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Abstract
A perennial objection against Bayes factor point-null hypothesis tests is that the point-
null hypothesis is known to be false from the outset. We examine the consequences of
approximating the sharp point-null hypothesis by a hazy ‘peri-null’ hypothesis instan-
tiated as a narrow prior distribution centered on the point of interest. The peri-null
Bayes factor then equals the point-null Bayes factor multiplied by a correction term
which is itself a Bayes factor. For moderate sample sizes, the correction term is rela-
tively inconsequential; however, for large sample sizes, the correction term becomes
influential and causes the peri-null Bayes factor to be inconsistent and approach a
limit that depends on the ratio of prior ordinates evaluated at the maximum likelihood
estimate. We characterize the asymptotic behavior of the peri-null Bayes factor and
briefly discuss suggestions on how to construct peri-null Bayes factor hypothesis tests
that are also consistent.

Keywords Consistency · Peri-null correction factor · Asymptotic sampling
distribution

Mathematics Subject Classification 62F03 · 62F15 · 62F05

1 Introduction

In the Bayesian paradigm, the support that data yn := (y1, . . . , yn) provide for an
alternative hypothesis H1 versus a point-null hypothesis H0 is given by the Bayes
factor BF10(yn):
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1122 A. Ly, E.-J. Wagenmakers

p(yn | H1)

p(yn | H0)
︸ ︷︷ ︸

BF10(yn)

=

Posterior model odds
︷ ︸︸ ︷

P(H1 | yn)
P(H0 | yn)

/

prior model odds
︷ ︸︸ ︷

P(H1)

P(H0)
(1)

=
∫

Θ1
f (yn | θ1) π(θ1 |H1) dθ1

∫

Θ0
f (yn | θ0) π(θ0 |H0) dθ0

, (2)

where the first line indicates that the Bayes factor quantifies the change from prior
to posterior model odds (Wrinch and Jeffreys 1921), and the second line indicates
that this change is given by a ratio of marginal likelihoods, that is, a comparison of
prior predictive performance obtained by integrating the parameters θ j out of the j th
model’s likelihood f (yn | θ j ) at the observations yn with respect to the prior den-
sity π(θ j |H j ) (Jeffreys 1935, 1939; Kass and Raftery 1995). Although the general
framework applies to the comparison of any two models (as long as the models make
probabilistic predictions; Dawid 1984; Shafer and Vovk 2019), the procedure devel-
oped by Harold Jeffreys in the late 1930s was explicitly designed as an improvement
on p value null-hypothesis significance testing.

In the prototypical scenario, a null hypothesisH0 has p0 free parameters, whereas
an alternative hypothesis H1 has p = p0 + 1 free parameters; the additional free
parameter in H1 is the one that is test-relevant. For instance, in Jeffreys’s t-test, the
test-relevant parameter δ = μ/σ represents standardized effect size; after assigning
prior distributions to the models’ parameters, we may compute the Bayes factor in
favor of H0 : δ = 0 with free parameter θ0 = σ ∈ (0,∞) against H1 : θ1 =
(δ, σ ) ∈ R×(0,∞)where δ is unrestricted andwhere σ denotes the common nuisance
parameter. When BF01(yn) = 1/BF10(yn) is larger than 1, the data provide evidence
that the ‘general law’ H0 can be retained; when BF01(yn) is smaller than 1, the
data provide evidence for H1, the model that relaxes the general law. The larger the
deviation from 1, the stronger the evidence. Importantly, in Jeffreys’s framework, the
test-relevant parameter is fixed under H0 and free to vary under H1. The hypothesis
H0 is generally known as a ‘point-null’ hypothesis.

A perennial objection against point-null hypothesis testing—whether Bayesian
or frequentist—is that in most practical applications, the point-null is never true
exactly (e.g., Bakan 1966; Berkson 1938; Edwards et al. 1963; Jones and Tukey 2000;
Kruschke and Liddell 2018; see also Laplace 1774/1986, p. 375). If this argument is
accepted and H0 is deemed to be false from the outset, then the test merely assesses
whether or not the sample size was sufficiently large to detect the nonzero effect. This
objection was forcefully made by Tukey:

“Statisticians classically asked the wrong question—and were willing to answer
with a lie, one that was often a downright lie. They asked “Are the effects of A
and B different?” and they were willing to answer “no.”
All we know about the world teaches us that the effects of A and B are always
different—in some decimal place—for any A and B. Thus, asking “Are the
effects different?” is foolish. (Tukey 1991, p. 100)
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Bayes factors for peri-null hypotheses... 1123

This perennial objection has been rebutted in several ways (e.g., Jeffreys 1937,
1961; Kass and Raftery 1995); in the current work, we focus on the most common
rebuttal, namely that the point-null hypothesis is a mathematically convenient approx-
imation to a more realistic ‘peri-null’ (Tukey 1955) hypothesis H

˜0 that assigns the
test-relevant parameter a distribution tightly concentrated around the value specified by
the point-null hypothesis (e.g., Good 1967, p. 416; Berger andDelampady 1987; Corn-
field 1966, 1969; Dickey 1976; Edwards et al. 1963; George and McCulloch 1993;
Jeffreys 1935, 1936; Gallistel 2009; Rousseau 2007; Rouder et al. 2009). For instance,
in the case of the t-test the peri-null H

˜0 could specify δ ∼ π(δ |H
˜0) = N (0, κ2

0 ),
where the width κ0 is set to a small value.

Previous work has suggested that the approximation of a point-null hypothesis by
an interval is reasonable when the width of that interval is half a standard error in width
(Berger and Delampady 1987; Rousseau 2007) or one standard error in width (Jeffreys
1935). Here, we explore the consequences of replacing the point-null hypothesis H0
by a peri-null hypothesisH

˜0 from a different angle. We alter only the specification of
the null-hypothesisH0, which means that the alternative hypothesisH1 now overlaps
withH

˜0.
Below we show, first, that the effect on the Bayes factor of replacingH0 withH˜0 is

given by another Bayes factor, namely that betweenH0 andH˜0 (cf. Morey and Rouder
2011, p. 411). This ‘peri-null correction factor’ is usually near 1, unless sample size
grows large. For large sample sizes, we demonstrate that the Bayes factor for the
peri-null H

˜0 versus the alternative H1 is bounded by the ratio of the prior ordinates
evaluated at the maximum likelihood estimate. This proves earlier statements from
Morey and Rouder (2011, pp. 411–412) and confirms suggestions in Jeffreys (1961,
p. 367) and Jeffreys (1973, p. 39, Eq. 2). In other words, the Bayes factor for the
peri-null hypothesis is inconsistent.

Note that there exist several Bayes factor methods that have replaced point-null
hypotheseswith either peri-null hypotheses (e.g., Stochastic SearchVariable Selection,
George and McCulloch 19931) or with other hypotheses that have a continuous prior
distribution close to zero (e.g., the skeptical prior proposed by Pawel and Held in
press). As far as evidence from the marginal likelihood is concerned, the results below
show that these methods are inconsistent.

