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AbstrAct 

Obesity is a significant risk factor for arrhythmic cardiovascular death. Interactions 
between Epicardial Adipose Tissue (EAT) and myocytes are thought to play a key 
role in the development of arrhythmias. In this review, we investigate the influence of 
EAT on arrhythmogenesis. First, we summarize electrocardiographic evidence show-
ing the association between increased EAT volume, atrial and ventricular conduction 
delay. Second, we detail the structural cross talk between EAT and the heart and 
its arrhythmogenicity. Adipose tissue infiltration within the myocardium constitutes 
an anatomical obstacle to cardiac excitation. It causes activation delay and increases 
the risk of arrhythmias. Intercellular electrical coupling between cardiomyocytes and 
EAT can further slow conduction and increase the risk of block, favoring reentry and 
arrhythmias. Finally, EAT secretes multiple substances that influence cardiomyocyte 
electrophysiology either by modulating ion currents and electrical coupling, or by 
stimulating fibrosis. Thus, structural and paracrine crosstalk between EAT and cardio-
myocytes facilitates arrhythmias.
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Central illustration. Epicardial adipose tissue accumulation participates in creating an arrhythmo-
genic substrate. In obesity and overweight the increased epicardial adipose tissue (EAT) volume creates 
an anatomical obstacle to cardiac excitation which delays conduction. EAT accumulation may induce lipid 
overload and ROS production, leading to prolongation of the action potential and early and delayed af-
terdepolarizations. Paracrine crosstalk between EAT and myocardium induces fibrosis, prolongs the action 
potential and depolarize cardiomyocytes. All three pathways increase the risk of cardiac arrhythmias. The 
dotted lines describe potential mechanism of arrhythmogenicity. 
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Introduction

The prevalence of obesity has doubled in more than 70 countries since 19801. The 
Global Burden of Disease study reported that 107.7 million (5%) children and 603.7 
million (12%) adults were obese worldwide in 20151. Obesity and overweight (body 
mass index (BMI)>25 kg/m2) cause 2.8 to 4 million deaths every year. More than two-
thirds of the deaths associated with high BMI are due to cardiovascular disease1. A 
BMI >25 is associated with a higher risk of sudden cardiac death2 and atrial fibrillation 
(AF)3. Also, a high BMI and obesity are correlated with prolongation of QTc interval 
and QRS duration4, which are both independent risk factors for cardiac arrhythmias. 
Thus, obesity plays an important role in the genesis of life-threatening arrhythmias.

Visceral adipose tissue tends to accumulate in the abdomen around internal organs 
and around the heart5. There is a significant relation between BMI on one hand and 
the amount of visceral adipose tissue and of fat on the surface of the heart (epicardial 
adipose tissue, EAT) on the other6. Because of its proximity to the heart, EAT has 
attracted considerable interest regarding its potential pro-arrhythmic effect. EAT vol-
ume is positively related to the incidence, duration, and recurrence of AF7. Also, EAT 
on the ventricular free walls correlates with the frequency of occurrence of premature 
ventricular contractions8, and the sum of paracardial (i.e. surrounding the parietal 
pericardium) and epicardial adipose tissues is positively related to the development of 
ventricular arrhythmias in patients with heart failure9. 

Although a growing body of literature documents the arrhythmogenicity of epicardial 
adipose tissue, the underlying electrophysiological mechanisms are unknown. In this 
review, we summarize the literature on the topic in order to integrate the current 
knowledge on the arrhythmogenicity of EAT into clinical practice.

1. EAT: anatomy and origin

Epicardial Adipose Tissue refers to the visceral adipose tissue located between the myo-
cardium and the epicardium10. This adipose tissue depot is enclosed in the pericardial 
sac, and shares blood supply with the heart. Accordingly, EAT is mostly located along 
the atrioventricular and interventricular grooves , and extends around the atria as well 
as along the circumflex and the left anterior descending coronary arteries11 (Figure 
1). It can also be found on the right ventricular free wall and left ventricular apex, 
covering almost the entire surface of the heart in some cases11. The absence of fascia 
separating EAT from the underlying myocardium allows direct cross-talk between 
adipocytes and neighboring cardiomyocytes5.
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The epicardium is thought to play a key role in the development and accumulation 
of EAT. It is the source of resident multipotent adult cardiac progenitor cells that can 
undergo epithelial-to-mesenchymal transition12. The epicardial progenitor derived 
cells migrate and can give rise, amongst other cell types, to adipocytes13.

