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Summary

Cross-section average-augmented panel regressions introduced by Pesaran
(2006) have been a popular empirical tool to estimate panel data models with
common factors. However, the corresponding common correlated effects (CCEs)
estimator can be sensitive to the number of cross-section averages used and/or
the static factor representation for observables. In this paper, we show that
most of the corresponding problems documented in the literature can be solved
once cross-section averages are appropriately regularized, thus extending the
applicability of the CCE setup. As the standard plug-in variance estimators are
not able to account for all sources of estimation uncertainty, we suggest the
use of cross-section bootstrap to construct confidence intervals. The proposed
procedure is illustrated both using real and simulated data.

KEYWORDS
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1 INTRODUCTION

Standard panel data models typically include additive unit- and time-specific fixed effects to account for unobserved char-
acteristics. Over the past five decades such an additive error component structure has been a dominant empirical strategy
in panel data studies. However, while additive models might be justified in some applications, some economic models pre-
dict that common shocks should enter the model multiplicatively instead; see, for example, Juodis and Kučinskas (2019)
and Cesa-Bianchi et al. (2020).

One of the most popular estimation approaches to factor-augmented regression models is the common correlated effects
(CCE) approach of Pesaran (2006), which uses the cross-section averages of observed variables as proxies/estimates for
unobserved factors. The main reason for the popularity of this approach is its simplicity (as the estimator has a closed form
solution), extendibility of the approach to non-linear and non-stationary models (e.g., Boneva & Linton, 2017; Kapetan-
ios et al., 2011, respectively)1 and good documented Monte Carlo performance; see, for example, Pesaran (2006) and
Westerlund and Urbain (2015).

The performance of the CCE estimator against the quasi maximum likelihood (QML) principal components (PCs)
estimator of Bai (2009) has been mostly documented using stylized setups where the regressors have a factor structure,
and all factors can be estimated by cross-section averages of some observables; see, for example, Chudik et al. (2011),

1Cross-section average-augmented models were also used in the construction of the unit-root tests; see, for example, Pesaran (2007), Reese and
Westerlund (2016), Juodis and Westerlund (2019), and Norkutė and Westerlund (2021).
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Chudik and Pesaran (2015), and Westerlund and Urbain (2015). Alternatively, if some of the factors in the equation
of interest cannot be estimated, then additional restrictions on the correlation structure of factor loadings need to
be imposed; see, for exmaple, Westerlund and Urbain (2013). However, irrespective of the setup, the crucial idea in
Pesaran (2006) is that adding additional observables to estimate common factors bears no costs, at least asymptotically.

Only recently it has been recognized by Karabıyık et al. (2017) that inclusion of too many factor proxies has a non-trivial
bias effect even asymptotically. Their result was derived under the assumption that cross-section averages can consistently
estimate all strong factors present in the regressors. The recent work of Juodis et al. (2021) deviates from this assumption
and considers a setup where only a subset of factors are estimable by cross-section averages. They show that deviations of
this type are substantial enough to reduce the convergence rate, and change the asymptotic distribution of the CCE esti-
mator. As a result, including more cross-section averages can actually be harmful in very general setups. In this paper, we
show how this issue can be almost completely eliminated, thus naturally extending the applicability of the CCE approach
beyond the setup of Pesaran (2006).

Motivation. This research is motivated by two empirical problems associated with the cross-section average-augmented
procedures:

1. First of all, the well documented unsatisfactory statistical properties of the pooled CCE estimator with more observ-
ables than factors (e.g., in Juodis et al., 2021; Karabıyık et al., 2017) call for new methods to be considered to address
the underlying shortcomings of the CCE estimator in the linear model.

2. Second, there has been a growing interest in the application of cross-section average-augmented models in
non-linear panel data models, for example, binary choice (Boneva & Linton, 2017), quantile (Harding &
Lamarche, 2014; Harding et al., 2020), count (Desbordes & Eberhardt, 2019), and non-linear mean (Hacioglu Hoke
& Kapetanios, 2021) models. Some of these setups implicitly assume that there are as many unobserved factors as
cross-section averages. Otherwise, some of the regularity conditions cannot be justified.2 Thus, any technical dif-
ficulties associated with the empirically relevant setup with more factor proxies than the underlying factors are
ignored.

This paper. We introduce the notion of regularized cross-section averages, and the related regularized CCE estimator.
As a basis of our procedure we use the Singular Value Decomposition (SVD) to remove the asymptotically redundant sin-
gular values of appropriately normalized cross-section averages. This regularization ensures tractability of the asymptotic
distribution for the resulting class of least squares estimators, even allowing for some unproxied factors in regressors. In
addition, we argue that despite the normality of the pooled or mean-group estimators, the standard plug-in estimators
for the variance–covariance matrices are not consistent. We recommend cross-section (pairs) bootstrap based inference
procedure. To select the number of factors we use eigenvalues based selection criterion, as in Ahn and Horenstein (2013).
The resulting regularized CCE (rCCE) estimator extends the applicability of the CCE procedure to a more general class
of linear models than originally suggested by Pesaran (2006). Our results are established both under the fixed T and the
large T asymptotic approximations.

In our empirical illustration, we re-evaluate the results from the recent studies in Voigtländer (2014) and Yin
et al. (2021), and investigate the causes of the historically increasing wage inequality between high-skilled and low-skilled
workers in the US manufacturing industries. Our procedure provides strong evidence that, irrespective of the setup con-
sidered, the number of the underlying factors is small in comparison with the total number of cross-section averages. This
fact confirms the necessity of the “more observables than factors” setup in Pesaran (2006) and the need for regularization
even for a setup with as many as three cross-sectional averages.

The remainder of this paper is organized as follows. Section 2 introduces a linear panel model with common factors.
Section 3 develops the regularization approach and heuristically discusses the main results of this paper for models with
homogeneous and heterogeneous coefficients. All formal asymptotic results are discussed in Section 4. Section 5 reports
a Monte Carlo study to assess the finite sample performance of the proposed class of estimators. Section 6 presents an
empirical application. Finally, Section 7 concludes. Additional (more technical) discussions and proofs are relegated to
the supporting information.

Notation. The generic constant 𝛿 is used to denote a small positive real number. For a generic matrix A, vec(A) denotes
the vertical column stacking operator, ⊗ denotes the Kronecker product, tr(A) denotes the trace operator, and ||A|| =

2For example, the standard assumption that the underlying parameter space (including individual-level heterogeneity) is compact (e.g., Assumption
C1 in Boneva & Linton, 2017 cannot be satisfied for the parameter space of the rotated factor loadings, if there are more factors than observables).
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√
tr(A′A) the Frobenius norm. For any T × L matrix A with full column rank its orthogonal projection matrix MA is

defined as MA = IT − A(A′A)−1A. Ei[·] denotes unit level expectations conditional on all unit specific, time-invariant
stochastic variables. Finally, all random variables are defined on a common probability space (Ω,,P).

2 THE COMMON CORRELATED EFFECTS (CCE) SETUP

2.1 The Model

In this paper, we consider the scalar panel data variable 𝑦i,t, observed for t = 1, … ,T time periods and i = 1, … ,N
cross-section units. The data generating process (DGP) of the stacked [T × 1] vector yi = (𝑦i,1, … , 𝑦i,T)′ is given by

yi = X i𝜷 i + F𝝀i + 𝜺i, (1)

where X i = (xi,1, … , xi,T)′ is a [T × K] matrix of covariates, 𝜷 i is a [K × 1] vector of corresponding (individual-specific)
parameters, F = (f 1, … , f T)′ is a [T × R] matrix of unobserved common factors, 𝝀i is a [R × 1] vector of factor loadings,
and 𝜺i = (𝜀i,1, … , 𝜀i,T)′ is a [T × 1] vector of idiosyncratic errors. If X i is allowed to be correlated with F𝝀i (e.g., through
the individual specific fixed-effects), then the standard pooled OLS and two-way fixed effects estimators are inconsistent;
see, for example, Juodis (2020) and Sarafidis and Wansbeek (2021).

