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Abstract. Automata learning is a popular technique used to automat-
ically construct an automaton model from queries. Much research went
into devising ad hoc adaptations of algorithms for different types of
automata. The CALF project seeks to unify these using category theory
in order to ease correctness proofs and guide the design of new algo-
rithms. In this paper, we extend CALF to cover learning of algebraic
structures that may not have a coalgebraic presentation. Furthermore,
we provide a detailed algorithmic account of an abstract version of the
popular L* algorithm, which was missing from CALF. We instantiate the
abstract theory to a large class of Set functors, by which we recover
for the first time practical tree automata learning algorithms from an
abstract framework and at the same time obtain new algorithms to learn
algebras of quotiented polynomial functors.

1 Introduction

Automata learning—automated discovery of automata models from system
observations—is emerging as a highly effective bug-finding technique with appli-
cations in verification of passports [3], bank cards [2], and network protocols [19].
The design of algorithms for automata learning of different models is a funda-
mental research problem, and in the last years much progress has been made
in developing and understanding new algorithms. The roots of the area go back
to the 50s, when Moore studied the problem of inferring deterministic finite
automata. Later, the same problem, albeit under different names, was studied
by control theorists [21] and computational linguists [17]. The algorithm that
caught the attention of the verification community is the one presented in Dana
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Angluin’s seminal paper in 1987 [8]. She proves that it is possible to infer mini-
mal deterministic automata in polynomial time using only so-called membership
and equivalence queries. Vaandrager’s CACM article [42] provides an extensive
review of the literature in automata learning and its applications to verification.

Angluin’s algorithm, called L*, has served as a basis for many extensions
that work for more expressive models than plain deterministic automata: 1/0O
automata [4], weighted automata [13,28], register automata [1,31,37], nominal
automata [36], and Biichi automata [9]. Many of these extensions were developed
independently and, though they bear close resemblance to the original algorithm,
arguments of correctness and termination had to be repeated every time. This
motivated Silva and Jacobs to provide a categorical understanding of L* [32]
and capture essential data structures abstractly, in the hope of developing a
generic, modular, and parametric framework for automata learning based on
(co)algebra. Their early work was taken much further in Van Heerdt’s master
thesis [23], which then formed the basis of a wider project on developing a
Categorical Automata Learning Framework—CALF.! CALF was described in
the 2017 paper [29], but several problems were left open:

1. An abstract treatment of counterexamples: in the original I* algorithm, coun-
terexamples are a core component, as they enable refinement of the state space
of the learned automaton to ensure progress towards termination.

2. The development of a full abstract learning algorithm that could readily be
instantiated for a given model: in essence, CALF provided only the abstract
data structures needed in the learning process, but no direct algorithm.

3. Finding suitable constraints on the abstract framework to cover interesting
examples, such as tree automata [16], that did not fit the constraints in [29].

In this paper, we resolve the open problems above, and develop CALF further
to provide concrete learning algorithms for models that are algebras for a given
functor, which notably include tree automata. In a nutshell, the contributions
and technical roadmap of the paper are as follows. After recalling some categor-
ical notions, the basics of L* (Sect.2), and CALF (Sect. 3), we provide:

1. A general treatment of counterexamples (Sect.4), together with an abstract
analysis of progress, that enables termination analysis of a generic algorithm.

2. A step-by-step generalisation of all components of L* for models that are
algebras of a given functor (Sect.5).

3. An instantiation of the abstract algorithm to concrete categories (Sect.6),
providing the first abstractly derived learning algorithm for tree automata.

The present paper complements other recent work on abstract automata learning
algorithms: Barlocco, Kupke, and Rot [12] gave an algorithm for coalgebras of a
functor, whereas Urbat and Schréder [41] provided an algorithm for structures
that can be represented as both algebras and coalgebras. More recently, Col-
combet, Petrisan, and Stabile [15] gave an abstract learning algorithm based on
modelling automata as functors. Our focus is on algebras, such as tree automata,

! http://www.calf-project.org.
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that cannot be covered by the aforementioned frameworks. A detailed compar-
ison is given in Sect.7. We conclude with directions for future work in Sect. 8.
Proofs can be found in the extended version [26].

2 Preliminaries

We now introduce some categorical notions that we will need later in our techni-
cal development, and describe Angluin’s original L* algorithm. We assume some
prior knowledge of category theory (categories, functors); see e.g., [11,33].

An (&, M)-factorisation system on a category C consists of classes of mor-
phisms £ and M, closed under composition with isos, such that for every mor-
phism f in C there exist e € £ and m € M with f = m o e, and we have a
unique diagonal fill-in property. Given a morphism f, we write /> and f< for the
E-part and M-part of its factorisation, respectively.

We work in a category C with finite products and coproducts. When f :
X — Zand g:Y — Z, we write [f,g] for the unique arrow from X +Y to Z
induced by the coproduct. We assume that C admits a fixed factorisation system
(€, M), where & consists of epis and M counsists of monos. We fix a varietor F
in C, that is, an endofunctor such that there is a free F-algebra monad (T, 7, u).
We write yx for the F-algebra structure FTX — TX, which is natural in X.
Given an F-algebra (Y,y), we write f*: (T X, ux) — (Y,y) for the extension of
f: X — Y and denote y* = id%,: (TY, py) — (Y, y). We often implicitly apply
forgetful functors. We fix an input object I and an output object O and write
Fr for the functor I + F(—). Lastly, we assume F' preserves £.

2.1 Abstract Automata

We recall the automaton definition from Arbib and Manes [10], which we will
use in this paper, and its basic properties of accepted language and minimality.

Definition 1 (Automaton). An automaton is a tuple A = (Q, 9,1, 0) consist-
ing of a state space object Q, dynamics 6: FQ — Q, initial statesi: I — @Q, and
an output 0: Q@ — O. A homomorphism from A to A" = (Q',d',i',0') is an F-
algebra morphism h from (Q, ) to (Q', ") —that is to say, a function h: Q@ — Q'
with &' o Fh = h o §—such that hoi=1" and o' o h = o.

We will use the case of deterministic automata as a running example.