We end with a brief discussion on how a consistent method for hypothesis testing
can be obtained without fully committing to a point-null hypothesis.

2 The peri-null correction factor

Consider the three hypotheses discussed earlier: the point-null hypothesis H0 fixes
the test-relevant parameter to a fixed value (e.g., δ = 0); the peri-null hypothesis H

˜0
assigns the test-relevant parameter a distribution that is tightly centered around the
value of interest (e.g., δ ∼ π(δ |H

˜0) = N (0, κ2
0 ) with κ0 small); and the alternative

hypothesisH1 assigns the test-relevant parameter a relatively wide prior distribution,

1 “A similar setup in this context was considered by Mitchell and Beauchamp (1988), who instead used
“spike and slab” mixtures. An important distinction of our approach is that we do not put a probability mass
on βi = 0.” (George and McCulloch 1993, p. 883).
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1124 A. Ly, E.-J. Wagenmakers

δ ∼ π(δ |H1). The Bayes factor of interest is between H1 and H
˜0, which can be

expressed as the product of two Bayes factors involving H0:

p(yn |H1)

p(yn |H
˜0)

︸ ︷︷ ︸

Peri-null BF1˜0(y
n)

= p(yn |H1)

p(yn |H0)
︸ ︷︷ ︸

Point-null BF10(yn)

× p(yn |H0)

p(yn |H
˜0)

︸ ︷︷ ︸

Correction factorBF0˜0(y
n)

. (3)

Inwords, theBayes factor for the alternative hypothesis against the peri-null hypothesis
equals the Bayes factor for the alternative hypothesis against the point-null hypothesis,
multiplied by a correction factor (cf. Kass and Vaidyanathan 1992; Kass and Raftery
1995; Morey and Rouder 2011, p. 411). This correction factor quantifies the extent to
which the point-null hypothesis outpredicts the peri-null hypothesis. With data sets of
moderate size, and κ0 small, the peri-null and point-null hypotheses will make similar
predictions, and consequently, the correction factor will be close to 1. In such cases,
the point-null can indeed be considered a mathematically convenient approximation
to the peri-null.

2.1 Example

Consider the hypothesis that “more desired objects are seen as closer” (Balcetis and
Dunning 2011). In the authors’ Study I, 90 participants had to estimate their distance
to a bottle of water. Immediately prior to this task, 47 ‘thirsty’ participants had con-
sumed a serving of pretzels, whereas 43 ‘quenched’ participants had drank as much
as they wanted from four 8-oz glasses of water. In line with the authors’ predictions,
“Thirsty participants perceived the water bottle as closer (M = 25.1 in., SD = 7.3)
than quenched participants did (M = 28.0 in., SD = 6.2)” (Balcetis and Dunning
2011, p. 148), with t = 2.00 and p = .049. A Bayesian point-null t-test concern-
ing the test-relevant parameter δ may contrast H0 : δ = 0 versus H1 : δ ∈ R with
a Cauchy distribution with location parameter 0 and scale κ1, the common default
value κ1 = 1/

√
2 (Morey and Rouder 2018). The resulting point-null Bayes factor

is BF10 = 1.259, a smidgen of evidence in favor of H1. We may also compute a
peri-null correction factor by contrastingH0 : δ = 0 againstH

˜0 : δ ∼ N (0, κ2
0 ), with

κ0 = 0.01, say. The resulting peri-null correction factor2 is BF0˜0 = 0.997, which
means that, practically, it does not matter if the point-null or the peri-null is tested.
With a larger value of κ0 = 0.05, we have BF0˜0 = 0.927, thus, a peri-null Bayes
factor of BF1˜0 = 1.167. The change from BF10 = 1.259 to BF1˜0 = 1.167 is utterly
inconsequential.

The difference between the peri-null and point-null Bayes factor remains inconse-
quential for larger values of t . When we change t = 2.00 to t = 4.00, the point-null
Bayes factor equals BF10 = 174, which according to Jeffreys’s classification of evi-
dence (e.g., Jeffreys 1961, Appendix B) is considered compelling evidence for H1.
With κ0 = 0.01, the peri-null correction factor equals BF0˜0 = 0.986 and consequently
a peri-null Bayes factor equals of about 172 in favor ofH1 overH˜0. With κ0 = 0.05,

2 Calculated using the Summary Stats module in JASP, (e.g., Ly et al. 2018, jasp-stats.org), and based on
Gronau et al. (2020).
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Bayes factors for peri-null hypotheses... 1125

the peri-null correction factor equals BF0˜0 = 0.713 and BF1˜0 ≈ 124. In absolute
numbers, the change from 174 to 124 may appear considerable, but with equal prior
model probabilities this translates to a modest difference in posterior probabilities:
P(H1 | yn) = 174/175 ≈ 0.994 versus 124/125 = 0.992.

The peri-null correction factor does become influential when sample size is large.
Aswe prove in the next section, the peri-null Bayes factor is inconsistent and converges
to the ratio of prior ordinates under H1 and H

˜0 at the maximum likelihood estimate.

3 The peri-null Bayes factor is inconsistent

Historically, the main motivation for the development of the Bayes factor was the
desire to be able to obtain arbitrarily large evidence for a general law: “We are looking
for a system that will in suitable cases attach probabilities near 1 to a law.” (Jeffreys
1977, p. 88; see also Etz and Wagenmakers 2017; Ly et al. 2020; Wrinch and Jeffreys
1921).

Statistically, this desideratum means that we want Bayes factors to be consistent,
which implies that, as sample size increases, (i) BF10(Yn) tends to zero when the data
are generated under the null model, whereas (ii) BF01(Yn) tends to zero when the data
are generated under the alternative model H1, that is,

BF10(Y
n)

Pθ→ 0 if Pθ ∈ H0, and BF01(Y
n)

Pθ→ 0 if Pθ ∈ H1. (4)

Thus, regardless of the chosen prior model probabilities P(H0), P(H1) ∈ (0, 1),

P(H0 | Yn)
Pθ→ 1 if Pθ ∈ H0, and P(H1 | Yn)

Pθ→ 1 if Pθ ∈ H1, (5)

where Pθ refers to the data generating distribution, here, Yi
iid∼ Pθ , and where Xn

Pθ→ X
denotes convergence in probability, that is, limn→∞ Pθ (|Xn − X | > ε) = 0 as usual.