If F was an observed matrix and 𝜷 i = 𝜷, then the parameter of interest would be consistently estimable (for T large)
using the pooled least squares (fixed effects) estimator of the form

�̂�FE =

(
1

NT

N∑
i=1

X ′
iMFX i

)−1 (
1

NT

N∑
i=1

X ′
iMFyi

)
. (2)

In most cases, however, F is unobserved. To circumvent this problem, we follow the suggestion of Pesaran (2006) (see
also Bai & Li, 2014; Li et al., 2020) and assume that covariates X i are linear in factors

X i = FΛi + F⟂Λi,⟂ + V i, (3)

where F⟂ = (f 1,⟂, … , f T,⟂)′ is a [T ×R⟂] factor matrix, while Λi,⟂ is the corresponding [R⟂ ×K] matrix of factor loadings.
Finally, V i = (vi,1, … , vi,T)′ is a [T × K] matrix of idiosyncratic errors. Unlike the majority of the follow up literature to
Pesaran (2006), we explicitly assume that K regressors are driven by more factors than the composite error term of the
variable of interest yi, that is, R⟂ ≥ 0. This distinction between the factors in Equations (1) and (3) is essential, as we will
explicitly consider the setup where all factors in F can be consistently estimated (up to a rotation), while this is not the
case for F⟂.

Finally, we assume that to estimate F factors in yi the researcher uses Kz observed variables Zi, that are also assumed
to be linear in factors

Zi = FCi + F⟂Ci,⟂ + U i. (4)

Here, analogously to Equation (3), Ci,⟂ is a [R⟂×Kz]matrix of factor loadings and U i = (ui,1, … ,ui,T)′ is a [T×Kz]matrix
of idiosyncratic errors. This formulation is quite general, as it captures among others the original model of Pesaran (2006),
where Zi = (yi,X i), as well as the setups of Pesaran et al. (2013) and Karabıyık et al. (2019), where additional variables
(not included among X i) are also included in the definition of Zi.

Pesaran (2006) proposed the common correlated effects pooled (CCEP) estimator with F replaced by the estimator
F̂ = Z in Equation (2), that is,

�̂�CCEP =

(
1

NT

N∑
i=1

X ′
iMF̂X i

)−1 (
1

NT

N∑
i=1

X ′
iMF̂yi

)
. (5)

As it is well acknowledged in the literature, the so-called “rank condition”:

rk(E[(Ci,Ci,⟂)]) = R + R⟂ ≤ Kz (6)

JUODIS790
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should hold for this estimator to have a well behaved normal limiting distribution; see, for example, Westerlund and
Urbain (2013). In contrast to Pesaran (2006), we do not assume that Equation (6) holds. Instead, motivated by the fact that
yi is the only variable of interest, while the set of covariates X i is usually much larger, we assume that at least all factors
in F can be consistently estimated from cross-section averages of Zi. Following Juodis et al. (2021) we assume that F⟂ are
potentially inestimable from the cross-section averages. For specific DGPs that motivate this choice, we refer to Juodis
et al. (2021). See also Li et al. (2020) and Norkutė et al. (2021) for an alternative motivation for a setup with more factors
in X i than in yi.

This paper. The results in this paper are built upon a specific deviation from the usual “rank condition”. In particular,
instead of Equation (6) we assume that

rk(E[Ci]) = R, and rk(E[Ci,⟂]) = 0. (7)

Under this assumption the cross-sectional averages of Zi are absolutely uninformative about F⟂.

Remark 1. In this paper, we assume that the number of estimable factors is always R. Alternatively, a setup where the
number of factors estimated by Z (call it Rz) is larger than R can be allowed, as for Rz > R we can always augment the
vector 𝝀i with Rz − R rows of zeros. See the supporting information for a setup to motivate the decomposition into F
and F⟂ factors.

2.2 The problem of too many cross-section averages

As shown in Theorem 3.1. of Juodis et al. (2021), the presence of F⟂ in Zi and/or X i implies that for Kz > R the CCEP
estimator can have a non-standard asymptotic distribution. In particular, for a special case of Zi = (yi,X i) and N ≈ T, the
aforementioned paper shows that

√
NT(�̂�CCEP − 𝜷0) = Σ−1

X

(
b0 +

√
N
T

b1 +
√

T
N

b2 +
√

T𝝃

)
+ oP(1). (8)

Here b0 is the mean-zero asymptotically normal variance component which is present even if the factor component F𝝀i
is known. The first bias term, b1, is the “Nickell bias” associated with models containing weakly exogenous regressors
that are estimated using the “fixed effects” approach. The other terms, b2 and 𝝃, originate from the estimation error when
factors F are replaced by the corresponding estimates F̂ = Z. In particular, here b2 is the incidental parameter bias term
originating from estimating (T) elements in F̂.

The most challenging component in the above decomposition is 𝝃. In particular, 𝝃 = P(1) is a non-linear function of
sample averages of Ci,⟂, that is, the factor loadings of factors that are not estimable by Z. Hence, the asymptotic distribution
of �̂�CCEP is not (mixed-) normal. Furthermore, as Ci,⟂ are inestimable from the residuals, the asymptotic distribution of
�̂�CCEP cannot be easily replicated/simulated using, for example, bootstrap or re-sampling. Finally, the asymptotic behavior
of the inverse term Σ−1

X (the distributional limit of the inverse term in Equation (5)) is also non-standard. This limit is
generally stochastic and correlated in a non-linear way with the stochastic components in 𝝃.3

Heterogeneous coefficients. The common way to model heterogeneous coefficients is the so-called random coefficients
model, that is,

𝜷 i = 𝜷0 + �̃� i, �̃� i ∼ IID(𝟎,Σ𝜷 ). (9)

If the joint distribution of the factor loadings and �̃� i is unrestricted, then pooled estimators are generally inconsistent.
However, we can use the CCE principle to estimate 𝜷 i unit-by-unit, that is,

�̂�CCE,i =
( 1

T
X ′

iMF̂X i

)−1 ( 1
T

X ′
iMF̂yi

)
, i = 1, … ,N. (10)

3We note that these components (i.e., b2, 𝝃, and ΣX ) are non-standard only when Kz > R.
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Under the assumptions of Pesaran (2006) with R⟂ = 0 this estimator can be expanded as√
T(�̂�CCE,i − 𝜷 i) = Σ−1

X ,ib0,i + oP(1). (11)

Here b0,i is an asymptotically normal random variable, while Σ−1
X ,i is the unit-specific limit of the corresponding term in

Equation (10).
These results explicitly build upon the fact that R⟂ = 0. If this condition is violated, then one can show4 that the presence

of F⟂ leads to a non-trivial contribution to the distribution of the unit-by-unit estimator:

√
T(�̂�CCE,i − 𝜷 i) = Σ−1

X ,i

(
b0,i +

√
T
N
𝝃i

)
+ oP(1). (12)

Here, as with pooled estimator, ΣX ,i is a random matrix, while 𝝃i = P(1) is a non-linear function of random variables
generated by cross-section averages of Ci,⟂. Thus, unlike b0,i that are (conditionally on factors) independent for all pairs
(i, 𝑗), the residual components 𝝃i are strongly dependent between all units i.

The individual specific coefficients are generally not of primal interest in empirical research. Instead, it is common
to consider the sample average of the estimated coefficients �̂�CCE,i, that is, the so-called mean-group CCE estimator
(CCE-MG):

�̂�CCEMG = 1
N

N∑
i=1
�̂�CCE,i. (13)

In our setup with R⟂ > 0, this estimator can be expanded

√
N(�̂�CCEMG − 𝜷0) =

1√
N

N∑
i=1
�̃� i +

1
N

N∑
i=1

Σ−1
X ,i𝝃i

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=𝝃MG

+ oP(1). (14)

The additional component 𝝃MG = P(1) is a non-linear function of asymptotically normal random variables. Hence, all
the negative properties associated with the pooled estimator also extend to mean-group estimator.