Ezample 2. If C = Set with the (surjective, injective) factorisation system,
F = (=) x A for a finite set A, I =1 = {x}, and O = 2 = {0,1}, we recover
deterministic automata (DAs) as automata: the state space is a set @, the tran-
sition function is the dynamics, the initial state is represented as a function
1 — @, and the classification of states into accepting and rejecting ones is rep-
resented by a function @) — 2. In this case we obtain the monad T' = (=) x A*,
with its unit pairing an element with the empty word £ and the multiplication
concatenating words. The extension of 6: Q@ x A — @ to §*: @ x A* — @ is the
usual one that lets the automaton read a word starting from a given state.
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Algorithm 1. Make table closed and consistent Algorithm 2. L* algo-
1: function F1X(S, E) rithm
2:  while T is not closed or not consistent do 1: S« {e}
3: if T is not closed then 2: B — {e}
4: findt € S,a € Asuchthat Vs € S. T(ta) # T(s)  3: S,E «— FIX(S, E)
5: S — SU{sa} 4: while EQ(Ht) = cdo
6: else if T is not consistent then 5: S« S U prefixes(c)
7: find s1,52 € 5, a € A and e € E such that 6: S, E < FIX(S,FE)
T(s1) = T(s2) and T(s1)(€) # T(s20)(€)  7: return Hr

%

E — EU{ae}
9: return S, F

Definition 3 (Language). A language is a morphism TI — O. The language

accepted by an automaton A = (Q,6,1,0) is given by L4 =TI reacha, Q3% o,
where reach o: TI — @Q is the reachability map of A given by if.

Definition 4 (Minimality [10]). An automaton A is said to be reachable if
reach4 € £. A is minimal if it is reachable and every reachable automaton A’
s.t. Lo =L admits a (necessarily unique) homomorphism to A.

Ezxample 5. Recall the setting from Example 2. The reachability map reach 4: 1x
A* — @ for a DA A = (Q,0,1,0) assigns to each word the state reached after
reading that word from the initial state. The language £ 4: 1 x A* — 2 accepted
by A is precisely the language accepted by A in the traditional sense. Reach-
ability of A means that for every state ¢ € @ there exists a word that leads
to ¢ from the initial state. If this is the case, the unique homomorphism into a
language-equivalent minimal automaton identifies states that accept the same
language. Here, minimality is equivalent to having a minimal number of states.

A general study of existence of minimal automata in this setting is given in [7];
see also [25].

2.2 The I* Algorithm

In this section, we recall Angluin’s algorithm L*, which learns the minimal DFA
accepting a given unknown regular language £. The algorithm can be seen as
a game between two players: a learner and a teacher. The learner can ask two
types of queries to the teacher:

1. Membership queries: is a word w € A* in L7
2. Equivalence queries: is a hypothesis DFA 'H correct? That is, is Ly = L7

The teacher answers yes or no to these queries. Moreover, negative answers
to equivalence queries are witnessed by a counterexample—a word classified
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incorrectly by H. The learner gathers the results of queries into an observa-
tion table: a function T: SUS - A — 2F, where S,E C A* are finite and
T(s)(e) = L(se). This function can be depicted as a table where elements of
SUS - A label rows (- is pointwise concatenation) and elements of E label
columns.

As an example, consider the table on the right, over E
the alphabet A = {a,b}, where S = {e} and F =

{e,b,ab}. This table approximates a language that con- _|e bab
tains €, ab, but not a, b, bb, aab, bab. Following the visual S [ el 01
intuition, we will refer to the part of the table indexed g.4|0 010
by S as the top part of the table, and the one indexed b0 0 O

by S - A as the bottom part.

Intuitively, the content of each row labelled by a word s approximates the
Myhill-Nerode equivalence class of s. This is in fact the main idea behind the
construction of a hypothesis DFA Ht from T: states of Ht are distinct rows of

T, corresponding to distinct Myhill-Nerode equivalence classes. Formally, Ht =
(Q, 0,9, F) is defined as follows:

— Q={T(s) | s €S} is the set of states;
F={T(s)|seS,T(s)(e) =1} is the set of final states;

— go = T(g) is the initial state;

- 0:QxA—Q,(T(s),a) — T(sa) is the transition function.

For F' and qg to be well-defined we need ¢ in E and S respectively. Moreover,
for ¢ to be well-defined we need T(sa) € Q for all sa € S - A, and we must
ensure that the choice of s to represent a row does not affect the transition.
These constraints are captured in the following two properties.

Definition 6 (Closedness and consistency). A table T is closed if for all
t €S and a € A there exists s € S such that T(s) = T(ta). A table is consistent
if for all s1,s2 € S with T(s1) = T(s2) we have T(s1a) = T(s2a) for any a € A.

Closedness and consistency form the core of L*, described in Algorithm 2. The
sets S and F are initialised with the empty word e (lines 1 and 2), and extended
as a closed and consistent table is built using the subroutine FIX, given in
Algorithm 1. The main loop uses an equivalence query, denoted EQ, to ask the
teacher whether the hypothesis induced by the table is correct. If the result is a
counterexample ¢, the table is updated by adding all prefixes of ¢ to S (line 5)
and made closed and consistent again (line 6). Otherwise, the algorithm returns
with the correct hypothesis (line 7). See Appendix A of the extended version [26]
for an example.

3 The Abstract Data Structures in CALF

We recall the basic notions underpinning CALF [29]: generalisations of the obser-
vation table, closedness, consistency and hypothesis. The generalised table is
called a wrapper:
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Definition 7 (Wrapper). A wrapper for an object Q is a pair of morphisms
W=(5%Q, Q5P

We denote the factorisation of Boa by S Y Hyy—2 P

This will be instantiated with @ the state space of the target automaton, S
a collection of row labels of an observation table, and P a collection of possi-
ble values of the rows. Then « selects states in @, and 3 classifies them into
P. We note that although such a and @ underly the learning algorithm, they
are not actually known to the learner, as they explicitly involve the unknown
target automaton. However, we will see that we only need to represent certain
compositions involving these morphisms, and that when « and (§ are chosen
appropriately it will be possible to compute these compositions.

Ezample 8 (Observation table wrapper). Recall the DA setting from Example 2
and consider a DA A = (Q,4,i,0). For S C A* and E C A*, we can define a

wrapper W = ( S Q,Q ﬁ> 2F ) for @ as follows:

as(w) = reach 4 (x, w) BE(q)(e) = (000%)(g,e).

The composition Sz o ag: S — 2F is precisely the top part of the observation
table of L*, with rows S and columns E. In fact, we have (Sg o ag)(s)(e) =
L 4(*, se). The image of g oag is the set of rows that appear in the table. In L,
this set is used as states of the hypothesis, and in our setting can be obtained as
Hyy, recalling that the (surjective, injective) factorisation system in Set gives
factorisation through the image.

Before we define hypotheses in this abstract framework, we need generalised
notions of closedness and consistency.

Definition 9 (Closedness and consistency). Given a wrapper

W=(5%Q,Q5P),

where Q is the state space of an autormaton (Q,9d,1,0), we say that W is closed
if there exist morphisms iy : I — Hy and closey: F'S — Hyy making the
diagrams below commute.

I — 5 Q FS % FPQ —25 Q
) i J{ﬂ closeyy i J{B
Hw _mw . p Hy ™ . p
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Furthermore, we say that VW is consistent if there exist morphisms oy : Hyy — O
and consyy: FHyy — P making the diagrams below commute.