Belowwe prove that the peri-null Bayes factor BF1˜0(Y
n) is inconsistent (cf. sugges-

tions by Jeffreys 1961, p. 367; Jeffreys 1973, p. 39, Eq. 2; and the statements byMorey
and Rouder 2011, p. 411-412). The proof relies on the observation that the replace-
ment of the point-null restriction on the test-relevant parameter, i.e., H0 : δ = 0,
where θ = (δ, θ0) as before, yields a peri-null model that defines the same likelihood
function as the alternative model. Consequently, the numerator and the denominator
of the peri-null Bayes factor BF1˜0(Y

n) only differ in how the priors are specified.
The inconsistency of peri-null Bayes factors then follows quite directly from

Laplace’s method (Laplace 1774/1986) and consistency of the maximum likelihood
estimator (MLE). Both Laplace’s method and consistency of the MLE hold under
weaker conditions than stated here, namely, for absolute continuous priors (e.g., van
der Vaart 1998, Chapter 10), and regular parametric models (e.g., van der Vaart 1998,
Chapter 7; Ly et al. 2017,AppendixE). Thesemodels only need to be one time differen-
tiable with respect to θ in quadratic mean and have non-degenerate Fisher information
matrices that are continuous in θ with determinants that are bounded away from zero
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1126 A. Ly, E.-J. Wagenmakers

and infinity. The inconsistency of the peri-null Bayes factor is therefore expected to
hold more generally.

We show that under the stronger conditions of Kass et al. (1990), the asymptotic
sampling distribution of peri-null Bayes factors can be easily derived. These stronger
conditions imply that the model is regular for which we know that theMLE is not only
consistent, but also locally asymptotically normal with a variance equal to the inverse
observed Fisher information matrix at θ̂ with entries

[ Î (θ̂)]a,b = −1

n

n
∑

i=1

(

∂2

∂θa∂θb
log f (Yi | θ)

)
∣

∣

∣

∣

θ=θ̂

, (6)

see for instance Ly et al. (2017) for details.

Theorem 1 (Limit of a peri-null Bayes factor) Let Y n = (Y1, . . . ,Yn) with Yi
iid∼

Pθ ∈ PΘ , where PΘ is an identifiable family of distributions that is Laplace-regular
(Kass et al. 1990). This implies that PΘ admits densities f (yn | θ) with respect to
the Lebesgue measure that are six times continuously differentiable in θ at the data-
governing parameter θ ∈ Θ ⊂ R

p andΘ open with non-empty interior. Furthermore,
assume that the (peri-null) prior densities π(θ |H

˜0) and π(θ |H1) assign positive
mass to a neighborhood at the data-governing parameter θ and are four times con-

tinuously differentiable at θ ; then BF1˜0(Y
n)

Pθ→ π(θ |H1)
π(θ |H

˜0)
. 	

Proof The condition that themodel is Laplace-regular allows us to employ the Laplace
method to approximate the numerator and the denominator of the peri-nullBayes factor
by

p(Yn |H j ) = f (Yn | θ̂ )
( 2π

n

) p
2 | Î (θ̂)|− 1

2 π(θ̂ |H j )

×
(

1 + C1(θ̂ |H j )

n + C2(θ̂ |H j )

n2
+ O(n−3)

)

, (7)

where C1(θ̂ |H j ) and C2(θ̂ |H j ) for j =˜0, 1 are bounded error terms of the Laplace
approximation (cf. Kass et al. 1990) and given explicitly by Eq. (32) and Eq. (33)
based on the notation introduced in Appendix A.

From the fact that the peri-null and the alternativemodels define the same likelihood
function, thus, have the same maximum likelihood estimator, and only differ in how
the priors concentrate on the parameters, we conclude that

BF1˜0(Y
n) =

π(θ̂ |H1)
[

1 + C1(θ̂ |H1)
n + O(n−2)

]

π(θ̂ |H
˜0)

[

1 + C1(θ̂ |H
˜0)

n + O(n−2)
] . (8)

Identifiability and the regularity conditions on the model imply that the maximum

likelihood estimator is consistent, thus, θ̂
Pθ→ θ (e.g., van der Vaart 1998, Chapter 5).

As all functions of θ̂ in Eq. (8) are smooth at θ , the continuous mapping theorem
applies and the assertion follows. 
�
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Theorem 1 implies that BF1˜0(Y
n) is inconsistent; for all data-governing parameter

values with a neighborhood that receives positive mass from both priors, the peri-null
Bayes factor approaches a limit that is given by the ratio of prior densities evaluated at
the data-governing θ as n increases.Note that this holds in particular for the test point of
interest, e.g., δ = 0, which has a neighborhood that the peri-null prior assigns positive
mass to. This inconsistency result can be intuited as follows. The peri-null Bayes
factor compares twomarginal likelihoodswith the samedata-distribution (or sampling)
model, but different prior distributions on the same parameter space; hence, the peri-
null Bayes factor effectively assesses which prior performs best, and this should not
matter asymptotically (i.e., as the data accumulate, the posterior distributions of the
two models converge, and consequently the change in the Bayes factor will converge
as well).3

From Theorem 1 it follows that the Bayes factor comparing the alternativeH1 : δ ∈
Δ = R against a directed hypothesis, say, H+ : δ > 0, is also inconsistent. For data
under any δ > 0, the associated Bayes factor BF1+(Yn) then converges in probability
to Πu({δ > 0})/Πu(Δ), where Πu(B) = ∫

B πu(θ)dθ with πu the unnormalized prior
on δ.

The limit described in Theorem 1 can also be derived differently. For instance, The-
orem 1 (ii) of Dawid (2011) can be applied twice: once to approximate the logarithm of
themarginal likelihood of the alternative model, and once for the null model.4 Another
way to derive the limit in Theorem 1 is by using the generalized Savage-Dickey density
ratio (Verdinelli and Wasserman 1995) and by exploiting the transitivity of the Bayes
factor. Theorem 1, however, can be more straightforwardly extended to characterize
the asymptotic behavior of the peri-null Bayes factor.

The limiting value of the peri-null Bayes factor is not representative when n is
small or moderate. Theorem 2 below shows that the sampling mean of logBF1˜0(Y

n)

is expected to be of smaller magnitude than its limiting value. In other words, the limit
in Theorem 1 should be viewed as an upper bound under the alternative and a lower
bound under the null.

This theorem exploits the fact that without a point-null hypothesis the gradients of
the densities π(θ |H1) and π(θ |H

˜0) are of the same dimension, which implies that

the gradient ∂
∂θ

log
(

π(θ |H1)
π(θ |H

˜0)

)

is well-defined. As such, the delta method can be used
to show that the peri-null Bayes factor inherits the asymptotic normality property of
the MLE.

To state the theorem, we write D for the differential operator with respect to
θ , e.g., [D1π(θ |H j )] = ∂

∂θ
π(θ |H j ) denotes the gradient, and [D2π(θ |H j )] =

[ ∂2

∂θ∂θ
π(θ |H j )] denotes the Hessian matrix.