3 DISCUSSION OF THE MAIN RESULT

In this section, we introduce the regularized CCE estimator and summarize the main theoretical results of this approach.
All formal statements are relegated to Section 4.

3.1 Regularized estimation

The presence of non-standard (non-normal) components 𝝃 and Σ−1
X makes valid inference on 𝜷0 using the CCE method-

ology practically impossible. In what follows, we show that a simple modification of the CCE procedure is sufficient to
solve these problems. To be specific, we suggest the following procedure to construct the regularized version of the CCEP
and CCE-MG estimators, for a given choice of Zi (that might differ from the standard option of Zi = (yi,X i)).

1. Construct Σ̂ = (NT)−1 ∑N
i=1 (Zi − Z)′(Zi − Z).

2. Construct the normalized factor proxies F̂ = Z
(
Σ̂−1∕2

)′

.5

3. Use the Eigenvalue Ratio (ER) approach of Ahn and Horenstein (2013) to estimate R:

R̂ = argmaxr∈{1,… ,rmax}ER(r); ER(r) = �̂�r

�̂�r+1
, (15)

where �̂�r is the rth largest eigenvalue of T−1F̂
′
F̂. Set rmax = Kz − 1.6

4Follows immediately from Theorem 3.1 in Juodis et al. (2021).
5Here we follow the convention to denote by A−1∕2 the inverse of a square root of symmetric positive definite matrix A.
6See Remark 6 in Section 3.3 for implementation with rmax = Kz.
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4. Construct F̂r =
√

TÛ R̂, where Û R̂ are the associated eigenvectors corresponding to the first R̂ largest eigenvalues
of T−1F̂F̂

′
.

5. Use F̂r to define the regularized CCEP/CCE-MG estimator:

�̂�rCCEP =

(
1

NT

N∑
i=1

X ′
iMF̂r

X i

)−1 (
1

NT

N∑
i=1

X ′
iMF̂r

yi

)
, (16)

or

�̂�rCCEMG = 1
N

N∑
i=1
�̂�rCCE,i =

1
N

N∑
i=1

( 1
T

X ′
iMF̂r

X i

)−1 ( 1
T

X ′
iMF̂r

yi

)
. (17)

In Section 4 we show that rCCE estimators have asymptotically normal distribution over a wider class of DGPs than
the original CCE estimators.

In order to appreciate how large the gains from regularization can be, we consider a simplified version of Equations (1)
and (3) with one regressor (i.e., Kz = 2) and R = R⟂ = 1. The finite sample results for the pooled estimators are illustrated
graphically in Figure A1.

From the figure we see that due to the non-linearities associated with 𝝃 and Σ−1
X , the standard CCEP estimator has a

bimodal distribution, invalidating normal approximation. The regularized version, on the other hand, is uni-modal and
resembles the normal distribution well. Finally, in this example, in almost 99% of the cases the ER criterion selects the
correct number of estimable actors, R = 1.

Remark 2. We use the singular value based regularization idea similar to the one recently used by Juodis and
Sarafidis (2022) in the context of fixed T factor-augmented panel data models with endogenous regressors. The main
difference is that in this context we use the least squares principles for estimation, whereas they use the GMM
estimator of Robertson and Sarafidis (2015). Moreover, in this paper we mostly focus on the case where jointly
N,T → ∞.

The proposed regularization procedure (and the estimator of R) is closely related to the literature on rank tests; see,

for example, Robin and Smith (2000) and Kleibergen and Paap (2006). In particular, normalization by
(
Σ̂−1∕2

)′

relates to
the common practice in that literature to consider rank statistics over appropriately rotated quantities. Normalization by(
Σ̂−1∕2

)′

ensures that eigenvalues and eigenvectors are invariant to any non-singular column transformations of Zi. This

way the estimator F̂r is invariant to 𝜷 when Zi = (yi,X i), that is, the property shared by the original CCE estimator.
Estimation of R from Z is fairly straightforward as compared to the usual principal components/factor estimation of

R (and R⟂). As at least one of the dimensions of Z is fixed, consistent estimation of R can be done for T fixed/large,
with only N → ∞. In contrast, R (and R⟂) in the principal components (PC) literature is estimated from the sample
variance–covariance matrices, for example, N−1 ∑N

i=1 yiy′
i this requires that both N → ∞ and T → ∞, making it a more

demanding task for moderate sized panels.7
Finally, as with any CCE procedure, our proposed regularized CCE estimator is less sensitive to weak factors (see, e.g.,

Chudik et al., 2011) than PC estimators, studied in, for example, Westerlund and Urbain (2015) and Li et al. (2020). On
the other hand, similar to the standard CCE estimator, the rCCE estimator requires a restriction on the rank condition as
in Equation (7).

3.2 Inference

Below we summarize the inferential strategy for the pooled estimator. The same procedure can be directly applied to
the regularized CCE-MG estimator after ignoring Step 2. It is important to notice that, the commonly used plug-in

7See, for example, Breitung and Hansen (2021), for some recent simulation results.
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variance–covariance matrix estimator of the form

Σ̂rCCEMG = 1
N − 1

N∑
i=1

(�̂�rCCE,i − �̂�rCCEMG)(�̂�rCCE,i − �̂�rCCEMG)′, (18)

can be inconsistent for the variance–covariance matrix of �̂�rCCEMG. In particular, this estimator fails to account for the
estimation uncertainty coming from the regularized analog of 𝝃MG. For this reason, we suggest that the proposed bootstrap
procedure should be used irrespective of the degree of heterogeneity in 𝜷 i.

1. Obtain �̂�rCCEP and R̂ using the procedure outlined above.
2. Construct the bias-corrected estimator �̃�rCCEP by removing the b2 bias first (using the analytical formulae in the

supporting information). If the Half-Panel jackknife correction of Dhaene and Jochmans (2015) for the “Nickell”
bias is also needed, then the b2 component should be removed for all three estimators (i.e., for the full sample and
the two half-sample �̂�rCCEP estimates separately).8 For all sub-sample estimators take R̂ as estimated in Step 1.

3. Let Qi = (yi,X i,Zi), i = 1, … ,N. The cross-section bootstrap randomly draws Q∗
1, … ,Q∗

N from {Q1, … ,QN} with
replacement. Use {Q∗

1, … ,Q∗
N} to construct �̃�∗

rCCEP,b, taking R̂ as in Step 1.
4. Repeat Step 3 B times and collect all estimators {�̃�∗

rCCEP,b}B
b=1.

5. Construct percentile bootstrap confidence intervals using {�̃�∗
rCCEP,b}B

b=1.

When all regressors are strictly exogenous the Half-Panel jackknife correction in Step 2 is not necessary. b2 bias term,
on the other hand, is generally non-zero for all CCEP estimators (even if R⟂ = 0); see, for example, Westerlund and
Urbain (2015), Westerlund (2018), and Karabıyık et al. (2019). Thus, this is not a by-product of the regularization proce-
dure suggested in this paper. As the proposed procedure mostly addresses the way factor proxies F̂r are constructed (and
corresponding sampling uncertainty), and can be used for any model that uses Z for factor proxies, for example, Focused
Information Criterion based model averaging of Yin et al. (2021), the gravity model of Desbordes and Eberhardt (2019),
or the discrete choice model of Boneva and Linton (2017).

Remark 3 (Bootstrap). The bootstrap procedure largely follows the algorithm of Galvao and Kato (2014), where per-
centile bootstrap confidence intervals are constructed for de-biased estimators. Finite sample evidences provided in
this paper indicate that the proposed bootstrap procedure has good size control and power for reasonable values of B,
for example, B = 199. While we do not formally prove consistency of the outlined bootstrap procedure, we conjecture
that (point-wise) consistency of this procedure can be established using the proof strategy of Galvao and Kato (2014),
Westerlund et al. (2019), and De Vos and Stauskas (2021). Here point-wise consistency is defined with respect to
the two DGPs indexed by the nuisance parameters Ci,⟂ mentioned in Section 2. For more details, see the supporting
information.