S —Y 5 Hyy FS — " . pmHy,
al iOW Fal iconsw
Q—2 50 FQ .09 —".p

Ezxample 10. In the DA case, generalised closedness and consistency instantiate
to the conditions allowing the hypothesis to be well-defined in L* (see Sect. 2.2):

Closedness: The wrapper (ag,Sg) is closed if: (i) there exists s € S such
that (Bg o as)(s) = (Bg o i)(x) and; (ii) for all s € S and a € A there
exists s, € S such that (Op o ag)(ss) = (Br o §)(as(s),a). Condition (i)
holds immediately if ¢ € S—the function (6g 0 i)(*): E — 2 maps e € E
to L (%, e). Condition (ii) corresponds to closedness in Definition 6. In fact,
Brodo(agxida): S x A — 2F represents the lower part of the observation
table associated with S and FE.

Consistency: The wrapper (ag, fg) is consistent if: (iii) for all s1,s2 € S such
that (Bg o as)(s1) = (Br o as)(s2) we have (00 ag)(s1) = (00 ag)(s2) and;
(iv) for all a € A we have (Bgod)(as(s1),a) = (Bgod)(as(s2),a). Condition
(iii) holds immediately if e € E—the function o o ag: S — 2 maps s € S to
L 4(x, s). Condition (iv) corresponds to consistency in Definition 6.

To determine these properties, we do not need the individual descriptions of
ags and Og, which refer to the target automaton and are thus not available to
the learner; we just need the compositions 8g o ag, Bg 04, fg o d o (ag x ida),
and o o ag, which can be determined using membership queries in this case. In
general, for any instantiation of our abstract algorithm it will be important to
show that these compositions (adapted to the wrapper and functor involved)
can be determined and used concretely by the instantiated algorithm.

So far, we have used the wrapper to obtain the state space Hyy of the hypoth-
esis. When a wrapper is closed and consistent, we can equip Hyy with a full
automaton structure, leveraging the unique diagonal fill-in property of the fac-
torisation.

Definition 11 (Hypothesis). A closed and consistent wrapper
W=(5%Q, Q5P

for (Q,6,1i,0) induces a hypothesis automaton Hyy = (Hyw, 0w, iw, oy), where
Oy s the unique diagonal in the commutative square below.

FS % FHy,

w77
closeyy e consyy
K

Hy — 5 p
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4 Counterexamples, Generalised

We now provide a key missing element for the development and analysis of an
abstract learning algorithm in CALF: counterexamples. In the original L* algo-
rithm, counterexamples are used to refine the state space of the hypothesis—
namely the representations of the Myhill-Nerode classes of the language being
learned. A crucial property for termination, which we prove at a high level of
generality in this section, is that adding counterexamples to a closed and con-
sistent table results in a table which is either not closed or not consistent, and
hence needs to be extended. Such an extension, in turn, results in progress being
made in the algorithm. We show how we can use recursive coalgebras [38,40] as
witnesses for discrepancies—i.e., as counterexamples—between a hypothesis and
the target language in our abstract approach.? Here, and throughout the paper,
we fix a target automaton Ay = (Q, b, i, o) whose language we want to learn.

Definition 12 (Recursive coalgebras). An F-coalgebra p: S — F'S is recur-
sive if for every algebra x: FX — X there is a unique morphism x: S — X
making the diagram below commute.

FS P2, Fx

Example 13. A prefiz-closed subset S C A* is easily equipped with a coalgebra
structure p: S — 1+5% A that detaches the last letter from each non-empty word
and assigns * to the empty one. Such a coalgebra is recursive, with the unique
map into an algebra being defined as a restricted reachability map. In fact, under
certain conditions that are satisfied in the DA setting, recursivity of a coalgebra
is equivalent to having a coalgebra homomorphism into the initial algebra [5,
Corollary 5.6]. This means that every recursive coalgebra is isomorphic to one
given by a prefix-closed multiset of words. If the unique morphism into the initial
algebra is injective, then the multiset becomes a set.

Given an automaton A = (Q, 4,4, 0) and a recursive coalgebra p: S — FS, the
i,6]” . o .
map S B @ can be seen as a generalised reachability map, allowing states

in @ to be reached from S. We use this map to derive a notion of generalised
language induced by a recursive coalgebra. This will be used to compare lan-
guages of the hypothesis and of the target automaton with respect to a specific
recursive coalgebra, i.e., a specific counterexample.

Definition 14 (p-languages). Given a recursive coalgebra p: S — FrS and
1,517 0
an automaton A = (Q,d,i,0), the p-language of A is L") = S BAF, Q — 0.

2 Recursive coalgebras have been used to generalise prefix-closedness in an automata
learning context in earlier work [24], as well as to generalise counterexamples [12,41].
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For instance, in the case of a DA A and a recursive coalgebra as in Example 13,
L’ is the restriction of the language of A to the prefix-closed set of words S.

In Algorithm 2, a counterexample is produced by the teacher (line 4) when
the hypothesis does not agree with the target automaton. We now generalise
counterexamples to wrappers: counterexamples are recursive coalgebras on which
the languages of the hypothesis and of the target automaton disagree.

Definition 15 (Counterexample). A closed and consistent wrapper W is said
to be correct up to a recursive p: S — FiS if E%W = EPAL' A counterexample
for W (or Hy) is a recursive p: S — F1.S such that W is not correct up to p.

The following guarantees incorrect hypotheses yield counterexamples.

Proposition 16 (Language equivalence via recursion). Given an automa-
ton A = (Q,0,i,0), we have La, = La if and only if L = LY for every
recursive coalgebra p: S — F1S.

Corollary 17 (Counterexample existence). Given a closed and consistent
wrapper W for Q, we have Ly, # L 4, iff there exists a counterezample for WW.

The next step in Algorithm 2 is to fix the table by adding all prefixes of
the counterexample to S (line 5). We generalise this step by incorporating the
counterexample given by a recursive coalgebra into the wrapper. In the DA case,
this precisely corresponds to adding a prefix-closed subset to S. The following
results say that doing so will lead to either a closedness or a consistency defect.
In other words, we give theoretical guarantees that resolving counterexamples
results in progress being made towards convergence.

Theorem 18 (Resolving counterexamples). Given a closed and consistent

wrapper W = (S&Qt , Q g P) and a recursive coalgebra p: S — FrS’,

the following holds. If the wrapper W' = ([« [it, 6:]°], B) is closed and consistent,
then W is correct up to p.

This theorem is used contrapositively: given a closed and consistent wrap-
per, adding a counterexample yields a wrapper that is either not closed or
inconsistent.