EAT is frequently present in both healthy and diseased individuals. Its volume increases 
during the first 40 years of life. Thereafter, its size does not depend on age but rather 
on BMI14. The average EAT represents 20% of total heart weight with prominent 
inter-individual variability15. EAT may also accumulate as a result of inflammation, or 
underlying cardiomyopathy16.

Figure 1. Epicardial adipose tissue anatomy and cellular composition. 
Epicardial adipose tissue is a diverse microenvironment composed of adipocytes, pre-adipocytes, fibroblasts, 
immune cells, nerve cells and blood vessels. 

Species differences should be taken into account regarding the amount of EAT. Rodents 
lack a substantial amount of EAT and are less suitable as animal model for cardiac 
adiposity13. Paracardial Adipose Tissue (PAT) surrounding the parietal pericardium is 
often used as a substitute for EAT in studies using rodents. However, PAT and EAT 
are embryologically, anatomically, and biochemically very distinct fat depots17. PAT 
derives from the primitive thoracic mesenchyme and is vascularized by branches of 
the mammary arteries. EAT on the other hand originates from the splanchnopleuric 
mesoderm18 and shares the coronary circulation with the heart. While EAT is directly 
adjacent to the myocardium, PAT is located outside the pericardium and is considered 
as thoracic. PAT is therefore not directly in contact with the heart, does not share its 
circulation, and its paracrine and structural arrhythmogenic effects on the myocar-
dium are likely different from those of EAT. 



24

Chapter 2

EAT is a complex microenvironment in which adipocytes, stromovascular cells (pre-
adipocytes, fibroblasts, endothelial cells), nerve cells, immune cells, and other types 
of cells interact19 (Figure 1). Adrenergic and cholinergic nerves are present in EAT, 
allowing communication with the cardiac sympathetic and parasympathetic nervous 
system20. Moreover, EAT is a source of biosynthesis of catecholamines, including 
(nor)epinephrine21. 

2. Role of  Epicardial Adipose Tissue in Regulating Cardiac 
metabolism

EAT is thought to protect the heart from mechanical deformation, to facilitate vessel 
remodeling, and to provide Free Fatty Acids (FFAs), the main source of energy for the 
myocardium22. 

Adipose tissue is a highly active metabolic organ which serves as primary storage 
compartment for fatty acids. EAT present a higher FFAs uptake than subcutaneous 
adipose tissue23, and it is more sensitive to changes of the lipid content of the diet24. It 
was hypothesized that FFAs can be sequestered by EAT as a buffering and protective 
mechanism against lipotoxicity, similar to visceral adipocytes25 (Figure 2). 

Given the proximity between EAT and cardiomyocytes, the release of FFAs from 
adipocytes in EAT into the plasma may act as a local and rapidly mobilizable cardiac 
energy supply11 (Figure 2). Indeed, mitochondrial oxidation of FFAs represent 60 
to 90% of the metabolic substrate of cardiomyocytes that take-up FFAs by protein-
mediated transport across the sarcolemma (Figure 2), depending on the concentration 
of plasma FFAs22.
Although the heart preferentially uses lipids as metabolic substrate, lipid overload 
is toxic26. If cardiomyocyte FFA uptake overwhelms the oxidative capacity of mi-
tochondria, toxic lipids (such as ceramides) accumulate, leading to mitochondrial 
dysfunction, endoplasmic reticulum dysfunction, calcium dysregulation and increased 
reactive oxygen species (ROS) production27. The resulting cytosolic calcium-overload 
and spontaneous release of calcium, plays an important role in arrhythmogenesis 
based on delayed afterdepolarizations and triggered activity28. ROS induce early after-
depolarization and facilitate ventricular arrhythmias in rat29. ROS also alter electrical 
coupling between cardiomyocytes potentially resulting in conduction slowing and 
increase the risk of arrhythmias29.

FFAs can be stored as myocardial cytosolic lipid droplets (LDs)27 (Figure 2). LDs thus 
may prevent lipotoxicity and act as a reservoir for energy and for signaling lipids, and 
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provide lipids for membrane expansion30. Cardiac LDs have been identified often 
at close proximity to mitochondria, suggesting an interplay between the two31. The 
role played by LDs in cardiovascular diseases and arrhythmias is not yet elucidated32. 
While LDs are protective against ischemia-reperfusion injury in adult rat cardiomyo-
cytes33, defects in their formation may be linked to an increased lipotoxicity, ROS 
production, and increased risk of arrhythmias32. To our knowledge, there are no stud-
ies investigating the crosstalk between EAT and LDs deposition in cardiomyocytes. 
We surmise that EAT accumulation is associated with or caused by increased plasma 
levels of FFAs. A portion of those FFAs will be used for cardiomyocyte metabolism 
(Figure 2), while the excess will be encapsulated into LDs and may protect the cell 
from lipotoxicity. When the LDs capacity of the cell is saturated, or dysfunctional, 
this may induce excessive ROS production and facilitate arrhythmias (see above). 
Indeed, lipid storage diseases are associated with lethal arrhythmias34. 

