model to generate
molecules in 3D? Molecules live in physical 3D space and are subject to Euclidean
symmetries, which means that their global orientation and translation do not
affect the meaning of the molecule. Ideally then, a generative model for such
data should not be affected by changes in either orientation or translation. In
short, we desire the model to be equivariant (or invariant in certain cases).

1.2 impact on the field 3

In Chapter 7 we introduce two generative models that are equivariant to the
above mentioned Euclidean symmetries from the mathematical group E(3). Specif-
ically, we first introduce E(3) Equivariant Normalizing Flows (E-NFs) which are
capable of generating molecules with already high stability. Subsequently, we
improve upon E-NFs with E(3) Equivariant Diffusion Models (EDMs) which
are easier to scale and therefore generate molecules which are even more sta-
ble.

1.2 impact on the field
Several of our articles have made a significant impact on the field, of which a
selection are mentioned here below.

Our work on integer discrete flows is influencing neural compression research.
For instance, new extensions are built on our work for integer flows [14] and our
work has inspired new compression methods with flow-based approaches [64,
172].

Furthermore, our work on multinomial diffusion has kicked off research into
discrete diffusion models [7, 83, 137] and is already being used as a building
block in other generative models [44, 61].

Additionally, our work on equivariant (generative) models for molecules is –
although very recent – also already making an impact on the field, for instance
for molecule conformation generation [168] and docking problems [48].

2 | P U B L I C AT I O N S

This thesis is based on the following publications:

[1] Emiel Hoogeboom, Rianne van den Berg, and Max Welling. “Emerging
Convolutions for Generative Normalizing Flows.” In: Proceedings of the
36th International Conference on Machine Learning, ICML. 2019.

[2] Emiel Hoogeboom, Taco S. Cohen, and Jakub M. Tomczak. “Learning
Discrete Distributions by Dequantization.” In: 3rd Symposium on Advances
in Approximate Bayesian Inference, AABI. 2021.

[3] Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Ri-
anne van den Berg, and Tim Salimans. “Autoregressive Diffusion Mod-
els.” In: International Conference on Learning Representations, ICLR. 2022.

[4] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max
Welling. “Argmax Flows and Multinomial Diffusion: Learning Categori-
cal Distributions.” In: Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems, NeurIPS. 2021.

[5] Emiel Hoogeboom, Jorn W. T. Peters, Rianne van den Berg, and Max
Welling. “Integer Discrete Flows and Lossless Compression.” In: Advances
in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS. 2019.

[6] Emiel Hoogeboom, Victor Garcia Satorras, Jakub M. Tomczak, and Max
Welling. “The Convolution Exponential and Generalized Sylvester Flows.”
In: Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS. 2020.

[7] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max
Welling. “Equivariant Diffusion for Molecule Generation in 3D.” In: Pro-
ceedings of the 38th International Conference on Machine Learning, ICML. 2022.

[8] Victor Garcia Satorras, Emiel Hoogeboom, Fabian Bernd Fuchs, Ingmar
Posner, and Max Welling. “E(n) Equivariant Normalizing Flows.” In: Ad-
vances in Neural Information Processing Systems, NeurIPS. 2021.

For all the above mentioned publications I contributed to the majority of the
ideas and design of the method, coding of the experiments and presentation of
the work. The articles [4, 5, 7, 8] were written in equal contribution with specific
co-authors, which is also denoted in the articles themselves. In these articles,
these co-authors also contributed substantially to the conception of the ideas
or experiments. For the remainder of the articles [1, 2, 3, 6] as well as for the
remaining authors on [4, 5, 7, 8], the other authors have contributed suggestions,
discussions, and an additional experiment in the cases of [3, 6].

5

6 publications

Other contributions that were done as part of the PhD, but are not used as a
basis for this thesis:

[1] Emiel Hoogeboom, Jorn W. T. Peters, Taco S. Cohen, and Max Welling.
“HexaConv.” In: 6th International Conference on Learning Representations,
ICLR. 2018.

[2] T. Anderson Keller, Jorn W. T. Peters, Priyank Jaini, Emiel Hoogeboom,
Patrick Forré, and Max Welling. “Self Normalizing Flows.” In: Proceedings
of the 38th International Conference on Machine Learning, ICML. 2021.

[3] Alexandra Lindt and Emiel Hoogeboom. “Discrete Denoising Flows.” In:
ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Ex-
plicit Likelihood Models. 2021.

[4] Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, and Max
Welling. “SurVAE Flows: Surjections to Bridge the Gap between VAEs
and Flows.” In: Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS.
2020.

[5] Simon Arthur Passenheim and Emiel Hoogeboom. “Variational Determi-
nant Estimation with Spherical Normalizing Flows.” In: Third Symposium
on Advances in Approximate Bayesian Inference, AABI. 2021.

[6] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equiv-
ariant Graph Neural Networks.” In: Proceedings of the 38th International
Conference on Machine Learning, ICML. 2021.

[7] Auke J. Wiggers and Emiel Hoogeboom. “Predictive Sampling with Fore-
casting Autoregressive Models.” In: Proceedings of the 37th International
Conference on Machine Learning, ICML. 2020.

[8] Christina Winkler, Daniel E. Worrall, Emiel Hoogeboom, and Max Welling.
“Learning Likelihoods with Conditional Normalizing Flows.” In: CoRR
abs/1912.00042 (2019).

3 | B A C K G R O U N D

3.1 clarification on probability notation
In formal writing, defining probability distributions require defining a triplet
consisting of a non-empty set, an event space, and a probability measure. Then
a random variable is defined which maps the non-empty set to real numbers,
satisfying certain conditions. This construct gives a formal framework to answer
questions of probability. For a discrete random variable X, the probability mass
function can be defined as pX(x) = Prob(X = x). Further, one can say that
x1, . . . , xN are samples drawn according to the distribution of X. A similar def-
inition (but somewhat more involved) exists for continuous random variables
and probability density functions. An advantage of this notation is that it is very
precise. However, the language can also introduce a lot of notional clutter.

In this thesis we mostly follow the more conventional notation in machine learn-
ing, which is less formal. To avoid confusion, in this section some notation
choices are elucidated and explicitly stated: We generally work with mass func-
tions or density functions pX(x), and omit definitions for the probability triplet
and random variable itself. They are either defined via another distribution, clear
from context, or based on an existing well-known distribution such as a normal
distribution. In many situations, we also drop the random variable X from the
probability function, resulting in the notation p(x) or pq(x) in case we want to
emphasize that the model contains tune-able parameters q. A natural question to
ask is how this notation deals with having to define multiple distributions?

In formal notation, this could have been written as pX1(x1), pX2(x2) and we
would refer to the different distributions by pX1 and pX2 . In the simplified nota-
tion, the distributions are still different but both have the name p as the random
variable is dropped. To refer to the distributions we use p(x1) and p(x2). Note
that even though both functions are called p, they are different distributions. The
subscripts X1 and X2 have been dropped. To avoid confusion, one would never
use the simplified notation of pX1(x2) because it would be unclear whether p(x2)
would refer to pX1(x2) or pX2(x2).

This also overloads notation in another way, since p(x) also refers to the evalu-
ation of the probability function, not only the function itself. This overload can
also seem a little confusing initially, but it is clear from context which usage is
meant. Finally, as a shorthand we say that drawing a sample s from distribu-
tion pX1 is written as either s ⇠ p(x1), s ⇠ pX1 , or s ⇠ p(·), s ⇠ p if it is clear
from context what distribution p refers to. Depending on the situation, we may
include or omit the random variable in the probability functions.

example : categorical distribution Let X be a discrete random vari-
able which equals x 2 {1, . . . , K} with probabilities px 2 [0, 1] so that Prob(X =
x) = px. We say that X is categorically distributed with probability mass func-
tion:

Prob(X = x) = pX(x) = C(x|p) = px, (3.1)

7

8 background

where p is a probability vector of the probabilities p1, p2, . . . , pK, and C(x|p) is
the standard notation to denote that a random variable is distributed over cate-
gories {1, . . . , K} with probabilities p. In short, evaluating the likelihood of the
categorical distribution amounts to looking up an index in a probability vector.
Sampling from categorical distributions is typically implemented in frameworks
(for instance torch.multinomial).

example : normal distribution Let X be continuous random variable
which may equal any x 2 R. Suppose X is distributed normally with mean µ
and standard deviation s. The probability density function pX is given by:

pX(x) = N (x|µ, s) =
1p
2ps

exp
⇣
� (x� µ)2

2s2

⌘
(3.2)

where we use N (x|µ, s) as a standard notation for a variable that is distributed
normal with mean µ and standard deviation s. Computational libraries gener-
ally have a function to draw samples from a normal distribution (for instance
torch.randn), so we assume that sampling from a normal distribution is always
possible and computationally cheap.

Although there exists no closed form solution for the Cumulative Distribution
Function (CDF) of a normal distribution, it can be very well approximated and
this is also implemented in standard frameworks. For a standard normal (µ = 0
and s = 1) we refer to this function as F which is defined as follows:

Prob(X x) =
Z x

�•
N (x0|0, 1)dx0 = F(x) (3.3)

example : multivariate normal distribution Suppose now that we
have a collection X = X1, . . . , XD of continuous random variables which collec-
tively can be equal to any x 2 RD. Suppose X is distributed normally with
mean µ 2 RD and covariance matrix S 2 RD⇥D which is positive definite. The
probability density function pX is given by:

pX(x) = N (x|µ, S) =
1p

2p det(S)1/2
exp

⇣
� 1

2
(x�µ)TS�1(x�µ)

⌘
(3.4)

3.2 (amortized) variational inference
In machine learning, a common situation is that we desire an optimization pro-
cedure for log p(x) where p(x) is defined via some latent variable z and the
distributions p(x|z) and p(z) so that p(x) =

R
p(x|z)p(z)dz. Sampling from this

model is simple. To sample x ⇠ p(x), first sample z ⇠ p(z) and then sample
x ⇠ p(x|z).

Optimization is somewhat more complicated, since the space of z is generally
large and difficult to cover. A technique that generally works well is Variational
Inference (VI), which introduces a lowerbound on log p(x). For VI a new distri-
bution q(z|x) is introduced from which z can be sampled. It turns out that this
distribution will try to approximate the true posterior p(z|x). Intuitively, sam-
pling from the posterior will ensure that the sampled z are relevant to modelling

3.2 (amortized) variational inference 9

x, which quantitatively leads to a tighter bound. Specifically, we can derive the
Variational LowerBound (VLB) as follows:

log p(x) = log
Z

p(x|z)p(z)dz

= log
Z q(z|x)

q(z|x) p(x|z)p(z)dz

= log Ez⇠q(z|x)

h p(x|z)p(z)
q(z|x)

i

� Ez⇠q(z|x)

h
log

p(x|z)p(z)
q(z|x)

i
= Lvlb

(3.5)

Commonly in machine and deep learning, single-sample estimators are used
for expectations. In this case, to approximate Lvlb one first samples z ⇠ q(z|x)
and then evaluate log p(x|z) + log p(z)� log q(z|x). This generally works well
as machine learning optimization uses mini-batches, and each example in the
minibatch uses a different sample from q(z|x).

It is worth noting that the gap between log p(x) and Lvlb can be shown to
be:

log p(x)� Lvlb = Ez⇠q(z|x)

h
log

p(x|z)p(z)
p(z|x)| {z }

p(x)

� log
p(x|z)p(z)

q(z|x)
i

= Ez⇠q(z|x)

h
log

q(z|x)
p(z|x)

i
= KL

⇣
q(z|x)|p(z|x)

⌘
,

(3.6)

which shows that optimizing Lvlb may 1) improve log p(x) or 2) improve the
approximation of the variational posterior q(z|x) to the true posterior p(z|x)
which reduces the gap between log p(x) and Lvlb.

The name variational originates from the calculus of variations and the optimiza-
tion is over functions q. Amortization refers to the averaged or shared compu-
tation between datapoints, meaning that q(z|x) = qf(z|x) uses the same set of
parameters f for different datapoints (for example the parameters of a neural
network). In other cases, VI would utilize a new distribution q(z(i)|f(i)) for each
datapoint x(i). Amortized VI has been shown to work effectively when combined
with deep neural networks to predict distribution parameters which is described
by q(z|x), an example of this is the Variational AutoEncoder (VAE) [92].

Algorithm 1 Optimization of log p(x) with Variational Inference

Sample z ⇠ q(z|x)
Maximize Lvlb ⇡ log p(x|z) + log p(z)� q(z|x)

example : a simple variational autoencoder In this section we present
a generative model that uses variational inference, a Variational AutoEncoder
(VAE) [92, 132]. Let x 2 RD denote a data variable, for instance an image1. Let
us assume that the latent variable z has dimensionality Dz so that z 2 RD

z .

1 Technically, images are usually represented by quantized values, for example x 2 {0, 1, . . . , 255}D.
However to avoid unnecessary clutter, we will assume images are represented by the continuous-
valued x 2 Rd for this example. This allows the decoder to be modelled by normal distributions.

10 background

base�distribution model�distributiondecoder

encoder

Figure 3.1: An overview of the components of a variational autoencoder.

First we define the generative model: Our base distribution p(z) is chosen to
be something simple, a standard normal distribution: p(z) = ’Dz

d=1 N (zd|0, 1).
Next, we define the decoder:

p(x|z) =
D

’
d=1

N (xd|gµ(z)d, gs(z)d), (3.7)

where the mean and standard deviation parameters for the distributions are
predicted by a neural network g. In this description gµ and gs are actually using
the same shared computation, so g : RDz ! R2·D where the first D outputs are
referred to as the output of gµ and the second half of D outputs are referred to
as the outputs of gs. A small detail is that the output of gs (the second half of g)
is enforced to be positive, for example using a softplus or exp function.

At this point, the generative model is defined via the base distribution p(z) and
decoder p(x|z) is defined. However, it is unclear how to optimize the model
(which is learnable through the neural network parameters in g). To optimize
the model with amortized VI, we introduce a variational distribution q(z|x),
which can be seen as the (stochastic) encoder. In this example, the encoder is
modelled by a factorized (independent) normal distribution:

q(z|x) =
D

’
d=1

N (zd| fµ(x)d, fs(x)d). (3.8)

which is learnable via the neural network f : RD ! R2·Dz where similar to g, fµ

refers to the first half of Dz outputs and fs refers to the second half of Dz outputs
of f .

Now that all components p(x|z), p(z) and q(z|x) are defined, the VAE can
be optimized with Algorithm 1. For a datapoint x, sample a latent variable
z ⇠ q(z|x) and then compute log p(x|z) + log p(z) � log q(z|x) with the spe-
cific definitions of these distributions as given above. After maximizing the above
objective, sampling from the model can be done by sampling z ⇠ p(z) and
then sampling x ⇠ p(x|z). An example depiction of a VAE is shown in Fig-
ure 3.1

3.3 generative modelling
An example of a generative model has been given in the section above: the simple
VAE. Generally, generative modelling can be framed as learning a distribution.
Given a (unknown) data distribution D(x), generative modelling is concerned
with finding an approximating model pq(x) with parameters q. When D is a

3.4 normalizing flows 11

base�distribution model�distribution

Figure 3.2: An overview of the components of a normalizing flow, where f = g�1.

distribution over high-dimensional data such as images or molecules, it can be
difficult to specify and optimize such a model distribution. For this reason, an
entire field of deep and machine learning is dedicated to finding methods and
algorithms to optimize such distributions.

datasets In general, we do not have access to the true data distribution
D(x) is an efficient manner. Otherwise, there would be no need to model it. In
general we either have samples from the distribution, in the form of a dataset
X = (x(1),x(2), . . . ,x(N)). Formally we could say that we approximate the true
data distribution by the empirical data distribution D̂(x) = 1/N ÂN

i=1 d(x�x(i)).
The default method to optimize a distribution using a dataset is maximum like-
lihood.

Ex⇠D(x)

⇥
log pq(x)

⇤
⇡ Ex⇠D̂(x)

⇥
log pq(x)

⇤
=

1
N

N

Â
i=1

log pq(x
(i)), (3.9)

Maximum likelihood is very pleasant to work with because it is composed of
independent log-likelihood contributions of each datapoint. Furthermore, it can
be optimized using only samples from a target distribution D when the model
likelihood log pq(x) of those samples can be computed.

Maximum likelihood can be motivated from a divergence perspective. Namely,
maximum likelihood estimation can be seen as minimizing the Kullback-Leibler
divergence between data D and model pq :

min
q

KL(D||pq) = Ex⇠D
⇥

logD(x)| {z }
constant w.r.t. q

� log pq(x)| {z }
log-likelihood

⇤
, (3.10)

where the term D(x) does not contain learnable parameters and is thus con-
stant.

3.4 normalizing flows
To be able to use maximum likelihood estimation, it is required that log pq(x)
can be computed a datapoint x in a reasonable amount of time. One such a
method is described by a family of methods referred to as normalizing flows
[133, 37, 38]. Normalizing flows rely on the change-of-variables formula for in-
vertible transformations. Normalizing flows consist of a base distribution in a
latent space pZ(z), which is often a normal distribution. In addition, they have
an invertible function x = g(z) which maps the latent variable to the data space.

12 background

denoising

diffusion

model�distribution

Figure 3.3: A depiction of the mechanics of a diffusion model.

Because the function g is invertible, its inverse f = g�1 exists. The likelihood of
a datapoint x is then computed as:

p(x) = pZ(f (x))
��det J f (x)

�� where J f (x) =
d f (x)

dx
(3.11)

Which in log-space translates to:

log p(x) = log pZ(f (x)) + log
��det J f (x)

�� (3.12)

Furthermore, to sample from the model first one samples z ⇠ pZ (which is
typically normal noise). Then, a sample in x space is computed using the inverse
of f , which is also referred to as g. Specifically, the sample is computed as x =
g(z).

compositions of normalizing flows Deep learning tends to make use
of modular frameworks. Often a neural network f can be decomposed in sev-
eral distinct modules where individual modules fi may be linear layers, convo-
lutional layers, activation layers and so forth. Normalizing flows, are built in a
similar fashion. After all, the composition of invertible functions is still invertible.
In this case, suppose f1, f2, . . . , fL are invertible modules that are applied so that
z = fL(. . . f2(f1(x))) = f (x). We can also define intermediate representations
as hi = fi(hi�1), where x = h0 and z = hL. In this case the log-likelihood is
computed as:

log p(x) = log pZ(z) +
L

Â
i=1

log
��det J fi(hi�1)

�� (3.13)

3.5 diffusion models
An alternative family of models is referred to as diffusion models [144, 146, 66].
Again, these models allow the log likelihood log pq(x) to be computed, or in
this case a variational bound on that likelihood. Different from other generative
models, diffusion models start by defining a diffusion process, which destroys
data. This is a process that defines a probabilistic trajectory from data variables
to noise.

q(zt|zs) = N (zt|at|s · zs, s2
t|s I) (3.14)

for t = 1, . . . , T where T is typically set to a large number such as 1000, and
generally s = t� 1. For z0 the distribution q(z0|x) = N (z0|a0 ·x, s2

0 I) represents
the transition from data space to the first latent variable z0. Although there are
many ways to define at|s and st|s, a common choice is to let a2

t|s = 1� s2
t|s, which

is referred to as a variance preserving diffusion process.

3.5 diffusion models 13

When we define the cumulative product at = a0 ’t
t0=1 at0|t0�1 this allows us to

derive the distribution:

q(zt|x) = N (zt|at · x, s2
t I), (3.15)

where s2
t = 1� a2

t , which gives the distribution for any zt immediately given x.
In general aT ⇡ 0 and sT ⇡ 1 so that q(zt|x) ⇡ N (0, I).

Using Bayes’ rule, one can derive the posterior of the diffusion process, the true
denoising process conditioned on a datapoint x. For s < t we can derive that

q(zs|zt,x) = N (zt|µt!s(zt,x), s2
t!sI), (3.16)

where µt!s(x, zt) =
at|ss2

s
s2

t
zt +

ass2
t|s

s2
t
x and st!s =

st|sss
st

. Importantly, instead of
moving in the diffusion direction (s! t) the equations and distributions move in
the denoising direction (t! s). To learn a generative process, the true denoising
process is approximated.

the learned denoising process To learn a generative model, diffusion
models employ a neat trick: They approximate x in the true denoising process by
a neural network estimate x̂. In other words, the generative distribution p(zs|zt)
is defined as:

p(zs|zt) = q(zs|zt, x̂) = N (zt|µt!s(zt, x̂), s2
t!sI), (3.17)

where in this case x̂ = f (zt, t) learned by a neural network f . In some versions
of diffusion models, the standard deviation st!s is changed for the denoising
process. Here we follow the choice in [91] and it is set to be equal to the standard
deviation from the true denoising process for a single datapoint.

Furthermore, note the reparametrization zt = atx+ st✏t for ✏t ⇠ N (0, I). An
alternative parametrization choice is to learn the noise ✏̂t in a reparametrization,
but for the approximated x̂. Then:

x̂ =
1
at
zt �

st

at
✏̂t (3.18)

where now ✏̂t = f (zt, t) is learned using a neural network f , which implicitly
defines x̂.

optimization To optimize a diffusion model, one can resort to variational
inference:

log p(x) � Lvlb = Eq

h
log

p(x, z0, . . . ,zT)
q(z0, . . . ,zT)

i

= Eq

h
Lx + Lbase +

T

Â
t=1

Lt

i
,

(3.19)

where Lx = log p(x|z0) and Lbase = �KL(q(zT|x)||p(zT)). For aT ⇡ 0 and
sT ⇡ 1, the term Lbase ⇡ 0. Furthermore, for discrete x the term Lx is also
approximately zero for well defined processes. What remains are the Lt terms

14 background

which describe how to learn the denoising process. After careful derivation as
done in [91] one finds that:

Lt = �KL(q(zt�1|zt,x)||p(zt�1|zt))

= �1
2

we(t)||✏t � ✏̂t||2

= �1
2

wx(t)||x� x̂||2.

(3.20)

There are two common parametrization choices: either ✏̂t or x̂ is learned by a
neural network f (zt, t). The weighting functions wx and we give the appropriate
weighting for the these parametrizations, and are defined as,

wx(t) = SNR(t� 1)� SNR(t) and we(t) = SNR(t� 1)/SNR(t)� 1. (3.21)

where the signal-to-noise ratio is defined as SNR(t) = a2
t /s2

t . Literature has
found that overwriting we(t) = 1 everywhere leads to better sample quality
in pictures. From a theoretical perspective, although the objective is differently
weighted, it has the same minima. Experimentally, literature has found that dif-
fusion models trained using we(t) = 1 are better at generating larger coherent
structures and lead to better sample quality overall. This results in the simple
objective:

Lsimple = Et⇠U (1,...,T)Eq(zt|x)

h
� 1

2
||✏t � ✏̂t||2

i
, (3.22)

where ✏̂t = f (zt, t). To make diffusion models efficient to optimize, an estimator
is used on the terms Lt using the equality ÂT

t=1 Lt = T · Et⇠U (1,...,T)[Lt]. Dur-
ing training, only a single timestep t ⇠ U (1, . . . , T) is sampled and optimized
per datapoint. The reweigh factor T is often omitted in this simple objective,
although it is important in the variational lowerbound objective.

Algorithm 2 Optimizing a Diffusion Model (e parametrization)

Sample t ⇠ U (0, . . . , T), ✏t ⇠ N (0, I)
Compute zt = atx+ stet
Minimize ||✏t � f (zt, t)||2

Algorithm 3 Sampling from a Diffusion Model (e parametrization)

Sample zT ⇠ N (0, I)
for t in T, T � 1, . . . , 1 where s = t� 1 do

Sample ✏t ⇠ N (0, I)

zs = 1
at|s

zt �
s2

t|s
at|sst

· f (zt, t) + st!s · ✏t

end for

Sample x ⇠ p(x|z0)

alternative notation In the above notation, x represents the data vari-
able and z0, . . . ,zT represent the latent variables with noise. In alternative for-
mulations in literature (and this manuscript), x0 may represent the data and
x1, . . . ,xT are used to denote the latent variables with noise. One or the other
formulation might be practical depending on data and noise processes being
considered.

3.5 diffusion models 15

Algorithm 4 Variational lowerbound estimator of a Diffusion Model

Sample t ⇠ U (0, . . . , T), ✏t ⇠ N (0, I)
Compute zt = atx+ stet
L̂t = � 1

2 we(t)||✏t � f (zt, t)||2
L̂vlb = T · L̂t �KL(q(zT|x)||p(zT)) + log p(x|z0)

Part I

N O R M A L I Z I N G F L O W S

4 | L I N E A R C O N V O L U T I O N A L F L O W S

Based on the publications:
Emerging Convolutions for Generative Normalizing Flows [69]

The Convolution Exponential and Generalized Sylvester Flows [74]

4.1 introduction
Flow-based generative models are particularly attractive because they admit ex-
act likelihood optimization and straightforward sampling. Since normalizing
flows are based on the change of variable formula, they require the flow transfor-
mation to be invertible. In addition, the Jacobian determinant needs to be tractable
to compute the likelihood.

In practice, a flow is composed of multiple invertible layers. Since the Jacobian
determinant is required to compute the likelihood, many flow layers involving
neural networks are triangular maps, as the determinant is then the product of
the diagonal elements. Examples of this are coupling layers [37, 38] and autore-
gressive flows [90, 127]. However, without other transformations, the composi-
tion of triangular maps will remain triangular. For that reason, triangular flows
are typically interleaved with linear flows that mix the information over dimen-
sions (see Figure 4.1). Existing methods include permutations [37] and 1 ⇥ 1
convolutions [93] but these do not operate over feature maps spatially.

In this chapter, we propose several variants of linear flows that are based on
convolutional layers: Emerging Convolutions, Periodic Convolutions and Con-
volution Exponentials. These linear convolutional flows operate on both channel
and spatial axes of the data, which allows for better mixing and subsequently
improved performance when used in normalizing flow architectures.

Linear mixing

Coupling layer
D

Figure 4.1: Example of a typical flow architecture. A linear mixing layer (for example a
permutation of channels or a 1 ⇥ 1 convolution) is interleaved with a non-linear trian-
gular map such as a coupling layer. A normalizing flow architecture is then composed
of D of these module blocks.

19

20 linear convolutional flows

a b c
d e f
g h i

0 1 2
3 4 5
6 7 8

h i
hg

hg
i

h i
hg

hg
i

d
e

e
e f

f
d

d
e

e
e f

f
d

d
e

e
e f

f
d

b c
ba

ba
c

b c
ba

ba
c

0
1
2
3
4
5
6
7
8

Figure 4.2: A convolution of a signal x with a kernel w (left) is equivalent to a matrix
multiplication using a matrix W and a vectorized signal ~x (right). In this example, x has
a single channel with spatial dimensions 3⇥ 3. The convolution is zero-padded with one
pixel on all sides. A white square indicates its value is zero.

4.2 background
4.2.1 Convolutions as Matrix Multiplications
Convolutional layers in deep learning can be expressed as matrix multiplications.
Let w ? x denote a convolution1, then there exists an equivalent matrix W such
that the convolution is equivalent to the matrix multiplication W~x, where~· vec-
torizes x. An example is provided in Figure 4.2. In these examples we use zero-
padded convolutions, for periodic and reflective padded convolutions a slightly
different equivalent matrix exists. A convolutional layer w ?l x consists of multi-
ple convolutions across different channels:

(w ?l x)cout =
nc

Â
cin=1

wcout,cin ? xcin , (4.1)

where wcout,cin and xcin have the same number of axes. In the case of images there
are two axes, corresponding to height and width. An example of a convolutional
layer as a matrix multiplication is visualized in Figure 4.3. An important detail
to notice is that the equivalent matrix is typically unreasonably large to store in
memory, its dimensions grow quadratically with the dimension of x. For exam-
ple, for 2d signals it has size hwnc ⇥ hwnc, where h is height, w is width and nc
denotes number of channels. For reasonably sized images the equivalent matrix
is very large and impractical to store in memory. Despite this impracticality, it is
a very useful tool to utilize concepts from linear algebra.

4.2.2 Autoregressive Convolutions
Autoregressive convolutions have been widely used in the field of normalizing
flows [53, 90] because it is straightforward to compute their Jacobian determi-
nant. Although there exist autoregressive convolutions with different input and
output dimensions, we let ncout = ncin for invertibility. In this case, the key defin-
ing property of autoregressive convolutions is that they can be expressed as a
multiplication between a triangular weight matrix and a vectorized input.

1 In frameworks, convolutional layers are typically implemented as cross-correlations. We follow
literature convention and refer to them as convolutions in text. In equations ? denotes a cross-
correlation and ⇤ a convolution.

4.2 background 21

out 1
in 1

in 2

out 2

Figure 4.3: An standard 3 ⇥ 3 convolution layer with two input and output channels.
The input has spatial dimensions 3⇥ 3, and two channels. The convolution uses one-
pixel-wide zero padding at each border. Left: the convolution filter w. Right: the matrix
W which produces the equivalent result on a vectorized input.

out 1
in 1

in 2

out 2

Figure 4.4: An autoregressive 3 ⇥ 3 convolution layer with two input and output channels.
The input has spatial dimensions 3⇥ 3, and two channels. The convolution uses one-
pixel-wide zero padding at each border. Left: the autoregressive convolution filter k.
Right: the matrix K which produces the equivalent result on a vectorized input. Note
that the equivalent matrix is triangular.

22 linear convolutional flows

In practice, a filter k = w�m is constructed from weights w and a binary mask
m that enforces the autoregressive structure (see Figure 4.4). After masking, the
output can be computed using a standard convolutional routine:

z = k ?l x, (4.2)

where ?l denotes a convolutional layer. The matrix multiplication ~z = K~x pro-
duces the equivalent result, where ~x and ~z are the vectorized signals, and K is
a sparse triangular matrix constructed from k (see Figure 4.4). The Jacobian is
triangular by design and its determinant can be computed in O(nc) since it only
depends on the diagonal elements of the matrix K:

log
����det

dz
dx

���� = log |det K| = h · w
nc

Â
c

log
��kc,c,my,mx

�� , (4.3)

where index c denotes the channel and (my, mx) denotes the spatial center of the
filter. The inverse of an autoregressive convolution can theoretically be computed
using ~x = K

�1~z. In reality this matrix is large and impractical to invert. Since
K is triangular, the solution for ~x can be found through forward substitution:

~xt =
~zt �Ât�1

i=1 Kt,i ·~xi

Kt,t
. (4.4)

The inverse can be computed by sequentially traversing through the input fea-
ture map in the imposed autoregressive order. The computational complexity of
the inverse is O(h · w · n2

c). As can be seen in Equation 4.4 this inverse needs to
be computed iteratively and thus cannot be parallelized.

4.2.3 Matrix Exponential
The matrix exponential gives a method to construct an invertible matrix from
any dimensionality preserving linear transformation. For any square (possibly
non-invertible) matrix W, the matrix exponential is given by the power series:

exp(W) ⌘ I +
W

1!
+

W
2

2!
+ . . . =

•

Â
i=0

W
i

i!
. (4.5)

The matrix exponential is well-defined as the series always converges. Addition-
ally, the matrix exponential has two very useful properties: 1) computing the
inverse of the matrix exponential has the same computational complexity as the
exponential itself:

exp(W)�1 = exp(�W), (4.6)

and 2) the determinant of the matrix exponential can be computed easily using
the trace:

log det [exp(W)] = Tr W. (4.7)

As a consequence, when we have a method to compute (or approximate) exp(W)
efficiently, we can also compute its inverse exp(�W). For an example see Fig-
ure 4.5 which uses an matrix form of a convolution as input to the exponen-
tial.

4.3 invertible convolutional flows 23

Figure 4.5: Visualization of the equivalent matrix exponential exp(W) where W repre-
sents a 2d convolution on a 1 ⇥ 5 ⇥ 5 input (channel first). In this example the com-
putation is explicit, however in practice the exponential is computed implicit and the
matrices W and exp(W) are never stored.

Table 4.1: The definition of several linear flows. The height h, width w and number of
channels nc of an output remains identical to the dimensions of the input. The symbol
� denotes element-wise multiplication. Input and output may be denoted as tensors
x and z with dimensions nc ⇥ h ⇥ w. The input and output may be denoted as one-
dimensional vectors ~x and ~z with dimension nc · h · w. Input and output in frequency
domain are denoted with x̂ = F (x) and ẑ = F (z), with dimensions nc ⇥ h⇥ w, where
the last two axes denote frequencies.

Linear Flow Forward Inverse Log Determinant

1⇥ 1 Conv 8ij : z:,ij = Wx:,ij 8ij : x:,ij = W
�1z:,ij h · w · log |det W|

Standard Conv w ? x ~x = W
�1~z log |det W|

Emerging Conv k = w1 �m1
g = w2 �m2
z = conv(x,k ⇤ g)

~yt = (~zt �Ât�1
i=1 Gt,i ~yi)/Gt,t

~xt = (~yt �Ât�1
i=1 Kt,i ~xi)/Kt,t

Âc log |kc,c,myxgc,c,myx |

Periodic Conv 8uv : ẑ:,uv = Ŵuvx̂:,uv 8uv : x̂:,uv = Ŵ
�1
uv ẑ:,uv Âu,v log |det Ŵuv|

Conv Exp z = convexp(x,w) z = convexp(x,�w) Tr W

The matrix exponential models the linear ordinary differential equation dx
dt =

Wx. Given the initial condition x(t = 0) = x0, the solution for x(t) at time t
can be written using the matrix exponential: x(t) = exp(W t) ·x0. As a result we
can express the solution class of the matrix exponential: The matrix exponential
can model any linear transformation that is the solution to a linear ODE. Not
all invertible matrices can be expressed as an exponential. For example, matrices
with a negative determinant cannot be expressed because the determinant of an
exponential is never negative.

4.3 invertible convolutional flows
In this section we present three methods to approximate invertible convolutional
layers: Emerging Convolutions, Periodic Convolutions and Convolution Expo-
nentials. In addition we extend Sylvester Flows [15] to be convolutional, which
is made possible because of our convolution exponential. An overview of lin-
ear flows is presented in Table 4.1 and their computational complexity in Ta-
ble 4.2.

4.3.1 Emerging Convolutions
Emerging convolutions learn a convolutional layer with a standard d⇥ d square
receptive field by factorizing the convolutional layer into two separate autore-
gressive convolutional layers. Since these layers can be constrained to be invert-
ible, their composition is also invertible. An advantage of emerging convolutions
is that their forward pass and log Jacobian determinant computations are fast,
but a disadvantage is that their inverse cannot be parallelized over h and w which
makes them slower in practice to compute.

24 linear convolutional flows

Table 4.2: Computational complexity of the generative normalizing flows. Note that (*)
is not parallelizable over spatial axes h and w, which only makes the forward suited
for use during training. T is the number of terms that the convolution exponential re-
quires to converge. There is a small additional cost of O(h · w · nc · log hw) of the Fourier
transforms in the periodic convolutions.

Linear Flow Forward Inverse Log Determinant

1⇥ 1 Conv O(h · w · n2
c) O(h · w · n3

c) O(n3
c)

Standard Conv O(h · w · n2
c) O(h3 · w3 · n3

c) O(h3 · w3 · n3
c)

Emerging Conv O(h · w · n2
c) O(h · w · n2

c)
⇤ O(nc)

Periodic Conv O(h · w · n2
c) O(h · w · n3

c) O(h · w · n3
c)

Conv Exp O(h · w · n2
c · T) O(h · w · n2

c · T) O(nc)

Figure 4.6: Achievable emerging receptive fields that consist of two distinct auto-
regressive convolutions. Grey areas denote the first convolution filter and orange areas
denote the second convolution filter. Blue areas denote the emerging receptive field, and
white areas are masked. The convolution in the bottom row is a special case, which has
a receptive field identical to a standard convolution.

Although autoregressive convolutions are invertible, their transformation is re-
stricted by the imposed autoregressive order, enforced through masking of the
filters (as depicted in Figure 4.4). To alleviate this restriction, we propose emerg-
ing convolutions, which are more flexible and nevertheless invertible. Emerging
convolutions are obtained by chaining specific autoregressive convolutions, in-
vertible via the autoregressive inverses. To some extent this resembles the com-
bination of stacks used to resolve the blind spot problem in conditional image
modeling with PixelCNNs [126], with the important difference that we do not
constrain the resulting convolution itself to be autoregressive.

A collection of achievable receptive fields for emerging convolutions is depicted
in Figure 4.6, based on commonly used autoregressive masking. The autoregres-
sive inverse requires the solution to a sequential problem, and as a result, it
inevitably suffers some additional computational cost. In emerging convolutions
we minimize this cost through the use of a dedicated inversion module imple-
mented in Cython that computes forward substitution for convolutional layers,
and by maintaining relatively small dimensionality in the emerging convolutions
compared to the internal size of coupling layers.

4.3 invertible convolutional flows 25

square emerging convolutions Deep learning applications tend to use
square filters, and libraries are specifically optimized for these shapes. Since
most of the receptive fields in Figure 4.6 are unusually shaped, these would
require masking to fit them in rectangular arrays, leading to unnecessary com-
putation.

However, there is a special case in which the emerging receptive field of two spe-
cific autoregressive convolutions is identical to a standard convolution. These
square emerging convolutions can be obtained by combining off center square
convolutions, depicted in the bottom row of Figure 4.6. These square convolu-
tional filters do not even require masking in practice, and can instead be com-
puted by adjusting the amount of padding of the inputs.

There are two approaches to efficiently compute square emerging convolutions
during optimization and density estimation: i) a d⇥ d emerging convolution is
expressed as two smaller consecutive d+1

2 ⇥
d+1

2 convolutions. Alternatively, ii)
the order of convolution can be changed: first the smaller d+1

2 filters (k2 and k1)
are convolved to obtain a single equivalent convolution filter. Then, the output
of the emerging convolution is obtained by convolving the equivalent filter, k =
k2 ⇤ k1, with the feature map f :

k2 ? (k1 ? f) = (k2 ⇤ k1) ? f . (4.8)

This equivalence follows from the associativity of convolutions and the time
reversal of real discrete signals in cross-correlations. A caveat is that although
the right side of Equation 4.8 requires less computation, this equivalence does
not hold across the edges of the image, and those need to be computed separately
using the left side.

When d = 1, two autoregressive convolutions simplify to an LU decomposed
1 ⇥ 1 convolution. This indicates an important limitation: It cannot permute
channels. To alleviate this, we chain the emerging convolutions with an addi-
tional 1⇥ 1 convolution. Again, the individual convolutions may all be combined
into a single emerging convolution filter using the associativity of convolutions
(Equation 4.8). Conveniently, combining the 1⇥ 1 convolution with a square con-
volution does not introduce edge artifacts and can always be computed with the
right-hand side of Equation 4.8.

4.3.2 Periodic Convolutions
In some cases, data may be periodic or boundaries may contain roughly the
same values. In these cases it may be advantageous to use periodic convolutions,
for which we can derive direct expressions for the inverse and Jacobian deter-
minant. Furthermore, whereas the other proposed methods are approximations
to a convolutional layer, periodic convolutions do not need to be constrained in
any other way to compute their inverse. A disadvantage is that for many natural
images, periodicity is not a desirable inductive bias. Periodic convolutions also
have an analytical purpose: If an approximation such as an emerging convolu-
tion has similar performance to periodic convolutions, it is a positive indication
that the approximation is reasonable.

Periodic convolutional layers assume that boundaries wrap around. When com-
puted in the frequency domain, this alternative convolution has a tractable de-
terminant Jacobian and inverse. The method leverages the convolution theorem,

26 linear convolutional flows

which states that the Fourier transform of a convolution is given by the element-
wise product of the Fourier transformed signals. Specifically, the input and fil-
ter are transformed using the Discrete Fourier Transform (DFT) and multiplied
element-wise, after which the inverse DFT is taken. By considering the trans-
formation in the frequency domain, the computational complexity of the de-
terminant Jacobian and the inverse are considerably reduced. In contrast with
emerging convolutions, which are very specifically parametrized, the filters of
periodic convolutions are completely unconstrained.

Recall that a standard convolution layer in deep learning is conventionally im-
plemented as an aggregation of cross-correlations for every output channel. The
convolution layer with input x and filter w outputs the feature map z = w ?l x,
which is computed as:

zcout = Â
cin

wcout,cin ? xcin . (4.9)

Let F (·) denote the discrete Fourier transform and let F�1(·) denote the in-
verse discrete Fourier transform. The Fourier transform can be moved inside the
channel summation, since it is linear. Let ẑcout = F (zcout), ŵcout,cin = F (w⇤cout,cin

)
and x̂cin = F (xcin), which are indexed by frequencies u and v. Because a con-
volution differs from a cross-correlation by a time reversal for real signals, let
w⇤cout,cin

denote the reflection of filter wcout,cin in both spatial axes. Using these
definitions, each cross-correlation is written as an element-wise multiplication in
the frequency domain:

ẑcout = Â
cin

ŵcout,cin � x̂cin , (4.10)

The summation of multiplications can be reformulated as a matrix multiplica-
tion over the channel axes by viewing the output ẑ:,uv at frequency u, v as a
multiplication of the matrix Ŵuv = ŵ:,:,u,v and the input vector x̂:,uv:

ẑ:,uv = Ŵuvx̂:,uv. (4.11)

The matrix Ŵuv has dimensions ncout ⇥ ncin , the input x̂:,uv and output ẑ:,uv
are vectors with dimension ncin and ncout . The output in the original domain
zcout can simply be retrieved by taking the inverse Fourier transform, F�1(ẑcout).
The perspective of matrix multiplication in the frequency domain decouples the
convolution transformation (see Figure 4.7). Therefore, the log determinant of
a periodic convolution layer is equal to the sum of determinants of individual
frequency components:

log
����det

dz
dx

���� = log
����det

dẑ
dx̂

���� = Â
u,v

log
��det Ŵuv

�� . (4.12)

The determinant remains unchanged by the Fourier transform and its inverse,
since these are unitary transformations. The inverse operation requires an inver-
sion of the matrix Ŵuv for every frequency u, v:

x̂:,uv = Ŵ
�1
uv ẑ:,uv. (4.13)

The solution of x in the original domain is obtained by the inverse Fourier trans-
form, xcin = F�1(x̂cin), for every channel cin.