5 Generalised Learning Algorithm

We are now in a position to describe our general algorithm. Similarly to
L* (Sect. 2.2) it is organised into two procedures: Algorithm 3, which contains the
abstract procedure for making a wrapper closed and consistent, and Algorithm 4,
containing the learning iterations. These generalise the analogous procedures in
L*, Algorithm 1 and Algorithm 2, respectively. We note again that although the
algorithmic description operates on a wrapper («, ), these individual morphisms
will not be known to the learner. In fact, at this level of abstraction the descrip-
tions should be seen as algorithmic templates rather than concrete algorithms.
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Algorithm 3. Make wrapper closed Algorithm 4. Abstract automata
and consistent learning algorithm
1: function Fix(a, ) 1: o, — FIx(!: 0 = Q4,!: Qr — 1)

2:  while (o, 3) not closed 2: while EQ(H(s ) = p: S — F;S do
or not consistent do 3 a—a st =[a, i, 0°]°

3: if (o, B) ,not closed th/en 4: B < Fix(a, 3)

4: a «— o' such that (o', B) is .
locally closed vfr.r.t. 31 5: return Ha,s)

5: else if («, 8) not consistent then

6: B < 3 such that (a,3) is

locally consistent w.r.t. 8
7. return «,f(

An instantiation must ensure that at least the compositions required to deter-
mine the closedness and consistency conditions and to construct the hypothesis
can be maintained. These compositions are 8o a, §o i, f0d; o Fa, and oy o a.
We have previously shown how these instantiate to recover L*, and in Sect. 6 we
will discuss the class of examples given by generalised tree automata.

In Algorithm 4, the wrapper is initialised with trivial maps and extended to
be closed and consistent using the subroutine Fix (line 1). The equivalence query
for the main loop (line 2) returns a counterexample in the form of a recursive
coalgebra, which is used to update the wrapper (line 3, which will be explained
in more detail later, when we define runs). The updated wrapper is passed on
to the subroutine Fix (line 4) to be made closed and consistent.

A crucial point for Algorithm 3 is defining what it means to resolve the
“current” closedness and consistency defects. We call these local defects, meaning
the ones that can be directly detected in the current wrapper. For DAs, local
closedness defects are rows from the bottom part missing in the top part, and the
empty word row if it is missing. Local consistency defects are pairs of row labels
which are distinguished by the target language, or with differing rows when the
labels are extended with a single symbol.

We first introduce additional notions to formalise these ideas. We partially
order the subobjects and quotients of the target automaton’s state space @ in
the usual way. Given two subobjects j: J — Qi and k: K — Q, we say j < k if
there is f: J — K such that ko f = j. Intuitively, j is “contained” in k. Given
two quotients x: Qy —» X and y: Qy = Y, we say x < y if there exists g: X — Y
such that y = g o . Intuitively, x is “finer” than y.

Now, consider a wrapper (a, ) for Q;. We have that a and 3~ are a subobject
and a quotient of @, respectively. For instance, in the DA case, a< is the set of
states in @y currently represented by the table, and §” is the equivalence relation
on states induced by the rows. We can now say another wrapper (¢, 3') is a locally
closed extension of («, ) if (a) it represents at least the same states of the target
automaton as «a, formalised a® < «o'9, and; (b) it solves the closedness defects
present in a.. Local consistency is analogous: it requires the extended wrapper to
distinguish at least the same states of @Q; as the original one.
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Definition 19 (Local closedness and consistency). Consider a wrapper

W= (550, qhp)

We call W locally closed w.r.t. a morphism a: S — Q: if a® < &' and there
are morphisms iyw: I — Hy and Iclosey o: F'S — Hyy s.t. these diagrams
commaute:

I—" 5 FS -F2 Q. -2 @,
1W\i/ L/j’ Iclosew,ai \L@’
Hyy —2 . p! Hyy, ——— ™, p!

Given 3: Q — P, we say that W is locally consistent w.r.t. 8 if 3~ < * and
there exist morphisms ow: Hyy — O and lconsyy g: FHyy — P making the
diagrams below commute.

S — s Hyy FS — s FHy,
o/l \LOW Fo/l \Llconsw,g
Qt # O FQt L) Qt _— P

A wrapper («, f3) is closed if and only if it is locally closed w.r.t. o and consistent
if and only if it is locally consistent w.r.t. .

Ezample 20. For the case of DAs, consider a wrapper (ag, Sg/) representing an
observation table (S, E') for the target DA A; (see Example 8):

Local closedness: Given ag: S — Q, (ag/,fg/) is locally closed w.r.t. ag
if (1) S C 5 (to ensure ag < ag); (2) S’ contains the empty word (left
diagram); and (3) any row in the bottom part of the table (S, E’) occurs in
the top part of (S, E’) (right diagram).

Local consistency: Similarly, given 8g: Q; — 2F, (s, Bg/) is locally consis-
tent w.r.t. Bg if (1) E C E’ (to ensure 8%, < 8%); (2) £’ contains the empty
word (left diagram); and (3) for all s,s’ € §" and a € A, if s and s’ map to
the same row in the top part of (S’, E’), then the rows for sa and s’'a are the
same in the bottom part of (S, F) (right diagram).

In Algorithm 3 we assume that we can always find locally closed and consistent
wrappers (lines 4 and 6 respectively). This assumption holds in general for local
closedness: for each wrapper («, ) for Q; we can always find o’ such that (o/, )
is locally closed w.r.t. a.

Lemma 21. Given a wrapper («, 3) for Q:, ([, [iv, &) o Fra], B) is locally closed
w.r.t. a.

This result is enabled by the algebraic nature of automata. Local consistency is
not inherently algebraic, so ensuring it takes more effort. We shall see in Sect. 6
that existence of locally closed/consistent extensions can be proved construc-
tively for a broad class of automata.
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Termination. To analyse termination of Algorithm 4, we introduce its runs.

Definition 22 (Run of the algorithm). A run of the algorithm is a stream
of wrappers Wy, = (an, Bn) satisfying the following conditions:

1. ap: 0 — Q¢ and By: Q¢ — 1 are the unique morphisms;

2. if W, is not closed, then Bny1 = Bn and auy1 is S.t. (apy1,Bn) is locally
closed w.r.t. ay;

3. if Wy, is closed but not consistent, then a1 = oy, and Bpi1 08 S.t. (Qny Brt1)
1s locally consistent w.r.t. By ;

4. if Wy, is closed and consistent and we obtain a counterexample p: S — F1.S
for W, then a1 = o, liv, 6:)°]" and Bui1 = Bu; and

5. if Wy, is closed and consistent and correct up to all recursive Fr-coalgebras,
then Wp11 =W,.

Note that, in point 4 above and in line 3 of Algorithm 4, we admit a more gen-
eral counterexample resolution than Theorem 18: we only require that a,,4+; and
[n, [ir, 6)”] Tepresent the same states of the target automaton. This captures
how observation tables are updated in practice; for instance in L* a counterex-
ample prefix already in the table is discarded.