Remark 4 (Fixed T Results). While the main focus of this paper is on the large N,T asymptotic distribution of the
rCCE estimator, the CCEP estimator can be consistent for T fixed; see, for example, Su and Jin (2012) and Westerlund
et al. (2019).9 In Section 4.4 we also study asymptotic results of the rCCEP estimator when the time-series dimension
is assumed to be fixed.

The proposed procedure is only expected to perform well if the number of factors R can be estimated precisely. Given
that consistency of the regularization procedure only required that N is large, while T can be fixed/large, one can expect
good performance of this procedure already for cases where one of the dimensions is moderate in size. This intuition is
confirmed using simulated data, where the correct selection rates exceed 90% already for (N,T) = (20,20). Consistency of
the selection procedure is proved in Section 4.2 (for T large) and Section 4.4 (for T fixed).

8 Alternatively, use double jackknife or other variants proposed in Cruz-Gonzalez et al. (2017).
9 However, only the paper of Westerlund et al. (2019) rigorously proves consistency and (mixed-) asymptotic normality of the CCEP estimator for the
setup with Kz > R and R⟂ = 0.

JUODIS794

 10991255, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2899 by U

va U
niversiteitsbibliotheek, W

iley O
nline L

ibrary on [14/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Remark 5. While the suggested procedure is informative about R, it is completely silent about R⟂. Thus, even if for a
given dataset we observe that R̂ < Kz, this should not be interpreted as any evidence for the non-standard distribution
of the regular CCE estimator (as R⟂ = 0 case cannot be ruled out).

3.3 Implementation

In this section, we provide additional comments regarding the implementability of the procedure discussed in this paper.
Additional technical notes are relegated to the supporting information.

Remark 6 (Maximum Number of Factors). To allow for the possibility that rmax = Kz, we use the dummy-eigenvalue
idea put forward in Juodis and Sarafidis (2022): in the second step we augment Zi with an additional column that has
zero expectations by construction. Our preferred choice is to augment the original factor proxies F̂, with a column
f̂ p = F̂pıKz∕Kz. Here the “perturbed” factor proxies F̂p are constructed as F̂ upon replacing Zi by Zi,(p) = Zi𝜔i, where
𝜔i follows the Rademacher {−1; 1} distribution.

Remark 7 (Observed Factors). It is a common practice to include ıT as constant factor in the model, that is, the standard
time-invariant fixed effect. To accommodate such possibility, the regularized factor proxies should be calculated on
the residualized data (with respect to observed factors). This modification plays no major role for the main result of
this paper, except for the “Nickell bias” term which should be appropriately adjusted.

Remark 8 (Minimum Number of Factors). In this paper, we explicitly assume that R > 0. If this assumption is expected
to be violated, then it can be tested using any (appropriately adjusted) standard rank test, for example, Kleibergen
and Paap (2006). However, we believe that R > 0 assumption is highly plausible for most applications, as evidently
supported by the common practice of including time-specific (intercepts) effects in empirical models.

Remark 9 (On Bootstrap Resampling). Westerlund et al. (2019) also mention the use of cross-section bootstrap in the
context of CCEP estimator. However, while they suggest the fixed F̂

(b)
= F̂ bootstrap procedure (see their supporting

information), we follow Goncalves and Perron (2014) and re-estimate F̂
(b)

in every bootstrap replication. This way, we
appropriately account for factor estimation uncertainty that can be non-neglile for R⟂ > 0. In contrast, the setup of
Westerlund et al. (2019) is for R⟂ = 0, thus the additional re-estimation step is redundant.

4 LARGE SAMPLE RESULTS

4.1 Assumptions

In what follows we discuss a set of sufficient conditions used throughout this paper. These assumptions are mostly inspired
by those of Pesaran (2006) and Juodis et al. (2021), but are appropriately modified for the purpose of this paper.

For the DGP in Equations (1), (3), and (4), denote by ei,t = (𝜀i,t, v′i,t,u′
i,t)

′ the full vector of the idiosyncratic compo-
nents. Furthermore, denote by dt = (f ′

t , f ′
t,⟂)′ the full vector of unobserved factors. It is useful to introduce the following

stationary autocovariance functions for any lag value h:

Γd(h) = E[(dt − E[dt])(dt−h − E[dt])′] =
(

Γ(h) Γ⟂(h)
Γ⟂(−h)′ Γ⟂,⟂(h)

)
, (19)

Γi,e(h) = Ei[(ei,t − Ei[ei,t])(ei,t−h − Ei[ei,t])′] =

( Γi,𝜀,𝜀(h) Γi,𝜀,v(h) Γi,𝜀,u(h)
Γi,𝜀,v(−h)′ Γi,v,v(h) Γi,v,u(h)
Γi,𝜀,u(−h)′ Γi,v,u(−h)′ Γi,u,u(h)

)
. (20)

Here Ei[·] denotes the expectation operator conditional on all i unit-specific time-invariant random variables. Given the
conditioning argument, the moment restrictions in the next assumption should hold almost surely. Let 𝓁 be some positive
integer to be specified later.
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Assumption 4.1 (Errors). (a) (i) ei,t is a covariance stationary process independent across i; (ii) ei,t and e𝑗,s are inde-
pendent for all t, s and i ≠ 𝑗; (b) Ei[ei,t] = 𝟎 and Ei[||ei,t||𝓁+𝛿] < ∞; (c) (i) ei,t admits factorization ei,t = Ωiẽi,t with:
Γi,e(h) = ΩiΓẽ(h)Ω′

i ; (ii) The sequence {Γẽ(h)}∞h=−∞ is absolutely summable; (d) (i) Γi,𝜀,v(h) = 𝟎′K for h ≥ 0. Γi,𝜀,𝜀(h) = 0
for h ≠ 0; (ii) Γi,v,v(0) and Γi,u,u(0) are positive definite matrices for every i.

Assumption 4.1 is fairly standard in the panel data literature with weakly exogenous regressors and is inspired by those
in Pesaran (2006) and Juodis et al. (2021). For example, similarly to Moon and Weidner (2017) we allow the regressors X i
to be weakly exogenous, as Γi,𝜀,v(h) is unrestricted for h < 0. To allow for this possibility and, at the same time, to rule out
any endogeneity concerns, we assume that 𝜀i,t are serially uncorrelated in (d).10

Assumption 4.2 (Factors). (a) (i) dt is a covariance stationary process with E[dt] = 𝟎R+R⟂ and Σd = Γd(0) a positive
definite matrix; (ii) E[||dt||r+𝛿] < ∞; (b) The sequence {Γd(h)}∞h=−∞ is absolutely summable; (c) Γ⟂(0) = OR×R⟂ ; (d) ei,t
and ds are mutually independent for all i, t and s.

The restriction on E[dt] = 𝟎 is without loss of generality, as long as the model contains time-invariant fixed effects,
for example, as in our empirical application. Finally, as it is argued by Juodis and Reese (2021),11 we can without loss of
generality assume that Γ⟂(0) = OR×R⟂ .

For the next assumption, definite the following stacked vector

hi = (𝝀′i , vec(Ωi)′, vec(Ci)′, vec(Ci,⟂)′, vec(Λi)′, vec(Λi,⟂)′)′. (21)

Assumption 4.3 (Unit Heterogeneity). (a) The random vector hi is independent and identically distributed over i
with E[||hi||𝓁+𝛿] < ∞; (b) E[Ci] = C such that rk(C) = R with 0 < R < Kz while E[Ci,⟂] = O; (c) hi and dt are mutually
independent for all i and t; (d) hi and ẽ𝑗,s are mutually independent for all i, 𝑗, t, s.

Notice that this assumption leaves the dependence structure between the individual elements of hi completely unre-
stricted. In this regard, we follow the conventional “fixed-effects” approach (even if hi is assumed to be a random vector).
Assumption 4.3 (b) is the relevant rank condition for this paper which together with Assumption 4.1 directly implies that:

ZC′(CC′)−1 p
→F, (22)

as N → ∞ for any fixed T.