4.3 invertible convolutional flows 27

out 1
in 1

in 2

out 2

Figure 4.7: Visualization of a periodic 3 ⇥ 3 convolution layer in the frequency domain. The
input and output have height 3, width 3 and channels 2. The shape of the filter in the
frequency domain determined by the shape of the image, which is also 3 ⇥ 3 spatially in
this specific example. Left: the convolution filter transformed to the frequency domain
ŵ. Right: the matrix Ŵ in the frequency domain, which produces the equivalent result
on a vectorized input. The equivalent matrix in the frequency domain is partitioned. It
is important to note that the filters in the frequency domain are always padded to have
the resolution of the feature maps. This detail is not apparent from the figure because in
this example 3 ⇥ 3 feature maps are used as well as 3 ⇥ 3 filters.

In theory, a periodic convolution is not invertible if the determinant of any Ŵuv
is equal to zero. In practice the filter is initialized with a nonzero determinant.
Furthermore, the absolute determinant is maximized in the likelihood objective
(Equation 3.12), which optimizes the determinant away from zero.

Recall that a standard convolution layer is equivalent to a matrix multiplication
with a h w ncout ⇥ h w ncin matrix, where we let ncout = ncin for invertibility. The
Fourier transform decouples the transformation of the convolution layer at each
frequency, which divides the computation into h · w separate matrix multiplica-
tions with nc⇥ nc matrices. Therefore, the computational cost of the determinant
is reduced from O(h3 · w3 · n3

c) to O(h · w · n3
c) in the frequency domain, and

computation can be parallelized since the matrices are independent across fre-
quencies and independent of the data. Furthermore, the inverse matrices Ŵ

�1
uv

only need to be computed once after the model has converged, which reduces
the inverse convolution to an efficient matrix multiplication with computational
complexity2 O(h · w · n2

c).

4.3.3 Convolution Exponentials
It is difficult to parametrize a convolutional layer that has a tractable Jacobian de-
terminant and inverse, hence our previous proposed methods use a factorization
of autoregressive convolutions and periodic convolutions require that bound-
aries wrap around. However, any linear transformation can be turned into an
invertible transformation by taking its exponential. The linear transformation it-
self does not need to be invertible. As the main example we take the exponential
of a convolutional layer, which we name the convolution exponential. Advantages
of this method are that the transformation is not constrained and has the same
computational complexity for both the forward and inverse. A downside is that
multiple convolutional calls need to be performed to compute the multiple terms
in the exponential.

2 The inverse also incurs some overhead due to the Fourier transform of the feature maps which
corresponds to a computational complexity O(h · w · nc · log h w).

28 linear convolutional flows

Since a convolutional is linear, it can be expressed as a matrix multiplication
(section 4.2.1). For a convolution with a kernel w, there exists an associated
equivalent matrix using the matrix W such that w ? x and W · ~x are equivalent,
up to a reshaping operation. We define the convolution exponential:

z = w ?e x, (4.14)

for a kernel w and signal x as the output of the matrix exponential of the equiv-
alent matrix: ~z = exp(W) · ~x, where the difference between z and ~z is a vec-
torization or reshape operation that can be easily inverted. Notice that although
? is a linear operation with respect to w and x, the exponential operation ?e
is only linear with respect to x. Using the properties of the matrix exponential,
the inverse is given by (�w) ?e x, and the log Jacobian determinant is the trace
of W. For a 2D convolutional layer the trace is hw · Âc wc,c,my,mx given the 4D
kernel tensor w, where height is h, width is w, the spatial center of the kernel
is given by my, mx and c iterates over channels. For an example see Figure 4.5
where the exponential of the equivalent matrix of a convolution is depicted. In
contrast with a standard convolution, the convolution exponential is guaranteed
to be invertible, and computing the Jacobian determinant is cheap.

Algorithm 5 Implicit matrix exponential
Inputs: W, x
Output: z
let p x, z x
for i = 1, . . . , T do

p W · p/i
z z + p

end for

Algorithm 6 General linear exponential
Inputs: x, linear function L
Output: z
let p x, z x
for i = 1, . . . , T do

p L(p)/i
z z + p

end for

implicit iterative computation Due to the popularity of the matrix
exponential as a solutions to ODEs, numerous methods to compute the matrix
exponential with high numerical precision exist [6, 120]. However, these meth-
ods typically rely on storing the matrix W in memory, which is very expen-
sive for transformations such as convolutional layers. Instead, we solve the expo-
nential using matrix vector products W~x. The exponential matrix vector product
exp(W)~x can be computed implicitly using the power series, multiplied by any
vector ~x using only matrix-vector multiplications:

exp(W) ·~x = ~x+
W ·~x

1!
+

W
2 ·~x
2!

+ . . . =
•

Â
i=0

W
i ·~x
i!

, (4.15)

where the term W
2 · x can be expressed as two matrix vector multiplications

W(W · x). Further, computation from previous terms can be efficiently re-used

4.3 invertible convolutional flows 29

(a) Forward computation z = w ?e x.

(b) Reverse computation x = (�w) ?e z.

Figure 4.8: Visualization of the feature maps in the convolution exponential with the
edge filter w = [0.6, 0,�0.6]. Note that the notation w ?2 x simply means w ? (w ? x),
that is two subsequent convolutions on x. Similarly for any n the expression w ?n x =
w ? (w ?n�1 x). Best viewed electronically.

Figure 4.9: Upper bound of the norm of a term in the power series ||Wix||p/i! at iteration
i, relative to the size of the input ||x||p given a matrix norm.

as described in Algorithm 5. Using this fact, the convolution exponential can be
directly computed using the series:

w ?e x = x+
w ? x

1!
+

w ? (w ? x)
2!

+ . . . , (4.16)

which can be done efficiently by simply setting L(x) = w ? x in Algorithm 6. A
visual example of the implicit computation is presented in Figure 4.8.

power series convergence Even though the exponential can be solved
implicitly, it is uncertain how many terms of the series will need to be expanded
for accurate results. Moreover, it is also uncertain whether the series can be com-
puted with high numerical precision. The issue is that terms in W

i might get too
high for numerical precision before the factorial i! eventually grows larger. To
resolve these issues, we constrain the induced matrix norm of the linear trans-
formation. Given the p-norm on the matrix W, a theoretical upper bound for
the size of the terms in the power series can be computed using the inequality:
||Wi x||p ||W||ip||x||p. Hence, an upper bound for relative size of the norm
of a term at iteration i, is given by ||W||ip/i!. Notice that the factorial term in
the denominator causes the exponential series to converges very fast, which is
depicted in Figure 4.9.

30 linear convolutional flows

In our experiments we constrain W using spectral normalization [119, 58], which
constrains the `2 norm of the matrix (p = 2) and can be computed efficiently
for convolutional layers and standard linear layers. Even though the algorithm
approximates the `2 norm, in practice the bound is sufficiently close to pro-
duce convergence behaviour as shown in Figure 4.9. Moreover, the figure de-
picts worst-case behaviour given the norm, and typically the series converges far
more rapidly. In experiments we normalize the convolutional layer using a `2
coefficient of 0.9 and we find that expanding around 6 terms of the series is gen-
erally sufficient. An interesting byproduct is that the transformations that can
be learned by the exponential will be limited to linear ODEs that are Lipschitz
constraint. In cases where it is useful to be able to learn permutations over chan-
nels, this limitation can be relieved by combining the exponential with cheap
(Householder) 1⇥ 1 convolutional layers.

equivariance of general linear exponentials In the previous sec-
tion we generalized the exponential to convolutions and graph convolutions.
Although these convolutional layers themselves are equivariant transformations
[28, 36], it is unclear whether the exponentiation retains this property. In other
words: do exponentiation and equivariance commute?

Equivariance under K is defined as [K, M] = KM�MK = 0 where M is a general
transformation that maps one layer of the neural network to the next layer, which
is in this case a convolutional layer. It states that first performing the map M and
then the symmetry transform K is equal to first transforming with K and then
with M, or concisely KM = MK. Although the symmetry transformation in the
input layer and the activation layer are the same (this is less general than the
usual equivariance constraint which is of the form K1M = MK2), this definition
is however still very general and encompasses group convolutions [28, 36] and
permutation equivariant graph convolutions [114].

Suppose that M is a dimensionality preserving linear transformation. If M is
equivariant with respect to K such that [K, M] = 0, then we claim that the ex-
ponential of M is also equivariant with respect to K, meaning that [K, exp M] =
0.

To see that this is true, recall that [K, M] = 0 and as a result:

[K, MM] = KMM�MMK = KMM�MKM + MKM�MMK
= [K, M]M + M[K, M] = 0.

(4.17)

From symmetry of the operator [..., ...] and induction it follows that [Kn, Mm] = 0
for positive powers n, m. Moreover, any linear combination of any collection of
powers commutes as well. To show that the exponential is equivariant, we define
expn M as the truncated exponential taking only the first n terms of the series.
Then [K, exp M] = [K, limn!• expn M] = limn!•[K, expn M] = 0, because each
[K, expn M] = 0 for any positive integer n and [..., ...] is continuous and thus
preserves limits. This answers our question that indeed [K, exp M] = 0 and thus
the exponentiation of M is also equivariant. For the interested reader, this result
can also be more directly obtained from the relationship between Lie algebras
and Lie groups.

4.4 application : convolutional sylvester flows 31

4.4 application : convolutional sylvester flows
This section develops an application of convolution exponentials: they allow the
construction of Convolutional Sylvester Flows. Sylvester Flows are normalizing
flows with a specific type of mixing layer built into the framework. In this section
we will introduce Convolutional Sylvester Flows, a convolutional weight sharing
extension of Sylvester Flows [15]. The main difficulty in the original framework
is that matrix decompositions for convolutional layers are difficult and expensive
to invert, and thus complicated to work with.

In fact, a linear convolutional flow will be needed that is cheap to compute in the
forward and the inverse direction. This rules out Emerging Convolutions since
their inverse is iterative. Periodic Convolutions are also not practical as we may
not want to assume that boundaries wrap around. However, the Convolution
Exponential that we introduced in the previous section can be perfectly applied
to this problem, since its inverse and forward have the same computational com-
plexity, which can be reasonably used during training.

Before dropping in the convolution exponential, the Sylvester framework needs
to be extended to allow for such an operation. Sylvester Normalizing Flows
(SNF) [15] takes advantage of the Sylvester identity det (I + AB) = det (I + BA)
that allows to calculate a determinant of the transformation z = x+ Ah(Bx+ b)
in an efficient manner. Specifically, Berg et al. [15] parametrize A and B using a
composition of a shared orthogonal matrix Q and triangular matrices R, R̃ such
that A = Q

T
R̃ and B = RQ so that:

z = x+ Q
T

R̃h(RQx+ b), (4.18)

However, the original Sylvester flows operate on representations using fully con-
nected layers, and not convolutional ones. Sylvester flows rely on methods to
efficiently construct an orthogonal Q for fully connected layers. However, it is
difficult and currently unknown how to create such an orthogonal transforma-
tions with convolutional weights.

generalized sylvester flows First, we extend Sylvester flows which we
call Generalized Sylvester flows. This extension addresses a flexibility issue in the
original Sylvester flows that would impede their performance when combined
with convolutional layers: Sylvester flows do not expand in dimensions. The ex-
tension encompasses the original Sylvester flows as a special case and is written
as:

z = x+ M
�1 fAR (Mx) , (4.19)

where R̃ h R is been replaced by a general autoregressive function fAR and the
orthogonal matrix Q is relaxed to be any invertible matrix M. This new formu-
lation also connects Sylvester Flows to Autoregressive Flows [90, 127]: These
autoregressive flows rely on simple linear mixing such as reversal of channels
(Q is a simple fixed permutation matrix) whereas Sylvester Flows learn an or-
thogonal matrix Q using Householder reflections. On the other hand, the orig-
inal Sylvester flows are limited to autoregressive transformations of the form
R̃h(Rx), whereas the autoregressive flows have a more general formulation. Im-
portantly, the autoregressive flows may expand in dimensions whereas Sylvester
flows fix R to be square and thus preserve dimensionality.

32 linear convolutional flows

The determinant of this transformation can be computed using:

det
⇣dz

dx

⌘
= det

⇣
I + J fAR(Mx)MM

�1
⌘
= det

�
I + J fAR(Mx)

�
, (4.20)

where J fAR(Mx) denotes the Jacobian of fAR, which is triangular because fAR is
autoregressive. We can show that 1) generalized Sylvester flows are invertible
and 2) that they generalize the original Sylvester flows.

generalized sylvester flows are invertible Let M be an invertible
matrix. Let fAR : Rd ! Rd be a smooth autoregressive function (i.e., ∂ fAR(x)i

∂xj
= 0

if j > i). Additionally, constrain ∂ fAR(x)i
∂xi

> �1. Then we claim that the transfor-
mation given by Equation 4.19 is invertible.

To see this, observe that the vectors of matrix M form a basis change for x.
Since the basis change is invertible, it suffices to show that the transformation in
the new basis is invertible. Multiplying Equation 4.19 by M from the left gives:

Mz|{z}
b

= Mx|{z}
a

+ fAR
�

Mx|{z}
a

�
, (4.21)

The transformation b = a+ fAR(a) combines an identity function with an au-
toregressive function for which the diagonal of the Jacobian is strictly larger than
�1. As a result, the entire transformation from a to b has a triangular Jacobian
with diagonal values strictly larger than 0 and is thus invertible (for a more
detailed treatment see [128]). Since the transformation in the new basis from a
to b is invertible, the transformation from x to z given in (4.19) is indeed also
invertible.

generalized sylvester flows are a generalization Secondly, we
claim that the original Sylvester flow z = x + Q

T
R̃h(RQx + b), is a special case

of the generalized Sylvester flow (4.19).

To see this, let W = Q and let fAR(x) = R̃h(Rx + b). Indeed, any orthogonal
matrix is invertible, so Q can be modelled by W. Also, note that R and R̃ are
upper triangular and h is an elementwise function. The matrix product of the
Jacobians is triangular, and thus R̃h(Rx + b) has a triangular Jacobian and is
therefore autoregressive. Hence, it can be modelled by fAR. Further, note that
[15] bound RiiR̃ii > �1

||h0||• , which ensures that the constraint ∂ fAR(x)i
∂xi

> �1 is
satisfied. Hence, z = x + Q

T
R̃h(RQx + b) can be written as Equation 4.19 when

writing fAR(x) = R̃h(Rx + b) and M = Q without violating any constraints on
M and fAR, and is therefore a special case.

In summary, 1) generalized Sylvester Flow are invertible and 2) the original
Sylvester Flows can be modelled as a special case by this new transformation.
The generalization admits the use of any invertible linear transformation for M,
such as a convolution exponential. In addition, it allows the use of general au-
toregressive functions.

remark 1 : the generalization originates from fAR not W The in-
creased expressitivity originates from fAR and not from W. To see this, suppose
we only replace Q and Q

T in the original formulation by W and W
�1. Consider

4.4 application : convolutional sylvester flows 33

that any real square matrix W may be decomposed as QWRW. Hence, compo-
sitions W

�1
R̃ and RW can be written as Q

T
WR̃

0 and R
0
QW, where R̃

0 = R
�1
W R̃

and R
0 = RRW which are both still upper triangular. Hence, we have shown

that even if the orthogonal matrix Q is replaced by an invertible matrix W, the
transformation can still be written in terms of a shared orthogonal matrix QW
and upper triangular matrices R̃

0 and R
0. Therefore, the source of the increased

expressitivity is not the replacement of Q by W.

The reason that we have still written an invertible matrix W is that it allows more
freedom when modelling using the convolution exponential (a QR decomposi-
tion for convolutions can generally not be expressed in terms of convolutions).
In fully connected settings W can safely be constrained to be orthogonal.

remark 2 : alternative perspective Generalized Sylvester flows can
also be viewed from a different perspective as a composition of three invertible
transformations: a basis change, a residual invertible function and the inverse
basis change. Specifically, let f be an invertible function that can be written as
f (x) = x + g(x) (for instance g can be the autoregressive function fAR from
above). Now apply a linear basis change W on x, and the inverse on the out-
put f (x). Then W

�1 f (Wx) = W
�1

Wx + W
�1g(Wx) = x + W

�1g(Wx). In other
words, because the basis change is linear it distributes over addition and cancels
in the identity connection, which results in a residual transformation.

inverting sylvester flows In this section we show that Sylvester Flows
can be solved efficiently using fixed-point iteration. This technique applies to
the original SNFs as well as our generalized version. Recall that we require that
the diagonal values of J fAR are greater than �1. If we additionally constrain
the maximum of this diagonal to +1, then the J fAR will always have diagonal
elements with a magnitude smaller than one, or formally |J fAR,ii(x)| < 1 for
all i and x. Using this restriction, the inverse of Sylvester flows can be easily
computed using a fixed point iteration. Firstly, compute b = Wz and let a(0) = b.
At this point the triangular system b = a+ fAR(a) can be solved for a using the
fixed-point iteration:

a(t) = b� fAR(a
(t�1)). (4.22)

Subsequently, x can be obtained by computing x = W
�1a. This procedure is

valid both for our method and the original Sylvester flows. Although the fixed-
point iteration is identical to [10], the reason that Sylvester flows converge is be-
cause the product of triangular matrices tends to zero, when the magnitudes of
the diagonal values are smaller than one and the other values are bounded. The
entire function fAR does not need to be a contraction. For a more thorough ex-
planation see Appendix A.3. Solving an autoregressive inverse using fixed-point
iteration is generally faster than solving the system iteratively [148, 165].

Specifically, we choose that fAR(a) = g · s2(a)� tanh
�
a� s1(a) + t1(a)

�
+ t2(a),

where s1, s2, t1, t2 are strictly autoregressive functions parametrized by neural net-
works with a shared representation. Also s1, s2 utilize a final tanh function so
that their output is in (�1, 1) and 0 < g < 1, which we set to 0.5. This trans-
formation is somewhat similar to the construction of the original Sylvester flows
[15], with the important difference that s1, s2, t1, t2 can now be modelled by any
strictly autoregressive function.

34 linear convolutional flows

convolutional sylvester flows Generalized Sylvester flows and Con-
volution Exponentials can now be combined to obtain Convolutional Sylvester
Flows (CSFs). In Equation 4.19 we let W = exp(W)Q, where W is the equivalent
matrix of a convolution with filter w. In addition Q is an orthogonal 1⇥ 1 con-
volution modeled by Householder reflections [155, 93] to learn permutations of
channels. Concisely this transformation is:

z = x+ Q
T �(�w) ?e fAR (w ?e Qx)

�
, (4.23)

where the function fAR is modelled using autoregressive convolutions [53, 90]
with the construction discussed in the previous section. For this transformation
the determinant det

⇣
dz
dx

⌘
= det

�
I + J fAR (w ?e Qx)

�
, which is straightforward

to compute as J fAR is triangular.

4.5 related work
Normalizing flows [151, 133] rely heavily on triangular maps. Normalizing flows
are particularly attractive because they admit exact likelihood estimation and can
be designed for fast sampling.

Linear flows are used to mix information in-between triangular maps. Existing
transformations in literature are permutations [38], orthogonal transformations
[155, 56], 1 ⇥ 1 convolutions [93] and low-rank Woodbury transformations [110].
After the release of our initial publication, periodic convolutions have also been
independently discovered by [45, 88]. From these transformations only periodic
and emerging convolutions have a convolutional parametrization. However, pe-
riodicity is generally not a good inductive bias for images, and since emerging
convolutions are autoregressive, their inverse requires the solution to an iterative
problem. Notice that in [56] utilize the matrix exponential to construct orthogo-
nal transformations. However, their method cannot be utilized for convolutional
transformations since they compute the exponential matrix explicitly. Our linear
exponential can also be seen as a linear neural ODE [24], but the methods are
used for different purposes and are computed differently. In [106] approximately
orthogonal convolutional layers are learned to prevent Lipschitz attenuation, but
these cannot be straightforwardly applied to normalizing flows without stricter
guarantees on the approximation.

There exist many triangular flows in the literature such as coupling layers [37,
38], autoregressive flows [53, 90, 127, 24, 31, 147, 122], spline flows [42, 41] and
polynomial flows [81]. Other flows such as Sylvester Flows [15] and Residual
Flows [10, 23] learn invertible residual transformations. Sylvester Flows ensure
invertibility by orthogonal basis changes and constraints on triangular matrices.
Our interpretation connects Sylvester Flows to more general triangular functions,
such as the ones described above. Residual Flows ensure invertibility by con-
straining the Lipschitz continuity of the residual function. A disadvantage of
residual flows is that computing the log determinant is not exact and the power
series converges at a slower rate than the exponential.

4.6 experiments
In this section linear convolutional flows in two different types of flow mod-
els are tested. The first experiment tests the performance of coupling-based
flows with linear convolutional flows as mixing layers. The second experiment

4.6 experiments 35

Table 4.3: Comparison of 1⇥ 1, periodic and emerging convolutions on the galaxy im-
ages dataset. Performance is measured in bits per dimension. Results are obtained by
running 3 times with different random seeds, ± reports standard deviation.

Galaxy

1⇥ 1 (Glow) 2.03 ±0.026
Periodic 3⇥ 3 1.98 ±0.003
Emerging 3⇥ 3 1.98 ±0.007

Figure 4.10: 100 samples from a generative flow model utilizing periodic convolutions,
trained on the galaxy images dataset.

tests flow models that have mixing built-in such as the Convolutional Sylvester
Flows.

4.6.1 Linear Convolutional Flows as Mixing Layers
galaxy images It is unclear how restrictive the decomposition of emerging
convolutions are. For that reason, in this first experiment they are compared
to periodic convolutions which are the closest to a standard convolution. Since
periodic convolutions assume that image boundaries are connected, they are
suited for data where pixels along the boundaries are roughly the same, or are
actually connected. An example of such data is pictures taken in space, as they
tend to contain some scattered light sources, and boundaries are mostly dark.
Both methods are also compared to 1 ⇥ 1 convolutions. Ackermann et al. [1]
collected a small classification dataset of galaxies with images of merging and
non-merging galaxies. On the non-merging galaxy images, we compare the bits
per dimension of three models, constrained by the same parameter budget: 1⇥ 1
convolutions (Glow [93]), 3⇥ 3 Periodic and 3⇥ 3 Emerging convolutions (see
Table 4.3). Experiments show that both our periodic and emerging convolutions
outperform 1 ⇥ 1 convolutions, and their performance is less sensitive to ini-
tialization. Samples of the model using periodic convolutions are depicted in
Figure 4.10. It is interesting that the two methods perform equally, it means that
the restrictions imposed by factorization are equivalent in performance to the
restriction to wrap around boundaries, on this dataset. It remains unknown how
much these methods are restricted compared to a standard convolution, simply
because it is too expensive to optimize at an image scale.

36 linear convolutional flows

Table 4.4: Generative modelling performance with a generative flow (using a newer
architecture) for different mixing layers. Results computed using log2 averaged over di-
mensions, i.e. bits per dimension. Results were obtained by re-implementing the relevant
method in the same framework for a fair comparison. Models have an approximately
equal parameter budget.

Mixing type
CIFAR10 Runtime

-ELBO -IWBO Training Sampling

1⇥ 1 [93] 3.285 ± 0.008 3.266 ± 0.007 100% 100%
Woodbury [110] 3.247 ± 0.003 3.228 ± 0.003 133% 135%
Emerging (ours) 3.245 ± 0.002 3.226 ± 0.002 103% 1224%
Convolution Exponential (ours) 3.237 ± 0.002 3.218 ± 0.003 105% 116%

Table 4.5: Invertible Residual Networks as density model. Results for residual flows were
obtained by running the residual block code from [23] in our framework.

Model
Unif. deq. Var. deq.

-ELBO -IWBO -ELBO -IWBO

Baseline Coupling Flow 3.38 3.35 3.27 3.25
Residual Block Flows 3.37 - 3.26 -

with equal memory budget 3.44 - 3.35 -
Convolutional Sylvester Flows 3.32 3.29 3.21 3.19

cifar10 Further, the performance of emerging convolutions and convolution
exponentials are tested on a more challenging dataset consisting of 32 by 32
natural images, CIFAR10 [103]. In this experiment different linear mixing layers
are used in-between affine coupling layers. For a fair comparison, all the meth-
ods are implemented in the same framework, and are optimized using the same
procedure. For details regarding architecture and optimization see Appendix A.
Emerging convolutions and convolution exponentials are compared to mixing
layers from literature: 1 ⇥ 1 convolutions [93], and Woodbury transformations
[110]. It is worth noting the Woodbury transformations were published at a later
point in time than emerging convolutions. The number of intermediate chan-
nels in the coupling layers are adjusted slightly such that each method has an
approximately equal parameter budget.

In the experiment, both the expected variational lowerbound (ELBO) and impor-
tance weighted lowerbound (IWBO) are presented, where the latter is a closer
approximation to the true negative log-likelihood of the model. The experiment
shows that emerging convolutions outperform 1 ⇥ 1 convolutions, which where
at the moment of their release the best performing mixing layer. Interestingly, the
newer Woodbury transformations perform very similarly to emerging convolu-
tions and are faster to sample from, but are more expensive computationally dur-
ing training. Arguably, the best performing mixing layer is the convolution expo-
nential, which has the best modelling performance and remains relatively cheap
to compute (only emerging convolutions are slightly cheaper in training).

4.6 experiments 37

Figure 4.11: 64 samples from a the Convolutional Sylvester flow model trained on CI-
FAR10.

Table 4.6: Ablation studies: a study of the effect of the generalization, and the basis
change.

Model
CIFAR10

-ELBO NLL

Conv. Sylvester 3.21 3.19
without fAR 3.44 3.42
without basis 3.27 3.25

4.6.2 Convolutional Sylvester Flows
Since Sylvester Flows are designed to have a residual connection, it is natural
to compare their performance to invertible residual networks [10] which were
improved to have unbiased log determinant estimates, and subsequently named
residual flows [23]. For a fair comparison, we run the code from [23] inside our
framework using the same architecture and number of optimizer steps. For refer-
ence we also train a typical coupling-based flow with the same architecture. For
more details please refer to Appendix A. The results are presented in Table 4.5.
Note that a direct comparison to the results in Table 4.4 may not be fair, as the
network architectures are structurally different. The results show that Sylvester
flows considerably outperform residual networks in image density estimation.
Additionally, the memory footprint during training of residual blocks is roughly
twice of the other models, due to the the Jacobian determinant estimation. When
correcting for this, an equal memory budget result is even outperformed by the
baseline coupling flow. We hypothesize that this is caused by the strict Lipschitz
continuity that has to be enforced for residual flows. For samples generated by
the model see Figure 4.11. The ablation study in Table 4.6 shows the effect of
non-generalized Sylvester Flows, and the effect of not doing the basis change.
Since the original Sylvester Flows [15] are not convolutional, it is difficult to
directly compare these methods. The ablation result without the generalization
using fAR, is the closest to a convolutional interpretation of the original Sylvester
flows, although it already has the added benefit of the exponential basis change.
Even so, our Convolutional Sylvester flows considerably outperform this non-
generalized Sylvester flow.

38 linear convolutional flows

4.7 conclusion
In this chapter, we have introduced three methods to construct invertible con-
volutional layers for which inverses and Jacobian determinants are tractable:
Emerging convolutions are composed from two autoregressive convolutional lay-
ers. Periodic convolutions have a computable inverse via their Fourier transform.
Finally, the convolution exponential uses the matrix exponential, for which the
inverse has the same computational complexity.

Each option has its own advantages and disadvantages. Depending on the task,
different options may be advantageous. Periodic convolutions are most faithful
to a standard convolutional layer. Unfortunately, periodic boundaries are typi-
cally undesired in image processing. Nevertheless, they are a useful tool to ana-
lyze the performance of the other methods. Further, emerging convolutions are
fast both in the forward and their Jacobian determinant computation. However,
their inverse is much more expensive, and it is unclear how much flexibility
is lost by decomposing into autoregressive convolutions. Finally, the convolu-
tion exponential is a new transformation, it may be more or less flexible, which
could also depend on what type of transformation the dataset requires. They
require more convolutional calls than emerging convolutions in the forward, but
an equal amount for their inverse. Hence, the convolution exponential is the only
suited candidate as the mixing layer to extend Sylvester flows to be convolutional
for natural images.

5 | F L O W S F O R D I S C R E T E VA R I A B L E S

Based on the publications:
Integer Discrete Flows and Lossless Compression [73]

Learning Discrete Distributions by Dequantization [70]
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions [72]

5.1 introduction
Many sources of high-dimensional data are discrete, for example images, text
and audio. However, normalizing flows typically model a continuous distribu-
tion. When continuous distribution are naively fitted with maximum likelihood
on discrete data, the likelihood can grow arbitrarily large, without meaningfully
modeling the data. To address this issue, there are broadly two solutions that
have been proposed: (1) Dequantize the discrete data to a continuous space.
Then, standard normalizing flows can be used to fit the lifted data via variational
inference. (2) Modify the flow to operate on the discrete space directly.

For ordinal data (such as natural images), the dequantization approach has been
implemented by adding noise in a unit interval around the discrete value (see
Figure 5.1). First this noise was fixed uniform noise [159, 153] and later it was
shown that learning this noise as a variational distribution [65] improves likeli-
hoods significantly. In this work we extend dequantization for categorical data,
using a technique we name Argmax Flows. Whereas ordinal dequantization can
be seen as a probabilistic inverse of a rounding function, argmax flows use the
probabilistic inverse of an argmax function.

For categorical data (such as text), Discrete Flows [158] operate directly on the
discrete space. However, flows that operate on discrete spaces suffer from gradi-
ent issues during optimization, because they need to differentiate through func-
tions such as an argmax. In this work we extend discrete flows to integer-valued
data with a method named Integer Discrete Flows (IDFs). Even though IDFs
also suffer from gradient issues to some degree, they can still be successfully
optimized to have competitive performance. Furthermore, in contrast to their or-
dinal dequantization counterparts, we show that IDFs can be straightforwardly
applied to lossless compression of data.

In summary, this chapter introduces two new methods: Firstly, Integer Discrete
Flows, a flow model that operates on integer values directly and outperforms
other methods in lossless compression. Secondly, we introduce Argmax Flows, a
dequantization approach for categorical variables. The method outperforms com-
peting methods and allows direct training of normalizing flows on categorical
data. Our contributions complete Table 5.1 which shows the different modelling
choices for flow approaches on discrete data.

5.2 related work
Normalizing Flows typically learn a continuous distribution and dequantization
is required to train these methods on ordinal data such as images. A large body
of work is dedicated to building more expressive continuous normalizing flows

39

40 flows for discrete variables

Table 5.1: Overview of the types of normalizing flows on discrete data. Data can be
ordinal or categorical. The model can dequantize to operate on a continuous space, or
operate on discrete spaces directly.

Ordinal data Categorical data

Continuous Flow Dequantization [159, 153, 65] Argmax Flows (ours)

Discrete Flow Integer Discrete Flows (ours) Discrete Flows [158]

0 1 2
(a) Pdata(x)

0 1 2
(b) uniform q(v|x)

0 1 2
(c) flexible q(v|x)

Figure 5.1: Example of dequantization for an ordinal distribution. A discrete distribution
Pdata(x) is dequantized by q(v|x), where x = quantize(v). In this example the continu-
ous density model p(v) is relatively simple, and two dequantization distributions q(v|x)
are considered: one is simple and the other is flexible. Suppose that the dequantization
distribution q(v|x) is uniform. Then p(v) is encouraged to have relatively high uncer-
tainty under variational inference. In contrast, when the dequantization distribution
q(v|x) is flexible it can match p(v) which considerably improves the tightness of the
variational bound.

[38, 53, 90, 127, 24, 147, 130]. To learn ordinal discrete distributions with nor-
malizing flows, adding uniform noise in-between ordinal classes was proposed
in [159] and later theoretically justified in [153]. An extension for more pow-
erful dequantization based on variational inference was proposed in [65], and
connected to autoregressive models in [122]. Dequantization for binary variables
was proposed in [166]. Tran et al. [158] propose invertible transformations for
categorical variables directly. However, these methods can be difficult to train
because of gradient bias and results on images have thus far not been demon-
strated. In addition flows for ordinal discrete data (integers) have been further
explored in [14]. In other works, VAEs have been adapted to learn a normaliz-
ing flow for the latent space [173, 108]. However, these approaches typically still
utilize an argmax heuristic to sample, even though this is not the distribution
specified during training.

Other likelihood-based models such as PixelCNNs [162] utilize a decomposition
of conditional probability distributions. However, this decomposition assumes
an order on pixels which may not reflect the actual generative process. Further-
more, drawing samples (and decoding) is generally computationally expensive.
VAEs can be sued for lossless compression with deterministic encoders [117]
and through bits-back coding. However, the performance of this approach is
bounded by the variational lowerbound. Moreover, in bits back coding, a sin-
gle data example can be inefficient to compress and the extra bits should be
random, which is not the case in practice and may also lead to coding inefficien-
cies [157]. A non-likelihood based approach is Generative Adversarial Networks
[57], which can generate high-quality images. However, since GANs do not opti-
mize for likelihood, which is directly connected to the expected number of bits
in a message, they are not directly applicable to lossless compression.

5.3 integer discrete flows 41

…
IDF Coder

Figure 5.2: Overview of IDF based lossless compression. An image x is transformed to
a latent representation z with a tractable distribution. An entropy encoder takes z and
pZ as input, and produces a bitstream c. To obtain x, the decoder uses pZ and c to
reconstruct z. Subsequently, z is mapped to x using the inverse of the IDF.

In lossless compression literature, numerous reversible integer to integer trans-
forms have been proposed [2, 34, 20, 21]. Specifically, lossless JPEG2000 uses a
reversible integer wavelet transform [149]. However, because these transforma-
tions are largely hand-designed, they are difficult to tune for real-world data,
which may require complicated nonlinear transformations.

5.3 integer discrete flows
This section introduces a discrete flows that operates on integers: Integer Dis-
crete Flows (IDFs). IDFs are bijective integer maps that can represent rich trans-
formations. IDFs can be used to learn the probability mass function on (high-
dimensional) ordinal discrete data. Consider an integer-valued observation x 2
Zd, a prior distribution pZ with support on Zd, and a bijective map f : Zd ! Zd

defined by an IDF. The model distribution pX can then be expressed as:

pX(x) = pZ(z), z = f (x). (5.1)

Note that in contrast to Equation 3.12, there is no need for re-normalization using
the Jacobian determinant for discrete flows. Deep IDFs are obtained by stacking
multiple IDF layers { fl}L

l=1, which are guaranteed to be bijective if the individual
maps fl are all bijective. For an individual map to be bijective, it must be one-
to-one and onto. Consider the bijective map f : Z ! 2Z, x 7! 2x. Although,
this map is a bijection, it requires us to keep track of the codomain of f , which
is impracticable in the case of many dimensions and multiple layers. Instead,
we design layers to be bijective maps from Zd to Zd, which ensures that the
composition of layers and its inverse is closed on Zd. To draw a sample from pX,
one can sample z ⇠ pZ and then compute x = g(z) = f�1(z).

5.3.1 Integer Discrete Coupling
As a building block for IDFs, we introduce integer discrete coupling layers. These
are invertible and the set Zd is closed under their transformations. Let [xa,xb] =
x 2 Zd be an input of the layer. The output z = [za, zb] is defined as a copy
za = xa, and a transformation zb = xb + bt(xa)e, where b·e denotes a nearest
rounding operation and t is a neural network (Figure 5.3).

Notice the multiplication operation in standard coupling is not used in integer
discrete coupling, because it does not meet our requirement that the image of the
transformations is equal to Z. It may seem disadvantageous that our model only
uses translation, also known as additive coupling, however, large-scale continu-

42 flows for discrete variables

Figure 5.3: Forward computation of an integer discrete coupling layer. The input is split
in two parts. The output consists of a copy of the first part, and a conditional transfor-
mation of the second part. The inverse of the coupling layer is computed by inverting
the conditional transformation.

Figure 5.4: The discretized logistic distribution. The shaded area sums up to the proba-
bility mass.

ous flow models in the literature tend to use additive coupling instead of affine
coupling [93].

In contrast to existing coupling layers, the input is split in 75%–25% parts for xa
and xb, respectively. As a consequence, rounding is applied to fewer dimensions,
which results in less gradient bias. In addition, the transformation is richer, be-
cause it is conditioned on more dimensions. Empirically we found this results in
better performance.

backpropagation through rounding operations As shown in Fig-
ure 5.3, a coupling layer in IDF requires a rounding operation (b·e) on the pre-
dicted translation. Since the rounding operation is effectively a step function, its
gradient is zero almost everywhere. As a consequence, the rounding operation
is inherently incompatible with gradient based learning methods. In order to
backpropagate through the rounding operations, we make use of the Straight
Through Estimator (STE) [13]. In short, the STE ignores the rounding operation
during back-propagation, which is equivalent to redefining the gradient of the
rounding operation as follows:

rxbxe ⌘ I. (5.2)

5.3.2 Discrete Base Distribution
In flow based models typically a simple distribution pZ(·) is imposed on z. In
IDFs, the prior pZ(·) is a factored discretized logistic distribution (DLogistic)
[90, 134]. The discretized logistic captures the inductive bias that values close
together are related, which is well-suited for ordinal data.

The probability mass DLogistic(z|µ, s) for an integer z 2 Z, mean µ, and scale
s is defined as the density assigned to the interval [z � 1

2 , z + 1
2] by the proba-

5.3 integer discrete flows 43

bility density function of Logistic(µ, s) (see Figure 5.4). This can be efficiently
computed by evaluating the cumulative distribution function twice:

DLogistic(z|µ, s) =
Z z+ 1

2

z� 1
2

Logistic(z0|µ, s)dz0

= s

z + 1

2 � µ

s

!
� s

z� 1

2 � µ

s

!
,

(5.3)

where s(·) denotes the sigmoid, the cumulative distribution function of a stan-
dard Logistic. In large-scale flow architecture, a layer named ‘factor-out’ is gen-
erally also used [38, 93]. After the application of several coupling layers, these
layers factor out a subset of the dimensions and directly model them. IDFs also
utilize these factor-out layers, and in this case the mean µ and scale s of the
DLogistic are conditioned on the subset of data that is not factored out. That is,
the input to the lth factor-out layer is split into zl and yl . The conditional distri-
bution on zl,i is then given as DLogistic(zl,i|µ(yl)i, s(yl)i), where µ(·) and s(·)
are parametrized as neural networks.

discrete mixture distributions The discretized logistic distribution is
unimodal and therefore limited in complexity. With a marginal increase in com-
putational cost, we increase the flexibility of the latent prior on zL by extending
it to a mixture of K logistic distributions [134]:

p(z|µ, s,⇡) =
K

Â
k

pk · DLogistic(z|µk, sk). (5.4)

Note that as K ! •, the mixture distribution can model arbitrary univariate
discrete distributions. In practice, we find that a limited number of mixtures
(K = 5) is usually sufficient for image density modelling tasks.

5.3.3 Lossless Compression with a IDFs
Lossless compression is an essential technique to limit the size of represen-
tations without destroying information for discrete data. Methods for lossless
compression require i) a statistical model of the source, and ii) a mapping from
source symbols to bit streams. The theoretical compression limit of a data dis-
tribution D is its entropy H[D] = �Ex⇠D [logD(x)]. However, as the data
distribution is typically unknown, instead data is compressed using a model
pX for the data for which the theoretical encoding cost is the cross entropy
CE[D|pX] = �Ex⇠D [log pX(x)]. For logarithms in base two, these quantities
are measured in bits. For natural logarithms the quantities are in nats. These
quantities are related in the following way:

0 H[D]| {z }
optimal

 CE[D|pX]| {z }
theoretical cost with model

⇡ Ex⇠D [|c(x, pX)|]| {z }
actual code size

, (5.5)

where c(x, pX) denotes an encoder that produces an actual bitstream, and | · |
produces the length of that sequence in bits. The encoding c(x, pX) introduces a
slight additional overhead due to the coding method. For that reason, one might
expect the last approximation (⇡) to instead be an inequality (). In fact, for well-
calibrated pX this is almost always the case and the coding can be thought of as
adding a slight additional additional cost. There is however a rare theoretical

44 flows for discrete variables

possibility that the rounding of probabilities in c might produce a better model
than pX by accident, which could mean that Ex⇠D [c(x, pX)] < CE[D|pX], hence
the approximation.