Proposition 23. Algorithm 4 halts if and only if for all runs {W,} there

is n with Wy1 = Wi,

neN

We can establish an invariant on the order of subsequent wrappers in runs.

Lemma 24. Let {W,, = (an, Bn)},en be a run. For all n € N, we have oy, <
anq and By < B, Moreover, if a1 < ay, then ani1 = oy if B < Bh oy,
then Bny1 = Bn.

Putting these results together, we conclude that the algorithm terminates
with a correct automaton, which is minimal under certain conditions. Satisfac-
tion of the requirement on recursive coalgebras p; depends on the implementa-
tion of counterexamples and closing of wrappers; for DAs, it suffices to keep the
set of row labels S prefix-closed.

Theorem 25 (Termination). If Q. has finitely many subobject and quotient
isomorphism classes, then for all runs {W,, = (an, Bn)},cn there exists n € N
such that W, is closed and consistent and its hypothesis is correct. If A is
minimal and for all k € N there exists a recursive py: Sy — F;Sk such that
ag = [ir,0:)"", then the final hypothesis is minimal.

6 Generalised Tree Automata

We now instantiate the above development to a wide class of Set endofunctors.
This yields an abstract algorithm for generalised tree automata—i.e., automata
accepting sets of trees, possibly subject to equations—including bottom-up tree
automata and unordered tree automata. We first introduce the running exam-
ples.
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Ezample 26 (Tree automata). Let I' be a ranked alphabet, i.e., a finite set where
~ € I' comes with arity(y) € N. The set of I'-trees over a finite set of leaf symbols
I is the smallest set T (1) such that I C Tp(I), and for all v € I we have that
t1, s tarty(y) € Tr(I) implies (7,t1, ..., tarity(v)) € Tr(I). The alphabet I gives
rise to the polynomial functor FF. X = Hvel" X2ty(¥) The free F-algebra monad
is precisely T, where the unit turns elements into leaves, and the multiplication
flattens nested trees into a tree. A bottom-up deterministic tree automaton [16]
is then an automaton over F', with finite I and O = 2.

Ezample 27 (Unordered tree automata). Consider the finite powerset functor
Pr: Set — Set, mapping a set to its finite subsets. The corresponding free Ps-
monad maps a set X to the set of finitely-branching unordered trees with nodes
in X. Automata over Ps, with output set O = 2 and finite I, accept sets of such
trees. Note that unordered trees can be seen as trees over a ranked alphabet
I = {s; | i € N}, where arity(s;) = 4, satisfying equations that collapse duplicate
branches and identify lists of branches up to permutations.

Automata in these examples are algebras for endofunctors with the following
properties: they are strongly finitary [6]—i.e., they are finitary and preserve finite
sets—and they preserve weak pullbacks. We turn these into a global assumption,
used in several places; in particular, that F' is strongly finitary is used to guar-
antee the existence of finite counterexamples.

Assumption 28. In the remainder we take C = Set with the (surjective, injec-

tive) factorisation system, assume F is strongly finitary and preserves weak pull-
backs, and I finite.

If the target automaton A, is finite, the algorithm terminates by Theorem 25.

We start with the central notion of contextual wrapper, a specific form of
wrapper using contexts to generalise string concatenation to trees. We then
show that contextual wrappers enable effective procedures for local closedness
and consistency, and for computing hypotheses. Moreover, they can always be
updated via finite counterexamples. Altogether, this makes the ingredients of
our abstract algorithm concrete for generalised tree automata.

6.1 Contextual Wrappers

Denote by 1 the set {{0}. Given € X for any set X, we write e, for the function
1 — X that assigns x to (0. We use the set 1 to define the set of contexts T(I+1),
where the holes O occurring in a context ¢ € T'(I 4+ 1) can be used to plug in
further data such as another context or a tree, e.g., in the case of Examples
26 and 27. In fact, it is well known that T'(I 4+ (—)) forms a monad with unit
flx turning each hole from X into a context, and multiplication fix plugging a
context into another context [35].

Definition 29 (Contextual wrapper). Let S CTI and E C T(I 4+ 1). Now:

- ag: S — Q is defined as the restriction of the reachability map of A to S;
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- Be: Qr — OF is defined as the function given by Bg(q)(e) = (ot o [i, eq]ﬁ)(e).
A wrapper is called contextual if it is of the form (ag,Bg) for some S and E.

Intuitively, O classifies states by plugging them into every context in E and com-
paring the resulting outputs. In the DA case, contextual wrappers are equivalent
to those of Example 8, where row labels are plugged into word contexts—i.e.,
words of the form [0 - e, with e € A*—to achieve string concatenation.

We now show how to compute several morphisms induced by a wrapper.
These morphisms, intuitively, correspond to different parts of an observation
table, and are used for (local) closedness and consistency, and to construct the
hypothesis. In particular, we show that they can be computed concretely by
querying the language £ 4,, i.e., via membership queries.

Proposition 30 (Computing wrapper morphisms). Given S C TI with
inclusion j: S — TI and E C T(I + 1) with inclusion k: E — T(I 4+ 1), we
have:

~ The top observation table Bgoag: S — OF s+ L4 oproT[n,joes]ok;

~ The bottom observation table 8z o 6 o Fag: FS — OF, t — L4, 0pso
Tng,yroFjoeok;

— The input rows Bg oic: I — OF given by (B oiy)(z) = L4, o T[ids, ex] 0 k;

— The row output of o ag: S — O given by (or 0 ag)(s) = L4,(s).

Ezample 31 For tree automata, a contextual wrapper is as follows: S C Tr(I)
is a set of I'-trees over I, and E C Tr(I 4 1) is formed by contexts, i.e., I'-trees
where a special leaf [1 may occur, or equivalently I" + O-trees, where I" + [ is
the signature I' extended with an additional constant (1. Plugging into a context
intuitively amounts to replacing this leaf with a tree.

We now give the intuition behind the maps of Proposition 30:

— The top part of the observation table has rows labelled by trees in S, columns
by contexts in F/, and rows are computed by plugging their tree labels into
each column context and querying the language. When E contains only con-
texts with exactly one instance of [J, this corresponds precisely to the obser-
vation tables of [14,18].

— The bottom part contains rows labelled over elements of F'S =[] ~er Sarity(7)
i.e., trees obtained by adding a new root symbol to those from S. This gen-
eralises adding an alphabet symbol to row labels, as done in the bottom
observation table of L*. Rows are computed as in the top part, by plugging
their tree labels into contexts E and querying.

— The input rows are those for the leaves I, and the row output function queries
the language for each row label.