Figure 2. Adipocytes and cardiomyocytes FFAs uptake. 
In the setting of excessive lipid concentration in the coronary circulation, Free Fatty Acids (FFAs) in the 
plasma can be taken-up by adipocytes in Epicardial Adipose Tissue. Once entered in the adipocyte, FFAs 
are converted into fatty acyl-coenzyme A (FA-CoA), before being stored as triacylglycerol (TAG) in the 
lipid droplet of the adipocyte. FFAs are also taken-up by cardiomyocytes to be used as mitochondrial sub-
strate. FFAs are esterified into FA-CoA in the cytosol of cardiomyocytes, before being transported into the 
mitochondria to enter the fatty acid ß-oxidation cycle. Finally, if cardiomyocyte FFAs supply exceeds mito-
chondrial capacity, FFAs can be stored in lipid droplets to avoid the production of toxic lipids metabolites 
such as ceramide.
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3. EAT and electrocardiographical parameters

Cardiac arrhythmia mechanisms are traditionally divided in abnormal impulse gen-
eration or abnormal impulse conduction . Although not all arrhythmia mechanisms 
can be categorized in this scheme, the dichotomy is used in this review. Abnormalities 
in impulse generation are related to pacemaking and triggered activity, the latter being 
dependent on prolonged APD or altered calcium ion (Ca2+) handling. Abnormali-
ties in impulse conduction can lead to anatomically or functionally based reentrant 
arrhythmias. Spatial heterogeneity in repolarization times provide a basis for unidi-
rectional block and reentry. The electrocardiogram (ECG) contains information on 
APD, automaticity or conduction slowing and could therefore provide mechanistic 
information on arrhythmogenesis. We therefore reviewed the association between 
EAT and ECG parameters.

3.1 Atrial conduction

P-wave 
Atrial conduction delay is reflected in the electrocardiogram as a prolonged P-wave. 
Several studies reported an association between EAT volume and atrial conduction 
delay (Table 1). In the Framingham Heart Study35, a positive relation between EAT 
thickness and P-wave duration was described in healthy subjects after covariates ad-
justment (Table 1). Similarly, Jhuo et al.36 described that the amount of EAT positively 
correlates with P-wave duration and inter-atrial conduction block. EAT thickness 
also correlates with P-wave duration in morbidly obese patients37, but also with the 
left atrial diameter. Thus, in healthy individuals with normal atrial dimensions, the 
association between EAT and P-wave duration likely reflects slowed atrial conduction, 
whereas in morbid obese patients, P-wave prolongation at least in part reflects atrial 
enlargement. 

P-wave dispersion is defined as the difference between the longest and the shortest 
P-wave duration recorded from multiple surface electrocardiographic (ECG) leads. 
It is a strong marker of anatomical remodeling and heterogeneous propagation of 
activation in the atria38. In healthy persons, P-wave dispersion is associated with EAT 
thickness39,40 (Table 1). We hypothesize that the process of accumulating EAT results 
in anisotropic, heterogeneous propagation of sinus impulses, which may facilitate 
reentry (Figure 3). The extent of infiltrated adipose tissue in the atrial septum is 
independently associated with the number of P-wave fragmentations (a marker for 
heterogeneous conduction) in patients with paroxysmal AF and individuals at risk of 
AF41. Overall, this demonstrates an association between infiltrated adipose tissue in 
the atrial septum and slowed and discontinuous atrial conduction.
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P-R interval 
The P-R interval represents the sum of the time needed for conduction through the 
right atrium, the atrioventricular (AV) node, His bundle, and bundle branches. EAT 
volume is linearly correlated with a longer PR interval after adjustment for covari-
ates35,36,42,43 (Table 1). In patients with the highest EAT volume the PR interval was 
10ms43 to 16 ms42 longer than in those with the smallest EAT volume.

Observational studies suggest an association between a prolonged P-R interval and an 
increased incidence in atrial fibrillation, heart failure, and mortality44. Indeed, high 
EAT volumes have been associated with the incidence of AF7.