There are several entropy coding algorithms such as the simple Huffman coding,
arithmetic coding or rANS [40]. These methods all have in common that their
encoder requires a variable to encode x and a distribution pX to denote the like-
lihood of symbols. However, without careful consideration for high-dimensional
x, encoding and decoding require exponential time.

avoiding exponential coding time with discrete flows A naive
implementation of the encoding of x 2 {0, 1, . . . , 255}d for a d-dimensional 8-bit
image would first require creating a table with all 256d possible probabilities that
pX(x) can take. Even for small 32⇥ 32 images like in CIFAR10, this is far too
large be able to compute and store. However, high-dimensional variables can be
encoded time-efficiently if they are independent in pX. Then, the coding time is
O(256) for a single dimension which scales linearly to O(d · 256) for multiple
dimensions.

This is where the specific structure of discrete flows is important. Discrete flows
provide a map f from x to z so that pX(x) = pZ(z) where the distribution in
pZ are independent over dimensions. Thus, instead of encoding x directly using
pX, data is transformed by the flow f and then encoded efficiently using pZ.
To decode, the decoder uses the bitstream and pZ to decode z which is then
converted to x by using the reverse of the flow g = f�1. Note that encoding z
instead of x does not change the theoretical cost of encoding with the model
since:

CE[D|pX] = �Ex⇠D [log pX(x)] = �Ex⇠D [log pZ(f (x))] = CE[f (D)|pZ], (5.6)

but it does ensure that coding is time-efficient because pZ is independent over
dimensions in z. Since f is invertible no information about x is lost and there-
fore IDFs are a practical and natural model to compress images using lossless
compression.

In rare cases, the compressed file may be larger than the original. Therefore,
following established practice in compression algorithms, we utilize an escape bit.
That is, the encoder will decide whether to encode the message or save it in raw
format and encode that decision into the first bit. The added cost of this single
bit on an entire image is negligible.

In summary, to compress using an IDF, the data x is mapped by f : x 7! z.
Subsequently, z is encoded under the distribution pZ(z) to a bitstream c using
an entropy encoder. Finally, in order to decode a bitstream c, an entropy encoder
uses pZ(z) to obtain z. and the original image is obtained by using the map
f�1 : z 7! x, i.e., the inverse IDF. See Figure 5.2 for a graphical depiction of this
process.

5.4 dequantization as a latent variable model
Although discrete flows are a natural model for lossless compression, their im-
plementation is limited by the discrete invertible transformations that can be
learned. This introduces further difficulties, because these transformations often

5.5 argmax flows 45

involve non-differentiable operations such as rounding or taking an argmax. An
alternative is to dequantize the data, meaning that discrete data is transformed
to a continuous variable by adding continuous noise. This section re-frames de-
quantization as a latent variable model, which makes it possible to apply the
concept to new types of data.

Frequently, a discrete distribution models a proxy of a continuous variable in
the physical world. For instance, a digital photograph of an observed scene rep-
resents the light that is reflected from observed objects, quantized to a certain
precision. In other words, we can consider a latent variable model where contin-
uous latent variables v 2 RD correspond to a continuous representation of the
world and observable discrete variables x are measured quantities. This suggests
the following model:

Pmodel(x) =
Z

P(x|v)pq(v)dv, (5.7)

where P(x|v) is an indicator function of v being contained in a volume B(x) ✓
RD, namely, P(x|v) = 1[v 2 B(x)], and pq(v) is a continuous distribution on the
latent variable v, which may be modeled using any standard normalizing flow.
We refer to P(x|v) as a quantizer. Note that in principle the volumes B can be
constructed to induce any type of partition of a volume space, where care should
be taken that B for different x do not overlap. When we set B(x) = {x+ u : u 2
[0, 1)D}, we recover dequantization for ordinal variables on hypercubes as used
in [153, 65]. Another way to view these hypercubes is to notice that x = round(v)
for all v 2 B(x) given any x.

Calculating the integral in (5.7) is troublesome, and thus, learning is infeasible es-
pecially in high dimensional cases. Therefore, in order to alleviate this issue, one
can resort to variational inference and introduce q(v|x), a dequantizing distribu-
tion or dequantizer. In fact, the dequantizer should only have non-zero probability
for regions where P(x|v) is not zero, otherwise it would assign probability mass
to regions outside the volume B(x). When we let the support of qf(v|x) equal
B(x), then P(x|v) = 1 and we can derive that:

log Pmodel(x) = log
Z q(v|x)P(x|v)pq(v)

q(v|x) dv (5.8)

= log Ev⇠q(v|x)

h pq(v)
q(v|x)

i
(5.9)

� Ev⇠q(v|x)

h
log pq(v)� log q(v|x)

i
. (5.10)

As discussed above, when B(x) are hypercubes, this perspective encompasses
the existing dequantization for ordinal variables. The latent variable perspective
is especially useful to discover new dequantization methods for different types
of data, for instance categorical variables.

5.5 argmax flows
In the previous section we framed dequantization as a latent variable model.
From that viewpoint, dequantization for ordinal variables can be seen as a par-
titioning of the continuous space by rounding the continuous v to its nearest
discrete neighbour in x. For categorical variables, this approach introduces un-
desired bias. Instead we propose to partition the space using an operator natural

46 flows for discrete variables

Table 5.2: Dequantization layers for applying continuous flow models to discrete data.
The layers are deterministic in the generative direction, but stochastic in the inference
direction. Rounding corresponds to the commonly-used dequantization for ordinal data.

Layer Generation Inference Applications

Rounding x = bvc v ⇠ q(v|x) with support Ordinal Data
B(x) = {v|x = bvc} e.g. images, audio

Argmax x = arg maxv
v ⇠ q(v|x) with support Categorical Data
B(x) = {v|x = arg maxv} e.g. text, segmentation

Figure 5.5: Argmax Flow: Composition of a flow p(v) and argmax transformation which
gives the model P(x). The flow maps from a base distribution p(z) using a bijection g.

for categorical data, the argmax operation. To optimize this model, one also
needs to define a dequantizing distribution with appropriate support. We refer
to these models as Argmax Flows.

Argmax Flows consist of two components: 1) A continuous density model p(v)
which can be modelled by a typical normalizing flow, and 2) a layer that maps be-
tween continuous variables v 2 RD⇥K to the discrete categories x 2 {1, 2, ..., K}D.
The transformation from continuous to discrete is given by:

x = arg maxv where xd = arg max
k

vdk. (5.11)

This choice is natural to map from continuous to categorical because it divides
the continuous space of v into symmetric partitions corresponding to the cate-
gories of x. Sampling from an Argmax Flow begins by sampling the continuous
v ⇠ p(v) from the latent continuous distribution model. Then, the continuous
is mapped to the discrete by taking its argmax, that is x = arg maxv. Although
sampling is straightforward, to optimize Argmax Flows one needs to be able to
compute likelihoods of the discrete data x. Recalling the latent variable perspec-
tive, we desire an expression to optimize for:

Pmodel(x) =
Z

P(x|v)p(v)dv, P(x|v)=d
�
x=arg max(v)

�
. (5.12)

This integral is intractable for complicated p(v). However, we can resort to vari-
ational inference to obtain a bound on the quantity. For this, a variational distri-
bution q(v|x) needs to be specified. When naively specified, samples v ⇠ q(v|x)
may lead to situations where P(x|v) = d(x = arg maxv) = 0 yielding a log-
arithm of negative infinity. Recalling the latent variable perspective from the
previous section, the variational distribution q(v|x) should satisfies the argmax
constraint:

x = arg maxv for all v ⇠ q(v|x).

5.5 argmax flows 47

Algorithm 7 Sampling from Argmax
Flows

Input: p(v)
Output: Sample x
Sample v ⇠ p(v)
Compute x = arg maxv

Algorithm 8 Optimizing Argmax
Flows

Input: x, p(v), q(v|x)
Output: ELBO L
Sample v ⇠ q(v|x)
Compute L = log p(v)� log q(v|x)

In other words given x, the likelihood for v in q(v|x) can only be non-zero if
x = arg maxv. This ensures that for any sample v ⇠ q(v|x) it is guaranteed that
x = arg maxv and hence P(x|v) = 1. In that case, the variational lowerbound
simplifies to:

Ev⇠q(v|x) [log p(v)� log q(v|x)] Pmodel(x), (5.13)

as is also shown in the optimization procedure in Algorithm 8. An overview of
the method is depicted in Figure 5.5.

5.5.1 Choices for the Probabilistic Inverse
The variational distribution q(v|x) should only have support over the argmax
region specified by x. Alternatively, it can be seen as the probabilistic inverse
of the argmax transformation. This is analogous to common ordinal dequanti-
zation distributions, that are the probabilistic inverse of a rounding function, as
summarized in Table 5.2.

Apart from the support constraint, we are free to specify any variational dis-
tribution. Since we need access to the log-likelihood log q(v|x), we will utilize
bijective transformations to confine the support to the relevant partition. As a
consequence, we can use the change-of-variables formula again to compute the
relevant likelihoods. Since operations are performed independently across di-
mensions, the dimension axis is omitted for readability and the distributions are
described for v 2 RK and x 2 {1, . . . , K}. Three approaches are outlined in the
upcoming paragraphs.

thresholding (algorithm 9) A straightforward way to construct a dis-
tribution q(v|x) with confined support is by using thresholding. Specifically, we
start from a distribution with infinite support q(u|x). This distribution can be
anything from a conditional normal distribution to a standard normalizing flow.
For instance, the mean and variance of the normal distribution can be predicted
from a neural network that takes as input x, to ensure the distribution is con-
ditional. We draw a sample u 2 RK from this distribution q(u|x). Then, u is
mapped to v so that the index given by x contains the largest value for vx with
the transformation:

vx = ux and v�x = thresholdT(u�x) (5.14)

where the thresholding is applied elementwise and T = vx represents the thresh-
old value. We use the notation v�x to denote all indices of v except index x. As
a consequence vx is largest and q(v|x) satisfies the argmax constraint. Since the
thresholding is bijective, the change-of-variables formula can be used to directly

48 flows for discrete variables

compute log q(v|x). We implement thresholding via a softplus function so that
all values are mapped below a limit value T:

v = thresholdT(u) = T � softplus(T � u), (5.15)

where softplus(z) = log(1 + ez), which guarantees that thresholded values are
confined to v 2 (�•, T). The correction in the likelihood du

dv is computed by
evaluating the log-derivative of the softplus at T � u for all indices except index
x.

Algorithm 9 Thresholding-based q(v|x)
Input: x, q(u|x)
Output: v, log q(v|x)
u ⇠ q(u|x)
vx = ux

v�x = threshold(u�x,x)
log q(v|x) = log q(u|x)� log |det dv/du|

Algorithm 10 Gumbel-based q(v|x)
Input: x, �
Output: v, log q(v|x)
fmax = log Âi exp fi
vx ⇠ Gumbel(fmax)
v�x ⇠ TruncGumbel(��x,vx)
log q(v|x) = log Gumbel(vx|fmax) + log TruncGumbel(v�x|��x,vx)

gumbel (algorithm 10) An alternative approach is to directly enforce the
support on Gumbel distributions and choose:

q(v|x) µ Gumbel(v|�) · 1[x = arg maxv]. (5.16)

Intuitively, this places Gumbel distributions over all variables v and then only
considers the relevant support. Although this would be tedious to deal with for
other distributions, Gumbel distributions have the special property that its max-
imum and argmax are independent. Moreover, the maximum is conveniently
also Gumbel distributed with a closed-form expression for its distribution pa-
rameters:

max
i

vi ⇠ Gumbel(fmax), (5.17)

where fmax = log Âi exp fi. For a more extensive introduction see [112, 100].
Recall that to optimize Equation 5.13 one needs to draw samples from q(v|x)
which is allowed by the special properties of the Gumbel distribution. To sample
all values v, first its maximum vx at index x is sampled with Equation 5.17.
Then the values at the other indices can be sampled using truncated Gumbel
distributions:

vi ⇠ TruncGumbel(fi; T) where i 6= x (5.18)

where the maximum attainable threshold value T needs to be set to vx, which
ensures that the argmax constraint vx > vi for i 6= x is satisfied. In addition

5.5 argmax flows 49

Table 5.3: Summary of Gumbel properties.

Description log p Sample

Gumbel(g|f) f� g� exp(f� g) g = � log(� log(u)) + f
u ⇠ U (0, 1)

maxi Gumbel(gi|f)
log Gumbel(gmax|fmax)
fmax = log Âi exp fi

gmax ⇠ Gumbel(fmax)
fmax = log Âi exp fi

TruncGumbel(g|f, T)
f� g� exp(f� g) + exp(f� T)
if g < T else �•

g = f� log(exp(f� T)� log u)
u ⇠ U (0, 1)

to drawing samples, the term log q(v|x) also needs to be evaluated which can
be directly computed from the log probabilities for Gumbel distributions in Ta-
ble 5.3.

There is a final useful property of Gumbel distributions, namely for v ⇠ Gumbel(�):

Prob(arg maxv = i) = exp fi/ Â
i

exp fi. (5.19)

To aid optimization, we can initialize the location parameters � to match the log
probabilities of the empirical distribution of the first minibatch of the data. This
will ensure that the marginal distribution for v given a data distribution D(x)
will approximate a Gumbel distribution, meaning D(x)q(v|x) ⇡ Gumbel(v|f).

a unified perspective : gumbel thresholding This section takes a
broader perspective, and shows that the thresholding approach and Gumbel
approach are in reality two sides of the same coin. The key insight is that
we can view the sample routines in Table 5.3 as invertible functions. More-
over, the log probabilities in the table are equal to the (negative) log deriva-
tives. Therefore, we can view the sample equations as invertible transformations
from u 2 (0, 1)K to v in the argmax space. For the interested reader, these
invertible transformations are the inverse CDFs of the Gumbel distributions.
The new likelihood can be computed using the change of variables formula
log p(g) = log p(u) + log det du/dg. Importantly, instead of using a uniform
distribution for u we can learn more complicated distributions q(u|x) using an-
other normalizing flow. To enforce that u 2 (0, 1)K, the flow has a sigmoid layer
as a final transformation.

This insight unifies the difference between the thresholding and Gumbel ap-
proach. Both can learn some underlying noise q(u|x) after which some threshold-
ing algorithm uses x to map u to v which satisfies the argmax constraint. It also
shows that a large collection of thresholding functions can be found by studying
(truncated) inverse CDFs. In practice we find that performance of the two thresh-
olding approach is similar as long as the underlying noise u is learned.

behavior of the variational posterior In the previous paragraph,
three methods (thresholding, Gumbel, Gumbel thresholding) have been pro-
posed to learn the variational posterior q(v|x). However, it is yet unclear how ex-
pressive q needs to be theoretically, and what its interactions with p(v) are.

50 flows for discrete variables

Notice that we our optimization objective Ev⇠q(v|x)[log p(v)� log q(v|x)] can be
seen as minimizing the KL distance between the aggregated posterior q(v) =
Ex⇠D [q(v|x)] and the density model p(v), because:

KL(q(v)|p(v)) = Ex⇠D,v⇠q(v|x)[log q(v|x) + logD(x)| {z }
constant

� log p(v)].

We can categorize two reasons for which this distance is large: (1) The density
model p(v) may not have the correct mass in each argmax region. In that case
there is no choice of q(v|x) that solves this problem. After all, q(v|x) is confined
to add noise only within the relevant region. (2) When p(v) does have the right
amount of probability mass in a region, it may still be differently shaped com-
pared to q(v). Here, the flexibility of the distribution q(v|x) can help the model
p(v) to fit to q(v).

One might wonder: How much flexibility does q(v|x) need in theory? The sur-
prising answer is: none at all, theoretically only flexibility of p(v) is required.
This argument is trivial: Suppose p(v) is a universal density approximator, then
one can simply set p(v) to q(v) = Ex⇠D [q(v|x)] for any well-defined q(v|x).
Also note that the converse is not true. If the dataset distribution D(x) is com-
plicated and q(v|x) can be arbitrarily complex, a simple p(v) is not sufficient to
model the data well.

In practice, discontinuous density changes in q(v) (for instance the places where
the argmax regions meet) can be difficult to fit. When studying the distributions
over training we find that q does smooth out these boundary artifacts, and coun-
teracts the thresholding discontinuities so that the aggregated posterior becomes
smoother. Hence, in practice flexibility in q(v|x) generally leads to better fitting
of the data.

5.5.2 Cartesian Products of Argmax Flows
As described above, the complexity and size of v in Argmax Flows scales with
the number of categories K, which can be problematic when K is large. To alle-
viate this problem, we propose Cartesian Products of Argmax Flows. They intu-
itive idea is to use the Cartesian product of multiple Argmax regions, which will
let the number of categories grow exponentially with the number of products.
To exemplify this approach, consider a 256 class problem. One class can be rep-
resented using a single number in {1, . . . , 256}, but also using two hexadecimal
numbers {1, . . . , 16}2 or alternatively using eight binary numbers. More gener-
ally, a base K variable x(K) 2 {1, . . . , K}D can be converted to a base M variable
x(M) 2 {1, . . . , M}Dm⇥D where Dm = dlogM Ke. The variable x(M) with dimen-
sionality M · Dm · D is simply a different representation for the variable x(K)

with dimensionality K · D. For the interested reader, the mapping between these
different bases are invertible and can be thus be seen as a discrete flow.

When logM K is not precisely an integer, this approach leads to some unused
additional categories. However, this does not impede optimization of the the
variational objective in Equation 5.13, which is optimized using Dm different M-
categorical Argmax Flows. Finally, there is a special case when M = 2, as binary
spaces can be alternatively encoded into a single dimension to the positive and
negative part [166]. In this case, by trading-off symmetry the dimensionality

5.6 experiments 51

increases only requires log2 K dimensions, without an additional factor of M =
2.

5.6 experiments
Because IDFs operate on integers and Argmax Flows operate on categorical data,
they need to be evaluated on different datasets. Hence, the first part of this sec-
tion covers image modelling with IDFs with applications to lossless compression.
The second part considers text modelling with Argmax Flows.

5.6.1 Lossless Compression with IDFs
IDFs are evaluated on how well they losslessly compress datasets. To test the
compression performance of IDFs, we compare with a number of established
lossless compression methods: PNG [150]; JPEG2000 [149]; FLIF [143], a recent
format that uses machine learning to build decision trees for efficient coding;
and Bit-Swap [94], a VAE based lossless compression method. We show that
IDFs outperform all these formats on CIFAR10, ImageNet32 and ImageNet64.
In addition, we demonstrate that IDFs can be very easily tuned for specific do-
mains, by compressing the ER + BCa histology dataset. For the exact treatment
of datasets and optimization procedures, see Appendix B.

natural image compression with idfs The compression performance
of IDFs is compared with competing methods on standard datasets, in bits per
dimension and compression rate. The IDFs and Bit-Swap are trained on the train
data, and compression performance of all methods is reported on the test data
in Table 5.4. IDFs achieve state-of-the-art lossless compression performance on
all dataset. Note that this comparison was done at the time when the original
work was published.

Even though one can argue that a compressor should be tuned for the source do-
main, the performance of IDFs is also examined on examples from other datasets
than the model is trained on, in order to evaluate compression generalization.
We utilize the IDF trained on Imagenet32, and compress the CIFAR10 and Im-
ageNet64 data. For the latter, a single image is split into four 32⇥ 32 patches.
Surprisingly, the IDF trained on ImageNet32 (IDF†) still outperforms the com-
peting methods showing only a slight decrease in compression performance on
CIFAR10 and ImageNet64, compared to its source-trained counterpart.

As an alternative method for lossless compression, one could quantize the dis-
tribution pZ(·) and the latent space Z of a continuous flow. This results in
reconstruction errors that need to be stored in addition to the latent represen-
tation z, such that the original data can be recovered perfectly. We show that
this scheme is ineffective for lossless compression. Results are presented in Ap-
pendix B.

tuneable compression Thus far, IDFs have been tested on standard ma-
chine learning datasets. In this section, IDFs are tested on a specific domain,
medical images. In particular, the ER + BCa histology dataset [82] is used, which
contains 141 regions of interest scanned at 40⇥, where each image is 2000⇥ 2000
pixels (see Figure 5.6, left). Since current hardware does not support training on
such large images directly, the model is trained on random 80⇥ 80px patches.

52 flows for discrete variables

Table 5.4: Compression performance of IDFs on CIFAR10, ImageNet32 and ImageNet64
in bits per dimension, and compression rate (shown in parentheses). The Bit-Swap re-
sults are retrieved from [94]. The column marked IDF† denotes an IDF trained on Ima-
geNet32 and evaluated on the other datasets.

Dataset IDF IDF† Bit-Swap FLIF [143] PNG JPEG2000

CIFAR10 3.34 (2.40⇥) 3.60 (2.22⇥) 3.82 (2.09⇥) 4.37 (1.83⇥) 5.89 (1.36⇥) 5.20 (1.54⇥)
ImageNet32 4.18 (1.91⇥) 4.18 (1.91⇥) 4.50 (1.78⇥) 5.09 (1.57⇥) 6.42 (1.25⇥) 6.48 (1.23⇥)
ImageNet64 3.90 (2.05⇥) 3.94 (2.03 ⇥) – 4.55 (1.76⇥) 5.74 (1.39⇥) 5.10 (1.56⇥)

Figure 5.6: Left: An example from the ER + BCa histology dataset. Right: 625
IDF samples of size 80⇥80px.

See Figure 5.6, right for samples from the model. Likewise, the compression
is performed in a patch-based manner, i.e., each patch is compressed indepen-
dently of all other patches. IDFs are again compared with FLIF and JPEG2000,
and also with a modified version of JPEG2000 that has been optimized for vir-
tual microscopy specifically, named JP2-WSI [63]. Although the IDF is at a disad-
vantage because it has to compress in patches, it considerably outperforms the
established formats, as presented in Table 5.5.

progressive image rendering In general, transferring data may take
time because of slow internet connections or disk I/O. For this reason, it is de-
sired to progressively visualize data, i.e., to render the image with more detail as
more data arrives. Several graphics formats support progressive loading. How-
ever, the encoded file size may increase by enabling this option, depending on
the format [150], whereas IDFs support progressive rendering naturally. To par-
tially render an image using IDFs, first the received variables are decoded. Next,
using the hierarchical structure of the prior and ancestral sampling, the remain-

Table 5.5: Compression performance on the ER + BCa histology dataset in bits per di-
mension and compression rate. JP2-WSI is a specialized format optimized for virtual
microscopy.

Dataset IDF JP2-WSI FLIF [143] JPEG2000

Histology 2.42 (3.19⇥) 3.04 (2.63⇥) 4.00 (2.00⇥) 4.26 (1.88⇥)

5.6 experiments 53

~30%

~15%

~60%

100%

Figure 5.7: Progressive display of the data stream for images taken from the test set of
ImageNet64. From top to bottom row, each image uses approximately 15%, 30%, 60%
and 100% of the stream, where the remaining dimensions are sampled. Best viewed
electronically.

 heartedness frege thematically infered by the famous existence of a fu
nction f from the laplace definition we can analyze a definition of bin
ary operations with additional size so their functionality cannot be re
viewed here there is no change because its

otal cost of learning objects from language to platonic linguistics exa
mines why animate to indicate wild amphibious substances animal and mar
ine life constituents of animals and bird sciences medieval biology bio
logy and central medicine full discovery re

(a) Samples from Argmax AR Flow.

ns fergenur d alpha and le heigu man notabhe leglon lm n two six a gg
opa movement as sympathetic dutch the term bilirubhah acquired the bava
rian cheeh segt thmamouinaire vhvinus lihnos ineoneartis or medical iod
ine the rave wesp published harsy varb hhgh

 danibah or manuccha but calpere that of the moisture soods and dristi
ng attempt to cause any moderator called lk brown or totpdngs is usuall
y able to nus and hockecrits borel qbisupnias section rybancase untecce
mentation anymore the motion of plays on qr

(b) Samples from Argmax Coupling Flow.

Figure 5.8: Samples from models, text8.

ing dimensions are obtained. The progressive display of IDFs for ImageNet64
is presented in Figure 5.7, where the rows use approximately 15%, 30%, 60%,
and 100% of the bitstream. The global structure is already captured by smaller
fragments of the bitstream, even for fragments that contain only 15% of the
stream.

5.6.2 Categorical Modelling with Argmax Flows
natural language modelling In this section Argmax Flows are com-
pared to existing methods on two language datasets, text8 and enwik8. The
text8 dataset has 27 categories (‘a’ through ‘z’ and ‘ ’), and in enwik8 the bytes
are directly modelled which results in 256 possible categories (some of which
are unused in practice).

To get an idea of the performance of Argmax Flows, we use two different types
of latent denisty models p(v): one based on autoregressive (AR) layers and one
based on coupling layers. Coupling layers are fast to sample from, but are also
less expressive. Showing results on these two different density models will show

54 flows for discrete variables

Table 5.6: Comparison of a coupling and autoregressive generative flows with uniform
[159] and variational [65] dequantization and our proposed Argmax flows.

Dequantization Flow type text8 (bpc) enwik8 (bits per raw byte)

Uniform dequantization
Autoregressive

1.90 2.14
Variational dequantization 1.43 1.44
Argmax Flow (ours) 1.38 1.42

Uniform dequantization
Coupling

2.01 2.33
Variational dequantization 2.08 2.28
Argmax Flow (ours) 1.82 1.93

the performance limit when p(v) is very expressive, and when it is more limited
(but also more practical to draw samples from). The architecture for the autore-
gressive density model is based on the architecture in [108]. The coupling-based
density model consists of 8 coupling layers where each layer is interleaved with
a 1 ⇥ 1 convolution and the coupling layer uses mixture of logistics transfor-
mations [65]. For text, the probabilistic inverse q(v|x) is constructed using the
thresholding approach. The distribution has a factorized normal distribution as
a base, which has infinite support q(u|x) = N (u|µ(x),�(x)). Note that the
mean µ and diagonal variance � depend on x, which are predicted using a neu-
ral network that takes x as an input. Then, u is thresholded to v, ensuring that it
satisfies the argmax constraint. The best performing argmax flow is defined on
binary Cartesian products. This means that for K = 27, a 5-dimensional binary
space is used and for K = 256 an 8-dimensional binary space. For more extensive
details about the experimental setup see Appendix B.

The first experiment is to compare Argmax Flows to the current standard for
normalizing flows: (ordinal) dequantization. They are compared to both uniform
and variational dequantization, where noise confined to a (0, 1) interval is added
to a onehot representation of the categorical data. We find that Argmax Flows
consistently outperform both uniform and variational dequantization (Table 5.6).
An advantage of Argmax Flows is that the entire space can be used, whereas
the conventional dequantization approaches result in zero density regions in
q(v) due to the noise intervals. The performance benefits of Argmax Flows are
even larger when the underlying density model is a coupling approach. Finally,
note that there is still a large gap between the general performance of coupling
versus AR normalizing flows on text. Interestingly, from literature we know that
the difference in performance between coupling and AR approaches is smaller
for images [65]. This indicates that designing more expressive coupling layers
for text is an interesting and important future research direction.

In a comparison with other types of generative models, we find that autoregres-
sive Argmax Flows achieve better performance than the VAE approaches, they
outperform AF/AF [173] and CategoricalNF [108] (Table 5.7). The latent variable
approaches containing autoregressive components are marked with (AR). They
are however still outperformed by autoregressive models. For samples from the
model see Figure 5.8.

5.6 experiments 55

unconditional segmentation maps To test the performance of Argmax
Flows on image-type categorical data, we re-purpose the cityscapes dataset for
unconditional image segmentation learning. In contrast with the standard setting,
the distribution over the segmentation targets needs to be learned without con-
ditioning on the photograph. To limit the computational cost, the segmentation
maps are rescaled to a resolution of 32⇥ 64 using nearest neighbour interpola-
tion. The global categories are used as prediction targets, which amounts to an
8-category problem.

In contrast with the language experiments, the Argmax Flows are defined di-
rectly on the K = 8 categorical space. The density model p(v) is constructed
from affine coupling layers that are parametrized by DenseNets [78]. To learn
the probabilistic inverse, we compare multiple approaches to satisfy the argmax
constraint. Recall that for the Gumbel distribution approach, q(u|x) is uniform
and is not learned. For the thresholding and Gumbel thresholding approaches,
q(u|x) can be learned and is modelled by a flow. Specifically, a conditional flow
q(u|x) is used that also consists of affine coupling layers. All coupling layers are
interleaved with 1⇥ 1 convolutions.

The different Argmax Flow approaches are compared to existing dequantization
strategies in literature: uniform [159] and variational dequantization [65] which
are applied on the onehot representation. All models utilize the same underlying
flow architectures and thus the number of parameters is roughly the same. The
exception are uniform dequantization and the Gumbel distribution, since no
additional variational flow distribution is needed. For more extensive details see
Appendix B.

comparison The results of this experiment are shown in Table 5.8 in terms
of ELBO and the IWBO (importance weighted bound) [19] with 1000 samples
measured in bits per pixel. Consistent with the language experiments, the tra-
ditional dequantization approaches (uniform / variational) are outperformed
by Argmax Flows. Interestingly, although argmax flows with softplus threshold-
ing achieve a slightly better ELBO, the argmax flow with Gumbel thresholding
approach achieve a slightly better IWBO. Samples from the different models
trained on cityscapes are depicted in Figure 5.9. Another interesting point is that

Table 5.7: Comparison of different methods on text8 and enwik8. Results are reported
in negative log-likelihood with units bits per character (bpc) for text8 and bits per raw
byte (bpb) for enwik8.

Model type Model text8 (bpc) enwik8 (bpb)

ARM
64 Layer Transformer [3] 1.13 1.06
TransformerXL [30] 1.08 0.99

VAE
AF/AF? (AR) [173] 1.62 1.72
IAF / SCF? [173] 1.88 2.03
CategoricalNF (AR) [108] 1.45 -

Generative Flow
Argmax Flow, AR (ours) 1.39 1.42
Argmax Coupling Flow (ours) 1.82 1.93

? Results obtained by running code from the official repository for the text8 and enwik8 datasets.

56 flows for discrete variables

(a) Samples from the Argmax Flow (Gumbel thres.)

(b) Cityscapes data.

Figure 5.9: Samples from the model trained on cityscapes.

Table 5.8: Performance of different dequantization methods on squares and cityscapes
dataset, in bits per pixel, lower is better.

Cityscapes ELBO IWBO

Round / Unif. [159] 1.010 0.930
Round / Var. [65] 0.334 0.315

Argmax / Gumbel dist. (ours) 0.365 0.341
Argmax / Softplus thres. (ours) 0.303 0.290
Argmax / Gumbel thres. (ours) 0.307 0.287

coupling flows had difficulty more difficulty modelling text, but do not suffer
from this problem on the cityscapes data which is more image-like. As coupling
layers where initially designed for images [37], they may require adjustments to
increase their expressiveness on text.

5.7 conclusion
In conclusion, we introduced a new discrete flow for integers: IDF, and a new
dequantization method for categorical variables: Argmax Flows. IDFs are a nat-
ural model for lossless compression, whereas dequantization based flows would
have additional costs through bits-back coding. As a result, dequantization based
flows are impractical when only a single example needs to be encoded.

discrete flows or dequantization with continuous flows? In
literature, a discrete flow model for categorical variables and a dequantization
model for integers had already been discovered. Together with our contributions,
for both integer and categorical data there is a choice: Either train a flow directly
on discrete data, or dequantize the discrete data and fit the flow on the contin-
uous dequantized data (also shown in Table 5.1). The natural question to ask is:
Which approach is better?

The answer is: it depends. In terms of raw log-likelihood performance, dequan-
tization methods generally perform better. The most likely reason is that since

5.7 conclusion 57

transformations of these models are more flexible, it is easier to learn certain
data distributions. An important detail here is that the dequantization distribu-
tion (q(v|x)) does need to be learned for this approach to work well, which may
introduce a little extra compute.

Dequantization approaches do introduce variational lowerbounds, whereas (inte-
ger) discrete flows are exact. If the task at hand requires exact model likelihoods,
then the variational approach may not be an option. In many cases, for well-
trained models the variational bounds seem to be tight (as indicated by small
ELBO-IWBO differences). So the variational bound may still work well as an
approximation of the likelihood.

For lossless compression, discrete flows are a natural fit. Their construction al-
lows for direct lossless compression where both encoding and decoding is fast
(as long as no autoregressive components are used). Discrete Flows obtain com-
pression results very close to their analytic log-likelihood evaluation. Dequanti-
zation based methods are at a disadvantage here: there is only one currently
known method to compress data using dequantization: bits-back coding. Al-
though mathematically elegant, bits-back coding is not efficient when only a
single message needs to be sent. The required size of the ‘initial bits’ is typically
larger than the raw size of a single data example. Therefore, bits-back coding
and dequantization methods are more practical when an entire dataset needs to
be sent together.

In conclusion, integer discrete flows are practical for lossless compression and
when exact probabilities are required. Dequantization approaches such as Argmax
Flows are favoured for categorical data and when the highest log-likelihood is
required.

Part II

D I F F U S I O N M O D E L S

6 | D I F F U S I O N F O R D I S C R E T E VA R I A B L E S

Based on the publications:
Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions [72]

Autoregressive Diffusion Models [71]

6.1 introduction
Popular likelihood-based generative models are referred to as Autoregressive
Models (ARMs) [12, 162], which are especially effective for discrete data. ARMs
model a high-dimensional joint distribution as a factorization of conditionals
using the probability chain rule. Although very effective, ARMs require a pre-
specified order in which to generate data, which may not be an obvious choice
for some data modalities such as images. Further, although the likelihood of
ARMs can be retrieved with a single neural network call, sampling from a model
requires the same number of network calls as the dimensionality of the data. An
attractive alternative are diffusion models, for which sampling time does not
necessarily scale with the dimensionality of the data.

Recently, these modern probabilistic diffusion models [66] have introduced a
new training paradigm: Instead of optimizing the entire likelihood of a data-
point, a component of the likelihood bound can be sampled and optimized in-
stead. Although diffusion in continuous spaces have been studied extensively,
less is known about diffusion on discrete spaces.

In [144] Binomial Diffusion was introduced, a diffusion model for binary random
variables. In this chapter we extend this to a model named Multinomial Diffu-
sion, a generative model for categorical variables. In this model, each dimension
of a variable has a small probability of being uniformly re-sampled per step. At
the end of the diffusion process, all categories have uniform probability and the
signal is destroyed. The reverse denoising process is then learned to generate
new data. Empirically we show that Multinomial Diffusion achieves competitive
performance when modelling text and segmentation data.

After the publication of our work on Multinomial Diffusion, D3PMs [7] built
upon our work and introduced new discrete diffusion processes. One of these
processes was absorbing diffusion, where instead of re-sampling, the value of a
dimension is simply set to a fixed absorbing value.

In this chapter we further introduce Autoregressive Diffusion Models (ARDMs),
a variant of autoregressive models that learns to generate in any order. Interest-
ingly, we discover a deep connection between ARDMs and absorbing discrete
diffusion: The infinite time version of an absorbing-D3PM is equivalent to an
ARDM. We show that ARDMs can have parallelized inference and generation
processes, a property that among other things admits competitive lossless com-
pression with a modest number of network calls.

6.2 multinomial diffusion
This section introduces a diffusion model for categorical data based on re-sampling:
Multinomial Diffusion. Let a categorical variable xt be represented in one-hot en-

61

62 diffusion for discrete variables

Figure 6.1: Multinomial Diffusion: Each step p(xt�1|xt) denoises the signal starting from
a uniform categorical base distribution which gives the model p(x0).

coded format xt 2 {0, 1}K. Specifically, for category k, xt,k = 1 and xt,j = 0 for
j 6= k. The dimension axis is omitted for clarity: in reality a distribution such as
q(xt|xt�1) represents the factorized distribution ’D

d=1 q(xt,d|xt�1,d) over dimen-
sions d, but this introduces unnecessary clutter.

6.2.1 The Diffusion Process
First we define the diffusion process which destroys information of a categorical
variable. At a timestep t, there is a at|t�1 2 [0, 1] probability of keeping the same
value and a 1� at|t�1 chance of re-sampling a category uniformly:

q(xt|xt�1) = C(xt|at|t�1xt�1 + (1� at|t�1)/K), (6.1)

where C denotes a categorical distribution with probability parameters after the
symbol |, and 1 is a vector of ones. Addition (and subtraction) between scalars
and vectors is done elementwise, and this convention is kept throughout this
section. Starting from the data variable x0, this defines the destruction process
for variables x1,x2 . . . ,xT. Intuitively, at each timestep t some uniform noise
(1� at|t�1) is added, and with probability at|t�1 the previous value xt�1 is re-
tained. These distributions form a Markov chain and it is possible to express the
distribution of xt given x0 as:

q(xt|x0) = C(xt|atx0 + (1� at)/K) (6.2)

where at = a0|1 · a1|2 · . . . · at�1|t = ’t
t0=1 at0|t0�1. The parameters at|t�1 are cho-

sen such that aT ⇡ 0 and therefore q(xT|x0) = C(xT|1/K) is distributed uni-
formly regardless of x0. As is typical in diffusion, we find an expression for the
true denoising process by computing the posterior of the destruction process,
q(xt�1|xt,x0), which is conditioned on the datapoint x0. Using Equation 6.1 and
6.2 such a true denoising step can be expressed in closed-form as:

q(xt�1|xt,x0) = C(xt�1|✓post(xt,x0)), where ✓post(xt,x0) = ✓̃/
K

Â
k=1

q̃k

and ✓̃ = [at|t�1xt + (1� at|t�1)/K]
| {z }

from q(xt |xt�1)

� [at�1x0 + (1� at�1)/K]| {z }
from q(xt�1|x0)

.
(6.3)

6.2.2 The Learned Denoising Process
In modern diffusion models [66] an important insight is that instead of predicting the
distribution parameters of p(xt�1|xt) directly, one can use the posterior of the diffusion
process, the true denoising process and approximate x0 in that expression. For that
reason, we predict a probability vector ✓0 from xt and use this to parametrize p(xt�1|xt)
by setting it equal to q(xt�1|xt,✓0). Here, ✓0 is an approximation learned by a neural
network ✓0 = f(xt, t). Observe that when ✓0 is a probability vector, meaning it has
non-negative components that sum to one, then ✓post(xt,✓0) will also produce a valid

6.2 multinomial diffusion 63

Figure 6.2: Overview of multinomial diffusion. A generative model p(xt�1|xt) learns to
gradually denoise a signal from left to right. An inference diffusion process q(xt|xt�1)
gradually adds noise form right to left.

probability vector. This is ensured by using a softmax function as a final layer in f. To
summarize:

p(x0|x1) = C(x0|✓0) and p(xt�1|xt) = C(xt�1|✓post(xt,✓0)), (6.4)

where ✓0 = f(xt, t).

multiple dimensions Recall that in reality there is also a dimension axis in x
which has thus far been omitted. It is important that the generative process is corre-
lated over these dimensions, to be able to model flexible distributions. Although the
distributions p(xt�1|xt) are factorized, the neural network is allowed to use all dimen-
sions for predictions in each dimension, meaning that ✓0,d = f(xt, t)d (as opposed to
✓0,d = fd(xt,d, t)). As a result, the entire learned denoising process can be correlated
over dimensions, even though the individual distributions p(xt�1|xt) are not. As a re-
sult, although the diffusion distributions factorize as ’D

d=1 q(xt,d|xt�1,d) the denoising
distributions factorize as ’D

d=1 p(xt,d|xt�1) because for each xt,d the distribution is con-
ditioned on all dimensions from xt�1.

the objective For a diffusion model, the KL terms between the true denoising
process and the learned denoising process represent a variational bound on the log-
likelihood (see Equation 3.20). Since Multinomial Diffusion is defined with categorical
distributions, the KL divergence between these can be computed by enumerating the
probability terms. Hence: for Lt with t � 1:

Lt = �KL
�
q(xt�1|xt,x0)|p(xt�1|xt)

�

= �KL
�
C(✓post(xt,x0))|C(✓post(xt,✓0))

�
,

= �Â
k
✓post(xt,x0))k · log

✓post(xt,x0))k
✓post(xt,✓0))k

.
(6.5)

Furthermore, to compute L0, use that x0 is onehot to write:

L0 = log p(x0|x1) = Â
k
x0,k log✓0,k (6.6)

And thus the full variational objective for a datapoint x0 can be written as:

log p(x0) � Lvlb = T · Et⇠U (0,...,T�1)Ext⇠q(xt|x0)[Lt] + Lbase (6.7)

where each expectation is optimized using a single-sample estimator and Lbase =
KL
�
q(xT|x0)|p(xT)

�
⇡ 0 for reasonable aT and p(xT) = C(xT|1/K). Using

this equation, Multinomial Diffusion models can be successfully trained to fit
datasets. To sample from the model, first sample xT ⇠ p(xT) and then iteratively
sample xt�1 ⇠ p(xt�1|xt) for t = T, T � 1, . . . 1. Note that when Equation 6.7 is
used with single sample estimators during testing, it may be helpful to do mul-
tiple passes through the set to reduce the variance in evaluation.

64 diffusion for discrete variables

Figure 6.3: Generation of Autoregressive Diffusion Models for the generation order s =
(3, 1, 2, 4). Filled circles in the first and third layers represent respectively the input and
output variables, and the middle layer represents internal activations of the network.