Assumption 4.4 (Eigenvalues). The eigenvalues of the [R × R] matrix CE[Σ̂]−1C′Γ(0) are distinct.

Assumption 4.4 is analogous to the eigenvalue condition in Bai (2003) (Assumption G), which ensures the existence of
a well defined asymptotic rotation matrix for F̃r.12 We note that Assumption 4.4 rules out any forms of “weak” factors
from the model; see, for example, Chudik et al. (2011). For those setups the matrix C cannot be assumed to be a fixed
constant, and instead should be modeled as a drifting sequence.

Assumption 4.5 (Asymptotics). N∕T → c as N, T → ∞ jointly with c ∈ (0,∞).

Assumption 4.5 bounds the relative expansion rate of N and T such that c ≠ 0 and c−1 ≠ 0; see, for example,
Fernández-Val and Weidner (2016) and Juodis et al. (2021).

4.2 Pooled estimator

Our first result formally establishes asymptotic validity of the ER procedure.

10Once appropriately extended our results can be also used to derive asymptotic properties of the CCE-GMM procedure of Everaert and Pozzi (2014).
11See Lemma S.18 in the supporting information of that paper.
12In this paper, we will not study in detail the properties of the factor estimates themselves, only their contribution to the asymptotic distribution of the
rCCE estimators.
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Proposition 1. Under Assumptions 4.1-4.5 with 𝓁 ≥ 4:

lim
N,T→∞

P(R̂ = R) = 1. (23)

Using this result, we can treat the true number of factors R as given in the remainder of this section. In Section 4.4 we
also show that a similar conclusion also holds for T fixed (under a slightly modified set of regularity conditions).

The next theorem fully characterizes the asymptotic properties of the pooled regularized CCE estimator. The results are
provided in the “semi-asymptotic” form (i.e., without taking probability limits in N). This approach makes the direct com-
parison with the results in, for example, Westerlund and Urbain (2015) and Juodis et al. (2021) relatively straightforward.
Finally, we denote by Σ̂F⟂ = T−1F′

⟂F⟂, G = C, G⟂ = C⟂, and V i,+ = V i + F⟂Λi,⟂.

Theorem 1. Under Assumptions 4.1–4.5 with 𝓁 ≥ 4:

√
NT(�̂�rCCEP − 𝜷0) = Σ−1

X ,r

(
b0 +

√
N
T

b1 +
√

T
N

b2,r +
√

T𝝃r

)
+ oP(1), (24)

where:
ΣX ,r = E[vi,tv′i,t] + E[Λ′

i,⟂Γ⟂,⟂(0)Λi,⟂] + oP(1), (25)

b0 = 1√
NT

N∑
i=1

V′
i,+𝜺i +

(
1
N

N∑
i=1
𝝀′i ⊗ Λ′

i,⟂

)(
S′ ⊗ IR⟂

) 1√
NT

N∑
i=1

vec(F′
⟂Ui), (26)

b1 = −
∞∑

h=1
E[Γi,𝜀,v(−h)′]tr[Γ(h)Γ(0)−1], (27)

b2,r =
1
N

N∑
i=1

Λ′
iS

′

(
NG′

⟂Σ̂F⟂G⟂ + 1
N

N∑
i=1

Ei[ui,tu′
i,t]

)
S𝝀i

+ 1
N

N∑
i=1

Λ′
iS

′Ei[ui,t𝜀i,t] +
1
N

N∑
i=1

Ei[vi,tu′
i,t]S𝝀i, (28)

𝝃r =

(
1
N

N∑
i=1
𝝀′i ⊗ Λ′

i,⟂

)(
S′ ⊗ Σ̂F⟂

) 1√
N

N∑
i=1

vec
(

Ci,⟂
)
, (29)

S = −Σ̂−1G′(GΣ̂−1G′)−1. (30)
Here all terms are P(1).

Below we briefly explain the properties of all stochastic components presented in Theorem 1. The variance component
b0 consists of two terms. The first part is identical to that of the infeasible (oracle) estimator where F is known, while
the second part is the variance contribution due to the estimation error originating from U i (the idiosyncratic part of Zi).
Using Theorem 3.2 of Hall and Heyde (1980) it is a straightforward to show that b0 has normal limiting distribution. The
first bias term, b1, is the “Nickell” bias term, only depends on F factors, thus is the same as for the infeasible estimator
with F known (and also the standard CCEP estimator).

The bias term b2,r consists of three components that are functions of the unit level time invariant parameters from
Assumption 4.3. The first component is non-zero as long as the second cross-moment between Λi and 𝝀i is non-negligible.
Furthermore, this component is stochastic in the limit N → ∞ (as it is a quadratic form in

√
NG⟂). The second (third)

component is non-negligible only if Λi (𝝀i) is uncorrelated with certain elements of Ωi, and the corresponding factor
loadings are mean-zero. As we discuss in the supporting information, most of the elements in b2,r can be consistently
estimated using the plug-in principle. Thus, the analytical bias-correction suggested in Section 2 is feasible.

Finally, unlike the non-regularized counterpart, 𝝃r is a linear function of C⟂. This component is present due to the
estimation error stemming from the common part of Zi, that is, F⟂Ci,⟂. As for each pair (i, 𝑗) these contributions are
strongly correlated, cross-section dependence induced by this term is such that the convergence rate of the rCCEP is
primarily determined by 𝝃r, and not by b0. While the regularization by itself is not sufficient to recover the parametric√

NT convergence rate of the pooled estimator, this component is at least asymptotically normal, in contrast with the
non-regularized CCEP estimator.

JUODIS 797

 10991255, 2022, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jae.2899 by U

va U
niversiteitsbibliotheek, W

iley O
nline L

ibrary on [14/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Remark 10. Notice that for Kz = R and R⟂ = 0 (i.e., no regularization is required), the scaling matrix S reduces to
S = −G−1, which is exactly the result in Westerlund and Urbain (2015) and Karabıyık et al. (2019). Finally, for Σ̂ = IKz

we obtain the result of Westerlund and Urbain (2015) for Kz > R (later shown in Karabıyık et al. (2017) to be incorrect).

Regularization effectively mitigates most of the non-desirable features of the standard CCEP estimator for R⟂ > 0.
However, the method cannot solve all issues originating from the fact that Z are uninformative about F⟂. The presence
of both b0 and 𝝃r greatly complicates any attempts to perform inference which is uniform over the parameters' space
indexed by the covariance structures of F⟂ and hi. The proposed bootstrap procedure can be shown to be asymptotically
valid when either (for all elements point-wise) E[(𝝀i ⊗Λi,⟂)] = (N𝜅) for 𝜅 ∈ (−1∕2; 0] or

∑N
i=1(𝝀i ⊗Λi,⟂) = oP(N), that is,

when all loadings either strongly correlated or are weak.13 Hence, the bootstrap procedure can be shown to be point-wise
consistent for the setups of Juodis et al. (2021) and Pesaran (2006), respectively. On the other hand, for some of the
“intermediate” cases, where some of the factor loadings are strong but mutually uncorrelated, thus

√
N𝝃r = P(1),14 this

procedure cannot be justified for all diagonal sequences of (N,T). Nevertheless, the bootstrap based inference is expected
to be well behaved, provided that in those cases N is sufficiently larger than T. A more detailed discussion regarding these
intermediate cases is relegated to the supporting information.

4.3 Mean-group estimator

In this section, we formally prove the consistency and asymptotic normality of the regularized CCE-MG estimator intro-
duced in Equation (17). This estimator is informative about the population mean when the underlying unit-specific
coefficients satisfy the random-coefficients setup in Equation (9). In what follows, we impose additional regularity
conditions on �̃� i (and all other unit-specific characteristics).