Ultimately, these results indicate that a high volume of epicardial adipose tissue is 
associated with a prolonged atrio-ventricular conduction. Because the PR-interval in-
cludes conduction through different structures, it is not clear whether AV-conduction 
delay in subjects with increased EAT volume is the result of conduction delay in the 
atria (cf 3.1), AV-node and/or His bundle. 

3.2 Ventricular conduction

QRS-complex 
Prolonged QRS duration indicates slowing of ventricular conduction or may result 
from hypertrophy. An increased BMI is associated with a prolonged QRS-complex 
duration4. 

In a study on 3087 healthy subjects, the authors identified that EAT volume is 
strongly associated with longer QRS duration after adjusting for several co-variates. 
Subjects with EAT volume above the 95% upper limit compared to those below the 
5% limit had a 6.7ms longer QRS complex42. In another study on 287 subjects, a 
significant correlation was observed between EAT volume and QRS duration43 (Table 
1). Furthermore, the presence of a fragmented QRS-complex (fQRS) was associated 
with increased EAT in both healthy individuals and hypertensive patients45,46 (Table 
1). In a study on 114 hypertensive patients, EAT thickness was significantly increased 
in patients with fQRS. In the same study, EAT thickness above 4.5mm predicted the 
presence of fQRS (sensitivity of 75%, specificity of 58%)45. Finally, in a study on 
308 healthy subjects, EAT thickness was significantly increased in individuals with 
fQRS46. Heterogeneous anisotropic ventricular conduction is associated with the 
presence of a fractionated-QRS-complex and may underlie reentrant arrhythmias48.
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3.3 Ventricular Repolarization 

QT interval and dispersion, Tpeak to Tend interval
The QT interval (QT) reflects the time needed for depolarization and repolarization 
of the ventricles and is usually corrected (QTc) for heart rate by the Bazett-formula49. 
QTc prolongation often leads to ventricular arrhythmias such as Torsade de pointes50. 
Research on the relation between EAT amount and QT interval and its dispersion 
(QTd, the difference between various ECG-leads) is limited. Although a single study 
has reported a negative association between EAT volume and QTc39, others do not 
report a relation between the two parameters36,39,40,43 (Table 1). Thus, the relation 
between EAT and ventricular repolarization remains unclear.

Changes in T-wave shape or duration reflect heterogeneity of ventricular repolariza-
tion51. A longer time interval between the peak and the end of the T wave (Tpeak−
Tend (TpTe)) mirrors repolarization heterogeneity and predicts sudden cardiac death 
and mortality in the general population52. In the only observational study available 
on the relation between EAT and TpTe, this interval was increased in subjects with 
higher EAT47. Furthermore, in one study on 90 healthy individuals high EAT volume 
was associated to an increased QT-dispersion47, which points to increased repolariza-
tion heterogeneity.

These combined changes facilitate reentrant arrhythmias by causing unidirectional 
block following a premature beat. This suggests an association between EAT, repo-
larization heterogeneity, and the risk of ventricular arrhythmias and sudden cardiac 
death.

In the next section we will systematically study the available literature on the direct 
and indirect electrophysiological consequences of the proximity of epicardial adipose 
tissue to cardiomyocytes, and will identify the key players of this adipo-cardiac cross-
talk.
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4. Electrophysiological cross-talk between EAT and 
myocardium.