6.3 autoregressive diffusion models
The destruction process in Multinomial Diffusion re-samples categorical values
uniformly. An alternative method to destroy information, is to decay to a pre-
defined absorbing state as developed later in [7]. In this section, we introduce
Autoregressive Diffusion Models (ARDMs) which model high-dimensional vari-
ables in arbitrary order. This order relaxation is important to allow for paral-
lelized inference and generation, ultimately resulting in fewer network calls and
faster sampling. At first, ARDMs and diffusion models seem very different. How-
ever, we will discover that there is a deep connection between absorbing state
diffusion and ARDMs: The continuous-time limit of absorbing state diffusion is
an ARDM.

6.3.1 Conventional Autoregressive Models
To motivate ARDMs, we first introduce standard autoregressive models (ARMs).
ARMs factorize a multivariate distribution into a product of D univariate distri-
butions using the probability chain rule. In this case the log-likelihood of such
as model is given by:

log p(x) =
D

Â
t=1

log p(xt|x<t), (6.8)

where x<t is shorthand for x1, x2, . . . , xt�1. Note that opposed to the notation
for Multinomial Diffusion, t directly indexes the dimension and xt 2 {1, . . . , K}
denotes the category at dimension t. In Section 6.4 we will find that the usage
of t as time in a diffusion process and the usage as dimension index are closely
connected in our proposed model.

ARMs are trained by ensuring that the neural network has a triangular depen-
dency structure, for instance implemented via causal masking. Although this
allows parallelized computation of the likelihood for all conditional distribu-
tions at once, to sample from the model it requires D iterative sampling steps
x1 ⇠ p(x1), x2 ⇠ p(x2|x1) towards xD ⇠ p(xD|x1, x2, . . . , xD�1).

Relaxing the fixed order to a random order, we obtain Order Agnostic ARMs
(OA-ARMs) [160] which generate variables with a random ordering s 2 SD,
where SD represents a set of all permutations of the integers 1, . . . , D. The log-
likelihood of this model is given by:

log p(x) � Es⇠U (SD)

D

Â
t=1

log p(xs(t)|xs(<t)). (6.9)

6.3 autoregressive diffusion models 65

This can be seen as a latent variable model and the log-likelihood is derived via
Jensen’s inequality:

log p(x) = log Es⇠U (SD)p(x|s) � Es⇠U (SD) log p(x|s). (6.10)

Mind that hereafter we leave out s in our notation for conditioning to avoid
clutter. One approach to train OA-ARMs is the procedure as described by Yang
et al. [170] for XLNet. It takes a permutation equivariant network such as a
Transformer that is causally masked. Then, inputs are permuted and outputs
are permuted back according to a given order, which models the sequence in
that specific order. However, such approaches typically suffer in likelihood score
and cannot be combined with simple non-equivariant transformations such as
convolutional layers.

6.3.2 Order Agnostic ARDMs
The main difficulty of parameterizing an autoregressive model from an engineer-
ing perspective, is the need to enforce the triangular or causal dependence. To
relax this requirement, one can take inspiration from modern diffusion-based
generative models. Using these insights, we derive an objective that is only op-
timized for a single step at a time. Starting at Equation 6.9, a different objective
can be derived, by replacing the summation over t by an expectation that is
appropriately re-weighted:

log p(x) � Es⇠U (SD)

D

Â
t=1

log p(xs(t)|xs(<t))

= Es⇠U (SD)D · Et⇠U (1,...,D) log p(xs(t)|xs(<t))

= D · Et⇠U (1,...,D)Es⇠U (SD)
1

D� t + 1 Â
k2s(�t)

log p(xk|xs(<t)).

Compactly, we can write the expected lower bound as:

log p(x) � Et⇠U (1,...,D)[D · Lt],

where Lt =
1

D� t + 1
Es⇠U (SD) Â

k2s(�t)
log p(xk|xs(<t)).

This yields the same objective as originally found for OA-ARMs [159], although
this derivation takes a different route inspired by modern diffusion models. The
term Lt represents the likelihood component for step t. Importantly, we do not
need to optimize for all Lt terms of a datapoint simultaneously. Instead, for
each datapoint in a minibatch a single Lt term is optimized where t is sampled
from a uniform distribution. Interestingly, each Lt component can be seen as a
BERT-like training objective [33], where exactly D� t + 1 tokens are masked and
subsequently predicted. Therefore, this objective corresponds to a collection of D
BERTs with loss terms Lt, which contain the reweighting term 1

D�t+1 . In certain
situations we might want to refer to loss terms instead of likelihood terms, so
we define Lt = �Lt.

parametrization A parametrization is desired for the model distribution
log p(xk|xs(<t)) for k 2 s(� t) for all s and t. For each s and t it is in principle
allowed to have an entirely new neural network. However, this would be very

66 diffusion for discrete variables

Algorithm 11 Sampling from OA-ARDMs
Initialize x = a
Sample s ⇠ U (SD)
for t in {1, . . . , D} do

m (s < t) and n (s = t)
x0 ⇠ C(· | f (x))
x (1�n)� x+n� x0

end for

Algorithm 12 Optimizing OA-ARDMs

Sample t ⇠ U (1, . . . , D)
Sample s ⇠ U (SD)
Compute m (s < t)
l (1�m)� log C(x| f (m� x+ (1�m)� a))
Lt 1

D�t+1 sum(l)
L D · Lt

inconvenient as the number of t grows as O(D) and the number of s grows as
O(D!). Instead, a single neural network is utilized and shared for different s
and t. A simple way to achieve this is by masking variables at the input, and
predicting those at the output, as done in [159]. To be precise, we let x 2 X =
{1, 2, . . . , K}D represent discrete variables with K classes and a neural network f :
X ! RD⇥K that outputs probability vectors for each dimension. Conditioning is
done via masking: For a given permutation array s, we compute the elementwise
comparison m = s < t which produces a Boolean mask. The mask is then used
by predicting ✓ = f (m� x), where � denotes element-wise multiplication. For
each location k 2 s(� t), the log probability vectors ✓k are used. Letting C(xk|✓k)
denote a categorical distribution over xk with class probabilities ✓k, we choose
to model log(xk|xs(<t)) = log C(xk|✓k). The locations of these relevant indices
k 2 s(� t) are retrieved by using the opposite mask 1�m. This simple definition
has a clear disadvantage: masking always forces values to be zero. However, to
deal with different types of data (i.e. language, text, audio) we define a more
general model, which we will refer to as the OA-ARDM.

OA-ARDMs decay values to a pre-specified absorbing state a instead of masking
to zero. For images and audio, the absorbing state a is chosen so that it is zero

Figure 6.4: ARDM training step. This step optimizes for step t = 2 for all possible
permutations s simultaneously which satisfy s(1) = 3.

6.3 autoregressive diffusion models 67

after feature normalization. Furthermore, the mask itself is also concatenated to
the input as an input representation, which allows the model to identify whether
a value is actually zero, or the value is in the absorbing state zero. For language
the input representation is augmented and absorbed values are instead set to
a new class K + 1, in which case there is no need to provide the mask itself as
input to the model. In general, we can represent the masked state as an absorbing
state vector a which has the same shape as x but only contains a pre-specified
value. The input to the network is then not the masked m� x, but instead the
combination m � x + (1 �m) � a. In addition, the network f may also take
the time component t as input as is typically done in diffusion models [66]. In
summary the network takes some additional inputs as ✓ = f (i,m, t) where
i = m� x+ (1�m)� a and the processing of x may be different depending
on the type of data.

6.3.3 Parallelized ARDMs
An important property of our parametrization is that the distribution over mul-
tiple variables is predicted at the same time. In this section, we will leverage
this parameterization to extend ARDMs to support parallel independent gener-
ation of variables. Essentially, we desire distributions over xs(t+k) for positive
k while conditioning only on xs(<t). First we make an observation regarding a
connection between predicting future variables and our likelihood terms: For
k = 1, 2, . . . , D� t:

Es
⇥

log p(xs(t+k)|xs(<t))
⇤
= Es

⇥
log p(xs(t)|xs(<t))

⇤
= Lt, (6.11)

due to the uniform expectation over permutations. In other words, it does not
matter which step t+ k the model predicts, in expectation these all have the same
associated likelihood. As a result, order agnostic generation of k tokens indepen-
dently, starting from the t-th variable will result in a log-probability contribution
of k · Lt in a single step on average, whereas the traditional approach would
take k steps at the cost of Âk

i=1 Lt+i. This knowledge is sufficient to construct a
dynamic programming algorithm as described by Watson et al. [164] to compute
how many parallel steps to take at which moment, given a budget of total steps.
Since dynamic programming is typically described from a minimization perspec-
tive we define the loss component Lt = �Lt, which is measured in bits. In terms
of loss, generating k variables at timestep t will cost k · Lt bits. Further, we define
the transition cost matrix Lt,t+k = k · Lt for positive integers k and Lt,t+k = 0
otherwise. So Lt,t+k exactly describes how much it costs to model the next k vari-
ables in parallel starting at the t-th position for all relevant t and k. Using this
transition cost matrix, the dynamic programming algorithm can be utilized to
find which steps should be parallelized. For instance, in the example in Figure
6.5 a hypothetical 20-step problem is given a budget of 5 steps. Typically, the

Figure 6.5: Loss components for Parallelized ARDMs using a budget of 5 steps for a
problem of 20 steps. Left: individual loss component for every step. Right: parallelized
policy extracted from the dynamic programming algorithm. Components of the same
height are modelled simultaneously, so they are inferred and generated in parallel.

68 diffusion for discrete variables

algorithm will spend more steps on regions with large differences between Lt
components and fewer steps on regions where the Lt components are approxi-
mately equal. For a well-trained model, one would expect that conditioning on
more variables improves the certainty of the model, or in terms of expected log-
likelihood: Ex⇠D [log p(xs(t+1)|xs(<t))] Ex⇠D [log p(xs(t+1)|xs(<t), xs(t))]. And
thus under this assumption we can expect that parallelizing an ARDM may incur
some cost since:

Lt = Ex,s
⇥

log p(xs(t+1)|xs(<t))
⇤
 Ex,s

⇥
log p(xs(t+1)|xs(<t+1))

⇤
= Lt+1, (6.12)

which means that the loss components Lt are expected to monotonically decrease
over t and parallelizing a model incurs a cost, which the dynamic programming
algorithm aims to minimize. Hence, performance can be traded off for fewer
steps leading to faster generation and evaluation. See Figure 6.5 for an example
of a parallelized schedule.

6.3.4 Depth Upscaling ARDMs
Order agnostic ARDMs learn to generate variables in random order. As a result,
decisions on very detailed information (such as the least significant bit in an
image) need to be generated relatively early in the generative process for some
pixel locations. Instead, we can structure the process into stages, where for each
stage a refinement of the variable is generated. We refer to this process as up-
scaling. For example, instead of generating an entire 256-categorical variables at
once, we can first generate the most significant bit, and then the subsequent bits
in order of significance. To define the process, it is helpful to first imagine the
opposite process to upscaling, which is the destructive process downscaling. For-
mally, we can define maps via transition matrices P

(s) that define how a data
variable downscales from its data value towards a common absorbing state. For
notation simplicity we assume one dimensional variables at the moment. Let the
absorbing state be a one-hot vector x(0) (which was previously denoted a), where
all values are zero except a pre-specified index which has value of one.

Let P
(1), . . . , P

(S) define a sequence of downscaling maps so that for any categor-
ical one-hot data variable x(S) 2 {0, 1}K, it holds that P

(1) · . . . · P
(S) · x(S) = x(0).

In other words, any datapoint x(S) decays to the common absorbing state after S
downscaling maps. We now define the upscaling generative process by learning
the reverse of the downscaling map, specifically by modelling p(x(S)|x(S�1)) ·
. . . · p(x(2)|x(1))p(x(1)|x(0)). The transition matrices allow easy transitions be-
tween the different stage variable x(s) via the following rules:

x(s) = P
(s+1)x(s+1) = P

(s+1)
x(S), where P

(s)
= P

(s) · P
(s+1) · . . . · P

(S).

The matrices P
(s+1) are computed as cumulative matrix multiplications, and al-

low a transition directly from a datapoint x(S) to the corresponding downscaled
variable x(s). This is particularly useful during training, where the model will
only be optimized for a single specific stage per datapoint. For implementations
it is generally useful to define P

(S+1)
= I as an identity matrix so that the above

equation also holds when s = S. To train Upscale ARDMs, we can extend Al-
gorithm 12: In addition to sampling a timestep t, a stage s ⇠ U (1, . . . , S) to
optimize is sampled. For this particular stage, the ARDM models p(x(s)|x(s�1))
by sampling a permutation s within the stage and a timestep t within the stage.

6.3 autoregressive diffusion models 69

Every term p(x(s)|x(s�1)) represents a stage that is modelled with an order ag-
nostic ARDM. This highlights an interesting property of ARDMs: Although sam-
pling from a model may take up to D · S steps, the training complexity has not
changed by modelling multiple stages. As a result, one can experiment with
adding an arbitrary number of stages without an increase in computational
complexity during training. Depth upscaling is reminiscent of the upscaling net-
works proposed in [87, 116], with the important differences that Upscale ARDMs
model the variables order-agnostic and only utilize a single neural network to
parametrize all stages, where the network now takes as an additional input the
specific stage s. For a more detailed explanation that includes the dimensionality
of the variables {x(s)}, and an algorithmic description of Upscale-ARDMs see
Appendix C.3.

bit upscaling Depth upscaling is best demonstrated with an example, bit-
upscaling. Consider the task of generating a standard image with pixel values
{0, . . . , 255} so that an image with D dimensions can be represented by x(8) 2
{0, 1}D⇥256 in onehot notation. Imagine a downscaling process defined by the
function that removes the i least significant bits: lsbi(k) = bk/2ic · 2i, via this
function we can define our transition matrices:

P(8+1�i)
l,k = 1 if l = lsbi(k) and k 2 Im(lsbi�1) otherwise P(8+1�i)

l,k = 0,

where {P
(i)} are indexed starting at zero. Notice that in this case there are 8

stages to map every value to the absorbing state 0, because lsb8(k) = 0 for any
k 2 {0, . . . , 255}. See Figure 6.6 for a visualization of such matrices for a problem
with categories k 2 {0, . . . 7}.

Figure 6.6: Bit upscaling matrices for data with eight categories and hence three stages,
meaning S = 3. Entries that are white represent zeros, coloured entries represent ones.

Depth upscaling is not confined to bits, and indeed a more general formulation is
given by the downscaling map l = bk/bic · bi, for a branching factor b. When b is
set to 2, the bit upscaling transitions are retrieved as a special case. When b is set
to higher values, then variables can be generated in fewer stages, S = dlogb(K)e
to be exact. This allows for a unique trade-off between the number of steps
the model takes and the complexity that each modelling step inhibits. Other
hand-crafted transitions are also imaginable. This could even include transitions
that augment the space to new categories, but these are not considered in this
manuscript.

parametrization of the upscaling distributions Although it is now
defined how a datapoint x(S) downscales to x(S�1), . . . ,x(1) and to its absorb-
ing state x(0), it is not immediately clear how to parametrize the distributions
p(x(s)|x(s�1)). Two methods can be used to parametrize the distribution. The
first is a direct parametrization. In the example of the bit-upscaling model above,
one models the s-th significant bits given the (s� 1)-th significant bits. The direct
parametrization is generally more computationally efficient, as it requires only

70 diffusion for discrete variables

distribution parameter outputs that are relevant for the current stage. This is es-
pecially useful when the number of classes is large (such as with audio, which
has 216 classes). However, it can be somewhat tedious to figure out exactly which
classes are relevant and should be modelled.

Alternatively we can use a data parametrization which is similar to the parametriza-
tion in Austin et al. [7], although different from their work is that the down-
scaling matrices P

(s) are used in deterministic maps while theirs represent a
stochastic transition. For this parametrization, the network f outputs a probabil-
ity vector ✓ that matches the shape of the data x(S), which is transformed and
converted to the relevant probabilities in stage s via:

✓(s) =
P
(s)T

x(s�1) � P
(s+1)

✓

x(s�1)T
P
(s)
✓

where p(x(s)|x(s�1)) = C(x(s)|✓(s)). (6.13)

The advantage of this parametrization is that one only has to define the transition
matrices {P

(s)}. As a result, the appropriate probabilities can be automatically
computed which is ideal for experimentation with new downscaling processes.
The disadvantage may be that modelling full probability vectors for problems
with high number of classes may be expensive and not even fit in memory. Em-
pirically in our experiments on image data we find that there is no meaningful
performance difference between the two parametrizations.

6.4 bridging the gap between discrete diffusion and autoregres-
sive models

In this section we examine a deep connection between absorbing diffusion and
OA-ARDMs. We start with a description of the independent process of absorbing
diffusion as used in [7] and highlight potential complications when using this
process. Then, we will show that OA-ARDMs are equivalent to a continuous-
time version of these absorbing diffusion models.

the independent absorbing process from austin et al . In absorb-
ing diffusion as described by [7], each dimension can independently get ab-
sorbed with some small probability for each time step. Specifically, letting a
vector x(t) represent a Markov process as a collection of random variables in-
dexed by integers t, where x(0) is the data distribution. Each dimension xi(t)
has an equal and independent chance of getting absorbed according to rate g(t)
at index t to the absorbing state ai. Define the cumulative chance of retaining
the state as a(t) = ’t

t=1(1� g(t)). This allows the direct expression for the dis-
tribution over xi(t) as a categorical distribution on data and the absorbing state
(xi(0), ai) with probabilities (a(t), 1� a(t)). Typically, the decay rate g is chosen
so that a(T) = 0 for some large integer T. For example in [7] it is set T = 1000 for
most experiments. We refer to the absorbing process from [7] as an independent
absorbing process, because the chance of absorbing is independent between all
dimensions.

The reverse of this absorbing process is the generative process. As described
above, the chance of a dimension absorbing is independent over dimensions. As
a result, when the total number of steps T is small, or even when T ⇡ D, it
is inevitable that multiple dimensions decay at once. For example, when D =
T = 4 with a(t) = t/T. The probability that the variable in each of the four

6.4 bridging the gap between discrete diffusion and autoregressive models 71

dimensions decays at a distinct time step is (3/4)3 · (2/3)2 · (1/2) ⇡ 0.09, and
higher dimensions exacerbate the problem.

Since the generative distributions model dimensions independently, the vari-
ables that decay at the same time have to be learned independently as a fac-
torized distribution, which may lead to a loss in performance. This problem can
be overcome by setting T to a larger value. Indeed, when T is larger the chance
of multiple dimensions decaying at once decreases. During training, T can be
set arbitrarily high without incurring costs. However, to sample or evaluate the
likelihood of a specific datapoint, the computational cost scales directly with T
so it is desired to keep T as low as possible.

As an example, consider the experiment from [7] where text sequences of length
256 are modelled using a T = 1000 absorbing diffusion model. When sampling
from this model, at least 744 of the neural network forward passes do nothing
to the latent variable and are needless compute. When T is reduced to D = 256
performance degrades.

ardms model the reverse of a successive absorbing process Our
ARDMs can be viewed as learning the reverse process of a slightly modified
absorbing process. Instead of independent absorbing probabilities, exactly one
dimension decays at a time step until all dimensions have been absorbed. Since
only one variable decays at a time, we refer to this process as a successive absorb-
ing process. This ensures that T = D exactly, where D is the dimensionality of
the data. Since the destruction process only absorbs one dimension at a time, the
generative process only has to model one dimension at a time.

An equivalent way to describe this process is by sampling a permutation of the
indices 1, . . . , D and decaying in that order towards the absorbing state. The
corresponding generative process is then modelling the variables exact opposite
order of the permutation: an OA-ARDM. As a result the generative process with
a successive absorbing process process only requires at most D steps. Taking
again the text example, our model uses at maximum 256 steps for sequences of
length 256.

ardms are equivalent to continuous time absorbing models To
show an equivalence between the continuous time absorbing process and ARDMs
in more detail, we will show that we can model the reverse process given by the
transitions {xi(ti), ti} by sampling the transition times independently, and by
using an OA-ARDM for the transitions in x.

The absorbing diffusion model from [7] can be relaxed to continuous time. De-
fine a continuous-time discrete-space absorbing-state Markov process as a col-
lection of Markov random variables {x(t)} in dimension D, parameterized by
t 2 R+. Starting in state x(0), each of the elements xi(t) of the state vector in-
dependently decays towards an absorbing state a at rate g(t), such that at time
t the distribution on the vector elements is categorical on {xi(0), ai}, with prob-
abilities {a(t), 1� a(t)}, with a(t) = exp(�

R t
0 g(s)ds). This last equivalence is

obtained via the first order logarithmic Taylor expansion log(1� x) ⇡ �x which
holds for the small g(s)ds. Similar to the discrete-time version, this destruction

72 diffusion for discrete variables

process is referred to as q. The variational lowerbound to optimize this model
can be written as:

log p(x(0)) � Eq(x(>0)|x(0))
h

log p(x(>0)) + log p(x(0)|x(>0))� log q(x(>0)|x(0))
i

= �KL
�
q(x(>0)|x(0))| log p(x(>0)

�

where x(> 0) denotes all values of x(t) for t > 0. This holds since p(x(0)|x(>
0)) = 0, as there is zero probability that values decay precisely at t = 0. Our
strategy will be to separate the ‘important moments’ from x(>0) and show that
it suffices to only model those moments.

An equivalent way of describing this stochastic process is as a finite set of D
random transition times {ti} for i 2 {1, . . . , D} describing the time where the
element xi has transitioned into the absorbing state. To define this precisely, we
say that ti is the latest time for which xi is not-yet absorbed, so xi(t) = ai for
t > ti and xi(t) = xi(0) otherwise. From this perspective, x is only chang-
ing at the transition times ti and remains the same at other times. Then, the
reverse process to model {x(t)} for all t is equivalent to only modelling the fi-
nite dimensional {xi(ti), ti}, which is shorthand notation for {xi(ti), ti}D

i=1. In
other words, to model the reverse process, we only need to model the transition
times {ti} and the variable right before it was absorbed. Therefore, to model
KL
�
q(x(>0)|x(0))| log p(x(>0)

�
we in fact only need to model:

KL(q({xi(ti), ti}|x(0)|p({xi(ti), ti}))

because given {xi(ti), ti} we can reconstruct the remaining states in the destruc-
tion process q(x(t)|{xi(ti), ti})1 deterministically, and we can simply set our
generative process p(x(t)|{xi(ti), ti}) to be identical, so that:

Eq
⇥
KL
�
q(x(t)|{xi(ti), ti})|p(x(t)|{xi(ti), ti})

�⇤
= 0

Going further, the distributions q({ti}) are already known, they are given by
the distribution with the cumulative distribution function 1� a(t), independent
of the data. Therefore, we can simply set our generative process to the same
distribution, which ensures that:

KL
�
q(t1, . . . , tD)|p(t1, . . . , tD)

�
= 0.

That leaves the modelling of {xi(ti)} to model the reverse process. An important
question that now arises is whether the transition times {ti} provide any addi-
tional information in modelling the variables {xi(ti)}. Apart from knowing that
the variable will be un-absorbed, the answer is no: they are distributed as the
data independent from {ti}. In short: xi(0) ⇠ xi(ti) and {xi(0)} ? {ti}. As a
consequence, the model for the reverse process does not need to be conditioned
on the precise values {ti} and can instead be solely conditioned on the previous
state x(ti+1) to model xi(ti) for all dimensions i. And thus, what remains to be
modelled is:

Eq(t1,...,tD)

⇥
KL(q({xi(ti)}|x(0)|p({xi(ti)}))

⇤

Recall that this process is equivalent to the generative process of our OA-ARDM:
Each new timestep, a new dimension of the variable is modelled. The order in
which the variables are modelled depends on the decay times {ti}, and since

1 One might expect conditioning on x(0) here. Since xi(ti) is distributed as xi(0), this conditioning
is already contained in xi(ti) and we omit x(0).

6.5 related work 73

these are all identically distributed, the order is uniform over all possible permu-
tations. We can now further re-write the variational bound as follows:

log p(x(0)) � Eq(x(>0)|x(0)) log p(x(>0)) + log p(x(0)|x(>0))� log q(x(>0)|x(0))
= Eq(t1,...,tD)[�KL(q({xi(ti)}|x(0)|p({xi(ti)}))]
= Eq(t1,...,tD) Â

i
log p(xi(ti)|x(ti+1))

= Es⇠U (Sd) Â
i

log p(xs(i)|xs(<i)),

where x is defined as x(0) in the last line. The first equivalence follows from
the above described equivalent representation of the continuous process. Fur-
ther, given x(0) and {ti}, q is deterministic, which means the KL divergence
simplifies to a cross-entropy. Analogous to the absorbing diffusion model, the
generative process p({xi(ti)})) can be decomposed into a product of generative
steps p(xi(ti)|x(ti+1)). Finally, since the absorbing times {ti} are not used di-
rectly and only the order matters, they can be alternatively modelled by random
permutations.

To elaborate on the last equality of the derivation, observe that the sampling
times only determine the order in which the dimensions x are modelled. In fact
when modelling xi(ti)|x(ti+1) only dimension i changes between ti+1 and ti.
Since all {ti} are independently and equally distributed, the distribution over
the order of {ti} is uniform. A subtle detail is that the reverse of the order of ti
describes the generative order since we model timestep ti given ti+1. Neverthe-
less, since the distribution over orders is uniform, the distribution over reverse
orders is also uniform. Therefore:

Eq(t1,...,tD) Â
i

log p(xi(ti)|x(ti+1)) = Es⇠U (Sd) Â
i

log p(xs(i)|xs(<i)).

In summary, modelling the generative process of a continuous absorbing jump
process is equivalent to an OA-ARDM. This is beneficial, as viewing the model
as an OA-ARDM gives a simple bound to the maximum number of steps (which
is T = D) and allows an easier perspective on the model and its implementa-
tion.

6.5 related work
Autoregressive Models Autoregressive Models (ARMs) factorize a joint distri-
bution into a product of conditional distributions [11, 105]. Advances in deep
learning have allowed tremendous progress on various modalities, such as im-
ages [162, 26], audio [125, 87], and text [12, 60, 115, 118, 18], where for the latter
they are referred to as language models.

Although evaluating the likelihood of a datapoint is generally efficient with
ARMs, sampling requires an iterative process with as many network calls as
the dimensionality of the data. Parallelized ARM approaches often rely on cut-
ting many dependencies in the conditioning [131] which tend to suffer in log-
likelihood. Alternatively, ARMs can be solved using fixed-point iteration algo-
rithms in fewer steps without sacrificing log-likelihood [165, 148], but these meth-
ods typically still require a large number of steps to converge.

Order agnostic sequence modelling was introduced in [160] and utilizes the same
objective as AO-ARDMs to optimize the model, operating by masking and pre-
dicting variables. Different from their method, ARDMs have more choices in

74 diffusion for discrete variables

absorbing states, parallelization support and depth upscaling techniques, in ad-
dition to modern advances to fit larger scale data. An alternative approach for
order agnostic modelling is via causally masked permutation equivariant models
such as Transformers [170, 4], but these have had limited success in likelihood-
based tasks. In [54] a mask predict method is proposed, although it does not
contain a likelihood analysis. In other work, mixtures of ARMs over certain or-
ders are trained by overriding convolutional routines for masking [80]. In [109]
the neighbours of nodes in graphs are generated without order. However, as a
result of the neighbour generation the model is not entirely order agnostic.

Diffusion Models Diffusion models learn to denoise a base distribution into
the distribution of the data via a chain of latent variables [146, 144, 66]. Diffu-
sion and score-matching methods have shown large improvements in image [35]
and audio sample quality [22, 99], as well as likelihood improvements with vari-
ational interpretations of diffusion models [91, 77]. Although faster sampling
schedules for continuous diffusion models have been explored [84, 98], little is
known about shorter generative processes for discrete diffusion.

Discrete diffusion models operate directly on discrete spaces. In [144] diffusion
for binary data was proposed. In [7] a wide variety of destruction processes
were proposed among which are absorbing diffusion models, and in [83] an in-
sert delete process is introduced. This chapter builds upon binomial diffusion
for binary variables and introduces an extension for categorical variables. Con-
current to our work, [145] include a theoretical description of a multinomial
diffusion process, but without experimental evaluation. Further, we introduce
Autoregressive Diffusion Models, an order agnostic autoregressive models that
is optimized with insights from the diffusion literature. Further, we show that
ARDMs are equivalent to absorbing discrete diffusion models under an infinite
time limit. Absorbing diffusion models [7] achieve better performance in log-
likelihood for text data than other types of discrete diffusion, but these models
still demand a large number of steps. Our ARDMs are equivalent to the infinite
time limit of absorbing diffusion, which makes them maximally expressive. Con-
veniently, ARDMs limit the required number of steps to the dimensionality of
the data at most.

6.6 experiments
order agnostic modelling In this experiment we compare to other or-
der agnostic generative models. Their performance is studied on a character
modelling task using the text8 dataset [113]. Multinomial Diffusion and ARDMs
are compared to D3PMs that model the inverse absorbing diffusion process [7],
and causally masked Transformers that are directly optimized on randomly per-
muted sequences as done in XLNet [170]. The different methods all use the
same underlying neural network architecture which is the Transformer used in
[7], which has 12 layers, 786 hidden dimensions and 12 heads, with exception
of the Multinomial Diffusion model that has 512 hidden dimensions. For the
OA-Transformer baseline the architecture is causally masked, and inputs are
permuted to model the sequence in a specific order. In addition to the standard
positional embeddings for the input, the embeddings for the output are also
concatenated to the token embedding. This can be seen as an implicit method
to condition on the permutation that is currently generated. The specific hyper-

6.6 experiments 75

Table 6.1: Order Agnostic model performance (in bpc) on the text8 dataset. The OA-
Transformer learns arbitrary orders by permuting inputs and outputs as described in
XLNet. A baseline Transformer learning only a single order achieves 1.35 bpc.

Model Steps VLB

Standard Transformer 250 1.35
OA-Transformer 250 1.64

Multinomial Diffusion (ours) 1000 1.72
D3PM-uniform (Mult. Diffusion) 1000 1.61 ±0.020

D3PM-absorbing 1000 1.45 ±0.020

D3PM-absorbing 256 1.47
OA-ARDM (ours) 250 1.43 ±0.001

D3PM-absorbing 20 1.56 ±0.040

Parallelized OA-ARDM (ours) 20 1.51 ±0.007

parameters of the optimization procedure are specified in Appendix C.2.2 and
are the same as reported in [7], with the exception of a different learning rate
schedule which required more training steps.

Performance of these methods is presented in Table 6.1. Firstly, the Multinomial
Diffusion is the weakest model, in part because it has a smaller architecture. The
later introduced D3PM-uniform is the same underlying model with the larger ar-
chitecture. Interestingly, in this case Multinomial Diffusion already outperforms
the OA-Transformer. Even though the OA-Transformer is the most direct way
to learn data order-agnostically, it has trouble fitting the data. This is in line
with observations in Yang et al. [170], who found underfitting behaviour and
limited the task complexity by only predicting a subset of the permuted tokens.
Further, as expected the performance of our OA-ARDM with 1.43 bpc is very
close to the performance of D3PM-absorbing at 1000 steps with 1.45 bpc. This
is expected, since OA-ARDMs are equivalent to the continuous time limit of
D3PM-absorbing models. For sequences containing only 250 dimensions, the
D3PM schedule with 1000 steps starts to approximate the jump process where
generally only a single variable is absorbed at a time. The important takeaway
from this comparison is that OA-ARDMs perform similar to large-steps D3PM
absorbing models while only requiring a quarter of the steps. When the D3PM model
is forced to take 256 steps which is comparable to our OA-ARDM model, then
its performance degrades further towards 1.47 bpd. In addition, a Parallelized
ARDM with only 20 steps has a performance of 1.51 bpd over a similar D3PM
which has 1.56 bpd. This pattern translates to CIFAR-10 [103] where ARDMs
also outperform D3PMs and degrade more gracefully under fewer steps. This
comparison to D3PM is however less direct, because our ARDMs use a differ-
ent underlying architecture based on [91] that is better suited for log-likelihood
modelling of images.

unconditional segmentation maps For Multinomial Diffusion we re-
peat the experiment from Chapter 5, in which we model the segmentation maps
of the Cityscapes dataset resized to 32⇥ 64 unconditionally. At the time of the
original publication of this model, no other suitable discrete diffusion models
existed to compare to. Instead, the model is compared to the best flow meth-

76 diffusion for discrete variables

Table 6.2: Order Agnostic modelling performance (in bpd) on the CIFAR-10 dataset.
The upscaling model generates groups of four most significant categories, equivalent to
generating 2 bits at a time from most to least significant bits.

Model Steps VLB

ARDM-OA 3072 2.69 ± 0.005

Parallel ARDM-OA 50 2.74

ARDM-Upscale 4 4 ⇥ 3072 2.64 ± 0.002

Parallel ARDM-Upscale 4 4 ⇥ 50 2.68

D3PM Absorbing 1000 4.40
D3PM Gaussian 1000 3.44 ± 0.007

Table 6.3: Performance of multinomial diffusion on the segmentation maps of the
cityscapes dataset, in bits per pixel, lower is better.

Cityscapes VLB

Argmax Flow / Softplus thresholding 0.303
Argmax Flow / Gumbel thresholding 0.307

Multinomial Diffusion (ours) 0.305

ods from Chapter 5. The performance of our Multinomial Diffusion models is
presented in Table 6.3. In contrast with the language experiments where Multi-
nomial Diffusion is still outperformed by other methods, in this experiment it
performs equally to the best performing Argmax Flows. This result is in con-
trast with the text experiment: from Chapter 5 we know that Argmax Flows
performed much better on text (1.39 bpc) than Multinomial Diffusion (1.72 bpc)
did in this chapter. This indicates that Multinomial Diffusion may work better
on 2D categorical signals than 1D text sequences. Samples from the model are
depicted in Figure 6.7.

unsupervised spell-checking with multinomial diffusion An in-
teresting by-product of the multinomial text diffusion model is that it can be used
to spell-check text using a single forward pass. This model is specifically suited
since it is trained to be resilient against re-sampling errors in the text. To demon-
strate this, a sentence taken from the test data is corrupted by changing a few
characters. This corrupted sequence is given as x1 to the generative denoising
model, which is close to the data at step 0. Then the denoising model predicts
p(x0|x1) and the most-likely x0 can be suggested. An example is depicted in
Figure 6.8. Since the model chooses the most-likely matching word, larger cor-
ruptions will at some point lead to word changes. Although this model only
works for character-level corruption, after our publication [83] extended discrete
diffusion for insertions and deletions.

lossless compression with ardms To validate that ARDMs can form
a viable basis for practical neural network-based compressors, we study their
performance when compressing CIFAR-10 images and compare them to existing
methods. Since ARDMs provide probabilities for a sequence of symbols, they

6.6 experiments 77

(a) Samples from Multinomial Diffusion

(b) Cityscapes data examples.

Figure 6.7: Cityscapes segmentation maps.

mexico city the aztec stadium estadio azteca home of club america is on
e of the world s largest stadiums with capacity to seat approximately o
ne one zero zero zero zero fans mexico hosted the football world cup in
 one nine seven zero and one nine eight six

mexico citi the aztec stadium estadio azteca home of clup amerika is on
e of the world s largest stadioms with capakity to seat approsimately o
ne one zeto zero zero zero fans mexico hosted the footpall wolld cup in
 one nine zeven zero and one nyne eiggt six

mexico city the aztec stadium estadio aztecs home of club america is on
e of the world s largest stadiums with capacity to seat approximately o
ne one zero zero zero zero fans mexico hosted the football world cup in
 one nine seven zero and one nine eight six

(a) Ground truth sequence from text8.

mexico city the aztec stadium estadio azteca home of club america is on
e of the world s largest stadiums with capacity to seat approximately o
ne one zero zero zero zero fans mexico hosted the football world cup in
 one nine seven zero and one nine eight six

mexico citi the aztec stadium estadio azteca home of clup amerika is on
e of the world s largest stadioms with capakity to seat approsimately o
ne one zeto zero zero zero fans mexico hosted the footpall wolld cup in
 one nine zeven zero and one nyne eiggt six

mexico city the aztec stadium estadio aztecs home of club america is on
e of the world s largest stadiums with capacity to seat approximately o
ne one zero zero zero zero fans mexico hosted the football world cup in
 one nine seven zero and one nine eight six

(b) Corrupted sentence.

mexico city the aztec stadium estadio azteca home of club america is on
e of the world s largest stadiums with capacity to seat approximately o
ne one zero zero zero zero fans mexico hosted the football world cup in
 one nine seven zero and one nine eight six

mexico citi the aztec stadium estadio azteca home of clup amerika is on
e of the world s largest stadioms with capakity to seat approsimately o
ne one zeto zero zero zero fans mexico hosted the footpall wolld cup in
 one nine zeven zero and one nyne eiggt six

mexico city the aztec stadium estadio aztecs home of club america is on
e of the world s largest stadiums with capacity to seat approximately o
ne one zero zero zero zero fans mexico hosted the football world cup in
 one nine seven zero and one nine eight six

(c) Suggested, prediction by the model.

Figure 6.8: Spell checking with Multinomial Text Diffusion.

78 diffusion for discrete variables

can be directly used together with an off-the-shelf entropy coder for lossless
compression. In this experiment we use the range-based entropy coder rANS
[39]. To use ARDMs the order of the coding process needs to be fixed for all
images. To avoid an unlucky sample of permutations, before coding we evaluate
the log-likelihood of a few random permutations on the train set and pick the
best performing one. Empirically, there is very little difference in performance
(<0.02 bpd) between different permutations.

Several deep learning based lossless compression methods in literature rely on
bits-back coding [157], such as LBB [67], HiLLoC [156] and VDM [91]. Although
bits-back coding methods can perform well on large datasets, they have a large
overhead when used as per-image compressors. This is caused by the large num-
ber of initial bits that are required. Further, the dataset is often interlinked, mean-
ing that if an image in the middle of the dataset needs to be accessed, it requires
all images earlier in the bitstream to also be decompressed. Therefore per-image
compression is important for practical applications, because it is desirable to be
able to send a specific image without sending an entire dataset. On the other
hand, direct compressors such as L3C [117], IDF [73] and IDF++ [14] do not in-
cur an intial message overhead and their dataset performance translates directly
to per-image compression. A more conventional codec is FLIF [143], which is a
recent lossless compression codec with machine learning components that out-
performs traditional codecs such as PNG.

Performance of ARDMs and related methods in literature is presented in Ta-
ble 6.4. ARDMs significantly outperform all methods on compression per image,
requiring only 2.71 bpd versus 3.26 for the next best performing model, IDF++.
In addition, even compared to a setting where an entire dataset needs to be com-
pressed, ARDMs perform competitively to VDM, which attain 2.72 bpd. More-
over, ARDMs degrade more gracefully when fewer steps are used to encode the
data.

Note that the lossless compressor based on VDM was trained on non-augmented
data, whereas the best-performing likelihood model of Kingma et al. [91] was
trained with data augmentation, and our setup also uses data augmentation. As
a result, it is likely that their dataset compression results would be improved
when trained on augmented CIFAR-10. Also, it is not a coincidence that HiLLoC
and FLIF have the exact same compression per image performance. HiLLoC
compresses the first few images using the FLIF format to fill the initial bitstream,
and compresses the remaining images in the dataset with bits-back coding [156].
As a result, on a per-image compression benchmark the method is equivalent to
FLIF.

effects of depth-upscaling in ardms A natural question that might
arise is how standard order-agnostic modelling performs compared to order
agnostic bit-upscaling, and how bit-upscaling compares to the upscaling with
larger values. Due to the constant training complexity of ARDMs, one can easily
train models that have generative processes of arbitrary length. To test this, we
train ARDMs on image data from CIFAR-10 and audio data from SC09 [163].
For the audio data, the total number of categories is 216, which is typically too
large in terms of memory to model as a single softmax distribution. For that
reason, the single stage OA-ARDM is trained using a discretized logistic distri-

6.6 experiments 79

Table 6.4: CIFAR-10 lossless compression performance (in bpd).

Model Steps Compression per image Dataset compression

VDM [91] 1000 � 8 2.72
VDM [91] 500 � 8 2.72
OA-ARDM (ours) 500 2.73 2.73
ARDM-Upscale 4 (ours) 500 2.71 2.71

VDM [91] 100 � 8 2.91
OA-ARDM (ours) 100 2.75 2.75
ARDM-Upscale 4 (ours) 100 2.76 2.76

LBB [67] � 8 3.12
IDF [73] 3.34 3.34
IDF++ [14] 3.26 3.26
HiLLoC [156] 4.19 3.56
FLIF [143] 4.19 4.19

Table 6.5: Audio (SC09) depth upscaling test set performance (in bpd). A WaveNet base-
line learning only a single order achieves 7.77 bpd.

Model Steps Performance

OA-ARDM D = 16000 7.93

ARDM Upscale 256 2⇥ D 6.36
ARDM Upscale 16 4⇥ D 6.30
ARDM Upscale 4 8⇥ D 6.29
ARDM Upscale 2 16⇥ D 6.29

bution because it is computationally cheaper for a large number of categories.
For the same reason, the Upscale ARDMs for audio can only be trained using
the direct parametrization, whereas for images they are trained with the data
parametrization (Equation 6.13).