The case of unordered trees is analogous, with a key difference: wrapper maps
are now up to equations, as both S and FE are sets of unordered trees. The
corresponding observation table can be understood as containing equivalence
classes of rows and columns. For instance, the bottom part has only one successor
row for each set of trees in .S, whereas in the previous case we have one successor
row for each symbol v € I" and arity(y)-list of trees from S.
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Hypotheses. Recall that, given a closed and consistent wrapper (as,g), the
state space of the associated hypothesis is given by the image of g oag: S —
OF. Since S and E are finite sets, we can compute the image of this function.
For bottom-up and unordered tree automata, as in the DA case (see Example
8), this image consists of distinct rows. The initial states, outputs and dynamics
of the hypothesis automaton are defined as follows:

iryy (2) = (BE o) (x) 011, (ew(8)) = (0r 0 as)(s)
1t (F(ew)(x)) = (BE 0 0r 0 Fag) ().

Closedness and consistency ensure well-definedness. We know from Proposition
30 how to compute those functions via membership queries.

6.2 Witnessing Local Closedness and Consistency

We now consider local closedness and consistency. In the current setting, these
amount to equality checks on finite structures, which can be performed effec-
tively.

Lemma 32 (Local closedness for Set automata). Given S,5" C TI and
ECT(I+1) such that S C S, (g, Br) is locally closed w.r.t. ag if there exist
k:I— S andl: FS — 5" such that (1) agrok =iy and (2) agr ol = ;0 Fag.

Ezample 33. For bottom-up tree automata, local closedness holds if the table
(S, E) already contains each leaf row (Eq.1), and it contains every successor
row for S, namely F'S =[] ., S*%) (Eq.2). For unordered tree automata the
condition is similar, and now involves successor trees in P¢(S).

Lemma 34 (Local consistency for Set automata). Let S C TI and E C
E' C T(I +1), with S finite. Furthermore, suppose that for s,s' € S with
(B o ag)(s) = (B o ag)(s’) we have: (1) (or o ag)(s) = (or 0 ag)(s'); and
(2) BE o b0 Flag o [idg,es]) = Bg oot o F(ag o [idg, es]). Then W = (as, Br)
18 locally consistent w.r.t. Bg.

Ezxample 35. For bottom-up tree automata, local consistency amounts to require
the following for the table for (S, E). For all s,s" € S corresponding to the same
row we must have: (1) s and s’ are both accepted/rejected; (2) successor rows
obtained by plugging s and s’ into the same one-level context from F(S + 1) =
IT,cr (S + {0} ™ are equal.

For unordered-tree automata, we need to compare s and s’ only when they
are equationally inequivalent. Note that one-level contexts are also up to equa-
tions, which means that the position of the hole in the context is irrelevant for
computing extensions of s and s’.

We now develop procedures for fixing local closedness and consistency defects.
First, we show that we can always extend S to make the wrapper locally closed.
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Proposition 36. Given finite S C TI and E C T(I + 1), there exists a finite
S" CT1I such that (ag/, Bg) is locally closed w.r.t. ag. If there exists a recursive
p: S — FiS such that [nr,v1]°: S — TI is the inclusion, then there exists a
?

recursive p': 8" — FrS" such that [nr,v1)” : " — T1 is the inclusion.

The condition of [n7,77]”: S — T1T being the inclusion map in the above result
amounts to prefix closedness of S in tree automata, see Example 37 below.
Further, under this condition we have that ag = [iy, &]”, since the reachability
map is an algebra morphism, and similarly for cgs. This is crucial to satisfy the
requirements for minimality of the termination theorem.

Ezxample 37. To better understand the above proposition, it is worth describ-
ing what recursive coalgebras are for the automata of Examples 26 and 27.
For bottom-up tree automata, they are coalgebras p: S — Hve r Sarity(n) 4 1
satisfying suitable conditions. Subtree-closed subsets of T (I) are sets of trees
closed under taking subtrees. Every subtree-closed S can be made into a recur-
sive coalgebra that returns the root symbol and its arguments, if applied to
a tree of non-zero depth, and a leaf otherwise. For unordered tree automata,
p: S — PeS + I will just return the set of subtrees or a leaf.

The proof of Proposition 36, which can be found in 7?7, is constructive and
describes a naive procedure to make a table locally closed: adding all (finitely-
many) successor rows to the table. For instance, in the case of tree automata,
one adds rows obtained by adding a new root symbol to trees labelling rows in all
possible ways, for each symbol in the alphabet. One may optimise the algorithm
by instead adding only missing rows.

We now show how to fix local consistency, by extending a finite set of column
labels E to a finite set E’ such that the resulting wrapper is locally consistent.

Proposition 38. Given finite S CTI and E CT(I +1), define E' CT(I+1)
by B' = B U {(nr41 0m)(O)} U {(ir o T(ids + e))(e) | e € B,z € (S + 1)}
where cz: 1 — T(I + 1), with ¢, = y741 0 F[Tky0j,M]oes, and j: S — T1 is
set inclusion. It holds that E' is finite and (ag,Bg’) is locally consistent w.r.t.

BE-

For tree automata, E’ is E plus the empty context (I and the trees obtained
by plugging one-level contexts formed from the current row labels (see Example
35) into all contexts in E. This amounts to extending columns so that all consis-
tency defects are fixed. One can optimise the procedure above by incrementally
adding to E only those elements of E’ that result in new pairs of rows being
distinguished.

6.3 Finite Counterexamples
Finally, we show that the teacher can always supply a finite counterexample.

Proposition 39 (Language equivalence via finite recursion). Given an
automaton A = (Q,0,i,0), we have La, = L4 iff L = L for all recursive
p: S — F1S such that S is finite.
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Corollary 40 (Finite counterexamples). Given a closed and consistent
wrapper W for Qi, we have Ly, # L, iff there exists a counterezample
p: S — F1S for W such that S is finite.

Example 41. Recall from Example 37 that finite recursive coalgebras for bottom-
up (resp. unordered) tree automata are coalgebras p: S — [ .p Sarty(v) 4 1
(resp. p: S — PrS + I). Thus, finite counterexamples are recursive coalgebras
of this form where S is finite or, more concretely, a finite subtree-closed set of
trees.

Given a finite counterexample, if ag arises from a recursive coalgebra p (e.g.,
when S is prefix-closed), updating the wrapper in line 3 of Algorithm 4 can be
done as follows: (1) combine p with the recursive coalgebra in Corollary 40 via
a coproduct (which preserves recursiveness); (2) take a suitable factorisation to
make sure that there is an inclusion of S into 77, and thus that the updated
ag: forms a contextual wrapper (see 77 for a formal justification). Concretely,
the latter step amounts to removing multiple copies of rows with the same label.
Altogether, these steps take the union of the current rows with the (prefix-closed)
counterexample, and guarantee that cg: again arises from a recursive coalgebra.