4.1. Structural cross talk and arrhythmogenesis 

Adipose tissue infiltration and fibrosis 
Two types of myocardial fat infiltration have been observed in autopsy cases and car-
diac biopsies5. Adipocytes are either organized in thin and compact cords originating 
from the epicardium and infiltrating between cardiac bundles, or can be surrounded 
by dense fibrotic areas resembling a scarring process (fibro-fatty infiltration)5. It has 
been suggested that adipose tissue infiltrates can remodel in response to inflammatory 
triggers, resulting in fibro-fatty infiltration53,54. Atrial fibro-fatty replacement is more 
extensively observed in persistent than in paroxysmal AF patients54,55, emphasizing 
its importance in arrhythmogenicity. Haemers et al.54 showed that AF induces an 
increased accumulation of fibro-fatty infiltration in sheep left atria in comparison 
to control. Although the proportion of EAT infiltrates was not different between AF 
sheep and controls, the degree of fibrosis of the adipose tissue infiltrates was signifi-
cantly increased in AF, suggesting that AF induced fibrosis of atrial fatty infiltrates. De 
Coster et al.56 used computer modeling to investigate the effect of fat infiltration and/
or fibrosis on arrhythmogenesis. They found that fibrosis is more arrhythmogenic than 
adipose tissue in terms of percentage of non-conductive tissue necessary to induce an 
arrhythmia. 
Adipocyte infiltration into the myocardium can lead to nonuniform anisotropic 
propagation of an activation wavefront similar to what can be observed in chronic 
myocardial infarction57. The adipose tissue separates cardiomyocytes from each 
other and creates an anatomical barrier, thus forcing the electrical impulse to follow 
a ‘zig-zag’ path (Figures 3A-B). This discontinuous conduction results in electrogram 
fractionation58 (Figure 3C) and may lead to conduction delay and reentry (Central 
Illustration). In a sheep model of myocardial infarction, intramyocardial adiposity was 
associated with myocardial discontinuity, decreased conduction velocity, reduced elec-
trogram amplitude and increased risk of arrhythmias59. In the same study, the authors 
observed lateralization of connexin 43 (Cx43) in myocytes adjacent to fibro-fatty 
infiltrations. Finally, in patients with coronary artery disease, local slower conduction 
and electrogram fractionation (measured by epicardial mapping), increased fibrosis, 
and lateralization of connexin 40 have been shown at sites with a local high EAT 
volume60. 

Gap junctions
Cardiomyocytes form a syncytium through intercellular gap junctions. These allow the 
exchange of current, ions and matter between cells. Gap junctions play a critical role 
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in cardiac conduction. Adipocytes also express gap junctional channels proteins such 
as Cx43, which are highly expressed in cardiomyocytes61. Indeed, adipocytes from 
white adipose tissue of mice are functionally coupled to each other through Cx4361. 
Whether adipocytes in EAT can electrically couple to cardiomyocytes is unknown. 
Gap junctions have been described between human adipose-derived mesenchymal 
stem cells and rat neonatal cardiomyocytes62. Other cell types in EAT such as fibro-
blasts, myofibroblasts, and macrophages may also form gap junctions with cardiomyo-
cytes63-65. In atrial and ventricular cardiomyocytes, the resting membrane potential 
(RMP) is around -90mV, whereas white adipocytes, the main cellular constituent 
of the EAT, present a membrane potential of approximately -30mV66. Fibroblasts 
and macrophages have a membrane potential of between -10 and -30mV63,67. The 
non-myocytes do not generate an action potential. If we assume that EAT-adipocytes 
express gap junctions and that they electrically couple with cardiomyocytes (Figure 
4), a change of the resting potential of the coupled cells may result. If the relatively 
depolarized non-myocardial cells in EAT are electronically coupled with cardiomyo-
cytes, they will allow the direct exchange of ions and current between the cells. This 

Figure 3. Direct effect of adipose tissue on arrhythmogenesis
(A) Masson’s trichrome staining from Vigmond et al.103 showing adipose tissue infiltration in the myo-
cardium. Black arrows indicate a ‘zigzag’ path of the activation wave from point ‘A’ to ‘B’. The activation 
wave has to follow a longer path, thus prolonging activation time. The orange arrow indicates the fastest 
activation path without anatomical obstacle, similar to the observations by de Bakker et al.57 (B) in the set-
ting of arrhythmogenesis in myocardial infarction. We surmise that adipose tissue can provide the substrate 
for tortuous activation pathways and activation delay that can lead to reentry. In this schematic drawing 
(B) the length of the route from A to B was 18 times longer than the shortest distance between A and B. 
(C) Fractionated electrograms from Vigmond et al.103 recorded from this tissue (A). Note activation delay 
and fractionation resulting from discontinuous conduction induced by adipose tissue infiltration in the 
myocardium.
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would lead to a relative depolarization of cardiomyocytes and a hyperpolarization 
of the adipocyte (Figure 4). A slight depolarization of cardiomyocytes may increase 
cardiac excitability by decreasing the potential difference between the RMP and the 
excitation threshold (“superexcitability”) (Figure 4). Further depolarization of the 
resting membrane, however, will partially inactivate fast sodium channels, thereby 
decreasing the action potential upstroke and slowing conduction velocity. Finally, an 
extreme depolarization will lead to complete inactivation of the fast sodium channels. 
Propagation may then solely depend on the L-type calcium-current (very slow).
No proof of cardiomyocyte-adipocyte electrical coupling has been shown. However, 
electrical coupling between cardiomyocyte and fibroblasts has been demonstrated 
in rabbit hearts68. In computer modeling study, fibroblast-cardiomyocyte coupling 
induces changes in action potential shapes (a reduction of the plateau level of the 
action potential and shortening of the APD)69 (Figure 4). Furthermore, cardiomyo-
cytes co-cultured in direct contact with myofibroblasts elicit spontaneous electrical 
activity because of the diastolic depolarization (abnormal automaticity)70. We surmise 
therefore that electrotonic coupling between adipocytes and cardiomyocytes can exert 
electrophysiological effects comparable to that between fibrocytes, myofibroblasts, 
macrophages on the one hand, and cardiomyocytes on the other (Figure 4).