For images, the best performing model has an upscaling factor of 4 with 2.64 bpd
(see Table 6.6) and for audio the best performing model upscales by a factor of
2 or 4 with 6.29 bpd (see Table 6.5). The hypothesis is that as the upscale fac-
tor becomes smaller, the generative process generally becomes more structured
and easier to model. However, although for audio this pattern is consistently
observed, for images an upscale factor of 4 has better performance than an up-
scale factor of 2. It is possible that for certain data, at some point smaller upscale

Table 6.6: Image (CIFAR-10) depth upscaling performance (in bpd).

Model Steps Performance

OA-ARDM D = 3072 2.69

ARDM Upscale 16 2⇥ D 2.67
ARDM Upscale 4 4⇥ D 2.64
ARDM Upscale 2 8⇥ D 2.67

80 diffusion for discrete variables

factors give diminishing returns for performance. We hypothesize that by pro-
longing the generative process, the model may get less gradient signal per opti-
mization step, leading to the decreased performance of smaller upscale factors
in some situations.

6.7 conclusion
In this chapter we introduced two new discrete diffusion models: Firstly Multino-
mial Diffusion, a discrete diffusion model that re-samples categories uniformly.
Secondly, we introduced Autoregressive Diffusion, a model at the intersection
of order agnostic ARMs and absorbing discrete diffusion models. On all data
ARDMs show superior performance when modelling order agnostically. On text
however, single-order text models still perform better. On CIFAR10, an image
dataset where presumably order matters less, their performance is very close to
state-of-the-art models. This indicates that ARDMs may be a more natural model
for data where no specific order is required. For Multinomial Diffusion we ob-
serve similar patterns, although they are a bit further behind on text data.

Depending on the destruction process, these diffusion models can have surpris-
ing applications as a by-product. Multinomial Diffusion can be used to correct
spell checking errors in-place. ARDMs can be used for lossless compression with
efficient encoding and decoding.

The work presented in this chapter opens the door to discovering new discrete
destruction processes, which can be used to learn new useful generation pro-
cesses. An example is an interpolation between ARMs and ARDMs, where there
is more structure than random order generation, but less structure than single
order generation. Such models could match the generation process of certain
natural phenomena while still being parallelizable.

Part III

E Q U I VA R I A N T G E N E R AT I V E M O D E L S

7 | E Q U I VA R I A N T G E N E R AT I O N O F 3 D M O L E C U L E S

Based on the publications:
E(n) Equivariant Normalizing Flows [135]

Equivariant Diffusion for Molecule Generation in 3D [75]

7.1 introduction
Modern deep learning methods are starting to make an important impact on
molecular sciences. In addition to the success in protein folding prediction [85],
a growing body of literature is learning to analyze and generate molecules [141,
52, 95, 139].

Molecules live in a physical 3D space. They exhibit geometric symmetries such
as translations, rotations and possibly reflections. The combination of these sym-
metries is called the Euclidean group or E(3) for short, where the 3 refers to the
dimensionality of the space. Using these symmetries in molecular data can help
in performance and generalization, as studied in [154, 47, 46].

Although developed for discriminative tasks, E(3) equivariant neural networks
can also be used for molecule generation in 3D. In particular, they have been in-
tegrated into autoregressive models [51, 52]. These models artificially introduce
an order in the atoms and are known to be difficult to scale during sampling
[169].

In this chapter we introduce two generative models for molecule generation: E(3)
Equivariant Normalizing Flows (E-NFs) and E(3) Equivariant Diffusion Models
(EDMs). E-NFs are continuous-time normalizing flows that integrate a differen-
tial equation. By predicting the differential using an equivariant neural network,
the model learns an equivariant normalizing flow that can generate data with
much higher quality than previous normalizing flow methods. Then, we further
improve upon E-NFs with EDMs. EDMs generate molecules by denoising a dif-
fusion process that operates on both the continuous coordinates as well as the
categorical atom types. E-NFs and EDMs do not need to impose a specific order
of the atoms (opposed to autoregressive models). Furthermore, EDMs can be
trained very efficiently compared to normalizing flows. To give an example, the
percentage of stable molecules generated by EDMs is up to 16 times higher than
for E-NFs trained on QM9, while EDMs require only half the time to train. This
favourable scaling of EDMs enables them to be trained on larger datasets such
as GEOM-Drugs [8].

a note on chirality and e(3) equivariance An important topic in
chemistry is chirality, which concerns the reflections of molecules. A commonly
heard argument is that because molecules behave differently when reflected, it
could be a disadvantage to have an E(3) equivariant generative model. The ar-
gument is that we should desire equivariance only with respect to translations
and rotations but not reflections, which corresponds to SE(3) equivariance. An
example of when the chirality matters is sugar (glucose), for which its mirror

83

84 equivariant generation of 3d molecules

image cannot be processed by animals. We could conclude that a certain data
distribution of molecules D(x) is SE(3) invariant.

If we are interested in generating molecules in isolation without any reference,
indeed the above argument holds and we may get better result by limiting our-
selves to SE(3) equivariance. However, useful tasks of generating molecules are
rarely isolated. In fact, the chirality of sugar in our world seems to be a coin-
cidence: A mirror image of glucose could be processed by a mirror image of
animals.

The reasoning obscures an important detail: Practical problems such as docking
may be conditional: we tend to be interested in molecules that need to connect
to another given receptor c. In that case, the conditional distribution D(x|c) can
very well be E(3) equivariant, as the relevant forces and interactions between
atoms are E(3) equivariant. In that case, the chirality is already given by the
reference object c, and the interactions are better modelled by an E(3) equivari-
ant model. In the example of glucose, by conditioning on a relevant reference
structure c, the generation task may become E(3) equivariant.

As we are developing our generative models with the intend to later be used for
downstream tasks such as docking problems and material discovery, we develop
our models to be E(3) equivariant. If SE(3) equivariance is truly desired, one
can always modify the neural network (in this case the EGNN) to be reflection
aware.

7.2 background
7.2.1 Equivariance
Equivariance gives a framework to constrain functions in a useful manner based
on symmetries. An equivariant function behaves very predictably when the in-
put is transformed according to these symmetries. More specifically, a function
f is said to be equivariant to the action of a group G if Tg(f (x)) = f (Sg(x)) for
all g 2 G, where Sg, Tg are transformations related to the group element g.

In this work, we consider the Euclidean group E(3) generated by translations,
rotations and reflections, for which Sg and Tg can be represented by the same
translation t and an orthogonal matrix R that rotates or reflects coordinates. f is
then equivariant to a rotation or reflection R if transforming its input results in
an equivalent transformation of its output, or:

R f (x) = f (Rx). (7.1)

For distributions, we can say that the conditional distribution p(y|x) is equivari-
ant to the action of rotations and reflections when:

p(y|x) = p(Ry|Rx) for all orthogonal R. (7.2)

This definition is intuitively consistent with the functional equivariance defini-
tion in Equation 7.1, when we consider sampling from a delta distribution as ap-
plying a function: Imagine that p(y|x) is a delta peak, so p(y|x) = d(y = f (x)).
Drawing a sample from this distribution from this function is equivalent to sim-
ply applying y = f (x). Further, since p(y|x) = p(Ry|Rx) so then d(y = f (x)) =

7.2 background 85

d(Ry = f (Rx)) and so if y = f (x) then Ry = f (Rx), which recovers Equation 7.1.
Furthermore, a distribution is invariant to R transformations if

p(y) = p(Ry) for all orthogonal R. (7.3)

7.2.2 Equivariant Generative Models
When an invertible function f is equivariant and a base distribution pZ is invari-
ant in a normalizing flow, then the resulting distribution pX is also invariant [96].
To be self-contained, a derivation is given below:

pX(Rx) = pZ(f (Rx))|det J f (Rx)|
= pZ(R f (x))|det RJ f (x)|
= pZ(f (x))|det J f (x)| = pX(x).

(7.4)

In this derivation, we used (1) the change of variables formula, (2) equivariance
of f and (3) invariance of pZ.

A similar result has been shown for a chain of distributions p(z0|z1) . . . p(zT�1|zT)
p(zT), which is the typical setup encountered in diffusion models [168]. To be
self-contained, we will derive the same result here. Namely, if the transition dis-
tributions p(zt�1|zt) are equivariant and p(zT) is invariant, then every marginal
distribution p(zt) is invariant which importantly includes p(z0) (and p(x) if the
notation includes that variable). To derive the claim, we can use induction on the
chain.

For the base case, observe that p(zT) = N (0, I) is invariant with respect to
rotations and reflections, so p(zT) = p(RzT). Then for the induction step: For
t 2 {1, . . . , T} assume that p(zt) is invariant, which means that p(zt) = p(Rzt)
for all orthogonal R. Let p(zt�1|zt) be equivariant meaning that p(zt�1|zt) =
p(Rzt�1|Rzt) for orthogonal R. Then:

p(Rzt�1) =
Z

zt
p(Rzt�1|zt)p(zt) Probability Chain Rule

=
Z

zt
p(Rzt�1|RR

�1zt)p(RR
�1zt) Multiply by RR

�1 = I

=
Z

zt
p(zt�1|R�1zt)p(R�1zt) Equivariance & Invariance

=
Z

u
p(zt�1|u)p(u) · |det R|| {z }

=1

Change of Variables u = R
�1zt

= p(zt�1),

and thus p(zt�1) is invariant. Compared to [168], this derivations shows the
explicit dependency to rotate the reference frame within the integration. By in-
duction, p(zT�1), . . . , p(z0) are all invariant. As a consequence such a generative
model will not be distinguish between different rotations of the data, which is
precisely what we desire.

7.2.3 Representation of Molecules
In this chapter we focus on generating molecules. A molecule with M atoms is
represented using a variable for the positions x 2 RM⇥3 (for the xyz coordinates)
and for the atom features h 2 RM⇥nf which includes the atom type and atom
charge. Finally, we decide how our molecule should behave under the rotations,

86 equivariant generation of 3d molecules

reflections and translations. For a rotation or reflection R and a translation t we
define:

R(x,h) + t = (Rx+ t,h) = ((Rx1 + t, . . . , RxM + t), (h1, . . . ,hM)), (7.5)

where Rx1, Rx2, . . . , RxM are matrix vector multiplications. Note that h remains
unaffected by the transformations which matches our intuition: rotating a molecule
does not change the atom types. A function f that maps x,h to zx, zh of the same
shape is thus equivariant if:

f ((Rx+ t,h)) = (Rzx + t, zh) for all orthogonal R and translations t. (7.6)

egnn The E(n) Equivariant Graph Neural Network (EGNN) [136] is a type
of Graph Neural Network that satisfies the equivariance constraint (7.6). In this
chapter, it will be the main neural network of choice any time a neural network is
desired that is equivariant to the Euclidean group. Since we consider interactions
between all atoms, we assume a fully connected graph G with nodes vi 2 V . Each
node vi is endowed with coordinates xi 2 R3 as well as features hi 2 Rd. In
this setting, an EGNN consists of the composition of Equivariant Convolutional
Layers xl+1,hl+1 = EGCL[xl , h

l] which are defined as:

mij = fe

⇣
hl

i ,h
l
j, d2

ij, aij

⌘
, hl+1

i = fh(h
l
i , Â

j 6=i
ẽijmij),

xl+1
i = xl

i + Â
j 6=i

xl
i � xl

j

dij + 1
fx

⇣
hl

i ,h
l
j, d2

ij, aij

⌘
. (7.7)

7.3 related work
Group equivariant neural networks [28, 27, 36] have proven effective in many
different tasks. A dedicated growing part of equivariance literature is develop-
ing neural networks to transformations in Euclidean space [154, 47, 76, 46, 79,
136]. These models have proven effective in tasks such as molecular property
prediction and also modelling a dynamical system.

A branch of literature aims to generate atom coordinates from discrete molecular
graphs, referred to as the conformation. Examples of such methods utilize con-
ditional VAEs [140], Wasserstein GANs [68], and normalizing flows [123], with
adaptions for Euclidean symmetries in [97, 167, 139, 49, 62] which improves per-
formance. Recent works [138, 111, 168] show that score-based and diffusion mod-
els are also very effective at conformation prediction, especially when the under-
lying neural network is equivariant to symmetries in the data. Our works can
be seen as an extension of these flow- and diffusion-based methods that incor-
porates discrete atom features, which allows generation of complete molecules
in 3D. Furthermore we derive the equations required for log-likelihood compu-
tation.

Entire molecules in 3D including their atom types are generated by autoregres-
sive models in [52], which is later adapted for property conditioned generation
in [50]. However, autoregressive models have the inconvenience of an iterative
sampling procedure. Finally, several methods aim to generate the discrete molec-
ular graphs, for instance using autoregressive models [109, 171, 107], or one-shot
approaches [141, 32, 17, 101, 102]. However such methods do not provide con-
former information which is useful for many downstream tasks.

7.4 e-nfs : e(3) equivariant normalizing flows 87

lift to continuous

z

ode_integrateode_integrate

Figure 7.1: Overview of the training procedure of E-NFs: The discrete h is lifted to
continuous h. Then the variables x,h are transformed by an ODE to zx,xh. To get
a lower bound on log p(x,h) we sum the variational term � log q(h̃|h), the volume
term from the ODE

R 1
0 Tr Jf(z(t))dt, the log-likelihood of the latent representation on a

Gaussian log pZ(zx,xh), and the log-likelihood of the molecule size log pM(M). To train
the model, the sum of these terms is maximized.

7.4 e-nfs : e(3) equivariant normalizing flows
In this section E(3) Equivariant Normalizing Flows are introduced, normalizing
flows that are equivariant to Euclidean transformations. Recall that molecules
are represented by positions x and features h. Thus to define a normalizing
flow we require an invertible map f from x,h to zx, zh and a base distribution
pZ(zx, zh). For this model the likelihood of a molecule can be computed using
the change-of-variables formula:

p(x,h) = pZ(f (x,h))|det J f | = pZ(zx, zh)|det J f |, (7.8)

where J f =
d(zx ,zh)
d(x,h) is the Jacobian, where all tensors are vectorized for the Jaco-

bian computation.

The aim is to construct p(x,h) by choosing pZ and f in such a way that p(x,h)
is invariant to Euclidean transformations. In addition, we also desire p(x,h) to
also be invariant to permutations of the nodes in (x,h).

7.4.1 The Normalizing Flow
Multiple constraints need to be satisfied on f . From the normalizing flow per-
spective f needs to be invertible, and from a symmetry perspective f needs to be
equivariant. The difficulty is that when both constraints are enforced naively, the
set of possible functions may simply be too limited to model complicated distri-
butions. For this reason we utilize a method with mild requirements on neural
networks and which is invertible by design: neural ordinary differential equa-
tions [24]. These models require that f is Lipschitz (which most neural networks
are in practice) and that it needs to be continuously differentiable. Typically, neu-
ral networks are continuously differentiable as long as activations like softplus
or GELU are used and piece-wise functions such as ReLUs are avoided.

In this framework, the flow f is defined as a differential equation, integrated over
a conceptual time component. The derivative in this equation can be interpreted
as a velocity, and is predicted by a neural network f. This network is an EGNN
which satisfies equivariance constraints of both the Euclidean transformations
and permutations of the nodes. For simplicity in notation, the variables x,h
are redefined as functions over time with the data variable at t = 0, so x(t =
0) = x and h(t = 0) = h. Starting at t = 0, x and h are integrated using f
as a differential to t = 1 where we define the latent representations x(1) = zx,
h(1) = zh. In summary:

zx, zh = f (x,h) = [x(0),h(0)] +
Z 1

0
f(x(t),h(t))dt. (7.9)

88 equivariant generation of 3d molecules

These types of integrals can be easily computed using the torchdiffeq pack-
age, which also supports backpropagation. The Jacobian term under the ODE
formulation is

log
��det J f

�� =
Z 1

0
Tr Jf(x(t),h(t))dt (7.10)

where the trace of Jf is approximated with the Hutchinson’s trace estimator as
in [59].

7.4.2 The Dynamics
The dynamics function f in Equation 7.9 models the derivatives of x and h
over which to integrate, or in an equation: d

dtx(t),
d
dth(t) = f(x(t),h(t)). In

practice this derivative is modelled by the EGNN of L layers introduced in Sec-
tion 7.2.1:

f(x(t),h(t)) = xL(t)�x(t),hL(t) where xL(t),hL(t) = EGNN[x(t),h(t)].

An important detail is how the outputs of the EGNN are used. The output hL

is directly used to model the derivative d
dth(t) of the node features, because the

representation is invariant. However, the derivative for the coordinates is com-
puted as the EGNN output minus its input, so d

dtx(t) = xL�x(t). This choice is
consistent with how velocity-type vectors behave: Although d

dtx(t) rotates simi-
lar to positional data, it remains unchanged under translations of x as desired.
When the equivariant EGNN is used to model f in this way, then the resulting
integration in f is also equivariant.

The original EGNN [136] is slightly modified to improve stability relating to the
coordinate update. This extension is depicted in Equation 7.11 and it normalizes
the relative difference of two coordinates by their norm plus a constant C to
ensure differentiability. In practice we set C = 1 and found this to give stable
results.

xl+1
i = xl

i + Â
j 6=i

(xl
i � xl

j)

kxl
i � xl

jk+ C
fx
�
mij
�

(7.11)

translation invariance Recall that we want the distribution p(x,h) to
be translation invariant. For simplicity and since h is unaffected by translations,
consider a distribution pX(x) only over positions and an invertible function z =
f (x). Translation invariance is defined as pX(x+ t) = pX(x) for all t, which is a
constant function. However, this cannot be a distribution since it cannot integrate
to one. Instead, we have to restrict pX to a subspace.

To restrict pX to a subspace, we have to restrict the data, flow f and prior pZ
to a translation invariant linear subspace. An example is the space where the
nodes are centered so that their center of gravity is zero. Then the positions x 2
RM⇥3 lie on the (M� 1)⇥ 3-dimensional linear subspace defined by ÂM

i=1 xi = 0.
However, from a modelling perspective it is easier to represent node positions as
M sets of coordinates that are 3-dimensional in the ambient space. In short, we
desire the distribution to be defined on the subspace, but with the representation
of the nodes in the ambient space.

To limit the flow to the subspace, the mean of the output of the dynamics net-
work f can be removed as proposed in [97]. Expanding on their analysis, we

7.4 e-nfs : e(3) equivariant normalizing flows 89

derive that the Jacobian determinant in the ambient space is indeed equal to
the Jacobian determinant in the subspace under this condition. Intuitively, the
transformation f does not change orthogonal to the subspace, and as a result
there is no volume change in that direction. For this reason the determinant can
safely be computed in the ambient space, which conveniently allows the use
of existing libraries without modification. Additionally, we can find the proper
normalization constant for the base distribution.

For a more formal argument, let P be a R(M�1)·3⇥M·3 matrix that projects points
to the (M� 1) · 3 dimensional subspace with orthonormal rows. Consider a col-
lection of points x 2 RM⇥3 where ÂM

i=1 xi = 0 and z = f (x). Define x̃ = Px,
z̃ = Pz, where x, z are considered to be vectorized and ·̃ signifies that the vari-
able is defined in the coordinates of the subspace. The Jacobian in the subspace
J̃ f is:

J̃ f =
dz̃
dx̃

=
dz̃
dz

dz
dx

dx
dx̃

= PJf PT. (7.12)

To connect the determinant of J f to J̃ f , let Q 2 RM·3⇥M·3 be the orthogonal

extension of P using orthonormal vectors q1, q2, q3, so that QT =
h

PT
q1, q2, q3

i
.

Then QJf QT =

"
J̃ f 0
0 I

#
, where J̃ f = PJf PT and I a 3⇥ 3 identity matrix. From

this we observe that det J f = det QJf QT = det J̃ f , which proves the claim. As
a result of this argument, we are able to utilize existing methods to compute
volume changes in the subspace without modification, as det J̃ f = det J f , under
the constraint that f is an identity orthogonal to the subspace.

7.4.3 The Base Distribution
Now that the invertible function f has been defined, we need to define a base
distribution pZ. This base distribution consists of two parts: A component for
the positions p(zx), and a component for the features p(zh). To combine the two,
the distributions are assumed to be independent so that p(zx, zh) = p(zx) · p(zh).
This independence assumption is common in normalizing flows, and in fact the
dimensions inside zx and zh will also be assumed to be independent with respect
to each other. The dependencies between variables are introduced through the in-
vertible function f . For the feature component p(zh) no special care is needed as
the values are invariant with respect to E(3) symmetries, and only need to be per-
mutation invariant. A common choice is a standard Gaussian p(zh) = N (zh|0, I).
For the positional component, recall that zx lies on an (M� 1)n subspace. There-
fore, we need to specify the distribution over this space. Standard Gaussian dis-
tributions are reflection and rotation invariant since ||Rzx||2 = ||zx||2 for any ro-
tation or reflection R. Further, observe that for our particular projection z̃x = Pzx
it is true that ||z̃x||2 = ||zx||2 since zx lies in the subspace. More formally this
can be seen using the orthogonal extension Q of P as defined earlier and observ-

ing that: ||zx||2 = ||Qzx||2 =
���
���

"
z̃x

0

���
���
2
= ||z̃x||2. Therefore, a valid choice for a

rotation invariant base distribution on the subspace is given by:

p(z̃x) = N (z̃x|0, I) =
1

(2p)(M�1)3/2 exp
⇣
� 1

2
||zx||2

⌘
, (7.13)

90 equivariant generation of 3d molecules

which can be directly computed in the ambient space using ||zx||2, with the
important property that the normalization constant uses the dimensionality of
the subspace: (M� 1)3, so that the distribution is properly normalized.

7.4.4 Modelling discrete properties
As discussed in chapter 5, normalizing flows typically model continuous dis-
tributions. However, the node features h contain both ordinal (e.g. charge) and
categorical (e.g. atom type) features. To distinguish the two, let h be the dis-
crete features and h̃ their continuous counterpart. To train the normalizing flow,
the discrete h is transformed to the continuous h̃ with learnable noise. Let
h = (hord, hcat) be a division between ordinal and categorical features. The ordi-
nal features are transformed with variational dequantization [65] and the categor-
ical features with Argmax Flows, the technique introduced in Section 5.5.

To be specific, the ordinal discrete hord is modified by sampling interval noise
u ⇠ qord(· |hord) and adding that to the ordinal discrete values so that h̃ord =
hord +u, where u lies in a zero to one interval. For the categorical hcat a distribu-
tion that is the probabilistic inverse of an argmax is learned. Then the continuous
h̃cat is sampled from h̃cat ⇠ qcat(· |hcat). Both qord and qcat are modelled by condi-
tional normal distributions where the mean and standard deviation are learned
by an EGNN taking as input the discrete representation h. Analogous to the
derivation in Section 5.4, a variational lowerbound of a discrete model can be
formulated using these components:

log pH(h) � Eh̃⇠qord,cat(· |h)

h
log pH̃(h̃)� log qord,cat(h̃|h)

i
, (7.14)

where pH̃ is the underlying flow and pH is the implied discrete model. To sample
the discrete h ⇠ pH, first sample the continuous h̃ ⇠ pH̃ via a flow and then
compute h = (round(hord), argmax(hcat)) to obtain the discrete version.

In summary, the normalizing flow is trained on a continuous version h̃ of the
discrete representation h, which is obtained by sampling from qord, qcat. Equa-
tion 7.14 is a lowerbound of an implied discrete model pH. For simplicity and
to avoid clutter, in the other sections the distinction between h̃ and h is ignored
and both are simply referred to as h.

varying the number of atoms A final issue with the current description
is that M may be different among different molecules in the dataset. This prob-
lem is resolved by including a simple one dimensional categorical distribution
pM for the different atom sizes. This distribution pM is constructed by counting
the number of atoms in each molecule in the training data and dividing by the
total number of molecules.

The likelihood of a molecule is p(x, h, M) = p(x, h|M)pM(M) where p(x, h|M)
represents the flow as defined before, and pM is the one-dimensional categorical
distribution. The EGNN learns to automatically adapt for the number of nodes.
In notation we will often omit the conditioning on M to avoid notational clutter.
To generate samples, first the number of atoms is sampled M ⇠ pM after which
zx, zh ⇠ pZ(zx, zh|M) is sampled and then this is transformed using the flow
f�1 to compute the samples x,h = f�1(zx, zh) which is computed by reversing
the differential equation.

7.5 edms : e(3) equivariant diffusion models 91

denoisedi!usedenoisedi!use

Figure 7.2: Schematic overview of the EDMs and their equivariance. To generate a
molecule, a normal distributed set of points is denoised into a molecule consisting of
atom coordinates x in 3D and atom types h. As the model is rotation equivariant, the
likelihood is preserved when a molecule is rotated by R.

7.5 edms : e(3) equivariant diffusion models
In this section we describe EDMs, E(3) Equivariant Diffusion Models. EDMs can
be seen as the diffusion-based counterpart of E-NFs. EDMs define a diffusion
process for atom positions and features, and then learn to approximate the gen-
erative denoising process. EDMs benefit from the favourable scaling in training
that diffusion models are known to have.

7.5.1 The Diffusion Process
Continuous-time normalizing flows such as the E-NF are known to be expensive
to train, and as a result they are difficult to scale to larger data structures. In this
section we introduce an E(3) Equivariant Diffusion Model (EDM) for molecular
data in 3D, which are known to scale much better in general. Consider again
a variable for atom coordinates x 2 RM⇥3 and features h 2 RM⇥nf. We first
define a diffusion process for the combined concatenation [x,h] describing the
molecule, that gradually adds noise. Letting zt = [z(x)

t , z(h)
t] denote the interme-

diate latent representations at step t, we define the diffusion process as:

q(zt|x,h) = Nxh(zt|at[x,h], s2
t I) (7.15)

for t = 1, . . . , T where Nxh is concise notation for the product of two distribu-
tions, one for the noised coordinates Nx and another for the noised features N
given by:

Nx(z
(x)
t |atx, s2

t I) · N (z(h)
t |ath, s2

t I) (7.16)

This definition corresponds to Equation 3.15 in a standard diffusion model. As
discussed in Section 7.4.2, a distribution cannot be consistently defined to be in-
variant to translations. Instead, one can define distribution on the linear subspace
where the center of gravity is zero: Essentially requiring that any translation of

92 equivariant generation of 3d molecules

Figure 7.3: Overview of the Equivariant Diffusion Models for training and sampling. To
generate molecules, coordinates x and features h are generated by denoising variables
zt starting from standard normal noise zT . This is achieved by sampling from the dis-
tributions p(zt�1|zt) iteratively. To train the model, noise is added to a datapoint x,h
using q(zt|x,h) for the step t of interest, which the network then learns to denoise.

the object is removed beforehand. Following [168] which showed this definition
can be consistently used in diffusion processes, we define Nx is defined as a
normal distribution on the subspace defined by Âi xi = 0 (for a more precise
definition see Appendix D.2.1).

Although the definitions have been similar to standard diffusion models thus far,
there are several details that still need to be resolved: In typical diffusion models,
data is ordinal. In this case, a part of h data is categorical (for the atom type),
ordinal (for atom charge), and x is continuous. Further, different starting repre-
sentations of h may be desirable, and these different data types require different
treatment in L0. The following sections will expand on these details.

Algorithm 13 Optimizing EDMs
Input: Data point x, neural network f
Sample t ⇠ U (0, . . . , T), ✏ ⇠ N (0, I)
Subtract center of gravity from ✏(x) in ✏ = [✏(x), ✏(h)]
Compute zt = at[x,h] + ste
Minimize ||✏� f(zt, t)||2

Algorithm 14 Sampling from EDMs

Sample zT ⇠ N (0, I)
for t in T, T � 1, . . . , 1 where s = t� 1 do

Sample ✏ ⇠ N (0, I)
Subtract center of gravity from ✏(x) in ✏ = [✏(x), ✏(h)]

zs = 1
at|s

zt �
s2

t|s
at|sst

· f(zt, t) + st!s · ✏
end for

Sample x,h ⇠ p(x,h|z0)

7.5.2 The Learned Denoising Process
From Equation 7.15 we can compute the posteriors of the diffusion process
q(zs|x,h, zt) for s < t analogous to Equation 3.16. These posteriors give the
true denoising process, it is the generative process that we aim to approximate.
As common in diffusion, we define our generative distributions p(zs|zt) with
respect to the true denoising distributions, replacing [x,h] by neural network ap-

7.5 edms : e(3) equivariant diffusion models 93

proximations x̂, ĥ that take as input zt, in the same fashion as in Equation 3.17:

p(zs|zt) = Nxh(zs|µt!s([x̂, ĥ], zt), s2
t!sI) (7.17)

where x̂, ĥ depend on zt, t and the neural network f. There are multiple ways to
define a procedure to obtain x̂, ĥ and in this case we use the noise (or epsilon)
parametrization. In this parametrization, the network f outputs ✏̂ = [✏̂(x), ✏̂(h)]
which is then used to compute:

[x̂, ĥ] = zt/at � ✏̂t · st/at (7.18)

To sample from the model, one first samples zT ⇠ Nxh(0, I) and then iteratively
samples zt�1 ⇠ p(zt�1|zt) for t = T, . . . , 1. Finally sample x,h ⇠ p(x,h|z0). This
procedure is also described in Algorithm 14.

the denoising process is equivariant If ✏̂t is computed by an equiv-
ariant function f then the denoising distribution in Equation 7.17 is equivari-
ant. To see this, observe that rotating zt to Rzt gives R✏̂t = f(Rzt, t) by equiv-
ariance of f. Furthermore, the mean of the denoising equation rotates Rx̂ =

Rz
(x)
t /at � R✏̂

(x)
t st/at. Finally, as the mean is (functionally) equivariant and the

noise s2
t!sI is isotropic, the distribution p(zs|zt) is equivariant as desired.

optimization objective The important components in the objective are
the KL divergences between the true denoising process and the learned de-
noising process, given by Lt = �KL(q(zs|x, zt)||p(zs|zt)). Analogous to Equa-
tion 3.20, for the above choices of the diffusion process and p(zs|zt) the terms
simplify to:

Lt = E✏t⇠Nxh(0, I)

⇥1
2

w(t) ||✏t � ✏̂t||2
⇤
, (7.19)

where w(t) = (1� SNR(t� 1)/SNR(t)) and ✏̂t = f(zt, t). It is very convenient
that the simplifications for standard diffusion models still apply to our modified
Nxh distributions, and they can be computed for both the x and h components
inside ✏t at once. There are three reasons why Equation 7.19 holds: (1) Nx and N
within Nxh are independent, so the divergence can be separated into two diver-
gences. (2) The KL divergence between the Nx components are still compatible
with the standard KL equation for normal distributions, as they rely on a Eu-
clidean distance (which is rotation invariant) and the distributions are isotropic
with equal variance. (3) Finally, the equations to compute the KL divergence for
the components x and h are very similar. In fact, the sum of the two terms can be
obtained by concatenating the components in x and h as done in Equation 7.19.
This argument is elucidated in more detail in Appendix D.2.1.

Following [66] we set w(t) = 1 during training as it stabilizes optimization
and it is known to improve sample quality for images. Experimentally this
also turned out to be true for our experiments with molecules: When train-
ing a model with w(t) = 1 and another model with the variational version
w(t) = (1 � SNR(t � 1)/SNR(t)). The model trained with w(t) = 1 outper-
formed the model that was directly trained on the variational objective, even
when evaluated with the variational w(t). An overview of the optimization pro-
cedure is given in Algorithm 13.

94 equivariant generation of 3d molecules

In summary, we have defined a diffusion process, a denoising model and an
optimization objective between them. To further specify our model, we need to
define the neural network f that is used within the denoising model.

the denoising network The denoising network needs to be E(3) equiv-
ariant, and therefore we again use the EGNN introduced in Section 7.2.1 in the
following way:

✏̂
(x)
t , ✏̂(h)t = EGNN(z(x)

t , [z(h)
t , t/T])� [z(x)

t , 0].

The network takes as input z(x)
t , z(h)

t and t/T is concatenated to the node features.
The estimated noise ✏̂

(x)
t is given by the output of the EGNN from which the

input coordinates z
(x)
t are removed, to let the prediction ✏̂

(x)
t act like a velocity-

type vector in terms of equivariance. To ensure that the positions z
(x)
t remain at

a zero center of gravity, the component ✏̂(x)
t is projected down by subtracting its

center of gravity. Then, this network choice satisfies the rotational and reflection
equivariance on x̂ when used as in Equation 7.18.

7.5.3 The Zeroth Likelihood Term and Categorical Features
Typically, diffusion models operate on ordinal data [66]. In these cases, choosing
L(h)

0 = log p(h|z(h)
0) is relatively straightforward. It turns out that since the noise

perturbations are very small (a0 ⇡ 1 and s0 ⇡ 0), the distribution has high
probability for a single value of h. We can assume that the data distribution is
constant and find:

q(h|z(h)
0) =

q(z(h)
0 |h)pdata(h)

Âh q(z(h)
0 |h)pdata(h)

=
q(z(h)

0 |h)
Âh q(z(h)

0 |h)

which approximates 1 for almost all z(h)
0 that are sampled from the noising pro-

cess q(z(h)
0 |h), for reasonable a0, s0. In the generative model it is then standard

practice [66] to choose a distribution that approximates this peaked distribution:

p(h|z(h)
0) =

Z h+ 1
2

h� 1
2

N (u|z(h)
0 , s0)du, (7.20)

which can be computed with F((h+ 1
2 �z

(h)
0)/s0)�F((h� 1

2 �z
(h)
0)/s0) where

F is the CDF of a standard normal distribution. Although this representation of
h is natural for ordinal variables, for categorical variables this representation of
h introduces an undesired bias.

categorical features The atom types are categorical, and as such the
integer representation is unnatural and introduces an undesired bias in the dif-
fusion and denoising process. For that reason, we operate directly on a one-
hot representation. Suppose that h contains the atom type as an integer in
{1, 2, . . . , K}. Then h is transformed to a onehot representation h 7! honehot so
that honehot

i,j = 1[hi = j]. Subsequently, the diffusion process over z
(h)
t can be

directly defined on the onehot representation honehot analogous to the definition
on integers, so q(z(h)

t |h) = N (z(h)
t |athonehot, s2

t I) where honehot now has an ad-
ditional axis for the category. By reasoning for integer features, for reasonable

7.5 edms : e(3) equivariant diffusion models 95

a0, s0 the distribution q(honehot|z(h)
0) approximates a delta peak. Hence, we use a

similar way to approximate this delta peak now using the onehot representation.
Specifically, since only a small amount of noise is added, the active class will
almost certainly be between 1� 1

2 and 1 + 1
2 . We define the probability param-

eters proportional to a normal distribution with mean z
(h)
0 integrated over this

region:

p(h|z(h)
0) = C(h|p), p µ

Z 1+ 1
2

1� 1
2

N (u|z(h)
0 , s0)du

where p is normalized afterwards to ensure it sums to one. As with the integer
feature version, in practice this approximates a delta peak which equals one for
almost all samples z

(h)
0 from the diffusion process given honehot.

continuous positions For continuous positions, the precision of the noise
matters and we cannot simply work with delta peaks. Recall that we desire an
expression for p(x|z(x)

0) that is in L(x)
0 . Starting with a similar analysis and as-

suming pdata(x) is constant:

q(x|z(x)
0) =

q(z(x)
0 |x)pdata(x)R

x q(z(x)
0 |x)pdata(x)

⇡ q(z(x)
0 |x)

R
x q(z(x)

0 |x)
. (7.21)

By completing the square one finds that q(x|z(x)
0) ⇡ Nx(x|z(x)

0 /a0, s2
0 /a2

0I).
Comparing this mean z

(x)
0 /a0 to the typical parametrization in Equation 7.18,

we find that their difference is the learnable correction term s0/a0✏̂0. Empirically,
we find that likelihoods are somewhat better if we include the correction term,
and thus we choose:

p(x|z0) = N
⇣
x
��z(x)

0 /a0 � s0/a0✏̂0, s2
0 /a2

0I

⌘
. (7.22)

Using this parametrization the log-likelihood component in the objective can be
simplified to:

L(x)
0 = E✏(x)⇠Nx(0,I)

h
log Z�1 � 1

2
||✏(x) � f(x)(z0, 0)||2

i
,

with a normalization constant Z. As such, this means that Equation 7.19 can
conveniently be used for t = 0 in the x component by defining w(0) = �1. The
normalization constant Z = (

p
2p · s0/a0)(M�1)·3 is then separately added. The

value (M � 1) · 3 is caused by the distribution that is defined on the center of
gravity zero subspace (see also Appendix D.2.1).

scaling features The coordinates x, charge hcharge and atom type honehot

can be scaled with respect to each other. Whereas standard normalizing of all
features using the same value makes optimization and network processing easier,
the relative scaling changes the diffusion and denoising process. For instance, if
honehot is multiplied by a value between zero and one, and x is unchanged, then
the new generative denoising process will place more emphasis on modelling the
positions earlier and then modelling the atom type later. Therefore, it postpones
the decision on which atom type a node should have. Because x is continuous,
scaling it requires a correction in the log-likelihood. However, scaling h does not
require such a correction and is not problematic as long as the difference between

96 equivariant generation of 3d molecules

Figure 7.4: Sampled molecules by our E-NF. The top row contains random samples, the
bottom row also contains samples but selected to be stable. Edges are drawn depending
on inter-atomic distance.

discrete states is large compared to s0/a0. Empirically we find that defining the
input to our EDM model as [x, 0.25 honehot, 0.1 hatom charge] significantly improves
performance over non-scaled inputs. From this it seems that it is easier for a
model to first decide roughly on the positions x and subsequently generate the
discrete features in h.

number of atoms Similar to Section 7.4, until now the model was defined
with a fixed number of atoms M. The model is extended by including a 1 dimen-
sional categorical distribution p(M) obtained by counting the molecule sizes in
the training set and dividing by the total number of molecules. From a proba-
bility perspective this model can be viewed as p(x,h, M) = p(x,h|M)p(M). To
sample from this model, M ⇠ p(M) is first sampled and then x,h ⇠ p(x,h|M)
are sampled from the EDM. For clarity, this conditioning on M is generally omit-
ted.

7.6 experiments
datasets The generative models are tested on datasets where molecules are
represented with coordinates in 3D space (also known as the xyz format). The E-
NF and the EDM are tested on QM9, a standard dataset for 130K small molecules
with up to 9 heavy atoms (maximum 29 atoms when counting hydrogens). In this
experiment, the models are trained to generate the 3-dimensional coordinates,
atom type (H, C, N, O, F) and integer-valued atom charge. For this dataset we
use the 100K/18K/13K train/val/test partitions as introduced in [5]. Further,
the EDM is also tested on a dataset with larger molecules, GEOM-DRUGS [8].
Here the scaling advantage of the EDM are really apparent, training the E-NF
on this dataset is not possible since it would be computationally too expensive.
It contains 430,000 molecules with a maximum of 181 atoms and 44.4 atoms
on average. In contrast with QM9, the dataset contains many conformers and
their energy per molecule. From these molecules we keep the 30 lowest energy
conformations. Similar to QM9, the model is then trained to generate the 3D
positions, atom type and atom charge.

metrics To determine the performance of a generative model, we compute
the distance between each pair of atoms. Depending on the atom types in the
pair, we determine based whether the pair has a bond (either single, double or
triple). This bond type is based on the typical observed distance between atom
types in chemistry, see Appendix D for more details. After all bonds have been

7.6 experiments 97

Figure 7.5: Samples generated by the denoising process of our EDM trained on QM9.

computed, we check whether the number of placed bonds matches the valency of
each atom. If the valency matches, the atom is considered stable. If each atom in
a molecule is stable, then the molecule is considered stable. Especially molecule
stability is a tough metric, because only a single deviation in a single atom can
render the entire molecule unstable. Further, these bond distance rules are based
on typical distances, but the actual distance may be slightly off depending on
more complicated properties of a molecule. Nevertheless, applying this metric
on the QM9 data itself we find that 99% of atoms are stable and 95% of molecules
are stable. This should be interpreted as 99% percent of atoms behaving typi-
cally and 95% of molecules behaving typically. An ideal generative model would
match these accuracy numbers as it means it generates molecules that have the
same typicality as the data. For GEOM-DRUGS, the molecule are too large and
atypical to use the molecule stability metric, only a small percentage of the data
are molecules where all atoms have typical distances. However, the models are
compared on atom stability because many atoms are still stable: the data con-
tains 86.5% stable atoms when measuring with typical distances.

In addition to the stability metric, we compare the models on negative log-
likelihood. In contrast with other metrics that are based on generated samples,
this metric measures how likely given molecules are under the distribution of
the model. The reported results are obtained by evaluating the model on the test
set.

Finally, for GEOM-DRUGS we measure the energy of the molecules with the
same software that was used to generate the conformations [9]. Both the ener-
gies of the molecules in the dataset and generated molecules are compared by
measuring the Wasserstein distance between their histograms.

baselines In order to demonstrate the benefits of equivariance, we perform
ablation studies with non non-equivariant variations of the models called Graph
Normalizing Flows (GNFs) and Graph Diffusion Models (GDMs). The GNF can
be seen as only a permutation equivariant flow as described in [16]. In these mod-
els, the EGNNs are replaced by standard non-equivariant GNNs with the same
number of layers and hidden features. In these experiments, we also include a
version where the data is augmented by random rotations. For more details on
optimizer settings and architecture see Appendix D.2.2.