6.4 Minimality

Theorem 25 gives sufficient conditions for minimality of the automaton obtained
from the algorithm, namely: each « arises from a recursive coalgebra, and the
target automaton should be minimal. For the first condition to hold, there are
two parts of the algorithm that need to be implemented appropriately, as they
change «: closing the table and adding counterexamples. This can always be
done: for closing the table, this follows from Proposition 36; for counterexamples,
the strategy outlined in the previous section yields a wrapper of the desired
form. As for the second condition, a minimal automaton exists if the functor F’
preserves arbitrary cointersections, which is the case iff F' is finitary [7].

7 Related Work

This paper proceeds in the line of work on categorical automata learning started
in [32], and further developed in the CALF framework [29,30]. CALF provides
abstract definitions of closedness, consistency, and hypothesis and several tech-
niques to analyse and guide the development of concrete learning algorithms.
CALF operates at a high level of abstraction and previously did not include an
explicit learning algorithm. We discuss two further recent categorical approaches
to learning, which make stronger assumptions than CALF in order to allow for
the definition of concrete algorithms. The present paper is a third such approach.

Barlocco et al. [12] proposed an abstract algorithm for learning coalgebras,
where tests are formed by an abstract version of coalgebraic modal logic. On the
one hand, the notion of wrapper and closedness from CALF essentially instan-
tiate to that setting; on the other hand, the combination of logic and coalgebra



84 G. van Heerdt et al.

is what enables to define an actual algorithm in [12]. The current work focuses
on algebras rather than coalgebras, and is orthogonal. In particular, it covers
(bottom-up) tree automata, which are outside the scope of [12].

Urbat and Schroder proposed another categorical approach to automata
learning [41], which—similarly to the work of Barlocco et al.—makes stronger
assumptions than CALF in order to define a learning algorithm. Their work
focuses primarily on automata, assuming that the systems of interest can be
viewed both as algebras and coalgebras, and the generality comes from allowing
to instantiate these in various categories. Moreover, it allows covering algebraic
recognisers in certain cases, through a reduction to automata over a carefully con-
structed alphabet; this (orthogonal) extension allows covering, e.g., w-languages
as well as tree languages. However, the reduction to automata makes this pro-
cess quite different than the approach to tree learning in the present paper: it
makes use of an automaton over all (flat) contexts, yielding an infinite alphabet,
and therefore the algorithmic aspect is not clear. The extension to an actual
algorithm for learning tree automata is mentioned as future work in [41]. In the
present paper, this is achieved by learning algebras directly.

Yet another categorical approach to learning was proposed recently by Col-
combet, Petrisan, and Stabile [15]. Here, the way automata are modelled is
rather different: not as algebras or coalgebras within a category, but as functors
from a structure category to an output category. So far this has led the authors
to develop an abstract automata learning algorithm that generalises algorithms
for DFAs, weighted automata, and subsequential transducers. However, as their
structure category is built by generating morphisms representing words by start-
ing with a morphism for each alphabet symbol and closing under composition,
it is unclear whether this approach could cover tree automata.

Concrete algorithms for learning tree automata and languages have appeared
in the literature. The inference of regular tree languages using membership and
equivalence queries appeared in [18], extending earlier work of Sakakibara [39].
Later, [14] provided a learning algorithm for regular tree automata using only
membership queries. The instantiated algorithm in our paper has elements (such
as the use of contexts) close to the concrete algorithms. The focus of the present
paper is on presenting an algebraic framework that can effectively be instantiated
to recover such concrete algorithms in a modular and canonical fashion, with
proofs of correctness and termination stemming from the general framework.

8 Future Work

This paper makes use of the free monad of a functor F' in the formulation of
the generalised learning algorithm, and hence can only deal with quotienting
in a restricted setting, namely by flat equations in the presentation of F. It
remains an open challenge to extend the present algorithm to a setting with more
general equations. For the concrete case of pomset languages [20,22] represented
by bimonoids [34], we note that we have successfully instantiated the abstract
algorithm described in this paper, and augmented it to include optimisations
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specific to the equations that hold in that setting [27]. In future work, we aim
to extend the ideas behind these optimisations to the abstract setting, as well.
Another direction is to extend the framework with side-effects, encoded by a
monad, in the style of [30]. This would enable learning more compact automata—
albeit with richer, monadic, transitions—representing languages and, as a con-
crete instance, provide an active learning algorithm for weighted tree automata.

Acknowledgements. T. Kappé was partially supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No. 101027412 (VERLAN), as well as ERC Starting Grant 679127
(ProFoundNet). Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva were
partially supported by the EPSRC Standard Grant CLeVer (EP/S028641/1).

References

1. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register
automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165-183. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9-11

2. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: ICST,
pp. 461-468 (2013). https://doi.org/10.1109/ICSTW.2013.60

3. Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric
passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp.
673-686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-
0-54

4. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71-85. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15375-4_6

5. Addmek, J., Milius, S., Moss, L.S.: On well-founded and recursive coalgebras. In:
FoSSaCS 2020. LNCS, vol. 12077, pp. 17-36. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45231-5_2

6. Adédmek, J., Milius, S., Velebil, J.: Free iterative theories: a coalgebraic view. MFCS
13(2), 259-320 (2003). https://doi.org/10.1017/S0960129502003924

7. Adamek, J., Trnkova, V.: Automata and Algebras in Categories. Kluwer, Dordrecht
(1989)

8. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87-106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

9. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 5772 (2016). https://doi.org/10.1016/j.tcs.2016.07.031

10. Arbib, M.A., Manes, E.G.: A categorist’s view of automata and systems. In: Manes,
E.G. (ed.) Category Theory Applied to Computation and Control. LNCS, vol. 25,
pp. 51-64. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07142-3_61

11. Awodey, S.: Category Theory. Oxford University Press, Oxford (2010)

12. Barlocco, S., Kupke, C., Rot, J.: Coalgebra learning via duality. In: Bojanczyk, M.,
Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp. 62-79. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17127-8_4

13. Bergadano, F., Varricchio, S.: Learning behaviors of automata from multiplicity
and equivalence queries. STAM J. Comput. 25(6), 1268-1280 (1996). https://doi.
org/10.1137/S009753979326091X


https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-642-15375-4_6
https://doi.org/10.1007/978-3-030-45231-5_2
https://doi.org/10.1007/978-3-030-45231-5_2
https://doi.org/10.1017/S0960129502003924
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/j.tcs.2016.07.031
https://doi.org/10.1007/3-540-07142-3_61
https://doi.org/10.1007/978-3-030-17127-8_4
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1137/S009753979326091X

86

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

G. van Heerdt et al.

Besombes, J., Marion, J.: Learning tree languages from positive examples and
membership queries. Theor. Comput. Sci. 382(3), 183-197 (2007). https://doi.
org/10.1016/j.tcs.2007.03.038