In summary, adipocyte infiltrations in the myocardium can slow conduction and 
facilitate the development of arrhythmias. Further research is needed to understand 
whether intercellular coupling between EAT cells and cardiomyocytes can exacerbate 
arrhythmogenicity.

4.2. Paracrine cross talk and arrhythmogenesis 
Cells communicate with each other through the release of signaling molecules71. The 
term ‘EAT secretome’ refers to all molecules secreted by epicardial adipose tissue72. 
It includes a variety of soluble factors (growth factors, cytokines, bioactive lipids) 
and extracellular vesicles (EVs). The latter carry various cargo (proteins, lipids and 
signaling molecules) that may be transferred between cells and therefore play a wide 
and significant role in intercellular communication73 (Figure 5). EVs also contain 
coding RNAs (messenger RNAs) and noncoding RNAs (long noncoding RNAs, 
microRNAs, circular RNAs)74 that can be internalized by recipient cells and lead to 
major functional consequences. Recent work from Shaihov-Teper et al.75 identified 
that epicardial fat-derived EVs from patients with AF contain proinflammatory and 
profibrotic cytokines, as well as profibrotic miRNA, which, when incubated with 
human-induced pluripotent stem cells-based cardiac cell sheet for 7 days shortened 
the APD80 and induced sustained rotors.
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4.2.1 EAT secretome directly modulates cardiomyocytes 
electrophysiology 
Incubation of rabbit atrial cardiomyocytes with isolated EAT adipocytes induces sig-
nificant changes in action potential characteristics: a longer action potential duration 
at 90% of repolarization (APD90) and a less negative resting membrane potential76. 
The longer APD can be explained by the changes in several ion currents: a larger 
late sodium and/or L-type calcium current, combined with a smaller inward rectifier 
potassium current than control atrial cardiomyocytes, even in the presence of in-
creased transient outward current. In the same way, an 18-hour exposure of H9c2 cells 
(derived from rat cardiac tissue) to rat EAT secretome induces a significant decrease in 
the delayed rectifier potassium outward current77. Finally, a 24h incubation of sheep 
epicardial adipose tissue fragments with human induced pluripotent stem cell-derived 
cardiomyocytes (hIPS-CM) increases the duration of extracellular field potentials, a 
surrogate measure of action potential duration60. 

Together, these results suggest that EAT secretome exerts a paracrine effect on the 
myocardium, inducing a prolongation of the APD, thus potentially increasing the 

Figure 5 Epicardial adipose tissue secretome.
Epicardial adipose tissue secretes a variety of soluble factors (‘secretome’, growth factors, cytokines, bioactive 
lipids) and extracellular vesicles (EVs) carrying various cargo: proteins, lipids, signaling molecules, which 
may be transferred between cells, therefore playing an important role in intercellular communication. EVs 
also contain messenger RNAs (mRNAs) and noncoding RNAs (long noncoding RNAs, microRNAs, cir-
cular RNAs).
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APD heterogeneity in the myocardium (Central illustration) and facilitating arrhyth-
mias.

The net effect of the cellular changes on tissue-level electrophysiology remains to be 
explored. Using data on the effect of adipocytes on electrophysiological properties76, 
De Coster et al.78 performed an in-silico study to project those remodeling effects in a 
two dimensional monolayer, as well as in a model of human atria. They showed that 
secretome-induced electrophysiological remodeling of cardiomyocytes created more 
complexity in the spiral wave dynamics during an pacing induced-arrhythmia in a 
tissue monolayer model as well as in a human atria model. 

The secretome components responsible for the electrophysiological changes observed 
in cardiomyocytes after EAT secretome incubation are not yet identified. Adipose tis-
sue is recognized as an endocrine organ secreting a high number of cytokines, growth 
factors and hormones, known as “adipokines”. 