98 equivariant generation of 3d molecules

Figure 7.6: Selection of samples generated by the denoising process of our EDM trained
on GEOM-DRUGS.

Table 7.1: Neg. log-likelihood � log p(x, h, M) on the QM9 test set. Atom stability and
molecule stability with standard deviations across 3 runs on QM9, each drawing 10000
samples from the model.

Metrics NLL Atom stable (%) Mol stable (%)

GNF -28.2 72 0.3
GNF-aug -29.3±0.0 75 0.5
E-NF -59.7±0.1 85 4.9
G-Schnet [52] N.A 95.7 68.1

GDM -94.7 97.0 63.2
GDM-aug -92.5 97.6 71.6
EDM (ours) -110.7±1.5 98.7±0.1 82.0±0.4

Data 99.0 95.2

In addition, we compare to the existing method to generate molecules in 3D
[52], an autoregressive model. To compare against this model we extracted 10000
samples from the publicly available code to run the analysis.

results On QM9, the E-NF outperforms its non-equivariant normalizing
flow counterparts on all metrics (see Table 7.1). It generates atoms with higher
stability (85%) and also higher molecule stability (4.9%). Although these results
are impressive for normalizing flows, G-Schnet [52] generates molecules with
even higher stability, 68.1%. All these methods are outperformed by the diffusion-
based methods, where our equivariant EDM is the best performing model with
82% molecule stability. It is interesting that the negative log-likelihood of the
EDM is lower than the other models. This indicates that the learned distribution
is sharper. Samples drawn from the E-NF are depicted in Figure 7.4 and samples
drawn from the EDM are depicted in Figure 7.5.

7.7 conclusion 99

Table 7.2: Neg. log-likelihood on the GEOM-DRUGS test set. Atom stability and Wasser-
stein distance between generated and training set energy distributions for GEOM-
DRUGS measured on 10000 samples drawn from the models.

Metrics NLL Atom stability (%) W

GDM � 14.2 75.0 3.32
GDM-aug � 58.3 77.7 4.26
EDM �137.1 81.3 1.41

Data 86.5 0.0

In GEOM-DRUGS, molecules are bigger and have more complex structures.
Therefore, training the E-NF on this dataset is not tractable due to the expen-
sive integration step in the training process. Because the diffusion models are
only optimized for a single timestep from a process with many timesteps, they
are scalable to this dataset. In Table 7.2 it is shown that the EDM performs better
than non-equivariant baselines on log-likelihood, atom stability and the Wasser-
stein distance of the histograms of the computed energies. In particular, EDM is
able to capture the energy distribution well, as can be seen on the histograms in
Appendix D.2.2. Samples drawn from the model are depicted in Figure 7.6.

7.7 conclusion
In summary, we have introduced two equivariant generative models to generate
molecules in 3D space from data. Firstly, E-NFs are an equivariant normalizing
flow that outperformed its non-equivariant flow counterparts. However, E-NFs
are still expensive to train due to the differential equation that needs to be in-
tegrated. As a result, E-NFs can only be trained to reasonable but sub-optimal
performance compared to the existing method. Secondly we introduced EDMs,
diffusion models that are also equivariant to Euclidean transformations. Lever-
aging the training efficiency that diffusion models are known for, this model was
able to outperform the existing approach and generated molecules with high pre-
cision. In the future, these models may become increasingly influential in areas
such as material discovery and docking problems.

8 | C O N C L U S I O N

This thesis aimed to improve the understanding and flexibility of deep gener-
ative models. In particular, this thesis focused on two very effective likelihood
based generative models: normalizing flows and diffusion models. The research
questions focused on 1) finding invertible convolutional layers for improved nor-
malizing flows, 2) & 3) exploring normalizing flows and diffusion models de-
fined on discrete spaces, and 4) applying generative models to molecule genera-
tion.

Research Question 1: How can we construct invertible convolutional layers for nor-
malizing flows?

For Research Question 1, we developed new invertible convolutional layers, each
with their computational advantages and disadvantages. We relied on concepts
from linear algebra and signal processing: triangular matrices, Fourier trans-
forms and matrix exponentials to introduce Emerging Convolutions, Invertible
Periodic Convolutions and Convolution Exponentials. We demonstrated that
these layers indeed improve the flexibility of normalizing flows and lead to im-
proved modelling performance.

Although the results were positive and the methods effective, an important open
question remains. Is there a way to compute the Jacobian determinant and in-
verse of a standard (zero-padded) convolutional layer, without any constraints?
The answer to this question unfortunately remains elusive to date.

Research Question 2: How can we define normalizing flows for discrete variables?

For Question 2, we developed two new normalizing flow techniques for discrete
data: for integer data and categorical data. Integer Discrete Flows are defined
on integer spaces, with applications to lossless compression. An important part
of this method is the rounding operation, which requires approximations in the
optimization. This is also the Achilles’ heel of discrete flows: they require gra-
dient approximations when optimized end-to-end, which ultimately limits their
performance. For IDFs this issue is manageable and they can be optimized to
have good performance with specific design choices. In literature, discrete flows
on categorical data are currently more difficult to optimize, which significantly
hinders performance.

For that reason, Argmax Flows rely on a different technique: dequantization
from a categorical to a continuous space. Dequantization does not require any
gradient approximations and is therefore easier to optimize. This work has also
highlighted limitations of current normalizing flow architectures, when applied
to text.

Research Question 3: How can we define diffusion models with discrete latent spaces?

For Question 3, we show that we can also define diffusion models on discrete
spaces. For the first time, we can train diffusion models on text data. We in-
troduce two models: Multinomial Diffusion and Autoregressive Diffusion Mod-
els. We demonstrate that these models have competitive performance and can

101

102 conclusion

be used for a variety of settings. Furthermore, using our work on Autoregres-
sive Diffusion Models we bridge the gap between three existing models: Order-
Agnostic Autoregressive Models, Masked Language Models and Absorbing Dif-
fusion Models.

Research Question 4: How can we create a powerful generative model to generate
molecules in 3D?

Lastly, for Question 4 we developed normalizing flows and diffusion models for
the generation of molecules in 3D. Molecules live in 3D space and are subject
to symmetries such as rotation. An important contribution is that our genera-
tive models respect these symmetries, we designed them to be equivariant with
respect to these symmetries. This chapter immediately uses certain techniques
that were developed for Question 2 & 3, because the molecules contain discrete
atom features that need to be modelled. Our research has produced a flow-based
model ‘E-NF’ and a diffusion model ‘EDM’ that generate molecules in 3D with
a high degree of quality as measured by several metrics.

Despite the successes, there is still a lot of promising research to be done in
these areas. In the recent year, new discrete diffusion models are frequently dis-
covered that have desirable properties for certain problems. There are still many
discrete diffusion processes to be invented, which can have enlightening connec-
tions to existing models. Another important direction is to explore how generat-
ing molecules with models such as EDMs can revolutionize the natural sciences.
An important example is material discovery: By generating compounds with
certain properties, new materials can be found. Additionally, for docking prob-
lems generation can be done conditionally based on certain receptors. Generative
models are becoming increasingly successful which brings many opportunities,
challenges and hopefully widespread positive impact.

B I B L I O G R A P H Y

[1] Sandro Ackermann, Kevin Schawinksi, Ce Zhang, Anna K Weigel, and
M Dennis Turp. “Using transfer learning to detect galaxy mergers.” In:
Monthly Notices of the Royal Astronomical Society (2018).

[2] Nasir Ahmed, T Natarajan, and Kamisetty R Rao. “Discrete cosine trans-
form.” In: IEEE transactions on Computers 100.1 (1974), pp. 90–93.

[3] Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion
Jones. “Character-Level Language Modeling with Deeper Self-Attention.”
In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019.
2019.

[4] Michael A. Alcorn and Anh Nguyen. “The DEformer: An Order-Agnostic
Distribution Estimating Transformer.” In: ICML Workshop on Invertible
Neural Networks, Normalizing Flows, and Explicit Likelihood Models. 2021.

[5] Brandon Anderson, Truong Son Hy, and Risi Kondor. “Cormorant: Co-
variant Molecular Neural Networks.” In: Advances in Neural Information
Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F.
d'Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019.

[6] M. Arioli, B. Codenotti, and C. Fassino. “The Padé method for computing
the matrix exponential.” In: Linear Algebra and its Applications 240 (1996),
pp. 111 –130. issn: 0024-3795.

[7] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne
van den Berg. “Structured Denoising Diffusion Models in Discrete State-
Spaces.” In: CoRR abs/2107.03006 (2021).

[8] Simon Axelrod and Rafael Gomez-Bombarelli. “GEOM: Energy-annotated
molecular conformations for property prediction and molecular genera-
tion.” In: arXiv preprint arXiv:2006.05531 (2020).

[9] Christoph Bannwarth, Sebastian Ehlert, and Stefan Grimme. “GFN2-xTB—An
accurate and broadly parametrized self-consistent tight-binding quantum
chemical method with multipole electrostatics and density-dependent
dispersion contributions.” In: Journal of chemical theory and computation
15.3 (2019), pp. 1652–1671.

[10] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and
Jörn-Henrik Jacobsen. “Invertible Residual Networks.” In: Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA. Vol. 97. Proceedings of Machine Learn-
ing Research. PMLR, 2019, pp. 573–582.

[11] Samy Bengio and Yoshua Bengio. “Taking on the curse of dimensional-
ity in joint distributions using neural networks.” In: IEEE Trans. Neural
Networks Learn. Syst. (2000).

[12] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin.
“A neural probabilistic language model.” In: The journal of machine learning
research 3 (2003), pp. 1137–1155.

103

104 bibliography

[13] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. “Estimating or
propagating gradients through stochastic neurons for conditional compu-
tation.” In: arXiv preprint arXiv:1308.3432 (2013).

[14] Rianne van den Berg, Alexey A. Gritsenko, Mostafa Dehghani, Casper
Kaae Sønderby, and Tim Salimans. “IDF++: Analyzing and Improving
Integer Discrete Flows for Lossless Compression.” In: 9th International
Conference on Learning Representations, ICLR. OpenReview.net, 2021.

[15] Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, and Max
Welling. “Sylvester normalizing flows for variational inference.” In: 34th
Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018. 2018, pp. 393–
402.

[16] Marin Bilos and Stephan Günnemann. “Scalable Normalizing Flows for
Permutation Invariant Densities.” In: Proceedings of the 38th International
Conference on Machine Learning, ICML. 2021.

[17] Xavier Bresson and Thomas Laurent. “A two-step graph convolutional de-
coder for molecule generation.” In: arXiv preprint arXiv:1906.03412 (2019).

[18] Tom B. Brown et al. “Language Models are Few-Shot Learners.” In: Ad-
vances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS. 2020.

[19] Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. “Importance
Weighted Autoencoders.” In: 4th International Conference on Learning Rep-
resentations, ICLR. 2016.

[20] A Robert Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-Lock
Yeo. “Lossless image compression using integer to integer wavelet trans-
forms.” In: Proceedings of International Conference on Image Processing. Vol. 1.
IEEE. 1997, pp. 596–599.

[21] AR Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-Lock Yeo.
“Wavelet transforms that map integers to integers.” In: Applied and compu-
tational harmonic analysis 5.3 (1998), pp. 332–369.

[22] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi,
and William Chan. “WaveGrad: Estimating gradients for waveform gen-
eration.” In: arXiv preprint arXiv:2009.00713 (2020).

[23] Tian Qi Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacob-
sen. “Residual Flows for Invertible Generative Modeling.” In: Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada. 2019, pp. 9913–9923.

[24] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
“Neural ordinary differential equations.” In: Advances in Neural Informa-
tion Processing Systems. 2018, pp. 6572–6583.

[25] Rewon Child. “Very Deep VAEs Generalize Autoregressive Models and
Can Outperform Them on Images.” In: 9th International Conference on
Learning Representations, ICLR. OpenReview.net, 2021.

[26] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. “Generat-
ing Long Sequences with Sparse Transformers.” In: CoRR abs/1904.10509
(2019).

bibliography 105

[27] Taco S. Cohen and Max Welling. “Steerable CNNs.” In: 5th International
Conference on Learning Representations, ICLR. 2017.

[28] Taco Cohen and Max Welling. “Group Equivariant Convolutional Net-
works.” In: Proceedings of the 33nd International Conference on Machine Learn-
ing, ICML. Vol. 48. JMLR.org, 2016, pp. 2990–2999.

[29] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
“The Cityscapes Dataset for Semantic Urban Scene Understanding.” In:
2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR.
IEEE Computer Society, 2016, pp. 3213–3223.

[30] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le,
and Ruslan Salakhutdinov. “Transformer-XL: Attentive Language Models
beyond a Fixed-Length Context.” In: Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL. 2019.

[31] Nicola De Cao, Wilker Aziz, and Ivan Titov. “Block Neural Autoregres-
sive Flow.” In: Proceedings of the Thirty-Fifth Conference on Uncertainty in
Artificial Intelligence, UAI. 2019, p. 511.

[32] Nicola De Cao and Thomas Kipf. “MolGAN: An implicit generative model
for small molecular graphs.” In: ICML Workshop on Theoretical Foundations
and Applications of Deep Generative Models (2018).

[33] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understand-
ing.” In: Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT. Association for Computational Linguistics, 2019, pp. 4171–
4186.

[34] Steven Dewitte and Jan Cornelis. “Lossless integer wavelet transform.”
In: IEEE signal processing letters 4.6 (1997), pp. 158–160.

[35] Prafulla Dhariwal and Alex Nichol. “Diffusion Models Beat GANs on
Image Synthesis.” In: CoRR abs/2105.05233 (2021).

[36] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu. “Exploiting
Cyclic Symmetry in Convolutional Neural Networks.” In: Proceedings of
the 33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016. Ed. by Maria-Florina Balcan and Kilian Q.
Weinberger. Vol. 48. JMLR Workshop and Conference Proceedings. 2016,
pp. 1889–1898.

[37] Laurent Dinh, David Krueger, and Yoshua Bengio. “NICE: Non-linear
independent components estimation.” In: 3rd International Conference on
Learning Representations, ICLR, Workshop Track Proceedings (2015).

[38] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estima-
tion using Real NVP.” In: 5th International Conference on Learning Represen-
tations, ICLR (2017).

[39] Jarek Duda. “Asymmetric numeral systems.” In: arXiv preprint arXiv:0902.0271
(2009).

[40] Jarek Duda. “Asymmetric numeral systems: entropy coding combining
speed of Huffman coding with compression rate of arithmetic coding.”
In: arXiv preprint arXiv:1311.2540 (2013).

106 bibliography

[41] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios.
“Cubic-Spline Flows.” In: CoRR abs/1906.02145 (2019).

[42] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios.
“Neural spline flows.” In: Advances in Neural Information Processing Sys-
tems. 2019, pp. 7509–7520.

[43] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. “Sigmoid-weighted linear
units for neural network function approximation in reinforcement learn-
ing.” In: Neural Networks (2018).

[44] Patrick Esser, Robin Rombach, Andreas Blattmann, and Björn Ommer.
“ImageBART: Bidirectional Context with Multinomial Diffusion for Au-
toregressive Image Synthesis.” In: CoRR abs/2108.08827 (2021).

[45] Marc Finzi, Pavel Izmailov, Wesley Maddox, Polina Kirichenko, and An-
drew Gordon Wilson. “Invertible Convolutional Networks.” In: Workshop
on Invertible Neural Nets and Normalizing Flows (2019).

[46] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wil-
son. “Generalizing Convolutional Neural Networks for Equivariance to
Lie Groups on Arbitrary Continuous Data.” In: Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML. Vol. 119. Proceedings of
Machine Learning Research. PMLR, 2020, pp. 3165–3176.

[47] Fabian Fuchs, Daniel E. Worrall, Volker Fischer, and Max Welling. “SE(3)-
Transformers: 3D Roto-Translation Equivariant Attention Networks.” In:
Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS. 2020.

[48] Octavian-Eugen Ganea, Xinyuan Huang, Charlotte Bunne, Yatao Bian,
Regina Barzilay, Tommi Jaakkola, and Andreas Krause. “Independent
SE(3)-Equivariant Models for End-to-End Rigid Protein Docking.” In: CoRR
abs/2111.07786 (2021).

[49] Octavian-Eugen Ganea, Lagnajit Pattanaik, Connor W Coley, Regina Barzi-
lay, Klavs F Jensen, William H Green, and Tommi S Jaakkola. “GeoMol:
Torsional Geometric Generation of Molecular 3D Conformer Ensembles.”
In: arXiv preprint arXiv:2106.07802 (2021).

[50] Niklas WA Gebauer, Michael Gastegger, Stefaan SP Hessmann, Klaus-
Robert Müller, and Kristof T Schütt. “Inverse design of 3d molecular
structures with conditional generative neural networks.” In: arXiv preprint
arXiv:2109.04824 (2021).

[51] Niklas WA Gebauer, Michael Gastegger, and Kristof T Schütt. “Generat-
ing equilibrium molecules with deep neural networks.” In: arXiv preprint
arXiv:1810.11347 (2018).

[52] Niklas WA Gebauer, Michael Gastegger, and Kristof T Schütt. “Symmetry-
adapted generation of 3d point sets for the targeted discovery of molecules.”
In: arXiv preprint arXiv:1906.00957 (2019).

[53] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. “Made:
Masked autoencoder for distribution estimation.” In: International Confer-
ence on Machine Learning. 2015, pp. 881–889.

bibliography 107

[54] Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer.
“Mask-Predict: Parallel Decoding of Conditional Masked Language Mod-
els.” In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP. Ed. by Kentaro Inui, Jing Jiang, Vincent
Ng, and Xiaojun Wan. 2019.

[55] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. “Neural message passing for quantum chemistry.” In:
Proceedings of the 34th International Conference on Machine Learning-Volume
70. JMLR. org. 2017, pp. 1263–1272.

[56] Adam Goliński, Mario Lezcano-Casado, and Tom Rainforth. “Improving
Normalizing Flows via Better Orthogonal Parameterizations.” In: Work-
shop on Invertible Neural Nets and Normalizing Flows (2019).

[57] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative
adversarial nets.” In: Advances in neural information processing systems. 2014,
pp. 2672–2680.

[58] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. “Reg-
ularisation of Neural Networks by Enforcing Lipschitz Continuity.” In:
CoRR abs/1804.04368 (2018).

[59] Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and
David Duvenaud. “Ffjord: Free-form continuous dynamics for scalable
reversible generative models.” In: 7th International Conference on Learning
Representations, ICLR (2019).

[60] Alex Graves. “Generating Sequences With Recurrent Neural Networks.”
In: CoRR abs/1308.0850 (2013).

[61] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong
Chen, Lu Yuan, and Baining Guo. “Vector Quantized Diffusion Model for
Text-to-Image Synthesis.” In: CoRR abs/2111.14822 (2021).

[62] Jiaqi Guan, Wesley Wei Qian, qiang liu, Wei-Ying Ma, Jianzhu Ma, and
Jian Peng. “Energy-Inspired Molecular Conformation Optimization.” In:
International Conference on Learning Representations. 2022.

[63] Henrik Helin, Teemu Tolonen, Onni Ylinen, Petteri Tolonen, Juha Näpänkan-
gas, and Jorma Isola. “Optimized JPEG 2000 compression for efficient
storage of histopathological whole-Slide images.” In: Journal of pathology
informatics 9 (2018).

[64] Leonhard Helminger, Abdelaziz Djelouah, Markus H. Gross, and Christo-
pher Schroers. “Lossy Image Compression with Normalizing Flows.” In:
CoRR abs/2008.10486 (2020).

[65] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel.
“Flow++: Improving Flow-Based Generative Models with Variational De-
quantization and Architecture Design.” In: 36th International Conference on
Machine Learning (2019).

[66] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Proba-
bilistic Models.” In: CoRR abs/2006.11239 (2020).

108 bibliography

[67] Jonathan Ho, Evan Lohn, and Pieter Abbeel. “Compression with Flows
via Local Bits-Back Coding.” In: Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS. 2019, pp. 3874–3883.

[68] Moritz Hoffmann and Frank Noé. “Generating valid Euclidean distance
matrices.” In: arXiv preprint arXiv:1910.03131 (2019).

[69] Emiel Hoogeboom, Rianne van den Berg, and Max Welling. “Emerging
Convolutions for Generative Normalizing Flows.” In: Proceedings of the
36th International Conference on Machine Learning, ICML. 2019.

[70] Emiel Hoogeboom, Taco S. Cohen, and Jakub M. Tomczak. “Learning
Discrete Distributions by Dequantization.” In: 3rd Symposium on Advances
in Approximate Bayesian Inference, AABI. 2021.

[71] Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Ri-
anne van den Berg, and Tim Salimans. “Autoregressive Diffusion Mod-
els.” In: International Conference on Learning Representations, ICLR. 2022.

[72] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max
Welling. “Argmax Flows and Multinomial Diffusion: Learning Categori-
cal Distributions.” In: Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems, NeurIPS. 2021.

[73] Emiel Hoogeboom, Jorn W. T. Peters, Rianne van den Berg, and Max
Welling. “Integer Discrete Flows and Lossless Compression.” In: Advances
in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS. 2019.

[74] Emiel Hoogeboom, Victor Garcia Satorras, Jakub M. Tomczak, and Max
Welling. “The Convolution Exponential and Generalized Sylvester Flows.”
In: Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS. 2020.

[75] Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max
Welling. “Equivariant Diffusion for Molecule Generation in 3D.” In: Pro-
ceedings of the 38th International Conference on Machine Learning, ICML. 2022.

[76] Masanobu Horie, Naoki Morita, Yu Ihara, and Naoto Mitsume. “Isomet-
ric Transformation Invariant and Equivariant Graph Convolutional Net-
works.” In: CoRR abs/2005.06316 (2020).

[77] Chin-Wei Huang, Jae Hyun Lim, and Aaron C. Courville. “A Variational
Perspective on Diffusion-Based Generative Models and Score Matching.”
In: CoRR abs/2106.02808 (2021).

[78] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. “Densely connected convolutional networks.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 4700–
4708.

[79] Michael Hutchinson, Charline Le Lan, Sheheryar Zaidi, Emilien Dupont,
Yee Whye Teh, and Hyunjik Kim. “LieTransformer: Equivariant self-attention
for Lie Groups.” In: CoRR abs/2012.10885 (2020).

[80] Ajay Jain, Pieter Abbeel, and Deepak Pathak. “Locally Masked Convolu-
tion for Autoregressive Models.” In: Proceedings of the Thirty-Sixth Confer-
ence on Uncertainty in Artificial Intelligence, UAI. Ed. by Ryan P. Adams and
Vibhav Gogate. 2020.

bibliography 109

[81] Priyank Jaini, Kira A. Selby, and Yaoliang Yu. “Sum-of-Squares Polyno-
mial Flow.” In: Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA. Vol. 97.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 3009–3018.

[82] Andrew Janowczyk, Scott Doyle, Hannah Gilmore, and Anant Madab-
hushi. “A resolution adaptive deep hierarchical (RADHicaL) learning
scheme applied to nuclear segmentation of digital pathology images.”
In: Computer Methods in Biomechanics and Biomedical Engineering: Imaging
& Visualization 6.3 (2018), pp. 270–276.

[83] Daniel D. Johnson, Jacob Austin, Rianne van den Berg, and Daniel Tar-
low. “Beyond In-Place Corruption: Insertion and Deletion In Denoising
Probabilistic Models.” In: CoRR abs/2107.07675 (2021).

[84] Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman,
and Ioannis Mitliagkas. “Gotta Go Fast When Generating Data with Score-
Based Models.” In: CoRR abs/2105.14080 (2021).

[85] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Žídek, Anna Potapenko, et al. “Highly accurate protein structure predic-
tion with AlphaFold.” In: Nature 596.7873 (2021), pp. 583–589.

[86] Heewoo Jun, Rewon Child, Mark Chen, John Schulman, Aditya Ramesh,
Alec Radford, and Ilya Sutskever. “Distribution Augmentation for Gen-
erative Modeling.” In: Proceedings of the 37th International Conference on
Machine Learning, ICML. 2020.

[87] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman
Casagrande, Edward Lockhart, Florian Stimberg, Aäron van den Oord,
Sander Dieleman, and Koray Kavukcuoglu. “Efficient Neural Audio Syn-
thesis.” In: Proceedings of the 35th International Conference on Machine Learn-
ing, ICML. 2018.

[88] Mahdi Karami, Dale Schuurmans, Jascha Sohl-Dickstein, Laurent Dinh,
and Daniel Duckworth. “Invertible Convolutional Flow.” In: Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada. 2019, pp. 5636–5646.

[89] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization.” In: 3rd International Conference on Learning Representations, ICLR
(2015).

[90] Diederik P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. “Improved variational inference with inverse autore-
gressive flow.” In: Advances in Neural Information Processing Systems. 2016,
pp. 4743–4751.

[91] Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. “Varia-
tional Diffusion Models.” In: CoRR abs/2107.00630 (2021).

[92] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes.”
In: Proceedings of the 2nd International Conference on Learning Representations.
2014.

110 bibliography

[93] Durk P Kingma and Prafulla Dhariwal. “Glow: Generative flow with in-
vertible 1x1 convolutions.” In: Advances in Neural Information Processing
Systems. 2018, pp. 10236–10245.

[94] Friso H Kingma, Pieter Abbeel, and Jonathan Ho. “Bit-Swap: Recursive
Bits-Back Coding for Lossless Compression with Hierarchical Latent Vari-
ables.” In: 36th International Conference on Machine Learning (2019).

[95] Johannes Klicpera, Janek Groß, and Stephan Günnemann. “Directional
Message Passing for Molecular Graphs.” In: 8th International Conference
on Learning Representations, ICLR. 2020.

[96] Jonas Köhler, Leon Klein, and Frank Noé. “Equivariant Flows: sampling
configurations for multi-body systems with symmetric energies.” In: CoRR
abs/1910.00753 (2019).

[97] Jonas Köhler, Leon Klein, and Frank Noé. “Equivariant Flows: Exact Like-
lihood Generative Learning for Symmetric Densities.” In: Proceedings of
the 37th International Conference on Machine Learning, ICML. 2020.

[98] Zhifeng Kong and Wei Ping. “On Fast Sampling of Diffusion Probabilistic
Models.” In: CoRR abs/2106.00132 (2021). arXiv: 2106.00132. url: https:
//arxiv.org/abs/2106.00132.

[99] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro.
“DiffWave: A Versatile Diffusion Model for Audio Synthesis.” In: 9th In-
ternational Conference on Learning Representations, ICLR. 2021.

[100] Wouter Kool, Herke van Hoof, and Max Welling. “Stochastic Beams and
Where To Find Them: The Gumbel-Top-k Trick for Sampling Sequences
Without Replacement.” In: Proceedings of the 36th International Conference
on Machine Learning, ICML. Ed. by Kamalika Chaudhuri and Ruslan Salakhut-
dinov. 2019.

[101] Adam R Kosiorek, Hyunjik Kim, and Danilo J Rezende. “Conditional set
generation with transformers.” In: Workshop on Object-Oriented Learning at
ICML 2020 (2020).

[102] Igor Krawczuk, Pedro Abranches, Andreas Loukas, and Volkan Cevher.
GG-GAN: A Geometric Graph Generative Adversarial Network. 2021. url:
https://openreview.net/forum?id=qiAxL3Xqx1o.

[103] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Tech. rep. Citeseer, 2009.

[104] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks.” In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[105] Hugo Larochelle and Iain Murray. “The Neural Autoregressive Distribu-
tion Estimator.” In: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, AISTATS. 2011.

[106] Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B. Grosse,
and Jörn-Henrik Jacobsen. “Preventing Gradient Attenuation in Lipschitz
Constrained Convolutional Networks.” In: Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada.
2019, pp. 15364–15376.

https://arxiv.org/abs/2106.00132
https://arxiv.org/abs/2106.00132
https://arxiv.org/abs/2106.00132
https://openreview.net/forum?id=qiAxL3Xqx1o

bibliography 111

[107] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L. Hamilton,
David Duvenaud, Raquel Urtasun, and Richard S. Zemel. “Efficient Graph
Generation with Graph Recurrent Attention Networks.” In: Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS. 2019.

[108] Phillip Lippe and Efstratios Gavves. “Categorical Normalizing Flows via
Continuous Transformations.” In: CoRR abs/2006.09790 (2020).

[109] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L Gaunt.
“Constrained graph variational autoencoders for molecule design.” In:
arXiv preprint arXiv:1805.09076 (2018).

[110] You Lu and Bert Huang. “Woodbury Transformations for Deep Genera-
tive Flows.” In: CoRR abs/2002.12229 (2020).

[111] Shitong Luo, Chence Shi, Minkai Xu, and Jian Tang. “Predicting Molec-
ular Conformation via Dynamic Graph Score Matching.” In: Advances in
Neural Information Processing Systems 34 (2021).

[112] Chris J. Maddison, Daniel Tarlow, and Tom Minka. “A* Sampling.” In:
Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems. 2014.

[113] Matt Mahoney. Large text compression benchmark. 2011.

[114] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. “In-
variant and Equivariant Graph Networks.” In: 7th International Conference
on Learning Representations, ICLR. 2019.

[115] Gábor Melis, Chris Dyer, and Phil Blunsom. “On the State of the Art of
Evaluation in Neural Language Models.” In: International Conference on
Learning Representations. 2018. url: https://openreview.net/forum?id=
ByJHuTgA-.

[116] Jacob Menick and Nal Kalchbrenner. “Generating High fidelity Images
with subscale pixel Networks and Multidimensional Upscaling.” In: 7th
International Conference on Learning Representations, ICLR. 2019.

[117] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte,
and Luc Van Gool. “Practical Full Resolution Learned Lossless Image
Compression.” In: IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR. Computer Vision Foundation / IEEE, 2019, pp. 10629–10638.

[118] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. “Regularizing
and Optimizing LSTM Language Models.” In: International Conference on
Learning Representations. 2018. url: https://openreview.net/forum?id=
SyyGPP0TZ.

[119] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
“Spectral Normalization for Generative Adversarial Networks.” In: CoRR
abs/1802.05957 (2018).

[120] Cleve Moler and Charles Van Loan. “Nineteen dubious ways to compute
the exponential of a matrix, twenty-five years later.” In: SIAM review 45.1
(2003), pp. 3–49.

[121] Alexander Quinn Nichol and Prafulla Dhariwal. Improved Denoising Diffu-
sion Probabilistic Models. 2021. url: https://openreview.net/forum?id=-
NEXDKk8gZ.

https://openreview.net/forum?id=ByJHuTgA-
https://openreview.net/forum?id=ByJHuTgA-
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=SyyGPP0TZ
https://openreview.net/forum?id=-NEXDKk8gZ
https://openreview.net/forum?id=-NEXDKk8gZ

112 bibliography

[122] Didrik Nielsen and Ole Winther. “Closing the Dequantization Gap: Pixel-
CNN as a Single-Layer Flow.” In: Advances in Neural Information Process-
ing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS. 2020.

[123] Frank Noé, Simon Olsson, Jonas Köhler, and Hao Wu. “Boltzmann gen-
erators: Sampling equilibrium states of many-body systems with deep
learning.” In: Science 365.6457 (2019).

[124] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. “Activation functions: Comparison of trends in practice and
research for deep learning.” In: arXiv preprint arXiv:1811.03378 (2018).

[125] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and
Koray Kavukcuoglu. “WaveNet: A Generative Model for Raw Audio.” In:
The 9th ISCA Speech Synthesis Workshop. 2016.

[126] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals,
Alex Graves, et al. “Conditional Image Generation with PixelCNN De-
coders.” In: Advances in Neural Information Processing Systems. 2016, pp. 4790–
4798.

[127] George Papamakarios, Iain Murray, and Theo Pavlakou. “Masked autore-
gressive flow for density estimation.” In: Advances in Neural Information
Processing Systems. 2017, pp. 2338–2347.

[128] George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir
Mohamed, and Balaji Lakshminarayanan. “Normalizing Flows for Proba-
bilistic Modeling and Inference.” In: CoRR abs/1912.02762 (2019).

[129] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. “Automatic Differentiation in PyTorch.” In: NIPS Autodiff
Workshop. 2017.

[130] Yura Perugachi-Diaz, Jakub M. Tomczak, and Sandjai Bhulai. “Invert-
ible DenseNets with Concatenated LipSwish.” In: CoRR abs/2102.02694
(2021). arXiv: 2102.02694. url: https://arxiv.org/abs/2102.02694.

[131] Scott E. Reed, Aäron van den Oord, Nal Kalchbrenner, Sergio Gomez
Colmenarejo, Ziyu Wang, Yutian Chen, Dan Belov, and Nando de Freitas.
“Parallel Multiscale Autoregressive Density Estimation.” In: Proceedings of
the 34th International Conference on Machine Learning, ICML. 2017.

[132] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochas-
tic Backpropagation and Approximate Inference in Deep Generative Mod-
els.” In: Proceedings of the 31st International Conference on Machine Learning.
Proceedings of Machine Learning Research. PMLR, 2014.

[133] Danilo Rezende and Shakir Mohamed. “Variational Inference with Nor-
malizing Flows.” In: Proceedings of the 32nd International Conference on Ma-
chine Learning. Vol. 37. Proceedings of Machine Learning Research. PMLR,
2015, pp. 1530–1538.

[134] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. “Pixel-
CNN++: Improving the pixelcnn with discretized logistic mixture likeli-
hood and other modifications.” In: 5th International Conference on Learning
Representations, ICLR (2017).

https://arxiv.org/abs/2102.02694
https://arxiv.org/abs/2102.02694

bibliography 113

[135] Victor Garcia Satorras, Emiel Hoogeboom, Fabian Bernd Fuchs, Ingmar
Posner, and Max Welling. “E(n) Equivariant Normalizing Flows.” In: Ad-
vances in Neural Information Processing Systems, NeurIPS. 2021.

[136] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equiv-
ariant Graph Neural Networks.” In: Proceedings of the 38th International
Conference on Machine Learning, ICML. 2021.

[137] Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski, Erich Elsen, and
Aäron van den Oord. “Step-unrolled Denoising Autoencoders for Text
Generation.” In: CoRR abs/2112.06749 (2021).

[138] Chence Shi, Shitong Luo, Minkai Xu, and Jian Tang. “Learning Gradient
Fields for Molecular Conformation Generation.” In: Proceedings of the 38th
International Conference on Machine Learning, ICML. Ed. by Marina Meila
and Tong Zhang. 2021.

[139] Gregor N. C. Simm, Robert Pinsler, Gábor Csányi, and José Miguel Hernández-
Lobato. “Symmetry-Aware Actor-Critic for 3D Molecular Design.” In: In-
ternational Conference on Learning Representations. 2021.

[140] Gregor NC Simm and José Miguel Hernández-Lobato. “A generative
model for molecular distance geometry.” In: arXiv preprint arXiv:1909.11459
(2019).

[141] Martin Simonovsky and Nikos Komodakis. “Graphvae: Towards gener-
ation of small graphs using variational autoencoders.” In: International
conference on artificial neural networks. Springer. 2018, pp. 412–422.

[142] Samarth Sinha and Adji B. Dieng. “Consistency Regularization for Varia-
tional Auto-Encoders.” In: CoRR abs/2105.14859 (2021).

[143] Jon Sneyers and Pieter Wuille. “FLIF: Free lossless image format based on
MANIAC compression.” In: 2016 IEEE International Conference on Image
Processing (ICIP). IEEE. 2016, pp. 66–70.

[144] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya
Ganguli. “Deep Unsupervised Learning using Nonequilibrium Thermo-
dynamics.” In: Proceedings of the 32nd International Conference on Machine
Learning, ICML. Ed. by Francis R. Bach and David M. Blei. 2015.

[145] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising Diffusion
Implicit Models.” In: 9th International Conference on Learning Representa-
tions, ICLR. 2021.

[146] Yang Song and Stefano Ermon. “Generative Modeling by Estimating Gra-
dients of the Data Distribution.” In: Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS. 2019.

[147] Yang Song, Chenlin Meng, and Stefano Ermon. “MintNet: Building In-
vertible Neural Networks with Masked Convolutions.” In: Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019. 2019.

[148] Yang Song, Chenlin Meng, Renjie Liao, and Stefano Ermon. “Accelerating
Feedforward Computation via Parallel Nonlinear Equation Solving.” In:
Proceedings of the 38th International Conference on Machine Learning, ICML.
2021.

114 bibliography

[149] International Organization for Standardization. “JPEG 2000 image coding
system.” In: ISO Standard No. 15444-1:2016 (2003).

[150] International Organization for Standardization. “Portable Network Graph-
ics (PNG): Functional specification.” In: ISO Standard No. 15948:2003 (2003).

[151] Esteban G Tabak, Eric Vanden-Eijnden, et al. “Density estimation by dual
ascent of the log-likelihood.” In: Communications in Mathematical Sciences
8.1 (2010), pp. 217–233.

[152] TensorFlow Datasets, A collection of ready-to-use datasets. https://www.tensorflow.
org/datasets.

[153] L. Theis, A. van den Oord, and M. Bethge. “A note on the evaluation of
generative models.” In: International Conference on Learning Representations.
2016.

[154] Nathaniel Thomas, Tess Smidt, Steven M. Kearnes, Lusann Yang, Li Li,
Kai Kohlhoff, and Patrick Riley. “Tensor Field Networks: Rotation- and
Translation-Equivariant Neural Networks for 3D Point Clouds.” In: CoRR
abs/1802.08219 (2018).

[155] Jakub M Tomczak and Max Welling. “Improving variational auto-encoders
using householder flow.” In: arXiv preprint arXiv:1611.09630 (2016).

[156] James Townsend, Thomas Bird, Julius Kunze, and David Barber. “HiLLoC:
lossless image compression with hierarchical latent variable models.”
In: 8th International Conference on Learning Representations, ICLR. OpenRe-
view.net, 2020.

[157] James Townsend, Tom Bird, and David Barber. “Practical Lossless Com-
pression with Latent Variables using Bits Back Coding.” In: 7th Interna-
tional Conference on Learning Representations, ICLR (2019).

[158] Dustin Tran, Keyon Vafa, Kumar Agrawal, Laurent Dinh, and Ben Poole.
“Discrete Flows: Invertible Generative Models of Discrete Data.” In: ICLR
2019 Workshop DeepGenStruct (2019).

[159] Benigno Uria, Iain Murray, and Hugo Larochelle. “RNADE: The Real-
valued Neural Autoregressive Density-estimator.” In: Advances in Neural
Information Processing Systems. 2013, pp. 2175–2183.

[160] Benigno Uria, Iain Murray, and Hugo Larochelle. “A Deep and Tractable
Density Estimator.” In: Proceedings of the 31th International Conference on
Machine Learning, ICML 2014. Vol. 32. JMLR Workshop and Conference
Proceedings. JMLR.org, 2014, pp. 467–475.

[161] Arash Vahdat and Jan Kautz. “NVAE: A Deep Hierarchical Variational
Autoencoder.” In: Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems NeurIPS. Ed.
by Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin. 2020.

[162] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel Re-
current Neural Networks.” In: International Conference on Machine Learning.
2016, pp. 1747–1756.

[163] P. Warden. “Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition.” In: ArXiv e-prints (2018). arXiv: 1804.03209.

https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets
https://arxiv.org/abs/1804.03209

bibliography 115

[164] Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan.
“Learning to Efficiently Sample from Diffusion Probabilistic Models.” In:
CoRR abs/2106.03802 (2021). arXiv: 2106.03802. url: https://arxiv.
org/abs/2106.03802.

[165] Auke J. Wiggers and Emiel Hoogeboom. “Predictive Sampling with Fore-
casting Autoregressive Models.” In: Proceedings of the 37th International
Conference on Machine Learning, ICML. 2020.

[166] Christina Winkler, Daniel E. Worrall, Emiel Hoogeboom, and Max Welling.
“Learning Likelihoods with Conditional Normalizing Flows.” In: CoRR
abs/1912.00042 (2019).

[167] Minkai Xu, Wujie Wang, Shitong Luo, Chence Shi, Yoshua Bengio, Rafael
Gomez-Bombarelli, and Jian Tang. “An End-to-End Framework for Molec-
ular Conformation Generation via Bilevel Programming.” In: arXiv preprint
arXiv:2105.07246 (2021).

[168] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian
Tang. “GeoDiff: A Geometric Diffusion Model for Molecular Conforma-
tion Generation.” In: International Conference on Learning Representations.
2022.

[169] Yilun Xu, Yang Song, Sahaj Garg, Linyuan Gong, Rui Shu, Aditya Grover,
and Stefano Ermon. “Anytime Sampling for Autoregressive Models via
Ordered Autoencoding.” In: 9th International Conference on Learning Repre-
sentations, ICLR. 2021.

[170] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhut-
dinov, and Quoc V. Le. “XLNet: Generalized Autoregressive Pretraining
for Language Understanding.” In: Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS. 2019.

[171] Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. “Graph
convolutional policy network for goal-directed molecular graph genera-
tion.” In: arXiv preprint arXiv:1806.02473 (2018).