Theorem 2 (Asymptotic sampling distribution of a peri-null Bayes factor) Under the
regularity conditions stated in Theorem 1 and for all data-governing parameters θ for
which

3 We thank the first anonymous reviewer for providing this intuition.
4 We thank the second anonymous reviewer for bringing this reference to our attention. When comparing
our Theorem 1 to that of Theorem 1 (ii) of Dawid (2011), it is worth noting that the apparent difference in
the order of the remainder term vanishes once the MLE θ̂ in Eq. (7) is replaced by θ̂ = θ + h/

√
n, which

holds in probability for large n for regular models.
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1128 A. Ly, E.-J. Wagenmakers

v̇(θ) := [D1 log
(

π(θ |H1)
π(θ |H

˜0)

)] �= 0 ∈ R
p, (9)

the asymptotic sampling distribution of the logarithm of the peri-null Bayes factor is
normal, that is,

√
n
(

logBF1˜0(Y
n) − log

(
π(θ |H1)
π(θ |H

˜0)

) − E(θ, n)
)

Pθ� N
(

0, v̇(θ)T I−1(θ)v̇(θ)
)

,

(10)

where
Pθ� denotes convergence in distribution under Pθ and where

E(θ, n) = log
( 1+C1(θ |H1)/n+C2(θ |H1)/n2

1+C1(θ |H
˜0)/n+C2(θ |H

˜0)/n
2

)

, (11)

is a bias term that is asymptotically negligible, and where C1(θ |H j ) and C2(θ |H j )

are given explicitly by Eq. (32) and Eq. (33) based on the notation introduced in
Appendix A.

For all θ for which v̇(θ) = 0, but v̈(θ) := [D2 log
(

π(θ |H1)
π(θ |H

˜0)

)] �= 0 ∈ R
p×p, the

asymptotic distribution of logBF1˜0(Y
n) has a quadratic form, that is,

n
(

logBF1˜0(Y
n) − log

(
π(θ |H1)
π(θ |H

˜0)

) − E(θ, n)
)

Pθ� ZT I−1/2(θ)v̈(θ)I−1/2(θ)Z ,

(12)

where Z ∼ N (0, I ) with I ∈ R
p×p the identity matrix. 	

Proof The proof depends on (another) Taylor series expansion, seeAppendixA for full

details. Firstly, we recall that
√
n(θ̂ − θ)

θ� N (0, I−1(θ)). To relate this asymptotic
distribution to that of logBF1˜0(Y

n), we note that Eq. (8) is, up to a decreasing error
in n, a smooth function of the maximum likelihood estimator. The goal is to ensure
that the error terms 1+C1(θ |H j )/n +C2(θ |H j )/n2 are asymptotically negligible.
A Taylor series expansion at the data-governing θ shows that

logBF1˜0(Y
n) = log

(
π(θ |H1)
π(θ |H

˜0)

) + E(θ, n)

+ (θ̂ − θ)T
(

v̇(θ) + [D1E(θ, n)])

+ (θ̂ − θ)T
(v̈(θ)+[D2E(θ,n)])

2 (θ̂ − θ) + OP (n−3/2). (13)

The asymptotic normality result follows after rearranging Eq. (13), a multiplication
of

√
n on both sides, and an application of Slutsky’s lemma.

To conclude that the bias term E(θ, n) is indeed asymptotically negligible, note that

log(1 + x/n) ≈ x/n as n → ∞ and therefore DkE(θ, n) = O
(

1
n D

k
{

C1(θ |H1) −
C1(θ |H

˜0)
}
)

for all k ≤ 3. The approximation log(1 + x/n) ≈ x/n requires
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Bayes factors for peri-null hypotheses... 1129

Ck(θ |H j ) for k = 1, 2 and j = ˜0, 1 to be of similar magnitude, but this is typi-
cally not the case when κ0 is relatively small compared to κ1. The bias is, therefore,
expected to decay much more slowly.

Similarly, when v̇(θ) is zero, but v̈(θ) not, we have

n log BF1˜0(Y
n) = n

(

log
(

π(θ |H1)
π(θ |H

˜0)

) + E(θ, n))
)

+ √
n(θ̂ − θ)T

(v̈(θ)+O(n−1)])
2

√
n(θ̂ − θ) + OP (n−1/2). (14)

Since
√
n(θ̂ − θ)

Pθ� N (0, I (θ)−1), the second-order result follows. 
�

Theorem 2 also shows that under the alternative hypothesis, log BF1˜0(Y
n) is

expected to increase towards the limiting value log
(

π(θ |H1)
π(θ |H

˜0)

)

as n → ∞ when-
ever E(θ, n) < 0. The bias is expected to be negative, because if the data-governing
parameter δ is far from zero, but the peri-null prior is specified such that it is peaked
at zero, the Laplace approximations become less accurate. In other words, for fixed n
and δ �= 0, we typically have C1(θ |H1) ≤ C1(θ |H

˜0) and C
2(θ |H1) ≤ C2(θ |H

˜0)

and, therefore, E(θ, n) < 0. This intuition can be made rigorous using the explicit
formulas for E(θ, n) provided by Eq. (32) and Eq. (33) from Appendix A, as is shown
in the following example.

4 Example

We consider a Bayesian t-test and for the peri-null Bayes factor use the priors

π(δ, σ |H1) ∝ Cauchy(δ ; 0, κ1)σ−1 and π(δ, σ |H
˜0) ∝ N (δ ; 0, κ2

0 )σ−1. (15)

Note that π(δ, σ |H1) is chosen as in the default Bayesian t-test (Jeffreys 1948; Ly
et al. 2016b, a; Rouder et al. 2009), where κ1 > 0 denotes the scale parameter of the
Cauchy distribution on standardized effect size δ = μ/σ , and σ ∝ σ−1 implies that
the standard deviation common in both models is proportional to σ−1 (for advantages
of this choice see Hendriksen et al. 2021; Grünwald et al. 2019). For data-governing
parameters θ = (μ, σ ), where μ is the population mean, Theorem 1 shows that as
n → ∞

logBF1˜0(Y
n ; κ0, κ1)

Pθ→ log

⎛

⎜

⎜

⎝

√
2κ0 exp

(

μ2

2κ20σ 2

)

√
πκ1

(

1 + [
μ

κ1σ

]2
)

⎞

⎟

⎟

⎠

=: v(θ). (16)

Direct calculations show that v̇(θ) = 0 only whenμ = 0. Hence, under the alternative
μ �= 0, the logarithm of these peri-null Bayes factor t-tests are asymptotically normal
with an approximate variance of
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(μ4 + 2μ2σ 2)(μ2 + (κ2
1 − 2κ2

0 )σ 2)2

2κ4
0σ 4(μ2 + κ2

1σ 2)2n
. (17)

To characterize the asymptotic mean, we also require the bias term E(θ, n). An appli-
cation of Eq. (32) and Eq. (33) from Appendix A shows that for the problem at hand
the bias term comprises of

C1(θ |H1) = 13μ4+(18+2κ21 )σ 2μ2+(κ21−6)κ21σ 4

6(μ2+κ21σ 2)2
, (18)

C2(θ |H1) = 780μ6+(1110+3127κ21 )σ 2μ4+(6020+4462κ21 )κ21σ 4μ2+(5091κ21−1426)κ41σ 6

−96(μ2+κ21σ 2)3
,

(19)

C1(θ |H
˜0) = 3μ4+6σ 2μ2+κ20σ 4(2κ20−6)

12κ40σ 4 , (20)

C2(θ |H
˜0) = 124μ6+(264−2369κ20 )σ 2μ4+(10811κ20−2218)κ20σ 4μ2+2(713−5091κ20 )κ40σ 6

192κ60σ 6 .