Assumption 4.6 (Bounded Heterogeneity). (a) The vector ha
i = (h′

i , �̃�
′
i)′ is independent and identically distributed

over i; (b) rk[Ei[vi,tv′i,t]] = K a.s. for each i; (c) ||vec(Ωi)|| < Δ, ||vec(Λi)|| < Δ and ||vec(Λi,⟂)|| < Δ for each i.

This assumption is more restrictive than usually considered in the CCE literature, as we assume that some unit-specific
variables uniformly bounded.15 Among other things, this assumption is sufficient to claim that supi||ha

i || = P(1), which
greatly simplifies derivations for all Mean-Group estimator. It is important to note that we do not impose any restrictions
on the covariance structure between the individual elements of ha

i .

Assumption 4.7 (Moments). (a) For D = (F,F⟂) and Ei = (ei,V i,U i) = ẼiΩ′
i we have E

[||T−1∕2Ẽ′
iD||4] < Δ for all

i; (b) E
[||T−1∕2∑

t

(
ẽi,tẽ′i,t − E

[
ẽi,tẽ′i,t

]) ||4] < Δ for all i; (c) E
[||(NT)−1∕2∑

𝑗

∑
t

(
ẽi,tẽ′𝑗,t − E

[
ẽi,tẽ′𝑗,t

]) ||4] < Δ for all i.

Assumption 4.7 is an adapted version of regularity conditions in Norkutė et al. (2021). We use these high-level conditions
to bound uniformly (over i) all estimation errors originating in �̂�rCCE,i − 𝜷 i. Equipped with these additional assumptions
we are able to formulate the next result.

Theorem 2. Under Assumptions 4.1-4.7 with 𝓁 ≥ 8:

√
N(�̂�rCCEMG − 𝜷0) =

1√
N

N∑
i=1
�̃� i +

1
N

N∑
i=1

Σ−1
X ,r,i𝝃r,i + oP(1), (31)

where
ΣX ,r,i = Ei[vi,tv′i,t] + Λ′

i,⟂Γ⟂,⟂(0)Λi,⟂, (32)

𝝃r,i =
(
𝝀′i ⊗ Λ′

i,⟂

)(
S′ ⊗ Σ̂F⟂

) 1√
N

N∑
i=1

vec
(

Ci,⟂
)
. (33)

Here S is defined as in Theorem 1.

13The standard inference procedures (including bootstrap) are applicable for the original CCEP estimator only in the latter case.
14Moreover, the stochastic part of b2,r can be of the same order as that of b0 or 𝝃r , see the supporting information for further discussion.
15This restriction can be motivated by similar conditions specified in, for example, Fernández-Val and Weidner (2016) and Juodis (2020).
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From Theorem 2 we can conclude that the rCCE-MG estimator is asymptotically normal with the variance–covariance
matrix determined by the composite vector 𝝍 i = (𝜷′

i , vec(Ci,⟂)′)′. Hence, for R⟂ > 0 sampling uncertainty associ-
ated with Z has a non-negligible variance effect, contrasting with the setup of Pesaran (2006). As a result, standard
normal/chi-square inference based using the variance–covariance matrix estimator in Equation (18) can be both under-
and over-sized (see the corresponding section in supporting information for an intuitive explanation). For this reason,
cross-sectional bootstrap (with re-estimated Z and F̂r in every replication) is more appropriate.

4.4 Fixed T Theory

In this section, we discuss the properties of the pooled rCCE estimator in fixed T panels (as in Westerlund et al., 2019). In
particular, we re-establish the main conclusions from Proposition 1 and Theorem 1 under modified assumptions discussed
in the supporting information.

At first, we prove validity of the ER criterion for fixed T.

Proposition 2. Under Assumptions S.1.1-S.1.4 for T fixed:

lim
N→∞

P(R̂ = R) = 1. (34)

Hence, subject to some additional (mild) regularity conditions the R can be consistently estimated even for T fixed.
Our next result characterizes the asymptotic properties of the pooled regularized CCE estimator for T fixed, where all
regressors are strictly exogenous.

Theorem 3. Under Assumptions S.1.1-S.1.4 for T fixed:

√
N(�̂�rCCEP − 𝜷0) = Σ−1

X ,r
(

b0 + 𝝃r
)
+ oP(1), (35)

where:

ΣX ,r = E[V′
iMFVi|F] + E[Λ′

i,⟂Σ̂MFF⟂Λi,⟂|F,F⟂] + oP(1), (36)

b0 = 1
T

1√
N

N∑
i=1

V′
i,+MF𝜺i +

(
1
N

N∑
i=1
𝝀′i ⊗ Λ′

i,⟂

)(
S′ ⊗ IR⟂

) 1
T

1√
N

N∑
i=1

vec(F′
⟂MFUi), (37)

𝝃r =

(
1
N

N∑
i=1
𝝀′i ⊗ Λ′

i,⟂

)(
S′ ⊗ Σ̂MFF⟂

) 1√
N

N∑
i=1

vec
(

Ci,⟂
)
. (38)

Here S is defined as in Theorem 1 and Σ̂MFF⟂ = T−1F′
⟂MFF⟂. All other terms are P(1).

Due to the presence of stochastic common factors (F and F⟂) in all leading components of Theorem 3, the asymptotic
distribution of the rCCEP estimator is only mixed-normal for T fixed. The distributional result of this type is common for
all fixed T estimators with common factors; see, for example, Westerlund et al. (2019) and Juodis and Sarafidis (2022).
When R⟂ = 0 and R = Kz our result coincides with that of Westerlund et al. (2019) derived for the original CCEP estimator.
On the other hand, in comparison to CCEP for R < Kz (with R⟂ = 0) the rCCEP estimator follows a more conventional
asymptotic distribution.

As compared to Theorem 1, the distinguishing feature of the main result of Theorem 3 is the absence of b1 and b2,r
components. While the former is missing by assumption (strict exogeneity of regressors), the latter is negligible in the T
fixed setup. The fact that b2,r is asymptotically negligible has some non-trivial benefits as the asymptotic distribution is
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always (mixed-) normal. As such, the cross-sectional bootstrap (as implemented in Section 3) is always valid, irrespective
of the correlation structure between the factor loadings.

Remark 11. If at least one of the regressors is only weakly exogenous, the rCCEP estimator is no longer consistent for
T fixed. In that case similarly to Everaert and De Vos (2021), one can consider analytical bias-correction (for a certain
type of the DGPs of X i). For more general DGPs, where analytical correction is impossible, the linear GMM estimators
of (Juodis & Sarafidis, 2021, 2022) are more suitable alternative to the bias-corrected (r)CCEP estimator. See Juodis
and Sarafidis (2018) for a more comprehensive review of the GMM procedures (for fixed T panels).

5 SIMULATION STUDY

In this section, simulation experiments are carried out to assess the finite sample performance of the proposed regular-
ized CCE procedure. The details of the DGP are provided in Section 5.1, followed by the summary of the results for the
homogeneous and the heterogeneous coefficients setups.

5.1 The setup

We restrict our attention to a simplified DGP of Section 2 with K = 1 and two factors:

yi = xi𝛽i + f𝜆i + 𝜺i, (39)

xi = f ⟂𝛾i,⟂ + f𝜆i + vi. (40)

We focus on the situations where the vector f can be always approximated by the cross-section averages Z = (ȳ, x̄) (i.e.,
Kz = 2), while this is not always the case for f ⟂.16 To be specific, we assume that:17

(
𝜆i
𝛾i,⟂

)
∼ N

((
1
𝛾⟂

)
,

(
1 0.5

0.5 1

))
. (41)

As f ⟂ does not enter the equation for yi directly, rk[E[Ci]] = 1 + rk[𝛾⟂]. Thus, for 𝛾⟂ = 0 we consider the “more
observables than factors” setup, while for 𝛾⟂ = 1 we have as many observables as the underlying (identifiable) factors.18

The common factors dt = (𝑓t, 𝑓t,⟂)′ are drawn from the multivariate normal distribution with an identity
variance–covariance matrix and Γd(h) = O2×2 for all h ≠ 0. The DGP for ei,t = (𝜀i,t, vi,t)′, has an identical second moment
structure.