[172] Shifeng Zhang, Chen Zhang, Ning Kang, and Zhenguo Li. “iVPF: Nu-
merical Invertible Volume Preserving Flow for Efficient Lossless Com-
pression.” In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR. Computer Vision Foundation / IEEE, 2021, pp. 620–629.

[173] Zachary M. Ziegler and Alexander M. Rush. “Latent Normalizing Flows
for Discrete Sequences.” In: Proceedings of the 36th International Confer-
ence on Machine Learning, ICML. Ed. by Kamalika Chaudhuri and Ruslan
Salakhutdinov. 2019.

https://arxiv.org/abs/2106.03802
https://arxiv.org/abs/2106.03802
https://arxiv.org/abs/2106.03802

Part IV

A P P E N D I X

A | A P P E N D I X F O R L I N E A R C O N V O L U T I O N A L F L O W S

a.1 experimental settings with glow-based architecture on galaxy
images

Models are optimized with settings identical to [93]. The optimizer Adamax is
used with a learning rate of 0.001. Coupling layers contain neural networks with
three convolution layers. The first and last convolution are 3⇥ 3 and the center
convolution is 1⇥ 1. The two hidden layers have W (width) channels and ReLU
activations. A flow module consists of an actnorm layer, a mixing layer and a
coupling layer. A mixing layer is either a 1⇥ 1 convolution (Glow) or a 3⇥ 3
(emerging or periodic) convolution. A forward pass of the entire model uses D
flows per level L. At the end of a level the squeeze operation reduces the spatial
dimensions by two, and increases the channel dimensions by four. Details are
given in Table A.1.

Table A.1: Experimental setup on galaxy image modeling.

Model L D W batchsize

1⇥ 1 3 8 512 256
Periodic 3⇥ 3 3 8 510 256
Emerging 3⇥ 3 3 8 510 256

a.2 experimental details of flows on cifar10
We train on the first 40000 images of CIFAR10, using the remaining 10000 for
validation. The final performance is shown on the conventional 10000 test im-
ages.

a.2.1 Mixing experiment
This flow architecture is multi-scale following [93]: Each level starts with a squeeze
operation, and then 10 subflows which each consist of a linear mixing layer and
an affine coupling layer [38]. The coupling architecture utilizes densenets as de-
scribed in [73]. Further, we use variational dequantization [65], using the same
flow architecture as for the density estimation, but using less subflows. Follow-
ing [38, 93] after each level (except the final level) half the variables are trans-
formed by another coupling layer and then factored-out. The final base distribu-
tion pZ is a diagonal Gaussian with mean and standard deviation. All methods
are optimized using a batch size of 256 using the Adam optimizer [89] with a
learning rate of 0.001 with standard settings. Further details are given in Table
A.2. Notice that convexp mixing utilizes a convolution exponential and a 1⇥ 1
convolutions, as it tends to map close to the identity by the construction of the
power series. Results are obtained by running models three times after random
weight initialization, and the mean of the values is reported. Runs require ap-
proximately four to five days to complete. Results are obtained by running on
four NVIDIA GeForce GTX 1080Ti GPUs, CUDA Version: 10.1.

119

120 bibliography

Table A.2: Architecture settings and optimization settings for the mixing experiments.

Model levels subflows epochs lr decay net depth net growth deq. levels deq. subflows

1⇥ 1 2 10 1000 0.995 8 64 1 4
Emerging 2 10 1000 0.995 8 63 1 4
Woodbury 2 10 1000 0.995 8 63 1 4
ConvExp 2 10 1000 0.995 8 63 1 4

Table A.3: Architecture settings and optimization settings for the residual experiments.
Dequantization (deq.) settings are not used for uniform dequantization.

Model levels subflows epochs lr decay channels (deq. levels) (deq. subflows)

Baseline Coupling 2 20 1000 0.995 528 1 4
Residual Block Flow 2 20 1000 0.995 528 1 4

equal memory 2 10 1000 0.995 528 1 4
Conv. Sylvester 2 20 1000 0.995 528 1 4

a.2.2 Invertible Residual Transformations experiment
This setup is identical to section A.2.1, where a single subflow is now either a
residual block or a convolutional Sylvester flow transformation, with a leading
actnorm layer [93]. The network architectures inside the Sylvester and residual
network architectures all consist of three standard convolutional layers: A 3⇥ 3
convolution, a 1⇥ 1 convolution and another 3⇥ 3 convolution. These provide
the translation and scale parameters for the Sylvester transformation, and they
model the residual for the residual flows. These convolutions map to 528 chan-
nels internally, where the first and last convolutional layers map to the respective
input and output sizes. Note that for the coupling flow an important difference
is that a subflow consists of a coupling layer and a 1⇥ 1 convolution, because
the coupling layer itself cannot mix information. All methods use the same de-
quantization flow and splitprior architecture that were described in section A.2.1.
All methods are optimized using a batch size of 256 using the Adam optimizer
[89] with a learning rate of 0.001 with b1, b2 = (0.9, 0.99). Results are obtained
by running models a single after random weight initialization. More details are
given in Table A.3. Results are obtained by running on two NVIDIA GeForce
GTX 1080Ti GPUs, CUDA Version: 10.1. Runs require approximately four to five
days to complete. The residual block flow utilizes four GPUs as it requires more
memory.

a.3 proof that fixed-point iteration converges for generalized
sylvester flows

The inverse of Sylvester flows can be easily computed using a fixed point it-
eration. Firstly, compute v = Wz and let u(0) = v. At this point the triangular
system v = u+ fAR(u) can be solved for u using the fixed-point iteration:

u(t) = v � fAR(u
(t�1)). (A.1)

And then when converged compute x = W
�1u To show that it converges, recall

that we constrain the diagonal values of J fAR to be greater than �1 and less than
+1. In addition, we require fAR to be Lipschitz continuous for some arbitrarily
large value L 2 R. Note that since neural network are generally composed of
linear layers and activation functions that are Lipschitz continuous, these net-
works themselves are also Lipschitz continuous. Note that although the function

bibliography 121

defined in section 4.1 has products which in theory do not have to be Lipschitz,
in practice the function is used on bounded domains, which makes fAR Lipschitz
continuous trivially. For a more theoretically rigorous function, values of u can
be simply clipped beyond certain thresholds.

Firstly note that | ∂ fAR(u)i
∂ui

| < 1. To be precise, by the construction of fAR in section
4.1, the magnitude of the values on the diagonal of the Jacobian is bounded by
the hyperparameter g, so that | ∂ fAR(u)i

∂ui
| < g, where 0 g < 1. Since the function

is autoregressive, the Jacobian will be triangular with diagonal entries with a
magnitude smaller than one.

We will show inductively over dimensions that the fixed point iteration for u(t)

converges. For the base case in the first dimension, note that |u(t)
1 � u(t+1)

1 |
gt|u(0)

1 � u(1)
1 | and hence u1 converges at a rate of gt. For the remainder of this

proof we use the `1 distance as distance metric as it easily sums over different
dimensions.

For the induction step (for the higher dimensions), assume that u:d�1 (which cor-
responds to u1, . . . , ud�1) converges at a rate of td�1gt, that is ||u(t�1)

:d�1 �u
(t)
:d�1||

Cd�1td�1gt for some constant Cd�1 2 R. Then u:d converges at a rate of tdgt. We
can bound the difference for ud in dimension d recursively using the Lipschitz
continuity L and bound on the diagonal of the Jacobian g:

|u(t)
d � u(t+1)

d | g|u(t�1)
d � u(t)

d |
| {z }
from dimension d

+ L||u(t�1)
1:d�1 � u

(t)
1:d�1||| {z }

from dimensions < d

. (A.2)

When expanding this equation and using the assumption that ||u(t�1)
1:d�1�u

(t)
1:d�1||

Cd�1td�1gt, we can write:

|u(t)
d � u(t+1)

d | gt|u(0)
d � u(1)

d |
| {z }

from first term Eq. A.2

+
t

Â
t0=1

g(t�t0)LCd�1t0d�1gt0

| {z }
interaction of terms from Eq. A.2

, (A.3)

< gt|u(0)
d � u(1)

d |+ tdgtLCd�1, (A.4)

< tdgtCd, where Cd = LCd�1 + |u(0)
d � u(1)

d | (A.5)

which is guaranteed to converge at least at a rate of tdgt. The last inequality
follows because td > Ât

t0=1 t0d�1 for t � 2. This proves the required result, as
dimensions 1 converges with a rate gt = gtt0 as the entire vector u1:d with a rate
of tdgt.

In summary, for every dimension d the variable u1:d�1 converges at a rate of
td�1gt, and most importantly the convergence rate for u1:d is tdgt. Studying this
equation, we can recognize two factors that influence the convergence that we
can easily control: The distance of outputs with respect to the distance of inputs
in fAR, and the one-dimensional continuity g. We find experimentally that con-
straining the Lipschitz continuity of the convolutional layers in fAR to 1.5, and
setting g = 0.5 generally allows the fixed point iteration to converge within 50
iterations when using an absolute tolerance of 10�4.

B | A P P E N D I X F O R F L O W S F O R D I S C R E T E VA R I A B L E S

b.1 additional details for idfs
b.1.1 Asymmetric Numeral Systems
Asymmetric Numeral Systems (ANS) [39] is a recent approach to entropy coding.
The range-based variant: rANS, is generally used as a faster replacement for
arithmetic coding, because a state is only represented by a single number and
fewer mathematical operations are required [40].

The encoding function of rANS encodes a symbol s into a code c0 given the so
far existing code c:

c0(c, s) = bc/lsc · m + (c mod ls) + bs, (B.1)

where m is a large integer that functions as the quantization denominator. Inte-
gers are chosen for ls such that p(s) ⇡ ls/m, where p(s) denotes the probability
of symbol s. Each symbol is associated with a unique interval [bs, bs + ls), where
bs = Âs�1

i=1 li.

The decoding function needs to retrieve the encoded symbol s, and the previous
state c from the new code c0. First consider the term c0 mod m, which is equal to
the last two terms of the encoding function: c mod ls + bs. This term is guaran-
teed to lie in the interval [bs, bs + ls). Therefore, the symbol can be retrieved by
finding:

s(c0) = t s.t. bt c0 mod m < bt+1. (B.2)

Consequently with the knowledge of s, the previous state c can be obtained by
computing:

c(c0, s) = ls · bc0/mc+ (c0 mod m)� bs. (B.3)

In practice, m is chosen as a power of two (for example 232). As such, multiplica-
tion and division with m reduces to bit shifts and modulo m reduces to a binary
masking operation.

b.1.2 Experimental Details for IDFs
networks The coupling and factor out layers are parametrized using neural
networks. These networks are DenseNets [78]. Specifically we use n = 512 in-
termediate channels and a depth d = 12. In contrast with standard DenseNets,
we do not use normalization layers. A single layer in the densenet (with roughly
n/d channels) consists of:

Conv1⇥1! ReLU! Conv3⇥3! ReLU,

idf architecture The exact architecture for experiments is specified in
Table B.1. All models are trained using Adamax [89] with standard parameters.
Furthermore, the learning rate is computed as: lr = lrbase · decayepoch. We follow

123

124 bibliography

the preprocessing procedure for CIFAR10 as described in [93]. For ImageNet32
and ImageNet64, we do use additional preprocessing. For the ER + BCa dataset,
we employ random horizontal and vertical flips during training.

Table B.1: IDF architecture and optimization parameters for each experiment.

Dataset L D net depth channels batchsize patchsize train examples lr decay epochs

CIFAR10 3 8 12 512 256 32 40000 0.999 2000
ImageNet32 3 8 12 512 256 32 1230000 0.99 100
ImageNet64 4 8 12 512 64 64 1230000 0.99 20
ER + BCa 4 8 12 512 50 80 114 0.99999 50000

In our implementation, instead of using integers in Z, we use the equivalent
representation Z/256, which we found to work better with standard weight ini-
tialization and optimization methods. Despite the fact that this implementation
does not use integers, it is functionally equivalent to the method presented in
the main text.

dataset preparation The dataset for CIFAR10 originally consists of 50000
train images and 10000 test images. We use the last 10000 images for validation
which results in 40000 train, 10000 validation and 10000 test images. ImageNet32
and ImageNet64 originally contain approximately 1250000 train and 50000 val-
idation images. The validation images are used solely for testing, and 20000
images are randomly selected as a new validation set. This results in roughly
1230000 train, 20000 validation and 50000 test images.

The ER + BCa dataset [82] 1 is split into 114 train images and 28 test images
such that specific patients IDs only occur in one of the two sets. The test patient
identifiers are:

8915 8959 9023 9081 9256 9382 10264 10301

12749 16532 12818 12871 12884 12908 12931 12949

13106 13459 13459 13617 13694 14154 14305 16661

17117 17643 25289 25617

hardware and software The code for our experiments is implemented
using PyTorch [129]. The model implementations are based on the codebase
released along with [15] whereas the rANS coder implementation was taken
from [157]. All experiments were run using 4 Nvidia GTX 1080Ti GPUs.

b.1.3 A Quantized Normalizing Flow
To test the lossless compression performance of continuous flows, the latent
space is quantized to a linear spaced bins. Because the latent space is quantized,
the reconstructions may contain errors. To enable lossless compression, FLIF is
used to encode the errors in reconstruction. Hence, given the quantized latent
variables and the reconstruction errors, the original input can be obtained.

The performance of the quantized flow is shown in Figure B.1. When the bin
size is large (1

128), encoding the latent representation requires relatively few bits,
because the probability area is larger. However, the residuals are higher, and

1 http://andrewjanowczyk.com/wp-static/nuclei.tgz

bibliography 125

Figure B.1: Compression performance of a quantized continuous flow model using dif-
ferent bin sizes. The dashed line denotes the analytical bpd of the continuous model.
The total required bpd consists of both the quantized latent z and the residual errors
are encoded separately using the FLIF format.

require more bits to be modelled. Analogously, when the bin size is small (1
512),

encoding the latent representation requires more bits, but the residual can be
modelled using fewer bits. Although the bits required for the residual or the
quantized latents may be small individually, their sum is always large. In total
the quantized flow performs poorly on lossless compression.

The problem of how to losslessly compress with a continuously defined nor-
malizing flow was solved in [67] after initial publication of our work. Although
elegant, the method introduces a new problem, it needs many auxiliary bits to
send as ‘initial bits’ similar to [157].

b.2 additional details for argmax flows
b.2.1 Experimental details
This section gives details on experimental setup, architectures and optimiza-
tion hyperparameters. In addition, the code to reproduce experiments will be
released publicly. Experiments where run on NVIDIA-GTX 1080Ti GPUs, CUDA
10.1 with Python version 3.7.6 in Pytorch 1.5.1 or 1.7.1.

language modelling For the language modelling experiments we utilize
the standard text8 dataset with sequence length 256 and enwik8 dataset with
sequence length 320. The train/val/test splits are 90000000/5000000/5000000
for both text8 and enwik8, as is standard in literature. The Multinomial Text
Diffusion models are trained for 300 epochs, whereas the Argmax Flows are
trained for 40 epochs, with the exception of the Argmax Coupling Flow on en-
wik8 which only needs to be trained for 20 epochs. Further details are presented
in Tables B.2 and B.3. In addition, the code to reproduce results will be publicly
available. There are no known ethics issues with these datasets at the time of
writing.

126 bibliography

Table B.2: Optimization details for text models.

Model batch size lr lr decay optimizer dropout

Argmax AR Flow (text8) 64 0.001 0.995 Adam 0.25
Argmax AR Flow (enwik8) 64 0.001 0.995 Adam 0.25
Argmax Coupling Flow (text8) 16 0.001 0.995 Adamax 0.05
Argmax Coupling Flow (enwik8) 32 0.001 0.995 Adamax 0.1

Table B.3: Architecture description for text models.

Model Architecture description

Argmax AR Flow (text8) 2-layer LSTM, 2048 hidden units
Argmax AR Flow (enwik8) 2-layer LSTM, 2048 hidden units
Argmax Coupling Flow (text8) 2-layer bi-directional LSTM, 512 hidden units
Argmax Coupling Flow (enwik8) 2-layer bi-directional LSTM, 768 hidden units

cityscapes The Cityscapes [29] segmentation maps are re-sampled to a 32
by 64 pixel image using nearest neighbour interpolation. The original segmenta-
tion maps are downloaded from https://www.cityscapes-dataset.com/downloads/

where all files are contained in gtFine_trainvaltest.zip. Note that we train on
a 8-class problem since we only consider what is called the category_id field
in torchvision. We re-purpose the validation set as test set, containing 500 maps.
The original train set containing 2975 maps is split into 2500 maps for training
and 475 maps for validation. The original test set is not utilized. To aid repro-
ducibility we will publish source code that includes the preprocessing and the
dataloaders. There are no known ethics issues with the segmentation maps at
the time of writing. License is located at https://www.cityscapes-dataset.com/
license/.

Architectures. For Cityscapes all models utilize the same architectures, although
they represent a different part for their respective model designs. The density
model p(v) consist of 4 levels with 10 subflows each, separated by squeeze layers,
where each subflow consists of a 1 ⇥ 1 convolution and an affine coupling layer.
The coupling layers are parametrized by DenseNets [78]. The same model is used
for the latent distribution in the VAE (usually referred to as p(z) in literature).
The probabilistic inverse q(v|x) is modelled by a single level flow that has 8
subflows, again consisting of affine coupling layers and 1 ⇥ 1 convolutions. To
condition on x it is processed by a DenseNet which outputs a representation for
the coupling layers that is concatenated to the original input. The same model
is utilized to parametrize the VAE encoder (commonly referred to as q(z|x)).
The VAE additionally has a model for the decoder p(x|z) which is parametrized
by a DenseNet which outputs the parameters for a categorical distribution. The
models are optimized using the same settings, and no hyperparameter search
was performed. Specifically, the models are optimized with minibatch size 64 for
2000 epochs with the Adamax optimizer with learning rate 0.001 and a linear
learning rate warmup of 10 epochs and a decay factor of 0.995.

https://www.cityscapes-dataset.com/downloads/
https://www.cityscapes-dataset.com/license/
https://www.cityscapes-dataset.com/license/

bibliography 127

details on latent normalizing flows for text8 To obtain results
from latent normalizing flows for text8, we utilize the official code repository
from [173] in here2. The original code utilizes 10 ELBO samples, which is rel-
atively expensive. For that reason we instead opt for 1 ELBO sample and find
it gives similar results. The batch size is increased from 16 to 32. Additionally
we reduce the KL scheduling from 4 initial 10�5 epochs to only 2 initial 10�5

epoch and we anneal linearly over the next 4 epochs instead of over the next 10
epochs. In total the models are optimized for 30 epochs. We verify that the result-
ing models still achieve similar performance on the Penn Tree Bank experiment
compared to the original paper in terms of ELBO values: Our hyperparameter
setup for AF/AF achieves slightly better performance with 1.46 versus 1.47 bpc
and for IAF/SCF achieves slightly worse 1.78 versus 1.76 bpc.

b.2.2 Additional experiments
A comparison of the performance for Cartesian products with different bases is
shown in Table B.4. Note that this experiment was performed using a somewhat
smaller architecture then in the main text. As can be seen, the performance differ-
ence between different Cartesian products is relatively small. The performance
does decreases slightly over larger base numbers, indicating that it is better to
choose a small base that results in fewer overall dimensions.

Table B.4: Cartesian Products with different base numbers trained using a slightly
smaller version of the Argmax AR Flow on text8.

Model text8 (bpc)

dm = 1, M = 27 1.45
dm = 2, M = 6 1.44
dm = 3, M = 3 1.44
dm = 5, M = 2 1.44

A comparison of sampling time speeds are shown in Table B.5. A couple of
orders in magnitude difference can be seen comparing autoregressive versus non-
autoregressive models. This highlights the importance of researching generative
models that can be built from non-autoregressive components. The main source
of difference between our coupling approach and IAF/SCF is that we utilize
mixture of discretized logistics [65] as coupling transformation, which requires
a iterative process to invert over 1 dimension. The multinomial diffusion takes
in-between the time of autoregressive and coupling models. Also reducing steps
reduces the required sampling time, as is expected.

2 https://github.com/harvardnlp/TextFlow

https://github.com/harvardnlp/TextFlow

128 bibliography

Table B.5: Comparison of different methods in terms of sample time. Sample time is
measured by generating a single text sample of length 256 averaged over 10 runs, unless
specified otherwise.

Model type Model Sample time (s)

ARM 64 Layer Transformer [3] 35.5†

VAE
AF/AF? (AR) [173] 156 ±1.8

IAF / SCF? [173] 0.04 ±0.004

Generative Flow
Argmax Flow, AR (ours) 115 ±0.03

Argmax Coupling Flow (ours) 0.40 ±0.03

Diffusion
Multinomial Text Diffusion (ours) 26.6 ±2.2‡

Multinomial Text Diffusion, 100 steps (ours) 2.4 ±0.16
† Computed on a 288-length sequence instead of 256-length, taken from [158]
‡ This result is for the complete 1000 timesteps chain, improvements are possible by skipping steps.

Due to the computational cost of running normalizing flows, it is not possible for
us to run every model many times. However, generally single-run results suffice,
as the performance variance of these models is relatively small. In Table B.6 the
standard deviation and average performance for a selection of models is shown,
taken over 3 runs. Observe that these standard deviations are small compared to
the reported differences between the models. Notice that standard deviations for
coupling models are larger, but the performance difference between those types
of models is also larger.

Table B.6: Average and standard deviations of several models.

Dequantization Flow type Dataset average stdev

Argmax Flow (ours) AR text8 1.38 0.001
Argmax Flow (ours) AR enwik8 1.42 0.008
Argmax Flow (ours) Coupling text8 1.82 0.017
Argmax Flow (ours) Coupling enwik8 1.93 0.012

Finally, we also compare argmax flows to a situation where its density model
exactly matches the density model in [108] on text8. In this experiment Argmax
Flows (1.43 bpc) outperform CategoricalNF (1.45 bpc) in an equal setting.

b.2.3 Samples from the text models
Samples from our proposed models are presented in Table B.7, these results were
not cherry-picked.

bibliography 129

Table B.7: Samples from models trained on text8.
Model Nr Text

A
R

A
rg

m
ax

Fl
ow

1 heartedness frege thematically infered by the famous existence of a function f from the laplace

definition we can analyze a definition of binary operations with additional size so their

functionality cannot be reviewed here there is no change because its

2 otal cost of learning objects from language to platonic linguistics examines why animate to

indicate wild amphibious substances animal and marine life constituents of animals and bird

sciences medieval biology biology and central medicine full discovery re

3 o use language combined with any of its subsets evolved into the group containing the primary

concepts of a daily line on off the road and the material emulation of welcomes and prospects of

pleasure and exercise have been committed projects in the economy

4 en that are beginning to forge since october one nine five zero the mandate was planted at k

nigsberg during the car horizon at first please refer to a small government situated as well as

in all these countries finally giving birth to a band here he was a

C
ou

pl
in

g
A

rg
m

ax
Fl

ow

1 ns fergenur d alpha and le heigu man notabhe leglon lm n two six a gg opa movement as

sympathetic dutch the term bilirubhah acquired the bava rian cheeh segt thmamouinaire vhvinus

lihnos ineoneartis or medical iod ine the rave wesp published harsy varb hhgh

2 and inequalities syllee mike jean demet in standard rather than fmxed liga and a piare nut

is gruncionde aodadneveshiopyhabally uchc one viredtlty three ben yi agricultariis the only

mefamantia or nuil and mid satio for kigou wore not on the war rits af

3 e g chain within the sale of cooperative oppine p nge tyae yarot bouatta real frequency one

mbj or rorbepetam iw by someone c langt b kindoms is the single yenta valve nor eosed collagen

surkeys in the goubark cuisine of animum and two trantual measurement

4 hilepuin the king pete was added to or who cefralded to kiark n and panhpur not souhhvestern

bat batas mudtlu for this creatures chew palenque lii lasron gentla tzanemi derived from oo four

issais nivissos with the name convertinus magaa named wes orieanr

b.3 reproducing discrete flows
In this section we detail our efforts to reproduce the results from discrete flows
[158]. Specifically, we are interested in the discrete flows models that map to
factorized distributions, for instance the discrete bipartite (coupling) flow. We
avoid situations where an autoregressive base distribution is used, it may be
difficult to identify how much the flow is actually learning versus the ARM
as base. For this paper an official implementation was released at https://

github.com/google/edward2/blob/master/edward2/tensorflow/layers/ in the
files discrete_flows.py and utils.py. However, this codebase contains only
the high-level modules and code for the toy example, it does not contain the
specific code related to the language experiments. These high-level modules and
the toy problem were ported to PyTorch here: https://github.com/TrentBrick/
PyTorchDiscreteFlows. Using this codebase, we were able to compare on the
quantized eight Gaussians toy dataset, as depicted in Figure B.2. In this experi-
ment we clearly see that argmax flows outperform discrete flows both numeri-
cally (6.32 versus 7.0 nats) and visually by comparing the samples or probability
mass function.

Subsequent efforts by others to reproduce the language experiments failed (see
https://github.com/TrentBrick/PyTorchDiscreteFlows/issues/1). In another
work, Lippe and Gavves [108] also noticed the difficulty of getting discrete flows
to succesfully optimize, as detailed in the set shuffling/summation experiment
corresponding to Table 5 in the paper.

For this paper we also tried to reproduce the language experiments. After verify-
ing the correctness of the one_hot_argmax, one_hot_minus and one_hot_add func-
tions in https://github.com/TrentBrick/PyTorchDiscreteFlows, we implemented
an autoregressive discrete flow layer with an expressive network, in an effort to
limit the accumulated gradient bias. Recall that an autoregressive layer is more
expressive than a coupling layer as it has more dependencies between dimen-

https://github.com/google/edward2/blob/master/edward2/tensorflow/layers/
https://github.com/google/edward2/blob/master/edward2/tensorflow/layers/
https://github.com/TrentBrick/PyTorchDiscreteFlows
https://github.com/TrentBrick/PyTorchDiscreteFlows
https://github.com/TrentBrick/PyTorchDiscreteFlows/issues/1
https://github.com/TrentBrick/PyTorchDiscreteFlows

130 bibliography

(a) Samples from Discrete Flow using a
single layer, taken from [158]

(b) Samples from the quantized 8 Gaus-
sians data distribution.

(c) Samples from the Discrete Flows Py-
Torch re-implementation, achieving 7.0
nats.

(d) Probability mass of our Argmax
Flow using a single layer, achieving
6.32 nats.

Figure B.2: Reproduction of the quantized eight Gaussians experiment. Plots show either
the probability mass function or weighted number of samples (which will tend towards
the pmf).

bibliography 131

Table B.8: Discrete Flows on text8. Note that AR is more expressive than coupling.

Model text8 (bpc)

Discrete Flows from paper (coupling, factorized base, without scale) 1.29
Discrete Flows from paper (coupling, factorized base, with scale) 1.23
Discrete Flows reimplementation (AR, factorized base, without scale) 4.13

Argmax Flow, AR (ours) 1.38
Argmax Coupling Flow (ours) 1.80

sions. As can be seen in Table B.8 our re-implementation also performed consid-
erably worse, matching the experience of the others described above.

final remarks We have had extensive contact with the authors of [158]
to resolve this issue over the course of several months. Unfortunately it is not
possible for them to share the code for the language flows due to internal de-
pendencies. Also, we have not been able to find any implementation of discrete
flows online that achieves the reported performance on text. The authors gener-
ously offered to look at our reimplementation, which we have shared with them.
At the time of writing we have not yet heard anything back on the code. For
the reasons described in this appendix, we currently assume that the language
experiments in discrete flows are not reproducible.

C | A P P E N D I X F O R D I F F U S I O N F O R D I S C R E T E
VA R I A B L E S

c.1 multinomial diffusion
c.1.1 Numerically stable Multinomial Diffusion in log space
In this section we explain how Multinomial Diffusion models can be imple-
mented in a numerically safe manner in log-space. Note that in addition to this
appendix with pseudo-code, the actual source code will also be released. First
we define a few helper functions:

def log_add_exp(a, b):
maximum = max(a, b)
return maximum + log(exp(a - maximum) + exp(b - maximum))

def log_sum_exp(x):
maximum = max(x, dim=1, keepdim=True)
return maximum + log(exp(x - maximum).sum(dim=1))

def index_to_log_onehot(x, num_classes):
Assume that onehot axis is inserted at dimension 1
x_onehot = one_hot(x, num_classes)

Compute in log-space, extreme low values are later
filtered out by log sum exp calls.
log_x = log(x_onehot.clamp(min=1e-40))
return log_x

def log_onehot_to_index(log_x):
return log_x.argmax(1)

def log_1_min_a(a):
return log(1 - a.exp() + 1e-40)

Then we can initialize the variables we are planning to utilize for the multinomial
diffusion model. This is done with float64 variables to limit the precision loss in
the log_1_min_a computation. Since these are precomputed and later converted
to float32, there is no meaningful increase in computation time.

alphas = init_alphas()
log_alpha = np.log(alphas)
log_cumprod_alpha = np.cumsum(log_alpha)

log_1_min_alpha = log_1_min_a(log_alpha)
log_1_min_cumprod_alpha = log_1_min_a(log_cumprod_alpha)

Then we can define the functions that we utilize to compute the log probabilities
of the categorical distributions of the forward process. The functions below com-
pute the probability vectors for q(xt|xt�1), q(xt|x0) and q(xt�1|xt,x0).

def q_pred_one_timestep(log_x_t, t):
Computing alpha_t * E[xt] + (1 - alpha_t) 1 / K
log_probs = log_add_exp(

133

134 bibliography

log_x_t + log_alpha[t],
log_1_min_alpha[t] - log(num_classes)

)
return log_probs

def q_pred(log_x0, t):
log_probs = log_add_exp(

log_x0 + log_cumprod_alpha[t],
log_1_min_cumprod_alpha[t] - log(num_classes)

)
return log_probs

def q_posterior(log_x0, log_x_t, t):
Kronecker delta peak for q(x0 | x1, x0).
if t == 0:

log_probs_xtmin = log_x0
else:

log_probs_xtmin = q_pred(log_x0, t - 1)

Note log_x_t is used not x_tmin, subtle and not straightforward
why this is true. Corresponds to Algorithm 1.
unnormed_logprobs = log_probs_xtmin + q_pred_one_timestep(log_x_t, t)

log_probs_posterior = unnormed_logprobs - log_sum_exp(unnormed_logprobs)
return log_probs_posterior

Some magic is happening in q_pred_one_timestep. Recall that at some point
we need to compute C(xt|(1� bt)xt�1 + bt/K) for different values of xt, which
when treated as a function outputs (1� bt) + bt/K if xt = xt�1 and bt/K oth-
erwise. This function is symmetric, meaning that C(xt|(1� bt)xt�1 + bt/K) =
C(xt�1|(1� bt)xt + bt/K). This is why we can switch the conditioning and im-
mediately return the different probability vectors for xt. This also corresponds
to Equation 6.3.

Then using the q_posterior function as parametrization we predict the proba-
bility vector for p(xt�1|xt) using a neural network.

def p_pred(log_x_t, t):
x_t = log_onehot_to_index(log_x_t)
log_x_recon = logsoftmax(neuralnet(x_t, t))
log_model_pred = q_posterior(log_x_recon, log_x_t, t)
return log_model_pred

And then finally we can compute the loss term Lt using the KL divergence for
categorical distributions:

def categorical_kl(log_prob_a, log_prob_b):
kl = (log_prob_a.exp() * (log_prob_a - log_prob_b)).sum(dim=1)
return kl

def compute_Lt(log_x0, log_x_t, t):
log_true_prob = q_posterior(log_x0, log_x_t, t)
log_model_prob = p_pred(log_x_t, t)
kl = categorical_kl(log_true_prob, log_model_prob)
loss = sum_except_batch(kl)
return loss

bibliography 135

Coincidentally this code even works for L0 because x0 is onehot and then:

� log C(x0|x̂0)�Â
k
x0,k log x̂0,k = Â

k
x0,k[logx0,k| {z }

0 or log 0

� log x̂0,k] = KL(C(x0)||C(x̂0)),

where in the last term x0 and x̂0 are probability vectors and 0 log 0 is defined to
be 0.

c.1.2 Details of Multinomial Diffusion Experiments
diffusion settings For diffusion we use the cosine schedule for {at} from
[121] with the difference that what was previously

p
āt is now āt, so that their

factor
p

āt for the Gaussian mean is equal to our factor āt for categorical param-
eters. Specifically, our āt are defined using:

āt =
f (t)
f (0)

f (t) = cos
✓

t/T + s
1 + s

· p

2

◆
, s = 0.008,

where T is the total number of diffusion steps. Nichol and Dhariwal [121] show
that instead of sampling t uniformly, variance is reduced when t is importance-

sampled with q(t) µ
q

E[L2
t], which is estimated using training statistics, and

we use their approach. The objective can be summarized as:

log P(x0) � Et⇠q(t),xt⇠q(xt |x0)

� 1

q(t)
KL
�
q(xt�1|xt,x0)|p(xt�1|xt)

�
. (C.1)

Table C.1: Samples from Multinomial Diffusion trained on text8.
Model Nr Text

M
ul

tin
om

ia
lD

iff
us

io
n

1 that the role of tellings not be required also action characters passed on constitution ahmad a

nobilitis first be closest to the cope and dhur and nophosons she criticized itm specifically on

august one three movement and a renouncing local party of exte

2 nt is in this meant the replicat today through the understanding element thinks the sometimes

seven five his final form of contair you are lotur and me es to ultimately this work on the

future all all machine the silon words thereis greatly usaged up not t

3 arity island louis has convinced privatist provinces the restrained marriage of his income ted

guilds which in gulick performed in one nine six seven then sponly onward the bambat loving in

separate including tichatta westell s doubled a bound of his futur

4 same early duration without education as a golden core power to the pirit of spain arriving wise

speech art and r t plain firman q one five six the same as part of herald h rogenszers a art

poetic of literature at shaft bressen three five three five eight

c.2 autoregressive diffusion models
c.2.1 Additional Results
relation to other likelihood-based generative models In this
section we show how ARDMs perform compared to existing likelihood based
generative models in literature. These results are presented in Table C.2. The
best performing model is the Variational Diffusion Model (VDM) [91]. ARDMs
perform competitively with a best score of 2.64 bpd, and are the best performing
model among discrete diffusion approaches.

additional audio experiments In Table C.3 we present additional ex-
perimental results from our best Upscale ARDM model for the SC09 dataset
(branching factor 4), in which we consider smaller computational budgets. Re-
call that dimensionality D = 16000 for SC09 data.

136 bibliography

Table C.2: CIFAR-10 generative modelling.

Model Type NLL

ARDM-AO (ours) Discrete Diffusion [ARM 2.69
ARDM-Upscale 4 (ours) Discrete Diffusion [ARM 2.64
D3PM Gaussian [7] Discrete Diffusion 3.44

DDPM [66] Diffusion 3.69
Improved DDPM [121] Diffusion 2.94
VDM [91] Diffusion 2.49

PixelCNN++ [134] ARM 2.92
SPN [116] ARM 2.90
Sparse Transformer [86] ARM 2.52

NVAE [161] VAE 2.91
Very Deep VAE [25] VAE 2.87
CR-VAE [142] VAE 2.52

Table C.3: Audio (SC09) depth upscaling test set performance (in bpd) for various com-
putational budgets.

Model Steps Performance

ARDM Upscale 4 8⇥ 16000 6.29

ARDM Upscale 4 8⇥ 1000 6.30
8⇥ 500 6.30
8⇥ 100 6.32
8⇥ 50 6.32

loss components over time Since the training algorithm estimates the
NLL by sampling a step t for each input in the batch, we can collect and keep
track of the loss components {Lt} and plot them as a function of t (see Fig-
ure C.1). These are collected by updating an exponential moving average during
training, and are used in the dynamic programming routine. As expected by
Equation 6.12, the components Lt are monotonically decreasing over the step
t within a stage. The height is re-normalized so that the average height repre-
sents the total bits per dimension. As a result, in the upscale model the value
divided by number of stages S represents the actual uncertainty of generating
that token.

The loss plot of the upscale model allows for interesting observations: For in-
stance, After an initially high uncertainty (⇡ 8/S = 2 bits) the most significant
bits become increasingly easier to model very fast (< 2/S = 0.5 bits). In contrast,
for each stage that follows, the average height of that stages increases. This in-
dicates that the model is more uncertain for the less significant bits. This can be
a combination of two things: The model may have more difficulty in modelling
these less significant bits (i.e. high KL between data and model distribution), and
the data distribution may be more uncertain in those regions (i.e. high entropy
of the data distribution).

bibliography 137

Figure C.1: Loss components over model step on CIFAR-10. The height is normalized
so that the average represents the total bits per dimension. Left: loss terms for the OA-
ARDM. Right: loss terms for the ARDM-Upscale 4, which comprises four stages.

samples from ardms Sampling from ARDMs can be visualized at differ-
ent steps t to highlight the generative process. Recall that for models trained on
language, the absorbing state augments the space, meaning that an additional
index that is added for the absorbing state. We visualize this token by the under-
score character ‘_’. The process at four selected steps in the process are presented
in Figure C.2, where the last sentence represents the resulting sample.

The generative processes for images are visualized in Figure C.3. In constrast
with the language model, here the absorbing state takes on a specific value in
the domain of the image itself. In the case of OA-ARDMs, the absorbing state
is 128 so that it is 0 when normalized in the network architecture. In constrast,
the absorbing state of the Upscale ARDM is 0 because it is defined by zeroing
least significant bits until everything is zero. The right-most grid represents the
resulting samples from the model. The generative processes are very different:
whereas the upscale ARDM first generates a coarses version of the images with
fewer bits, the order agnostic ARDM generates each value at once.

138 bibliography

__x______________________________
________________________i__
___________________n______________________________i______________________________
__f____

to____li________egy_f___________c___________ _____x___i___e________rt s___k______
__________r i_______ i__is___l__e___e _______a____h___ _ot_____l_______c_e__pr___
___ __j___ __er_t_onal_w_a___s_in_______me_c______i____i__a_ m_d__________s______
__f____

to_r__li_e s_rategy for_____m___c_________h_ __n_ex_eri__ce______hort s_rike____b
_r__wheth_r i_ ___se i__is__el__er__e fo__g__a_ls_h__e _ot__t__l_y u_s_c_e__pr___
___ i_je__ __erational w_apo_s_in_t___g_me_ca_ u__i_d__i__a_ m_d_l u__e___s___d__
__fy__g

to r__li_e s_rategy for autom__ics o_ i__the c_n ex_erie_ce_fo_ short s_rike_bomb
ers_wheth_r in r_use it_is deli_erate for ga_auls ha_e _ot_ntially u_s_cke__pro_f
___ i_ject __erational w_apo_s in t_e_game_car us_i_divid_a_ mod_l urre___s___de_
_ifyi_g

to realize strategy for automatics or it the can experience for short strike bomb
ers whether in reuse it is deliberate for gasauls have potentially unsucked proof
or inject operational weapons in the game car us individual model urrealise ident
ifying

____________s__
___ _________________

t______________________t_____________________________d___________________________

_e_s__e___ows___ _____r___c__________e_______f_____b__s__el_i__ ____d__________s_
__c________he_i____ __ ___ ___a____ma____i___e b____r_______bl_ __________d______

t_n_a___ i_land__omp___t__n_______o_g_____e___o_ a___d__t____e____m____t_________
_ __m__

le_s_re_shows___ t____ro__ct__n_o__t_e _ta___f_____by_sa_el_i_e _o_rd______ro__s
__c_ _en__ he_ita_e __ ___ ___a__y_mai__fis_ e b__u_r_______bl_ e_ __r_a__d_n_a__

tin_a__s i_land_comp__it_on___d_g_orge__c_e___on a___d_ltum _eak__mongst_e__e___a
_ _om__

leisure shows__t t_e _rot_ction o__the sta__ fal_s by sa_ellite _oard_a_d troo_s
__ce tenu_ he_itage of t__ _ata__y main_fish e b__uer__ ____bl_ el _erpa _d_n_a_

tin_a__s island compo_it_on _nd george_ clea_son a__ diltum peak amongsthe ge___

a_ _omm_

leisure shows it the protection of the stamp falls by satellite board and troops
lace tenua heritage of the catalay main fish e b fuerta e robla el serpa eden at
tingalas island composition and georges clearson and diltum peak amongsthe gener
al commu

Figure C.2: Two generative processes of an OA-ARDM trained on text8. The resulting
sample from the model is at the bottom of each frame.

bibliography 139

(a) Generative process of an Upscale 4 ARDM. This model was trained without data augmentation
and with dropout, which explains that all images are generated upright. The performance of this
model is approximately 2.71 bpd whereas the same model trained with data augmentation has
2.64 bpd.

(b) Generative process of an OA-ARDM, starting at the absorbing state a. This model was trained
with data augmentation, which is known to somewhat degrade sample quality and naturally
sometimes samples rotated or reflected images.

Figure C.3: Visualization of the generative process for x, ending with the resulting sam-
ples at the right-most grid.

c.2.2 Experimental Details
In this section further details are given on the experimental setup.

images For CIFAR10 [103] we train the model using a fixed number of steps
using the typical splits and evaluate the test log-likelihood after 3000 epochs of
training. The results that are reported with standard deviations results are based
on runs with three different initial seeds. The other results are based on single-
run experiments. The runs take approximately 2 weeks to complete training on 8
TPUv4 devices, although good performance (⇡2.8 bits per dimension) is already
achieved after a couple of days.