(21)

More concretely, under μ = 0.167 and σ = 1, logBF1˜0(Y
n ; 0.05, 1) converges in

probability to log(10). This limit is depicted as the pink dashed horizontal line in the
top left subplot of Fig. 1.

This subplot also shows the mean (solid green curve) and the 97.5% and 2.5%
quantiles (dotted green curves above and below the solid curve, respectively) based on
the asymptotic normal result of Theorem 2. The black curves represent the analogous
quantities based on simulated normal data with μ = 0.167, σ = 1 based on 1,000
replications at sample sizes n = 100, 200, 300, . . . , 10000.

Observe that for small sample sizes, the simulated peri-null Bayes factors are more
concentrated on small values. In this regime, the concentration of the peri-null prior
dominates, and the Laplace approximation of p(Yn |H

˜0) is still inaccurate.
As expected, the Laplace approximation becomes accurate sooner, whenever

the peri-null prior is less concentrated. The top right subplot depicts results of
logBF1˜0(Y

n ; 0.10, 1) under μ = 0.314 and σ = 1, which converges in probability
to log(10).

Similarly, the asymptotic normal distribution becomes adequate at a smaller sam-
ple size for larger population means μ. The bottom left subplot corresponds to
logBF1˜0(Y

n ; 0.05, 1) under μ = 0.182 and σ = 1, whereas the bottom right subplot
corresponds to logBF1˜0(Y

n ; 0.10, 1) under μ = 0.348 and σ = 1. The logarithms
of both peri-null Bayes factors converge in probability to log(30).

In sum, the plots show that under the alternative hypothesis, the asymptotic normal
distribution approximates the sampling distribution of the logarithm of the peri-null
Bayes factor quite well, and it approximates better when the peri-null prior is less
concentrated.
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Fig. 1 Under the alternative, the logarithm of the peri-null Bayes factor t-test is asymptotically normal with
amean (i.e., the solid curves) that increases to the limit, e.g., log BF1˜0 = log(10) and logBF1˜0 = log(30) in
the top and bottom row, respectively. The black and green curves correspond to the simulated and asymptotic
normal sampling distribution, respectively. The dotted curves show the 97.5% and 2.5% quantiles of the
respective sampling distribution. Note that the convergence to the upper bound is slower when the peri-null
is more concentrated, e.g., compare the left to the right column

Under the null hypothesis μ = 0, the gradient v̇(0, σ ) = 0, and so is the Hessian,
except for the the first entry of v̈, that is,

∂2

∂μ2 v(μ, σ )

∣

∣

∣

μ=0
= κ2

1 − 2κ2
0

κ2
0κ2

1σ 2
. (22)

As such, logBF1˜0(Y
n) has a shifted asymptotically χ2(1)-distribution, i.e.,

n
(

logBF1˜0(Y
n ; κ0, κ1) − log

(
π(θ |H1)
π(θ |H

˜0)

) − E(θ, n)
)

P0,1� κ2
1 − 2κ2

0

2κ2
0κ2

1

Z2, (23)

where Z ∼ N (0, 1).

More concretely, under μ = 0 and σ = 1, logBF1˜0(Y
n ; 0.05, 1) P0,1→ −3.22,

whereas logBF1˜0(Y
n ; 0.10, 1) converges in probability to −2.53. Both cases yield

evidence for the null hypothesis, but the evidence is stronger for the peri-null that
is more tightly concentrated around 0. The approximation based on the asymptotic
χ2(1)-distribution (in green) and the simulations (in black) are shown in Fig. 2.
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Fig. 2 Under the null, the logarithm of the peri-null Bayes factor t-test has a shifted asymptotically χ2(1)-
distribution with a mean (i.e., the solid curves) that decreases to the limit, e.g., logBF1˜0 = −3.22 and
logBF1˜0 = −2.53 in the left and right plot, respectively. The black and green curves correspond to the

simulated and asymptotic χ2(1) sampling distribution, respectively. The dotted curves show the 97.5% and
2.5% quantiles of the respective sampling distribution. Note that the convergence to the lower bound is
slower when the peri-null is more concentrated, e.g., compare the left to the right plot

In the left subplot, the curves based on the asymptotic χ2(1)-distribution only
start from n = 185, because only for n ≥ 185 does log(1 + C1(0, 1 |H

˜0)/n +
C2(0, 1 |H

˜0)/n
2) have a non-negative argument; for κ0 = 0.05, we have that

C1(0, 1 |H
˜0) = −199.83. Note that under the null hypothesis, the Laplace approxi-

mations are accurate sooner than under the alternative hypothesis, because the priors
are already concentrated at zero. Under the null hypothesis, the general observation
remains true that for reasonable sample sizes, the expected peri-null Bayes factor is
far from the limiting value.

Unlike the peri-null Bayes factor, the (default) point-null Bayes factor is consistent.
Figure 3 shows the simulated sampling distribution of the point-null and peri-null
Bayes factors in blue and black, respectively. As before the 97.5% quantile (top dotted
curve), the average (solid curve), and the 2.5% quantile (bottom dotted curve) are
depicted as well.

The top left subplot of Fig. 3 shows that under μ = 0.167 and σ = 1, the point-
null and peri-null Bayes factor behave similarly up to n = 30. Furthermore, the
average point-null log Bayes factor crosses the peri-null upper bound of log(10) at
around n = 380, whereas the peri-null Bayes factor remains bounded even in the
limit, and is therefore inconsistent. The top right subplot shows, under μ = 0.348
and σ = 1, that the discrepancy between the point-null and peri-null Bayes factor
becomes apparent sooner when the peri-null prior is less concentrated, i.e., κ0 = 0.10
instead of κ0 = 0.05. Also note that under these alternatives, the logarithm of the
point-null Bayes factor grows linearly (e.g., Bahadur and Bickel 2009; Johnson and
Rossell 2010). Hence, the point-null Bayes factor has a larger power to detect an effect
than that afforded by the peri-null Bayes factor.