4.2.2 Adipokines involved in electrical remodeling 
Adipokines are produced by adipocytes and by the stromal-vascular fraction of EAT 
which is composed of endothelial cells, adipocyte progenitors, immune cells, fibro-
blasts and stromal cell. About 90% of the adipokines released by adipose tissue are 
secreted by non-adipocytes79. Several adipokines are known to electrically remodel 
cardiomyocytes and stimulate fibrosis. Here, we summarize the relative contribution 
of adipokines found in EAT80,81 on electrophysiological changes pertinent to arrhyth-
mogenesis. Of the numerous adipokines identified in EAT, some show potentially 
pro-arrhythmic effects on in vitro cardiomyocytes through alteration of potassium 
and calcium currents, and by altering gap junctions.

Transient outward K+ current (Ito) 
The transient outward K+ current (Ito) plays a critical role in action potential morphol-
ogy: it is responsible for the early repolarization of cardiomyocyte (phase 1 of the 
AP). Exposure of cardiomyocytes to adipokines such as Tumor Necrosis Factor alpha 
(TNF-α) and Interleukin-1β (IL-1β) induces significant changes in Ito.

TNF-α, a cytokine involved in systemic inflammation, regulates several key cellular 
functions including cell proliferation, survival, and apoptosis. TNF-α reduces Ito in rat 
ventricular myocytes82. In the same way, IL-1β, a pro-inflammatory cytokine which 
is part of the Interleukin-1 family of 11 cytokines, is known to alter cardiomyocyte 
electrophysiology by prolonging the action potential through a decrease in Ito in rat 
hearts83. Finally, in hIPS-CM, IL-1β exposure induces a prolonged field potential du-
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ration in comparison to untreated hIPS-CM83. The duration of the local electrograms 
(field potential) is used as a surrogate measure of local APD.

These results indicate that TNF-α and IL-1β exposure induce electrical remodeling 
of cardiomyocyte through a reduced repolarizing K+ current (Ito), resulting in APD 
prolongation. Since EAT secretome has been shown to increase the APD (cf 4.2.1), 
it suggests that TNF-α and IL-1β secreted by EAT play an role in this remodeling 
(Figure 6).

Calcium handling proteins and ion channel modulation
There is evidence that adipokines can modulate calcium dynamics in cardiomyocytes.

Fatty acid-binding protein-4 (FABP4) is involved in transportation of lipids to spe-
cific cellular compartments. FABP4 also reduces intracellular systolic peak Ca2+ in rat 
cardiomyocytes84.

Interleukin-6 (IL-6), a cytokine secreted by several immune cells in EAT, directly 
modulates L-type calcium channels (an increase or decrease depending on dose and 
exposure duration) and downregulate SERCA2 activity and expression85. This has 
potential consequences for APD and for Ca2+-induced triggered activity.

IL-1β increases spontaneous diastolic sarcoplasmic reticulum Ca2+ release in cardio-
myocytes83 and decrease the expression of Ca2+-handling-proteins86. These changes 
can facilitate reentry by modulating refractoriness and can increase the risk for trig-
gered activity.

Adipokines and gap junction remodeling
Several inflammatory adipokines downregulate the expression of connexin genes (Fig-
ure 6). This has consequences for intercellular communication through gap junction 
in the heart and can result in conduction slowing and increased risk of reentry.

IL-6 reduces Cx40 and Cx43 expression in HL-1 mouse atrial myocytes87. High levels 
of IL-1β are also involved in downregulation and degradation of cardiac Cx43 in 
mouse models of post-myocardial infarction88. Finally, TNF-α exposure reduces Cx40 
expression89 and slows conduction velocity in guinea pig hearts90.

Several adipokines involved in gap junction remodeling are also important regulators 
of cardiac fibrosis (Figure 6).
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4.2.3 Pro-fibrotic adipokines 
Adipokines have raised much interest over the last decade especially because of their 
pro-fibrotic effect72. Fibrosis is characterized by an excessive extracellular matrix 
(ECM) production which alters myocardial architecture and impairs conduction91. 
It plays an important role as a potential substrate for arrhythmias, as it is involved in 
the maintenance of AF and post-myocardial ventricular tachycardias91. The following 
adipokines (Table 2) are either involved in fibroblast proliferation, collagen synthesis 
and/or myofibroblast activation in vitro, which are well-known mechanisms involved 
in fibrosis.

Activin-A is part of the TGF-β (transforming growth factor-β) superfamily ligand. 
Venteclef et al.72 showed that Activin-A is highly present in the EAT secretome. 
Treatment of rat atria (placed in organ culture) with Activin-A for 1 week induced 
increased collagen 1 deposition in comparison to controls (Table 2). This pro-fibrotic 
effect was blocked with an antibody neutralizing Activin-A. 