As a base architecture for the OA-ARDM and the Upscale ARDMs, the exact
same U-Net architecture as in [91] are used. This architecture has 32 ResBlocks
at resolution 32⇥ 32, a single middle attention layer and then another 32 Res-
Blocks at resolution 32 ⇥ 32. Throughout the network feature maps have 256
channels. This architecture is typical for NLL optimization and lossless com-
pression, which typically require many high-resolution feature maps [117]. The
models are trained for 3000 epochs with Adam using a learning rate of 0.0001
and beta parameters (0.9 / 0.999). The input processing uses a combination of the
floating point representation and an embedding layer. The integer-valued input
is put through a simple normalization by dividing by the total number of classes,
and subtracting 0.5. To this normalized input the mask m is then concatenated.
In the case of upscale ARDMs, the current stage in one-hot representation is
also converted to a mask with S channels, and is also part of m. So in that case
m has S + 1 channels. Then a 3⇥ 3 convolutional layer maps the concatenated
inputs to 3/4 of the channels. In addition, the integers are also fed through an
embedding layer to 1/4 of the channels. These two outputs are then combined

140 bibliography

which produces the feature maps with 256 channels. This is given as an input to
the U-Net architecture as described above. Following Austin et al. [7] we include
the Cross-Entropy (CE) objective LCE = Et⇠U (1,...,D)

h
D(D � t + 1)Lt

i
(i.e. the

unnormalized likelihood components), with a small factor of 0.001. However, in
an experiment without the LCE loss included, no substantial differences in per-
formance were found for our ARDMs. Since the likelihood of the dataset is esti-
mated with the ARDM objective, the results are computed over multiple dataset
passes to reduce the stochastic effects from sampling t and s. For evaluation the
exponential moving average of the parameters is used with a momentum coeffi-
cient of 0.9999. The models are trained with a batch size of 128. The gradient is
clipped at 100.

language For the text8 dataset [113]1 we train using the typical 90 · 106/5 ·
106/5 · 106 splits in characters. Because the text8 dataset is a long string of char-
acters, there is predictive information between segments when chunked. For this
reason there is a big difference between model performance in literature in the
reported scores on the text8 benchmark. Some methods consider a larger context
before the current sequence, which greatly improves the information available to
the model and gives better log-likelihoods. The runs take approximately a week
to complete on 4 TPUv4 devices.

Since we are interested in the pure modelling capacity of models, we follow [72,
7] and consider chunked text segments without any additional context. However,
since the text8 splits are not evenly divisible by 256, we slightly adjust the chunk
size to 250 characters, to avoid dropping the last batch. We validated empiri-
cally with a baseline Transformer that this small change does not meaningfully
change the performance with the 256 version. For reference, a baseline 12 layer
Transformer attains 1.35 bpc on this problem.

As a base architecture, we use a 12 layer Transformer as used in [7]. It has 768
dimensions, 12 heads, 3072 MLP dimensions. For the ARDM architectures we
followed [7] and used a batch size of 512 with no dropout. For standard lan-
guage model baseline, since we observed overfitting the batch size was lowered
and dropout of 0.1 was added. The models are trained for 3 · 106 training steps.
ARDMs are optimized with Adam with a learning rate of 0.0005 which has a
linear warm-up for the first 5000 steps. The additional LCE loss was included
with a factor 0.0001. The gradient is clipped at 0.25. For evaluation the expo-
nential moving average of the parameters is used with a momentum coefficient
of 0.995. All models use a sinusoidal positional embedding. However, the OA-
Transformer based on the XLNet approach [170] requires both the input and
target positional embeddings to infer which permutation currently needs to be
generated. In [4], this is handled by interleaving input and target nodes in the
sequence. A downside to this approach is that is increases the sequence length
by two, which increases the quadratic computational complexity of the atten-
tion layers by four. In contrast, we concatenate the input and target embeddings,
which does not alter the sequence length.

audio For audio experiments we used a subset of the SC09 dataset [163] ob-
tained by filtering out all non-digit commands from the dataset without chang-

1 http://mattmahoney.net/dc/text8.zip

http://mattmahoney.net/dc/text8.zip

bibliography 141

ing the structure of the train/validation/test splits. The resulting dataset con-
tains 31158/3643/4107 training/validation/test audio clips that are 1 second
long and sampled at 16 kHz. In a few rare cases when the audio clips were
shorter than 1 second, we right-padded them with zeros; and all considered
models were trained and evaluated on padded data. A Tensorflow Datasets [152]
version of this dataset is provided with the open-source code. Training takes ap-
proximately 4 days.

For both, the AO-ARDM as well as the Upscale ARDM experiments, we closely
followed the DiffWave setup [99] in terms of the network architecture and size,
bit adapted the input embedding layer to take input masks into account. Specifi-
cally, we used a non-causal WaveNet [125] architecture with 36 blocks, 256 chan-
nels and a dilation cycle of 11 (i.e. maximum dilation of 2048); input embedding
were obtained by concatenating 1) 64-channel embeddings of integer input val-
ues; with 2) 192-channel mask and continuous input value embeddings output
by a width 3 convolution; the shared time embedding was obtained by mapping
the standard 256-channel sine and cosine representation through two dense lay-
ers with 1024 features and Swish nonlinearities [43].

Audio AO-ARDM and Upscale ARDM models were trained using the Adam
optimizer [89] with beta paramters 0.9 / 0.999 for 106 steps with a batch size
of 256 and a linear learning rate warm-up over the first 15000 steps followed
by a constant learning rate of 10�4. During training we tracked an exponential
moving average (EMA) of the model parameters using a momentum of 0.995,
and employed the EMA parameters during evaluation. As in the case of image
ARDMs, the models were optimized using a combination of the ELBO and CE
objectives - the latter taken with a tiny weight of 10�4. No further regularisation
was used.

Due to the large output space (216 classes) audio AO-ARDM modelled the output
distribution using a mixture of discretized logistics (DMoL) with 30 components,
although we experimentally found the number of components to not make a big
difference. To aid with training, the DMoL was initialized as an approximately
uniform distribution with different mixtures responsible for the different parts
of this distribution; and gradients with an L2 norm larger than 1000 were re-
normalized. Owing to the smaller per-stage output space, we were able to utilize
the categorical softmax parameterization for the Upscale ARDMs. Empirically
we observed this model class to demonstrate a more stable training behaviour (in
a addition to significantly improved likelihoods), which we (partially) attribute
to the choice of parametrization.

For our autoregressive single-order baseline we sought to deviate from the above
AO-ARDM setup as little as possible, and used a causal version of the WaveNet
architecture above. However, we observed that the single-order baseline overfits
quickly on the training data. To overcome this, we found it necessary to use
weight decay (0.01), smaller batch size (64) and fewer channels (128) for the
baseline model.

142 bibliography

c.3 further details of autoregressive diffusion
Next to given descriptions, the implementation has been open-sourced at https:
//github.com/google-research/google-research/tree/master/autoregressive_

diffusion.

c.3.1 Depth Upscaling
This section explains further details that are important to optimize and sample
from Depth Upscaling ARDMs, which are summarized in Algorithm 15 and 16.
Recall that for depth-upscaling models, the variables are modelled in stages
x(1), . . . ,x(S) and the model learns p(x(S)|x(S�1)), . . . , p(x(1)|x(0)). Here x(0) is
a constant absorbing state and x(S) represents the data. The transition matrices
{P

(s)} describe the destructive maps which end up in the absorbing state. They
form the destructive counterpart of the generative process.

Instead of optimizing for all stages simultaneously, we sample a stage uniformly
s ⇠ U (1, . . . , S) and optimize for that stage. Here the cumulative matrix products
P
(s) allow us to directly transition to a specific stage, since x(s) = P

(s+1)
x(S). To

be precise, for a single dimension i the variable x
(s)
i is represented as a onehot

vector and then transformed using the matrix multiplication x
(s)
i = P

(s+1)
x
(S)
i .

For multiple dimensions this matrix multiplication is applied individually, mean-
ing that P

(s+1)
x(S) =

�
P
(s+1)

x
(S)
1 , P

(s+1)
x
(S)
2 , . . . , P

(s+1)
x
(S)
D
�
= (x(s)

1 , . . . ,x(s)
D) =

x(s).

For a optimization step, a stage s ⇠ U (1, . . . , S) and a step t ⇠ U (1, . . . , D) are
sampled, in addition to a permutation s ⇠ U (SD). Then using the cumulative
matrices, from a datapoint x = x(S) the variables x(s) and x(s�1) are computed.
As before, the mask m = s < t gives the locations of the variables that are
conditioned on. For those locations the values in x(s) may already be accessed.
For the opposite locations 1 �m, instead the values from x(s�1) are accessed.
This leads to the expression for the input i = m� x(s) + (1�m)� x(s�1). The
target of the network will be to predict a distribution for x(s) at the locations at
1�m. The network will take in the computed input i together with variables
to clarify in which stage of the generative process the model is, m, s and t. In
case of the data parametrization, the probabilities ✓ are appropriately normal-
ized and reweighted to ✓(s) using transitions {P

(s)}. Then, the log probabilities
log C(x(s)|✓(s)) are computed elementwise over dimensions and subsequently
masked with 1�m. These quantities are then summed and reweighted to get a
stochastic estimate for the ELBO.

For the sampling, the model traverses through each stage, and for each stage
through every dimension in a different order. In each step the network together
with the transition matrices produces a probability vector ✓(s) from which ele-
mentwise samples are taken x0 ⇠ C(x(s)|✓(s)), but only the values at locations
n (s = t) are filled in, corresponding to the current generation step. By
traversing through all steps and stages, the variable x(S) is generated.

https://github.com/google-research/google-research/tree/master/autoregressive_diffusion
https://github.com/google-research/google-research/tree/master/autoregressive_diffusion
https://github.com/google-research/google-research/tree/master/autoregressive_diffusion

bibliography 143

Algorithm 15 Sampling from Upscale-ARDMs

Input: Network f
Output: Sample x
Initialize x = x(0)

for s in {1, . . . , S} do

Sample s ⇠ U (SD)
for t in {1, . . . , D} do

m s < t
n (s = t)
✓ f (x,m, s, t)
✓(s) µ P

(s)T
x� P

(s+1)
✓

x0 ⇠ C(x(s)|✓(s))
x (1�n)� x+n� x0

end for

end for

Algorithm 16 Optimizing Upscale-ARDMs

Input: Datapoint x, Network f
Output: ELBO L
Sample s ⇠ U (1, . . . , S)
Sample t ⇠ U (1, . . . , D)
Sample s ⇠ U (SD)

x(s) P
(s+1)

x and x(s�1) P
(s)
x

Compute m s < t
i m� x(s) + (1�m)� x(s�1)

✓ f (i,m, s, t)
✓(s) µ P

(s)T
x(s�1) � P

(s+1)
✓

lt (1�m)� log C(x(s)|✓(s))
L D

D�t+1 sum(lt)

144 bibliography

c.3.2 Details on Parallelized ARDMs
This section discusses further details on Parallelized ARDMs, and provides a JAX
version of the dynamic programming algorithm from [164] that was written in
NumPy. Since the algorithm scales with O(D3) this implementation is important
to scale to larger dimensional problems. To clarify, the upscale ARDMs can be
seen as a S sequential OA-ARDMs that model p(x(s)|x(s�1)), and when a parallel
schedule is computed, it is computed for each stage separately. It is also possible
to run the dynamic programming algorithm for all S · D steps simultaneously,
which could even choose to distribute steps unevenly over stages, but that is not
done in this paper.

Recall that to run the algorithm a matrix L is needed which gives the cost of trav-
elling from one generation step to another. It is constructed so that Lt,t+k = k · Lt
for positive k and 0 otherwise, which represents the cost of generating k variables
in parallel where Lt is the loss component. In practice this is implemented via
a cumulative sum of a triangular mask. This part is relatively computationally
cheap.

import jax
from jax import numpy as jnp
import numpy as np

def get_nelbo_matr ix (loss_components : np . ndarray) :
num_timesteps = len (loss_components)

Creates multiplicative mask . E . g . if num_timesteps = 3 then :
[1 2 3]
triu = [0 1 2] .
[0 0 1]
triu = np . triu (np . ones ((num_timesteps , num_timesteps)))
triu = np . cumsum (triu [: : − 1] , axis = 0) [: : − 1]

Compute nelbos [s , t] which contains −logp (x_s | x_t)
nelbos_ = loss_components [: , None] * triu
Pad last row / first column .
nelbos = np . zeros ((num_timesteps + 1 , num_timesteps + 1))
nelbos [: − 1 , 1 :] = nelbos_

return nelbos

The most expensive part of the algorithm is the loop which has computational
complexity O(D3). This is the most important extension of the NumPy version
and reduces runtime from 5 minutes to about 2 seconds for D = 3072, which
would be very impractical to run for our audio experiments where D = 16000,
which now take less than half a minute to run. Through JAX this loop is XLA-
compiled with the scan operation, limiting overhead when running the algo-
rithm.

@jax . jit
def inner_cost_and_dimension_loop (

nelbos : jnp . ndarray , first_cost : jnp . ndarray) :
" " " Inner jax −loop t h a t computes the c o s t and dimension matr ices . " " "
num_timesteps = first_cost . shape [0] − 1

def compute_next_cost (prev_cost : jnp . ndarray , _ : jnp . ndarray) :
bpds = prev_cost [: , None] + nelbos
new_dimension = jnp . argmin (bpds , axis=0)
new_cost = jnp . min (bpds , axis=0)
return new_cost , (new_cost , new_dimension)

bibliography 145

_ , (costs , dimensions) = jax . lax . scan (
compute_next_cost , init=first_cost ,
xs=jnp . arange (1 , num_timesteps + 1))

return costs , dimensions

The inner algorithm logic is then called via the function below. It first builds
the loss transition matrix L which is referred to as nelbos and then calls the
inner loop. As an output it gives the cost and dimension matrices that can be
used to 1) find an optimal path and 2) describe how expensive such paths are.
As can be seen in Figure C.1, the running average of the loss components {Lt}
might be somewhat noisy, which can negatively influence the algorithm. As a
straightforward method to reduce variance of the values {Lt}, they are sorted
before they are given to the algorithm. This is uniquely possible for ARDMs, as
we expect Lt to be monotonically decreasing over t (see also Equation 6.12). For
Upscale ARDMs that have multiple stages, the loss components are seperately
sorted per stage.

def get_cost_and_dimension_matrices (loss_components : np . ndarray) :
" " "Compute c o s t and assignment matrices , in JAX . " " "
num_timesteps = len (loss_components)

First row of the costs matrix .
first_cost = np . full ((num_timesteps + 1 ,) , np . inf)
first_cost [0] = 0
first_cost = jnp . array (first_cost)

First row of the dimensions matrix . The first row just contains −1
and is never used , but this way it aligns with the cost matrix .
first_dimension = jnp . full ((num_timesteps + 1) , −1 , dtype=np . int32)

nelbos [s , t] is going to contain the value logp (x_s | x_t)
nelbos = jnp . array (get_nelbo_matr ix (loss_components))
costs , dimensions = inner_cost_and_dimension_loop (nelbos , first_cost)

Concatenate first rows to the matrices .
costs = jnp . concatenate ([first_cost [None , :] , costs] , axis=0)
dimensions = jnp . concatenate ([first_dimension [None , :] , dimensions] ,

axis=0)

costs = np . array (costs)
dimensions = np . array (dimensions)

return costs , dimensions

The final part of this algorithm is used to retrieve the path that needs to be taken
to attain a certain cost. This algorithm takes as input a budget and the cost &
dimension matrices, and returns the corresponding path to traverse.

def get_optimal_path_with_budget (budget : int , costs : np . ndarray ,
dimensions : np . ndarray) :

num_timesteps = len (costs) − 1
t = num_timesteps
path = np . zeros (budget , dtype=np . int32)
cost = costs [budget , num_timesteps]
for k in reversed (range (1 , budget + 1)) :

t = dimensions [k , t]
path [k−1] = t

return path , cost

D | A P P E N D I X F O R E Q U I VA R I A N T G E N E R AT I V E
M O D E L S

d.1 additional details for e-nfs
d.1.1 Lifting Discrete Features to Continuous Space
In this section additional details are discussed describing how discrete variables
are lifted to a continuous space. As in the main text, we let h = (hord, hcat) be
the discrete features on the nodes, either ordinal or categorical. For simplicity we
can omit the number of nodes and even the number of feature dimensions. Then
hord 2 Z and hcat 2 {1, 2, . . . , K}. Note here that although the representation for
hord and hcat are the same, they are treated differently because of their ordinal
or categorical nature.

Now let h̃ = (h̃ord, h̃cat) be its continuous counterpart. We will utilize variational
dequantization [65] for the ordinal features. In this framework mapping h̃ord to
hord can be done via rounding (down) so that hord = round(h̃ord). Similarly we
will utilize Argmax Flows from Chapter 5 to map the categorical map which
amounts to hcat = argmax(h̃cat). Here h̃ord 2 R and h̃cat 2 RK where K is the
number of classes.

The transformation h̃ 7! h given by h = (round(h̃ord), argmax(h̃cat)) is com-
pletely deterministic, and to derive our objective later we can formalize this
as a distribution with all probability mass on a single event: P(h|h̃) = 1[h =
(round(h̃ord), argmax(h̃cat))] as done in Chapter 5. Then the (discrete) genera-
tive model pH(h) = Eh̃⇠pH(h̃)

P(h|h̃) defined via the continuous pH̃(h̃) can be
optimized using variational inference:

log pH(h) � Eh̃⇠qord,cat(· |h)

h
log pH̃(h̃)� log qord,cat(h̃|h) + log P(h|h̃)

i

= Eh̃⇠qord,cat(· |h)

h
log pH̃(h̃)� log qord,cat(h̃|h)

i
,

for which we need a distribution qord,cat(h̃|h) that has support only where P(h|h̃) =
1. In other words, qord,cat needs to be the probabilistic inverse of P(h|h̃), so the
round and arg max functions.

So how do we ensure that qord,cat is the probabilistic inverses of the round and
argmax functions? For the ordinal data we construct a distribution as follows.
First we let the variable ulogit be distributed as a Gaussian,

ulogit ⇠ N (· |µ(hord), s(hord)),

where the mean and standard deviation are predicted by a shared EGNN (de-
noted by µ and s) with the discrete features as input. Then u = sigmoid(ulogit)
ensuring that u 2 (0, 1). We will name this distribution q(u|hord). This construc-
tion is practical because we can compute

log qord(u|hord) = logN (ulogit|µ(hord), s(hord))� log sigmoid0(ulogit),

using the change of variables formula. Finally we let h̃ord = hord + u, for which
we write the corresponding distribution as qord(h̃ord|hord). This last step only

147

148 bibliography

shifts the distribution and so does not result in a volume change, so qord(h̃ord|hord) =
q(u|hord). Now since u 2 (0, 1) we have that round(h̃ord) = round(hord + u) =
h as desired.

For categorical data we similarly model a unconstrained noise variable w ⇠
N (· |µ(hcat), s(hord)) which is then transformed to respect the argmax constraint.
Again, µ and s are modelled by an EGNN. Let k = hcat, the index who’s value
needs to be the maximum and wk = T. Then h̃cat,k = T and h̃cat,�k = T �
softplus(T�w�k) which ensures that h̃cat,�k < T and therefore k = arg max h̃cat
as desired. Again the log-likelihood of the corresponding of the resulting dis-
tribution qcat(h̃cat|hcat) is computed using the logN (w|µ(hcat, s(hord))) and the
log derivatives of the softplus thresholding. For more details on these construc-
tions see [65] and Chapter 5.

d.1.2 Experiment details for E-NFs
In this section we provide more details about the implementation of the experi-
ments. First we introduce those parts of the model architecture that are the same
across all experiments. The EGNN module defined in Equations 7.7 is composed
of four Multilayer Perceptrons (MLPs) fe, fx, fh and finf. We used the same de-
sign as in [136] for all MLPs except for fx. The description of the modules is as
follows:

• fe (edge operation): consists of a two-layer MLP with two SiLU [124] ac-
tivation functions that takes as input (hi,hj, kxi � xjk2) and outputs the
edge embedding mij.

• fx (coordinate operation): consists of a two layers MLP with a SiLU ac-
tivation function in its hidden layer and a Tanh activation function at the
output layer. It takes as input the edge embedding mij and outputs a scalar
value.

• fh (node operation): consists of a two layers MLP with one SiLU activation
function in its hidden layer and a residual connection: [hl

i , mi] �! {Linear()
�! SiLU() �! Linear() �! Addition(hl

i) } �! hl+1
i .

• finf (edge inference operation): Connsists of a Linear layer followed by a
Sigmoid layer that takes as input the edge embedding mij and outputs a
scalar value.

These functions define our E(n) Equivariant Flow dynamics (E-NF), the Graph
Normalizing Flow dynamics (GNF), Graph Normalizing Flow with attention
(GNF-att) and Graph Normalizing Flow with attention and data augmentation
(GNF-att-aug). The variations regarding architectural choices among experiments
are the number of layers and hidden features per layer. In the following we explic-
itly write down the dynamics used for the ENF, GNF, GNF-att and GNF-att-aug
baselines.

bibliography 149

• E-NF (Dynamics): We can write the E-NF dynamics that is modelled by an
EGNN, adapted for our use-case as:

mij = fe

✓
hl

i ,h
l
j,
���xl

i � xl
j

���
2
◆

(D.1)

xl+1
i = xl

i + Â
j 6=i

(xl
i � xl

j)

kxl
i � xl

jk+ 1
fx
�
mij
�

(D.2)

mi = Â
j 6=i

finf(mij)mij, (D.3)

hl+1
i = fh

⇣
hl

i ,mi

⌘
(D.4)

• GNF: The dynamics for this method are a standard Graph Neural Network
which can also be interpreted as a variant of the EGNN with no equivari-
ance. The dataset coordinates x are treated as h features, therefore they are
provided as input to h0 through a linear mapping before its first layer. The
model infers edges eij = finf(mij) which can be seen as a form of attention
or gating.

mi = Â
j 6=i

eijmij, mij = fe

⇣
hl

i ,h
l
j

⌘
(D.5)

hl+1
i = fh

⇣
hl

i ,mi

⌘
(D.6)

• GNF-aug: This is the exact same model as the GNF. The only difference
lies in the pre-processing of the data since we perform data augmentation
by rotating the node positions before inputting them to the model.

The experiment on QM9 has been trained with batch size 128 and weight de-
cay 10�12. The learning rate was set to 5 · 10�4 for all methods except for the
E-NF where it was reduced to 2 · 10�12. The flows trained on QM9 have all been
trained for 30 epochs. Training these models takes approximately 2 weeks us-
ing two NVIDIA 1080Ti GPUs. The flows trained on QM9 Positional have been
trained for 160 epochs in single NVIDIA 1080Ti GPUs. Simple Dynamics would
train in less than a day, Kernel Dynamics around 2 days, the other methods can
take up to 7 days. The training of the models becomes slower per epoch as the
performance improves, due to the required steps in the ODE solver. For QM9, the
model performance is averaged over 3 test set passes, where variance originates
from dequantization and the trace estimator, see Table D.1.

Table D.1: Neg. log-likelihood averaged over 3 passes, variance from dequantization and
trace estimator.

NLL

GNF-augmentation -29.3 ± 0.02
E-NF (ours) -59.7 ± 0.12

d.1.3 Stability of Molecules Benchmark
In the QM9 experiment, we also report the % of stable molecules and atoms.
This section explains how we test for molecule stability. In addition, we explain

150 bibliography

why there is not a set of rules that will judge every molecule in the dataset stable.
First of all, we say that an atom is stable when the number of bonds with other
atoms matches their valence. For the atoms used their respective valencies are
(H: 1, C: 4, N: 3, O: 2, F: 1). A molecule is stable when all of its atoms are stable.
The most straightforward method to decide whether atoms are bonded is to
compare their relative distance. There are some limitations to this method. For
instance, QM9 contains snapshots of molecules in a single configuration, and
in reality atoms of a molecule are constantly in motion. In addition, the type
of molecule can also greatly influence the relative distances, for instance due to
collisions, the Van der Waals force and inter-molecule Hydrogen bonds. Further,
environmental circumstances such as pressure and temperature may also affect
bond distance. For these reasons it is not possible to design a distance based rule
that considers every molecule in QM9 stable, based only on a snapshot. To find
the most optimal rules for QM9, we tune the average bond distance for every
atom-type pair to achieve the highest molecule stability on QM9 on the train
set with results in 95.3% stable molecules and 99% stable atoms. On the test set
these rules result in 95.2% stable molecules and 99% stable atoms.

The specific distances that we used to define the types of bond (single, dou-
ble, triple or none) are available in the code and were obtained from http://www.

wiredchemist.com/chemistry/data/bond_energies_lengths.html. Notice the type
of bond depends on the type of atoms that form that bond and the relative dis-
tance among them. Therefore, given a conformation of atoms, we deterministi-
cally compute the bonds among all pairs of atoms. Then we say an atom is stable
if its number of bonds with other atoms matches its valence.

d.2 additional details for edms
d.2.1 The zero center of gravity, normal distribution
Consider the Euclidean variable x 2 RM⇥n in the linear subspace Âi xi = 0. In
other words, x is a point cloud where its center of gravity is zero. One can place
a normal distribution Nx over this subspace and its likelihood can be expressed
as:

Nx(x|µ, s2
I) = (

p
2ps)�(M�1)·n exp

⇣
� 1

2s2 ||x�µ||2
⌘

Here µ also lies in the same subspace as x. Also note a slight abuse of notation:
x,µ are technically two-dimensional matrices but are treated in the distribution
as single-dimensional (flattened) vectors. To sample from this distribution, there
are multiple options. For instance, one could sample from a normal distribution
with dimensionality (M � 1) · n and then map the sample to the M · n dimen-
sional ambient space so that its center of gravity equals zero. However there
is an easier alternative: One can sample in the M · n dimensional ambient space
directly, and subtract Âi xi. Because the normal distributions are isotropic (mean-
ing its variance in any direction you pick is s2) this is equivalent to the afore-
mentioned method. More detailed analyses are given in [135] and [168].

kl divergence A standard KL divergence for between two isotropic normal
distributions q = N (µ1, s2

1 I) and p = N (µ2, s2
2 I) is given by:

KL(q||p) = d · log
s2

s1
+

1
2

hd · s2
1 + ||µ1 �µ2||2

s2
2

� d
i
, (D.7)

http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html

bibliography 151

where d is the dimensionality of the distribution. Recall that in our case the
diffusion and denoising process have the same variance s2

Q,s,t. If s1 = s2 = s,
then the KL divergence simplifies to:

KL(q||p) = 1
2

h ||µ1 �µ2||2
s2

i
. (D.8)

Suppose now that N1(µ̃1, sI) and N2(µ̃2, sI) are defined on a linear subspace,
where the mean µ̃ is defined with respect to any coordinate system in the sub-
space. The KL divergence between these distributions then includes a term con-
taining the Euclidean distance ||µ̃1 � µ̃2||2

Similar to the arguments in [135, 168], an orthogonal transformation Q can be
constructed that maps an ambient space where Âi µi = 0 to the subspace in

such a way that

"
µ̃

0

#
= Qµ. Observe that ||µ̃|| = ||

"
µ̃

0

#
|| = ||µ||, and therefore

||µ̃1 � µ̃2||2 = ||µ1 � µ2||2. This shows that Equation D.8 can be consistently
computed in the ambient space. This also shows an important caveat: in some
diffusion models, different variances are used in the posterior of the diffusion
process and the denoising process. In those cases one can see from Equation D.7
that the divergence depends on the dimensionality of the subspace, not to be
confused with the dimensionality of the ambient space.

the combined kl divergence for positions and features In the
previous section we have shown that the KL divergence for distributions such as
Nx, can still be computed in the ambient space as long as standard deviations
between two such distributions are the same. Let us know consider the combined
KL divergence for distributions q = Nxh(µ1, s2

I) and p = Nxh(µ2, s2
I). Note

that here the means consist of two parts µ = [µ(x),µ(h)] where the x part lies
in a subspace and the h part is defined freely. The distributions factorize as
Nxh(µ, s2

I) = Nx(µ(x), s2
I) · N (µ(h), s2

I). Then the KL divergence simplifies
as:

KL(q||p) = KL
⇣
Nx(µ

(x)
1 , s2

I)||Nx(µ
(x)
2 , s2

I)
⌘
+ KL

⇣
N (µ(h)

1 , s2
I)||N (µ(h)

2 , s2
I)
⌘

=
1
2

h ||µ(x)
1 �µ

(x)
2 ||2

s2

i
+

1
2

h ||µ(h)
1 �µ

(h)
2 ||2

s2

i
=

1
2

h ||µ1 �µ2||2
s2

i
.

(D.9)

Here we have used that products of independent distributions sum in their in-
dependent KL terms, and that the sum of the Euclidean distance of two vectors
squared is equal to the squared Euclidean distance of the two vectors concate-
nated. In summary, even though parts of our distribution are defined on a linear
subspace, all computation for the KL divergences is still consistent and does
not require special treatment. This is however only valid under the condition
that the variances of the denoising process and posterior noising process are the
same.

Noise schedule: A diffusion process requires a definition for at, st for t = 0, . . . , T.

Since at =
q

1� s2
t , it suffices to define at. The values should monotonically de-

crease, starting a0 ⇡ 1 and ending at aT ⇡ 0. In this paper we let

at = (1� 2s) · f (t) + s where f (t) = (1� (t/T)2),

for a precision value 10�5 that avoids numerically unstable situations. This sched-
ule is very similar to the cosine noise schedule introduced in [121], but ours

152 bibliography

is somewhat simpler in notation. To avoid numerical instabilities during sam-
pling, we follow the clipping procedure of [121] and compute at|t�1 = at/at�1,
where we define a�1 = 1. The values a2

t|t�1 are then clipped from below by
0.001. This avoids numerical instability as 1/at|t�1 is now bounded during sam-
pling. Then the at values can be recomputed using the cumulative product
at = ’t

t=0 at|t�1.

Recall that SNR(t) = a2
t /s2

t . As in [92], we compute the negative log SNR
curve defined as g(t) = �(log a2

t � log s2
t) for s2

t = 1 � a2
t . g(t) is a mono-

tonically increasing function from which all required components can be com-
puted with high numerical precision. For instance, a2

t = sigmoid(�g(t)), s2
t =

sigmoid(g(t)), and SNR(t) = exp(�g(t)).

Log-likelihood estimator: As discussed, the simplified objective described in
Algorithm 13 is optimized during training. However, when evaluating the log-
likelihood of samples, the true weighting w(t) = 1� SNR(t� 1)/SNR(t) needs
to be used. For this purpose, we follow the procedure described in Algorithm 17.
An important detail is that we choose to put an estimator over Lt for t = 1, . . . , T
using Et⇠U (1,...,T)[T · Lt] = ÂT

t=1 Lt, but we require an additional forward pass for
L0. In initial experiments, we found the contribution of L0 very large compared
to other loss terms, which would result in very high variance of the estimator. For
that reason, the L0 is always computed at the expense of an additional forward
pass. The resulting L̂ is an unbiased estimator for the log-likelihood.

Algorithm 17 Log-likelihood estimator for EDMs
Input: Data point x, neural network f

Sample t ⇠ U (1, . . . , T), ✏t ⇠ N (0, I), subtract center of gravity from ✏
(x)
t in

✏t = [✏(x)
t , ✏

(h)
t]

zt = at[x,h] + st✏t
Lt = 1

2 (1� SNR(t� 1)/SNR(t))||✏t � f(zt, t)||2

Sample ✏0 ⇠ N (0, I), subtract center of gravity from ✏
(x)
0 in ✏0 = [✏(x)

0 , ✏(h)0]
z0 = a0[x,h] + s0✏0

L0 = L(x)
0 + L(h)

0 = � 1
2 ||✏� f(z0, 0)||2 � log Z + log p(h|z(h)

0)
Lbase = �KL(q(zT|x,h)|p(zT)) = �KL(Nxh(aT[x,h], s2

TI)|Nxh(0, I))
Return L̂ = T · Lt + L0 + Lbase

the denoising function In Section 7.5.2 we explained that the dynamics
of our proposed Equivariant Diffusion Model (EDM) are learned by the EGNN.
The EGNN consists of a sequence of Equivariant Graph Convolutional Layers
(EGCL). The EGCL is defined in Eq. 7.7. All its learnable components fe, fh, fx,
fin f by Multilayer Perceptrons:

Edge operation fe. Takes as input two node embeddings. The squared distance
d2

ij = kxl
i � xl

jk2
2, and the squared distance at the first layer as the optional at-

tribute aij = kx0
i � x0

j k2
2 and outputs mij 2 Rnf.

concat[hl
i ,h

l
j, d2

ij, aij] �! {Linear(nf · 2 + 2, nf) �! Silu �! Linear(nf, nf) �!
Silu} �!mij

Edge inference operation fin f . Takes as input the message mij and outputs a
scalar value ẽij 2 (0, 1).

bibliography 153

mij �! {Linear(nf, 1) �! Sigmoid} �! ẽij

Node update fh Takes as input a node embedding and the aggregated messages
and outputs the updated node embedding.

concat[hl
i ,mij] �! {Linear(nf · 2, nf) �! Silu �! Linear(nf, nf) �! add(·,hl

i)} �!
hl+1

i

Coordinate update fx. Has the same inputs as fe and outptus a scalar value.

concat[hl
i ,h

l
j, d2

ij, aij] �! {Linear(nf · 2 + 2, nf) �! Silu �! Linear(nf, nf) �!
Silu �! Linear(nf, 1)} �! Output

d.2.2 Additional Experimental Details for EDMs
baseline model While our EDM model is parametrized by an E(3) equiv-
ariant EGNN network, the GDM model used for the ablation study uses a non
equivariant graph network. In this network, the coordinates are simply concate-
nated with the other node features: h̃0

i = [xi,h]. A message passing neural net-
work [55] is then applied, that can be written:

h̃l+1
i = fh(h̃

l
i , Â

j 6=i
ẽijmij) for mij = fe

⇣
h̃l

i , h̃
l
j, aij

⌘

The MLPs fe, fh are parametrized in the same way as in EGNN, with the sole
exception that the input dimension of fe in the first layer is changed to accom-
modate the atom coordinates.

qm9 On QM9, the EDM and GDMs are trained using EGNNs with 256 hidden
features and 9 layers. The models are trained for 1100 epochs, which is around
1.7 million iterations with a batch size of 64. The models are saved every 20
epochs when the validation loss is lower than the previously obtained number.
The diffusion process uses T = 1000. Training takes approximately 7 days on a
single NVIDIA GeForce GTX 1080Ti GPU. When generating samples the model
takes on average 1.7 seconds per sample on the 1080Ti GPU. The EDM that only
models heavy atoms and no hydrogens has the same architecture but is faster to
train because it operates over less nodes: it takes about 3.2 days on a single 1080Ti
GPU for 1100 epochs and converges even earlier to its final performance.

geom-drugs On GEOM, the EDM and GDMs are trained using EGNNs with
256 hidden features and 4 layers. The models are trained for 13 epochs, which
is around 1.2 million iterations with a batch size of 64. Training takes approxi-
mately 5.5 days on three NVIDIA RTX A6000 GPUs. The model then takes on
average 10.3 seconds to generate a sample.

bond distances In order to check the validity and stability of the generated
structures, we compute the distance between all pairs of atoms and use these dis-
tances to predict the existence of bonds and their order. Bond distances in Table
D.2, D.3 and D.4 are based on typical distances in chemistry12. In addition, mar-
gins are defined for single, double, triple bonds m1, m2, m3 = 10, 5, 3 which were
found empirically to describe the QM9 dataset well. If an two atoms have a dis-
tance shorter than the typical bond length plus the margin for the respective

1 http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
2 http://chemistry-reference.com/tables/Bond%20Lengths%20and%20Enthalpies.pdf

http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html
http://chemistry-reference.com/tables/Bond%20Lengths%20and%20Enthalpies.pdf

154 bibliography

Figure D.1: Distribution of estimated energies for the molecules generated by all meth-
ods trained on GEOM-DRUGS. We observe that EDM captures the dataset distribution
well, while other methods tend to produce too many low-energy compounds.

bond type, the atoms are considered to have a bond between them. The allowed
number of bonds per atom are: H: 1, C: 4, N: 3, O: 2, F: 1, B: 3, Al: 3, Si: 4, P: [3,
5], S: 4, Cl: 1, As: 3, Br: 1, I: 1. After all bonds have been created, we say that an
atom is stable if its valency is precisely equal to the allowed number of bonds.
An entire molecule is considered stable if all its atoms are stable. Although this
metric does not take into account more atypical distances or aromatic bonds, it
is still an extremely important metric as it measures whether the model is posi-
tioning the atoms precisely enough. On the QM9 dataset it still considers 95.2%
molecules stable and 99.0% of atoms stable. For Geom-Drugs the molecules are
much larger which introduces more atypical behaviour. Here the atom stability,
which is 86.5%, can still be used since it describes how many atoms satisfy the
typical bond length description. However, the molecule stability is 2.8% on the
dataset, which is too low to draw meaningful conclusions.

Table D.2: Typical bond distances for a single bond.

H C O N P S F Si Cl Br I B As

H 74 109 96 101 144 134 92 148 127 141 161 119 152

C 109 154 143 147 184 182 135 185 177 194 214 - -

O 96 143 148 140 163 151 142 163 164 172 194 - -

N 101 147 140 145 177 168 136 - 175 214 222 - -

P 144 184 163 177 221 210 156 - 203 222 - - -

S 134 182 151 168 210 204 158 200 207 225 234 - -

F 92 135 142 136 156 158 142 160 166 178 187 - -

Si 148 185 163 - - 200 160 233 202 215 243 - -

Cl 127 177 164 175 203 207 166 202 199 214 - 175 -

Br 141 194 172 214 222 225 178 215 214 228 - - -

I 161 214 194 222 - 234 187 243 - - 266 - -

B 119 - - - - - - - 175 - - - -

As 152 - - - - - - - - - - - -

d.2.3 Samples from EDM
Additional samples from the model trained on QM9 are depicted in Figure D.2
and, and samples from the model trained on GEOM-DRUGS in Figure D.3. These

bibliography 155

Table D.3: Typical bond distances
for a double bond.

C O N P S

C 134 120 129 - 160

O 120 121 121 150 -

N 129 121 125 - -

P - 150 - - 186

S - - - 186 -

Table D.4: Typical bond distances
for a triple bond.

C O N

C 120 113 116

O 113 - -

N 116 - 110

samples are not curated or cherry picked in any way. As a result, their structure
may sometimes be difficult to see due to an unfortunate viewing angle.

Figure D.2: Random samples taken from the EDM trained on QM9.

The samples from the model trained on the drugs partition of GEOM show
impressive large 3D structures. Interestingly, the model is sometimes generating
disconnected component, which only happens QM9 models in early training
stages. This may indicate that further training and increasing expressivity of the
models may further help the model bring these components together.

156 bibliography

Figure D.3: Random samples taken from the EDM trained on geom drugs. While most
samples are very realistic, we observe two main failure cases: some molecules that are
disconnected, and some that contain long rings. We note that the model does not feature
any regularization to prevent these phenomena.

Figure D.4 depicts the generation of molecules from a model trained on GEOM-
Drugs. The model starts at random normal noise at time t = T = 1000 and
iteratively sample zt�1 ⇠ p(zt�1|zt) towards t = 0 to obtain x,h, which is the
resulting sample from the model. The atom type part of z

(h)
t is visualized by

taking the argmax of this component.

Figure D.4: Selection of sampling chains at different steps from a model trained on
GEOM-Drugs. The final column shows the resulting sample from the model.

ablation on scaling features In Table D.5 a comparison between the
standard and proposed scaling is shown. Interestingly, there is quite a large
difficulty in performance when measuring atom and molecule stability. From
these results, it seems that it is easier to learn a denoising process where the
atom type is decided later, when the atom coordinates are already relatively
well defined.

bibliography 157

Table D.5: Ablation study on the scaling of features of the EDM. Comparing our pro-
posed scaling to no scaling.

Metrics Scaling NLL Atom stable (%) Mol stable (%)

EDM (ours) [x, 1.00 honehot, 1.0 hatom charge] -103.4 95.7 46.9
EDM (ours) [x, 0.25 honehot, 0.1 hatom charge] -110.7±1.5 98.7±0.1 82.0±0.4

Data 99.0 95.2

Copyright © 2023 Emiel Hoogeboom, Amsterdam, Netherlands

	Cover
	Thesis
	digitaal_v2.pdf
	Abstract
	Samenvatting
	Acknowledgments
	Contents
	1 Introduction
	Publications

	2 Publications
	3 Background
	Normalizing Flows
	4 Linear Convolutional Flows
	5 Flows for Discrete Variables

	Diffusion Models
	6 Diffusion for Discrete Variables

	Equivariant Generative Models
	7 Equivariant Generation of 3D Molecules
	8 Conclusion
	Bibliography

	Appendix
	A Appendix for Linear Convolutional Flows
	B Appendix for Flows for Discrete Variables
	C Appendix for Diffusion for Discrete Variables
	D Appendix for Equivariant Generative Models