Finally, for the homogeneous coefficients setup we set 𝛽i = 0 for all i. The setup where all coefficients are set to zero,
is without loss of generality as all quantities are invariant to non-singular transformations of Zi. In the heterogeneous
coefficients setup we follow Pesaran (2006) and set 𝛽i ∼ N(0, 0.04).19

In total, we consider nine combinations of (N,T), where every dimension takes values in the set {20,50, 100}. Thus,
the total of 18 different simulation designs is considered, as we also vary 𝛾⟂ ∈ {0, 1}. For each design, the number of
replications is set to M = 4000. Finally, all stochastic quantities are drawn in every replication.

Computational notes. We implement our regularization procedure using the five steps algorithm described in Section 3.
To accommodate the possibility that Kz = R, we use the dummy column idea from Remark 6. B = 199 bootstrap samples
(i.e., 200 including the original sample) are used to calculate the rejection frequencies with the 5% nominal level. For all
estimators we report summary statistics for their scaled and centered versions—

√
N(�̂� − 𝜷0). We report the mean bias

and the RMSE, and the empirical rejection frequencies for three null hypotheses: 𝛽0 = {−0.1; 0; 0.1}. Here at 𝛽0 = 0, we

16Here in order to shrink the nuisance parameter space we assume that the factor loadings on f in both equations are perfectly correlated.
17Note that in Figure A1, the correlation coefficient between the factor loadings is higher, and is set to ≈ 0.625.
18In the supporting information we consider a variation of this setup where the factor loadings 𝜆i and 𝛾i,⟂ are assumed to be uncorrelated.
19Note that this DGP as well as the DGP for factor loadings violates Assumption 4.6. However, that assumption is only sufficient and not necessary, the
all conclusions of Theorem 2 are expected to hold for random variables with thin tails.
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#R̂ = 1
N T 𝜸⟂ = 0 𝜸⟂ = 1
20 20 0.9363 0.0525
20 50 0.9540 0.0198
20 100 0.9578 0.0160
50 20 0.9893 0.0033
50 50 0.9940 0.0000
50 100 0.9945 0.0000
100 20 0.9990 0.0000
100 50 0.9988 0.0000
100 100 0.9985 0.0000

Note. Homogeneous setup. The ER
statistic is implemented as in
Equation (15) using the normalized
cross-section averages, and the
dummy-column as in Remark 6.
For 𝛾⟂ = 0, the true number of
factors is R = 1, while for 𝛾⟂ = 1 it
is R = 2. M = 4000.

TABLE 1 Eigenvalue Ratio (ER) based estimates of R

report the size, while at the other two values we report (non-adjusted) power. We note that for 𝛾⟂ = 0 all pooled estimators
are

√
N−consistent, while for 𝛾⟂ = 1 they are

√
NT−consistent. Furthermore, as the regressor is strictly exogenous, the

rCCEP estimator is fixed T consistent in this setup.

Remark 12. In the supporting information, we analyze several extensions of the basic Monte Carlo design provided
above. In particular, we consider the setups with (a) uncorrelated factors loadings 𝜆i and 𝛾i,⟂; (b) heteroscedastic error
terms; (c) weakly identified R from the ER criterion. We also compare the properties of the pooled bias-corrected
regularized CCE estimator with those of the bias-corrected Interactive FE (IFE) estimator of Bai (2009). The IFE
estimator is a popular alternative to the CCE estimator for the setups where N ≈ T. Overall, we find that the IFE
estimator dominates the rCCE approach when the true number of factors is weakly identified, while the rCCE is the
preferable approach for the setups with strong heteroscedasticity

5.2 Results: Pooled estimator

In this section analyse the properties of the following three estimators: the standard CCE (“CCE”), the regularized CCE
(“rCCE”), and the bias-corrected regularized CCE (“rCCE-BC”). We use the suggested ER statistic to estimate the number
of factors R.

From Table 1 we see that one can precisely estimate the true number of factors (either 1 or 2) already for very limited
sample sizes. As the procedure is consistent for T fixed, the length of the individual time-series plays almost no role for
the selection precision, while there is a clear benefit of larger N.

The estimation results are provided in Table 2. Below we briefly summarize the main findings.

• The CCE estimator is substantially biased for 𝛾⟂ = 0. This is especially pronounced for smaller values of N. However,
even when the bias is negligible, the bootstrap based inference procedure does not control size. Given the non-normality
of the asymptotic distribution, this result is expected.

• For 𝛾⟂ = 0 the rCCE estimator is well behaved in finite samples. The magnitude of the b2,r bias-term implied by the
DGP is rather negligible. Consequently, the bootstrap based testing procedure is well-sized. The power is non-negligible
already for small values of (N,T), even if the corresponding power curves can be asymmetric for those combinations.

• The effect of bias-correction is mostly negligible for 𝛾⟂ = 0. For a few combinations of (N,T) the analytical
bias-correction shifts the bootstrap distribution leading to an oversized test. In terms of the RMSE, the bias-correction
is marginally beneficial. These results are mostly driven by the slow

√
N convergence rate of the rCCE estimator, where

bias terms are expected to be of lower order than the variance.
• For 𝛾⟂ = 1, the CCE estimator is consistent and asymptotically normal. Moreover, because of the estimation uncertainty

associated with R̂, for small values of N it dominates the rCCE estimator. However, already for N = 50, any discrep-
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ancies between the two estimators quickly disappear. Bootstrap inference is substantially distorted (for the estimator
without bias-correction), due to the non-negligible bias term b2 = b2,r. Size distortions generally increase in T∕N.

• For 𝛾⟂ = 1 bias-correction is instrumental for size-correct inference. At the expense of a marginal increase in the
variance, the bias-corrected estimator based bootstrap confidence intervals provide rejection rates close to the nominal
5% level. At the same time, as can be expected, bias-correction symmetrizes the power curves around the true value.

5.3 Results: Heterogeneous estimator

In this section, we analyse the properties of the CCE-MG and the rCCE-MG estimators in the heterogeneous coefficients
setup. As before, we estimate the number of factors using the ER statistic, see Table 3 for the corresponding results. As
can be expected, the performance of the ER statistic is only marginally affected by the additional variation in 𝛽i.

Below we briefly discuss the estimation results from Table 4.

• For 𝛾⟂ = 0 the CCE-MG estimator is dominated by the rCCE-MG both in terms of the bias and the RMSE. Further-
more, with regularization the rejection frequencies under the null hypothesis are much closer to the nominal 5% level,
irrespective of N and T values. This is mostly explained by the near-unbiasedness of the rCCE-MG estimator. The dis-
crepancy between the two estimators is especially pronounced when T ≫ N, as in those cases the presence of 𝝃 (or 𝝃r)
has a non-negligible effect on the asymptotic properties.

• For 𝛾⟂ = 1 both estimation procedures have almost identical statistical properties. Both MG procedures are sub-
stantially biased and badly sized for N = 20.The situation improves substantially only when both N and T increase,
highlighting the need for larger datasets in order to minimize the estimation uncertainty associated with unit-specific
estimation of the regression coefficients.

Overall, we document that gains from regularization (both in terms of the estimation precision, and in terms of better
sized inference procedures) greatly outweigh any uncertainty resulting from the need to estimate the number of factors.
This is especially true for the pooled estimator.

6 EMPIRICAL ILLUSTRATION

In this section, we illustrate the suggested regularization procedure using the empirical dataset of Voigtländer (2014). It
was recently used by Yin et al. (2021) to illustrate the CCE approach in the context of model averaging. The dataset is
available at the Journal of Business and Economic Statistics website, and is a slightly adjusted (to ensure balancedness)
version of the original data of Voigtländer (2014) spanning 313 sectors of the US economy over the period of 1958− 2005
(T = 48).