Colcombet, T., Petrisan, D., Stabile, R.: Learning automata and transducers: a
categorical approach. In: CSL, vol. 183, pp. 15:1-15:17 (2021). https://doi.org/10.
4230/LIPIcs.CSL.2021.15

Comon, H., et al.: Tree Automata Techniques and Applications (2008). https://
hal.inria.fr /hal-03367725

de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, Cambridge (2010)

Drewes, F., Hogberg, J.: Learning a regular tree language from a teacher. In: Esik,
Z., Fulop, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 279-291. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-45007-6_22

Fiterau-Brostean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454-471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6_25

Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61, 199-224
(1988). https://doi.org/10.1016/0304-3975(88)90124-7

Gold, E.M.: System identification via state characterization. Automatica 8(5), 621—
636 (1972). https://doi.org/10.1016/0005-1098(72)90033-7

Grabowski, J.: On partial languages. Fundam. Inform. 4(2), 427 (1981)

van Heerdt, G.: An abstract automata learning framework. Master’s thesis, Rad-
boud Universiteit Nijmegen (2016)

van Heerdt, G., Jacobs, B., Kappé, T., Silva, A.: Learning to coordinate. In: de
Boer, F., Bonsangue, M., Rutten, J. (eds.) It’s All About Coordination. LNCS,
vol. 10865, pp. 139-159. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-90089-6_10

van Heerdt, G., Kappé, T., Rot, J., Sammartino, M., Silva, A.: Tree automata
as algebras: minimisation and determinisation. In: CALCO, vol. 139, pp. 6:1-6:22
(2019). https://doi.org/10.4230/LIPIcs. CALCO.2019.6

van Heerdt, G., Kappé, T., Rot, J., Sammartino, M., Silva, A.: A categorical frame-
work for learning generalised tree automata. arXiv e-prints (2020). https://arxiv.
org/abs/2001.05786

van Heerdt, G., Kappé, T., Rot, J., Silva, A.: Learning pomset automata. In:
FOSSACS 2021. LNCS, vol. 12650, pp. 510-530. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-71995-1_26

van Heerdt, G., Kupke, C., Rot, J., Silva, A.: Learning weighted automata over
principal ideal domains. In: FoSSaCS 2020. LNCS, vol. 12077, pp. 602-621.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45231-5_31

van Heerdt, G., Sammartino, M., Silva, A.: CALF: categorical automata learning
framework. In: CSL, pp. 29:1-29:24 (2017). https://doi.org/10.4230/LIPIcs.CSL.
2017.29

van Heerdt, G., Sammartino, M., Silva, A.: Learning automata with side-effects.
In: Petrigan, D., Rot, J. (eds.) CMCS 2020. LNCS, vol. 12094, pp. 68-89. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-57201-3_5

Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Pasdreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487-495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4_32


https://doi.org/10.1016/j.tcs.2007.03.038
https://doi.org/10.1016/j.tcs.2007.03.038
https://doi.org/10.4230/LIPIcs.CSL.2021.15
https://doi.org/10.4230/LIPIcs.CSL.2021.15
https://hal.inria.fr/hal-03367725
https://hal.inria.fr/hal-03367725
https://doi.org/10.1007/3-540-45007-6_22
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1016/0005-1098(72)90033-7
https://doi.org/10.1007/978-3-319-90089-6_10
https://doi.org/10.1007/978-3-319-90089-6_10
https://doi.org/10.4230/LIPIcs.CALCO.2019.6
https://arxiv.org/abs/2001.05786
https://arxiv.org/abs/2001.05786
https://doi.org/10.1007/978-3-030-71995-1_26
https://doi.org/10.1007/978-3-030-71995-1_26
https://doi.org/10.1007/978-3-030-45231-5_31
https://doi.org/10.4230/LIPIcs.CSL.2017.29
https://doi.org/10.4230/LIPIcs.CSL.2017.29
https://doi.org/10.1007/978-3-030-57201-3_5
https://doi.org/10.1007/978-3-319-21690-4_32

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Learning Generalised Tree Automata 87

Jacobs, B., Silva, A.: Automata learning: a categorical perspective. In: van Breugel,
F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute
to Prakash Panangaden. LNCS, vol. 8464, pp. 384—406. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06880-0_20

Lane, S.M.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, Springer, New York (1998). https://doi.org/10.1007/978-1-4612-9839-7
Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.
Theoret. Comput. Sci. 237(1), 347-380 (2000). https://doi.org/10.1016,/S0304-
3975(00)00031-1

Liith, C., Ghani, N.: Composing monads using coproducts. In: ICFP, pp. 133-144
(2002). https://doi.org/10.1145/581478.581492

Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nom-
inal automata. In: POPL, pp. 613-625 (2017). https://doi.org/10.1145/3009837.
3009879

Mues, M., Howar, F., Luckow, K.S., Kahsai, T., Rakamaric, Z.: Releasing the
PSYCO: using symbolic search in interface generation for Java. ACM SIGSOFT
Softw. Eng. Notes 41(6), 1-5 (2016). https://doi.org/10.1145/3011286.3011298
Osius, G.: Categorical set theory: a characterization of the category of sets. J. Pure
Appl. Algebra 4(1), 79-119 (1974)

Sakakibara, Y.: Learning context-free grammars from structural data in polynomial
time. Theor. Comput. Sci. 76(2-3), 223-242 (1990). https://doi.org/10.1016,/0304-
3975(90)90017-C

Taylor, P.: Practical Foundations of Mathematics. Cambridge University Press,
Cambridge (1999)

Urbat, H., Schréder, L.: Automata learning: an algebraic approach. In: LICS, pp.
900-914 (2020). https://doi.org/10.1145/3373718.3394775

Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86-95 (2017). https://
doi.org/10.1145/2967606


https://doi.org/10.1007/978-3-319-06880-0_20
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1016/S0304-3975(00)00031-1
https://doi.org/10.1016/S0304-3975(00)00031-1
https://doi.org/10.1145/581478.581492
https://doi.org/10.1145/3009837.3009879
https://doi.org/10.1145/3009837.3009879
https://doi.org/10.1145/3011286.3011298
https://doi.org/10.1016/0304-3975(90)90017-C
https://doi.org/10.1016/0304-3975(90)90017-C
https://doi.org/10.1145/3373718.3394775
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606

	A Categorical Framework for Learning Generalised Tree Automata
	1 Introduction
	2 Preliminaries
	2.1 Abstract Automata
	2.2 The L-star Algorithm

	3 The Abstract Data Structures in CALF
	4 Counterexamples, Generalised
	5 Generalised Learning Algorithm
	6 Generalised Tree Automata
	6.1 Contextual Wrappers
	6.2 Witnessing Local Closedness and Consistency
	6.3 Finite Counterexamples
	6.4 Minimality

	7 Related Work
	8 Future Work
	References