The bottom row of Fig. 3 paints a similar picture; under the null, the point-null
Bayes factor accumulates evidence for the null hypothesis without bound as n grows.
For κ0 = 0.05, the behavior of the peri-null and the point-null Bayes factor is similar
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Fig. 3 (Default) point-null Bayes factor t-tests (depicted in blue) are consistent under both the alternative
and null, e.g., top and bottom row, respectively, as opposed to peri-null Bayes factors (depicted in black).
Note that the peri-null and the default point-null Bayes factors behave similarly when n is small. The domain
where the two types of Bayes factors behave similarly is smaller when the peri-null is less concentrated,
e.g., compare the right to the left column

up to n = 200 and it takes about n = 1, 000 samples before the average point-null log
Bayes factor crosses the peri-null lower bound of−3.22. For κ1 = 0.10, only n = 270
samples are needed before the log Bayes factor for the point-null hypothesis crosses
the peri-null lower bound of −2.53.

5 Towards consistent peri-null Bayes factors

There are at least three methods to adjust the peri-null Bayes factor in order to avoid
inconsistency. The first method changes both the point-null hypothesis H0 and the
alternative hypothesis H1. Specifically, one may define the hypotheses under test to
be non-overlapping (e.g., Berger and Delampady 1987; Chandramouli and Shiffrin
2019; Rousseau 2007). The resulting procedure is usually known as an ‘interval-
null hypothesis’, where the interval-null is defined as a (renormalized) slice of the
prior distribution for the test-relevant parameter under an alternative hypothesis (e.g.,
Morey and Rouder 2011). For instance, in the case of a t-test, an encompassing
hypothesis He may assign effect size δ a Cauchy distribution with location parame-
ter 0 and scale κe; from this encompassing hypothesis, one may construct two rival
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hypotheses by restricting the Cauchy prior to particular intervals: the interval-null
hypothesis truncates the encompassing Cauchy distribution to an interval centered on
δ = 0: δ ∼ Cauchy(0, κe)I (−a, a), whereas the interval-alternative hypothesis is
the conjunction of the remaining two intervals, δ ∼ Cauchy(0, κe)I (−∞,−a) and
δ ∼ Cauchy(0, κe)I (a,∞). As a consequence of Theorem 1, or Theorem 1 (ii) of
Dawid (2011), the resulting peri-null Bayes factor is then consistent in accordance
to subjective interval belief; for all data-governing parameters δ in the interior of the
interval-null, limn→∞ BF1˜0 = 0, and for δ in the interior of the sliced out alternative
limn→∞ BF

˜01 = 0.5 In particular, when a = 1 and the data-governing δ = 0.7, then
this Bayes factor will eventually show unbounded evidence for the interval-null.

One disadvantage of this method is the need to specify the width of the interval
(Jeffreys 1961, p. 367). This disadvantage can be mitigated by reporting a range of
non-overlapping interval-null Bayes factors as a function of a; the researcher can then
draw their own conclusion. The resulting range of interval-null Bayes factors also
respects the uncertainty about the proper specification of the interval-null hypothesis
and thereby avoids a false sense of precision.6 A second disadvantage of the non-
overlapping interval-null method is that the prior distributions for the rival interval
hypotheses are of an unusual shape – a continuous distribution up to the point of
truncation, where the prior mass abruptly drops to zero. It is debatable whether such
artificial forms would ever result from an elicitation effort. A third disadvantage is
that it seems somewhat circuitous to parry the critique “the null hypothesis is never
true exactly” by adjusting both the null hypothesis and the alternative hypothesis.

The second method to specify a (partially) consistent peri-null Bayes factor is to
change the point-null hypothesis to a peri-null hypothesis by supplementing rather than
supplanting the spike with a distribution (Morey and Rouder 2011). In other words, the
point-null hypothesis is upgraded to include a narrow distribution around the spike.
This mixture distribution is generally known as a ‘spike-and-slab’ prior, but here the
slab represents the peri-null hypothesis and is relatively peaked. This mixture model
H0′ may be called a ‘hybrid null hypothesis’ (Morey and Rouder 2011), a ‘mixture
null hypothesis’, or a ‘peri-point null hypothesis’. Thus, H0′ = ξH0 + (1 − ξ)H

˜0,
with ξ ∈ (0, 1) the mixture weights and, say, ξ = 1

2 . Because ξ > 0, the Bayes factor
comparing H0′ to H1 will be consistent when the data come from H0; and because
H0′ also has mass away from the point under test, the presence of a tiny true nonzero
effect will not lead to the certain rejection of the null hypothesis as n grows large.
The data determine which of the two peri-point components receives the most weight.
As before, for modest sample sizes and small κ0, the distinction between point-null,
peri-null, and peri-point null is immaterial. The main drawback of the peri-point null
hypothesis is that it is consistent only when the data come from H0; when the data
come fromH1 or H˜0, the Bayes factor remains bounded as before (i.e., Eq. 8).

The thirdmethod is to define a peri-null hypothesiswhosewidth κ0 slowly decreases
with sample size (i.e., a ‘shrinking peri-null hypothesis’). For the t-test, one can
take κ0 = cσ/

√
n for some constant c > 0 as proposed by Berger and Delampady

5 For consistency to hold the standard condition is assumed that the interval-null or sliced up prior assigns
positive mass to a neighborhood of δ in the respective intervals.
6 We thank the first anonymous reviewer for suggesting this procedure to circumvent a definite choice for
a.
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(1987), see also Rousseau (2007), except that their proposal involves a test of non-
overlapping hypotheses. More generally, consistency follows by adapting Theorem 1,
which depends on the Laplace approximation that becomes invalid if κ0 shrinks too
quickly. The representationEq. (3) shows that this consistency fix is equivalent to keep-
ing the peri-null correction Bayes factor BF

˜00 close to one regardless of the data. Note
that this is attainable as κ0 → 0 the peri-null and point-null become indistinguishable.
In other words, the consistency of such a shrinking peri-null Bayes factor is essentially
driven by the asymptotic behavior of the point-null Bayes factor; arguably, one might
as well employ this point-null Bayes factor to begin with. One drawback of the shrink-
ing peri-null hypothesis is that it is incoherent, because the prior distribution depends
on the intended sample size.7 There could nevertheless be a pragmatic argument for
tailoring the definition of the peri-null to the resolving power of an experiment.