Visfatin, also called pre-B cell colony-enhancing factor or nicotinamide phosphori-
bosyltransferase, is secreted by adipocytes and macrophages that have infiltrated into 
adipose tissue in response to inflammation . Visfatin promotes cardiac fibroblasts 
proliferation and increased collagen synthesis in rat92 (Table 2). 

Figure 6. Adipokines secreted by EAT.  
Adipokines secreted by epicardial adipose tissue induce ion channel remodeling, gap junction remodeling 
and are pro-fibrotic.
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TGF-β1 is a pro-fibrotic growth factor present in the EAT secretome100 and plays 
a major role in cardiac remodeling: it induces the phenotype switch of fibroblasts 
into myofibroblasts96 (Table 2), thus promoting ECM production, fibroblast pro-
liferation93 and fibrosis. Indeed, cardiac overexpression of TGF-β1 in mice results in 
interstitial fibrosis94,95.

Leptin is secreted by EAT adipocytes80 and is associated with local, increased in-
terstitial fibrosis in rats hearts. Leptin stimulates collagen I production in cardiac 
myofibroblasts, thus inducing fibrosis (Table 2). Several other studies showed a similar 
pro-fibrotic effect of leptin97,101. 

Monocyte chemoattractant protein-1 (MCP-1), also known as chemokine ligand 2 
(CCL2), regulates cell adhesion and chemotaxis. MCP-1 is secreted by adipocytes and 
inflammatory cells in EAT81. MCP-1 enhances myofibroblast activation, fibroblast 
proliferation and collagen expression in isolated rat lungs fibroblasts98 (Table 2). 

The contribution of the interleukin family to cardiac remodeling is still unknown. 
IL-6 infusion in rats induces an increased collagen volume fraction99 (Table 2). 

The Matrix metalloproteinases (MMPs) family is composed of proteases that main-
tain ECM homeostasis by degradation of its components. Amongst others, MMP1, 
MMP2, MMP8, and MMP9 are secreted at high levels by EAT72. TNF-α, which is 
also secreted by EAT, induces excessive secretion of MMPs102. MMPs are likely to 
participate in ECM remodeling in the heart.

Table 2: Pro-fibrotic adipokines secreted by EAT 
Summary of the adipokines secreted by Epicardial Adipose Tissue participating in fibrosis through enhance-
ment of fibroblasts proliferation, collagen synthesis and/or myofibroblast activation

Adipokines Fibroblasts proliferation Collagen synthesis Myofibroblast 
activation

Activin A ↑ (Venteclef72)

Visfatin ↑ (YU XY92) ↑ (YU XY92)

TGF-ß1 ↑ (Clark93) ↑ (Seeland94, Rosenkrank95) ↑ (Wipff96)

Leptin ↑ (Zibadi 97)

Monocyte 
chemoattractant 
protein-1 (MCP-1)

↑ (Gharaee-Kermani98) ↑ (Gharaee-Kermani98) ↑ (Gharaee-
Kermani98)

Interleukin-6 ↑ (Meléndez99)
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Conclusion and clinical relevance

In this review, we show that epicardial adipose tissue accumulation is closely associated 
with atrial and ventricular arrhythmias and with electrocardiographic signs associated 
with arrhythmogenesis. We have identified several key mechanisms elucidating the 
modulation of arrhythmogenesis by EAT (Central illustration). 

Epicardial adipose tissue alters cardiac electrophysiology by creating an anatomical 
obstacle which delays activation. The heterogeneity of conduction is brought about by 
the disparate distribution of fat over the atrial myocardium, and by myocardial cellu-
lar uncoupling. The resulting heterogeneous conduction slowing facilitates reentrant 
mechanisms. 

Both adipocytes and cardiomyocytes express Cx43, that mediate intercellular exchange 
of matter and current. Further research is needed to understand whether electrotonic 
interaction between EAT cells and cardiomyocytes facilitate arrhythmias. 

Furthermore, adipokines secreted by EAT induce electrical remodeling and promote 
fibrosis, thus playing a key role in modulating the substrate for arrhythmias. We 
hypothesize that paracrine crosstalk and electrotonic coupling between EAT and 
myocardium leads to resting membrane depolarization of adjacent cardiomyocytes. 
It remains elusive whether EAT accumulation leads to lipotoxicity which may also 
contribute to arrhythmogenesis.

Therefore, the various components by which Epicardial Adipose Tissue may alter local 
electrophysiology will provide an inroad for improved risk assessment and prevention 
of cardiac arrhythmias. 
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