6 Concluding comments

The objection that “the null hypothesis is never true” may be countered by abandoning
the point-null hypothesis in favor of a peri-null hypothesis. For moderate sample
sizes and relatively narrow peri-nulls, this change leaves the Bayes factor relatively
unaffected. For large sample sizes, however, the change exerts a profound influence
and causes the Bayes factor to be inconsistent, with a limiting value given by the
ratio of prior ordinates evaluated at the maximum likelihood estimate (cf. Jeffreys
1961, p. 367 and Morey and Rouder 2011, pp. 411–412). Hence, we believe that
as far as Bayes factors are concerned, there is much to lose and little to gain from
adopting a peri-null hypothesis in lieu of a point-null hypothesis. Here, we also derived
the asymptotic sampling distribution of the peri-null Bayes factor and show that its
limiting value is essentially an upper bound under the alternative and a lower bound
under the null. The asymptotic distributions also provide insights to typical values
of the peri-null Bayes factor at a finite n. Inconsistency may not trouble subjective
Bayesians: if the peri-null hypothesis truly reflects the belief of a subjective skeptic,
and the alternative hypothesis truly reflects the belief of a subjective proponent, then
the Bayes factor provides the relative predictive success for the skeptic versus the
proponent, and it is irrelevant whether or not this relative success is bounded. Objective
Bayesians, however, develop and apply procedures that meet various desiderata (e.g.,
Bayarri et al. 2012; Consonni et al. 2018), with consistency a prominent example.
As indicated above, the desire for consistency was the primary motivation for the
development of the Bayesian hypothesis test (Wrinch and Jeffreys 1921). For objective
Bayesians then, it appears the point-null hypothesis is more than just a mathematically
convenient approximation to the peri-null hypothesis (Jeffreys 1961, p. 367). The peri-
pointmixturemodel (consistent only under the point-null hypothesis) and the shrinking
peri-point model (incoherent because the prior width depends on sample size) may
provide acceptable compromise solutions.

7 We term a Bayes factor incoherent if the result depends on whether the data are analyzed all at once or
batch by batch.
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Regardless of one’s opinion on the importance of consistency, it is evident
that seemingly inconsequential changes in prior specification may asymptotically
yield fundamentally different results. Researchers who entertain the use of peri-null
hypotheses should be aware of the asymptotic consequences; in addition, it generally
appears prudent to apply several tests and establish that the conclusions are relatively
robust.
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A Laplace approximation

The Laplace approximation uses a (multivariate) Taylor expansion for which we intro-
duce notation. Let h : Θ ⊂ R

p → R, i.e., h(θ) = − 1
n

∑n
i=1 log f (yi | θ), and we

write θ̂ for the point in its domain where h takes its global minimum. Furthermore, we
use subscripts to denote partial derivatives, whereas superscripts refer to components
of a vector, or more generally an array. For instance, πa = ∂

∂θa
π(θ̂) refers to the

a-th component of the vector of partial derivatives [D1π(θ̂)] of the prior π evaluated
at the MLE. Similarly, we write habc = ∂3

∂θa∂θb∂θc
h(θ̂) for the abc-th component of

the three-dimensional array [D3h(θ̂)]. Hence, the number of indices in the subscript
corresponds to the number of derivatives of h and the indices, each in 1, 2, . . . , p,
provide the location of the component.

We use superscripts to refer to the component of a vector. For instance, q̃a =
(θa − θ̂a) represents the a-th component of the difference vector q̃ = θ − θ̂ , thus,
equivalently q̃a := eTa q̃ , where ea is the unit (column) vector with entry 1 at index
a and zero elsewhere. Similarly, ςabcd the abcd-th component of a four dimensional
array.

Moreover, we employ Einstein’s summation convention and suppress the sum
whenever an index occurs in both the sub and superscript. For instance,

haq̃
a :=

p
∑

a=1

haq̃
a, (24)

habcq̃
aq̃bq̃c :=

p
∑

a=1

p
∑

b=1

p
∑

c=1

habcq̃
aq̃bq̃c. (25)
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The former defines an inner product between the gradient of h and deviations q̃ ,
whereas the habc = [D3h]abc refers to the a-th row, b-th column, and c-th depth of
the three-dimensional array consisting of partial derivatives of h of order three. Lastly,
we use the shorthand notation

hahbq̃
aq̃b :=

∑

a

∑

b

hahbq̃
aq̃b, (26)

to denote the nested sum which is needed for Cauchy products (haq̃a)(hbq̃b). For
instance, with d = 2

(h1q̃
1 + h2q̃

2)(h1q̃
1 + h2q̃

2) = h1q̃
1h1q̃

1 + 2h1q̃
1h2q̃

2 + h2q̃
2h2q̃

2, (27)

which is equivalent to

h1h1q̃
1q̃1 + h1h2q̃

1q̃2 + h2h1q̃
2q̃1 + h2h2q̃

2q̃2. (28)

With these notational conventions, a multivariate Taylor approximation is denoted as

h(θ) = h(θ̂) + haq̃
a + hab

2! q̃
aub + habc

3! q̃aq̃bq̃c + habcd
4! q̃aq̃bq̃cq̃d + O(|u|5). (29)

and note the similarity to its one-dimensional counterpart.

Theorem 3 (Laplace expansion with error term) Let PΘ be a collection of density
functions that are six times continuously differentiable in θ ∈ Θ ⊂ R

p, and π(θ)

a prior density that is four times continuously differentiable. Let Y
iid∼ f (y | θ) for

certain θ , then with θ̂ the MLE

p(yn) =
∫

Θ

f (yn | θ)π(θ)dθ (30)

= ( 2πn )
p
2 f (yn | θ̂ )π(θ̂)| Î (θ̂)|−1/2

[

1 + C(1)(θ̂ )
n + C(2)(θ̂ )

n2
+ O(n−3)

]

, (31)

where | · | denotes the determinant and

C (1)(θ̂ ) = πab

2π(θ̂)
ςab − ( habcd

24 + habcπu

6π(θ̂)

)

ςabcd + habchue f
72 ςabcde f , (32)

C (2)(θ̂ ) = πabcd

24π(θ̂)
ςabcd − π(θ̂)habcde f +6habcdeπ f +15habcdπe f +20habcπde f

720π(θ̂)
ςabcde f

+ 5π(θ̂)habcdhe f gh+8π(θ̂)habcdeh f gh+40habc
(

hde f gπh+hde f πgh

)

5760π(θ̂)
ςabcde f gh

− 3π(θ̂)habcdhe f ghhi j+4habchde f hghiπ j

5184π(θ̂)
ςabcde f ghi j

+ habchde f hghi h jkl
31104 ςabcde f ghi jkl (33)

where ςab, ςabcd , ςabcde f , ςabcde f gh, ςabcde f ghi j , and ςabcde f ghi jkl represent the
ab-th component of the second, the abcd-th component of the fourth, the abcde f -th
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component of the sixth moment, the abcde f gh-th component of the eighth moment, the
abcde f ghi j-th component of the tenth moment, and the abcde f ghi jkl-th component
of the twelfth moment, of the p dimensional random vector Q ∼ Np(0, Î (θ̂)−1),
respectively. 	
Proof The proof is based on (i) Taylor-expanding the exponential of the log-likelihood
of order five around θ̂ , (ii) the definition of the exponential as a series and Taylor-
expanding π to third order at the same point θ̂ , and (iii) properties of the normal
distribution.

Step (i) Let h(θ) = 1
n

∑n
i=1 log f (yi | θ), then since h(θ) ∈ C6(Θ) we know that

there exists δ > 0 such that in a ball B
θ̂
(δ) ⊂ R

p of radius δ centered at θ̂ the average
log-likelihood hn(θ) is well-approximated by a Taylor expansion of order 5. This
combined with θ̂ being the MLE and the notation q̃ = θ − θ̂ yields

p(yn) =
∫

Θ

e−nh(θ)π(θ)dθ =
∫

B
θ̂
(δ)

e−nh(θ̂)− nhabq̃a q̃b

2 +R̃(q̃)
π(q̃)dq̃, (34)

= f (yn | θ̂ )

∫

B
θ̂
(δ)

e− nhabq̃a q̃b

2! e−R̃(q̃)π(q̃)dq̃, (35)

where

R̃(q̃) = n[ habcq̃a q̃bq̃c3! + habcd q̃a q̃bq̃cq̃d

4! + habcdeq̃a q̃bq̃cq̃d q̃e

5! + O(|q̃|6)], (36)

is the bounded remainder term since h ∈ C6(Θ). The replacement of Θ by B
θ̂
(δ) in

the integral is justified if the mass is concentrated at θ̂ , thus, whenever the integral
with respect to the first-order term falls off quadratically, that is, if

|n Î (θ̂)|1/2e−n(h(θ)−h(θ̂))π(θ) = O(n−2), (37)

which is the case when θ̂ is unimodal. When it is not unimodal, but θ̂ is a global
maximum, then the condition implies that the requirement that the contribution of the
other maxima is not too big.

Step (ii) After centering the integral at θ̂ we scale with respect to
√
n, that is, we

apply the change of variable q = √
nq̃ , thus,

∫

n−p/2dq = ∫

dq̃ and therefore

p(yn) = ( 2π
n

)p/2
f (yn | θ̂ )| Î (θ̂)|−1/2

∫

B
θ̂
(
√
nδ)

ϕ̃(q)e−R(q)π̃ (q)dq, (38)

where ϕ̃ is the density of amultivariate normal distribution centered at 0 and covariance
matrix Σ = Î−1(θ̂), and where π̃(q) is the Taylor approximation of π at the MLE,
that is,

π̃(q) = π(θ̂) + πa(θ̂)qa

n1/2
+ πab(θ̂)qaqb

2!n + πabc(θ̂)qaqbqc

3!n3/2 + O(n−2), (39)
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and where the remainder term is now

R(q) = habcqaqbqc

3!n1/2 + habcdqaqbqcqd

4!n + habcdeqaqbqcqdqe

5!n3/2 + habcdeqaqbqcqdqeq f

6!n2 O(n−5/2).

Toexploit the properties ofGaussian integrals,we replace integrationdomain B
θ̂
(
√
nδ)

by R
p, which is justified when n is large, and because the tails of a normal density

fall off exponentially.
By definition of e−R(q) as a series and without the exponential approximation error

p(yn) ≈ ( 2πn )p/2 f (yn | θ̂ )| Î (θ̂)|−1/2

×
∫

Rp
ϕ̃(q)

[

1 − R(q) + R(q)2

2! − R(q)3

3! + O(|R(q)|4)]π̃(q)dq. (40)

Fromhere onwards,we focus on the integral Eq. (40),which after some straightforward
but tedious computations can be shown to be of the form

∫

Rp
ϕ̃(q)

[

A0 + A1n
−1/2 + A2n

−1 + A3n
−3/2 + A4n

−2 + O(n−3)
]

dq, (41)

where the A j terms are functions of q and θ̂ defined by the series representation of
e−R(q) and π̃(q).

Step (iii) The terms A j are given below. Of the following results, only the exact
values of A0, A2 and A4 matter; what matters for A1 and A3 is that they only involve
odd powers of q:

A0 = π(θ̂) (42)

A1 = πaq
a − habcπ(θ̂)

6 qaqbqc (43)

A2 = πab
2 qaqb − (

π(θ̂)habcd
24 + habcπu

6

)

qaqbqcqd + π(θ̂)habchue f
72 qaqbqcqdqeqw

(44)

A3 = πabc
6 qaqbqc − 6habcdeπ(θ̂)+30habcdπv+60habcπuv

720 qaqbqcqdqe

+ habchue f lπ(θ̂)+2habchue f πl
144 qaqbqcqdqeqwql (45)

A4 = πabcd
24 qaqbqcqd

− π(θ̂)habcde f +6habcdeπ f +15habcdπe f +20habcπde f
720 qaqbqcqdqeq f

+ 5π(θ̂)habcdhe f gh+8π(θ̂)habcdeh f gh+40habc
(

hde f gπh+hde f πgh

)

5760 qaqbqcqdqeq f qgqh

− 3π(θ̂)habcdhe f ghhi j+4habchde f hghiπ j
5184 qaqbqcqdqeq f qgqhqiq j

+ π(θ̂)habchde f hghi h jkl
31104 qaqbqcqdqeq f qgqhqiq jqkql . (46)
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Since for k odd Ak only involve odd powers of q, we conclude that their integral with
respect to ϕ̃(q) vanishes. Hence,

p(yn) = ( 2πn )p/2 f (yn | θ̂ )| Î (θ̂)|−1/2π(θ̂)
[

1 + E[A2]
nπ(θ̂)

+ E[A4]
n2π(θ̂)

O(n−3)
]

, (47)

where E[A2] and E[A4] are expectations with respect to Q ∼ N (0, Î (θ̂)−1). This
implies that the order n−1 and n−2 terms in the assertion are C (1)(θ̂ ) = E[A2]/π(θ̂)

and C (2)(θ̂ ) = E[A4]/π(θ̂). 
�
The components of higher moments can be expressed in terms of the covariances

ςab = Cov(Qa, Qb) using Isserlis’ formula (Isserlis 1918; McCullagh 2018). For
moments ςa1···aw , that is, a component of the wth moment of Q with w = 2v even,
the following holds

ςa1···aw =
∑

u∈P2
w

∏

i, j∈u
ς i j , (48)

where P2
w is the collection of all pairs of which there are v. For instance, for w = 4,

ςabcd is a sum of 2-products of pairs, for w = 6 is a sum of 3-products of ςabcde f and
so forth and so on. More specifically,

ςabcd = ςabςcd + ςacςbd + ςadςbc (49)

ςabcde f = ςabςcdςe f + ςabςceςd f + ςabςc f ςde

+ ςacςbdςe f + ςacςbeςd f + ςacςb f ςde

+ ςadςbcςe f + ςadςbeςc f + ςadςb f ςce

+ ςaeςbcςd f + ςaeςbdςc f + ςaeςb f ςcd

+ ςa f ςbcςde + ςa f ςbdςce + ςa f ςbeςcd , (50)

where all indexes a, b, c, d, e, f = 1, 2, . . . , p. The expression of ςabcde f gh ,
ςabcde f ghi j , and ςabcde f ghi jkl define sums of 105 = 3× 5× 7, 945 = 3× 5× 7× 9,
and 10, 395 = 3 × 5 × 7 × 9 × 11 terms, respectively, and due to space restrictions,
their exact forms are not displayed here.
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