6.1 The model

In what follows we use the empirical strategy of Yin et al. (2021) to investigate the potential causes of the histori-
cally increasing wage inequality between high-skilled and low-skilled workers in the US manufacturing industries. The
empirical specification they consider is a linear regression model of the form:

ln
(

wL.i,t

wH.i,t

)
= 𝛼i + 𝛽1i ln(𝜎i,t) + 𝛽2i ln

(
Hi,t

Li,t

)
+ 𝜽′izi,t + 𝝀′if t + 𝜀i,t, (42)

where the variable wL.i,t

wH.i,t
is the relative wage of low-skilled workers to high skilled workers. The regressors of interest are

(a) 𝜎i,t, the input skill intensity measure; (b) Hi,t

Li,t
, the ratio of high and low skilled workers in the sector i. 𝜎i,t is included to

proxy the effects of inter-sectoral technology skill complementarity (ITSC) and is constructed by Voigtländer (2014) using
the weighted average of white-collar workers in other industries than i, with weights calculated using the Input-Output
expenditures.

The remaining variables captured in zi,t are control variables, for example, the capital equipment per worker and R&D
intensity, among others. Among other models, Yin et al. (2021) estimated the “full model” in Equation (42), as well as
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TABLE 3 Eigenvalue Ratio based estimates of R #R̂ = 1
N T 𝜸⟂ = 0 𝜸⟂ = 1
20 20 0.9265 0.0725
20 50 0.9593 0.0280
20 100 0.9620 0.0255
50 20 0.9880 0.0050
50 50 0.9925 0.0000
50 100 0.9948 0.0003
100 20 0.9985 0.0000
100 50 0.9985 0.0000
100 100 0.9988 0.0000

Note: Heterogeneous setup. See
Table 1 for more details.

TABLE 4 Estimation and inference

Design CCE − MG rCCE − MG
𝜸⟂ N T Bias RMSE Power− Size Power+ Bias RMSE Power− Size Power+
0 20 20 0.10 0.33 0.53 0.09 0.08 0.02 0.31 0.32 0.06 0.22
0 20 50 0.10 0.28 0.72 0.14 0.10 0.02 0.27 0.39 0.07 0.29
0 20 100 0.10 0.26 0.78 0.16 0.12 0.02 0.25 0.42 0.07 0.33
0 50 20 0.06 0.31 0.79 0.07 0.37 0.01 0.30 0.67 0.06 0.58
0 50 50 0.06 0.26 0.93 0.09 0.52 0.01 0.25 0.81 0.06 0.71
0 50 100 0.06 0.24 0.95 0.10 0.57 0.01 0.23 0.85 0.06 0.76
0 100 20 0.03 0.30 0.95 0.06 0.81 0.00 0.29 0.93 0.06 0.90
0 100 50 0.04 0.25 0.99 0.07 0.93 0.00 0.25 0.98 0.06 0.97
0 100 100 0.04 0.23 1 0.08 0.96 0.00 0.23 0.99 0.06 0.98
1 20 20 0.11 0.36 0.48 0.10 0.08 0.11 0.38 0.46 0.10 0.09
1 20 50 0.12 0.29 0.69 0.13 0.11 0.11 0.30 0.68 0.13 0.12
1 20 100 0.11 0.27 0.77 0.15 0.13 0.11 0.28 0.76 0.15 0.14
1 50 20 0.08 0.33 0.74 0.08 0.36 0.08 0.34 0.74 0.08 0.36
1 50 50 0.08 0.26 0.91 0.10 0.51 0.08 0.26 0.91 0.10 0.51
1 50 100 0.07 0.24 0.95 0.11 0.59 0.07 0.24 0.95 0.11 0.59
1 100 20 0.05 0.33 0.92 0.07 0.77 0.05 0.33 0.92 0.07 0.77
1 100 50 0.05 0.25 0.99 0.08 0.93 0.05 0.25 0.99 0.08 0.93
1 100 100 0.05 0.23 1 0.09 0.97 0.05 0.23 1 0.09 0.97

Note: Heterogeneous setup. CCE − MG is the mean-group CCE estimator; rCCE − MG is the mean-group regularized CCE
estimator. See Table 2 for more details.

the “narrow model” without any controls using the CCE-MG estimator. Motivated by their setup we estimate these two
specifications also using the regularized versions of the CCEP and the CCE-MG estimators.20 We use demeaned data (over
the time dimension) to filter out the time invariant unit specific effects, 𝛼i from Equation (42).

6.2 The number of factors

At first, we provide estimates the number of factors for the cross-section averages used in both the narrow and the full
models.

Our benchmark approach uses the ER criterion with normalized factors augmented by the dummy column, labeled
as F̂+. As a robustness check, we also include results without the dummy column (F̂), as well as non-normalized
cross-section average Z. From Table 5 we observe strong evidence for a model with a single factor, that is, R = 1. Thus,
our procedure that the number of the underlying factors that drive the cross-section averages is small in comparison with
the number of cross-section averages included. The only deviation occurs for simple cross-section averages Z, where the

20Note that Yin et al. (2021) do not motivate the use of the heterogeneous coefficients setup in this empirical specification. The original studies of
Ciccone and Peri (2005) and Voigtländer (2014), on the other hand, use pooled estimators.
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Full (Kz = 9) Narrow (Kz = 3)

Criterion F̂+ F̂ Z F̂+ F̂ Z
ER 1 1 1 1 1 2*
GR 2 2 2 1 — —

Note: Here F̂+ denotes normalized factor proxies with an
additional dummy column included; F̂ normalized factor
proxies; Z cross-section averages without any
normalizations imposed. “ER” and “GR” are
correspondingly the Eigenvalue Ratio and the Growth
Ratio criteria of Ahn and Horenstein (2013). ∗ indicates
that this is the maximum number of factors allowed by
this criterion; − indicates that for these entries criterion
automatically predicts only one value 1.

TABLE 5 The number of factors estimates for the full and narrow models

Narrow Full
rCCE − MG CCE − MG rCCE − MG CCE − MG

ln(𝜎i,t) −0.54 −0.59 −0.99 −0.71
(−1.10;0.07) (−1.01;−0.14) (−1.40;-0.60) (−1.20;-0.26)

ln
(

Hi,t

Li,t

)
0.35 0.35 0.42 0.45

(0.33;0.38) (0.32;0.38) (0.39;0.44) (0.42;0.49)
kequip

i,t −0.78 −1.64
(−1.49;0.53) (−2.87;−0.42)

(OCAM∕K)i,t −1.87 −3.29
(−3.24;−0.42) (−7.13;0.81)

(HT∕K − OCAM∕K)i,t 2.20 2.28
(0.68;3.55) (0.02;4.90)

RDlag.i,t 1.11 1.44
(−0.46;2.76) (−0.37;3.05)

OSnarr
i,t −1.26 −1.20

(−2.95;−0.18) (−2.41;−0.15)
(OSbroad − OSnarr)i,t 0.18 0.20

(−0.36;0.77) (−0.74;0.80)

Note: The 95% percentile bootstrap confidence intervals in the parentheses. 𝜎i,t , the input skill
intensity measure; Hi,t

Li,t
the ratio of high and low skilled workers in the sector; kequip

i,t capital equipment
per worker; RDlag.i,t research and development intensity; (HT∕K)i,t the sectoral share of
high-technology capital (OCAM∕K)i,t the sectoral share of office, computing, and accounting
equipment; OSbroad

i,t and OSnarr
i,t are the broad and narrow measures of outsourcing.

TABLE 6 Estimation results using the
mean-group CCE

ER criterion selects a marginally larger number of factors, that is, R = 2. However, as we argued above, we should prefer
factor selection procedures based on F̂ as they are invariant to non-singular transformations to Zi.

Besides the eigenvalue ratio criterion, we also report the Growth Ratio (GR) criterion of Ahn and Horenstein (2013).
While we do not discuss GR criterion in our Monte Carlo Study, Juodis and Sarafidis (2022) provide some evidence for
superior properties of this approach if the number of proxies is substantially larger than the number of the underlying
factors. In contrast to ER based estimates of R, the GR approach suggests that R = 2 in the “Full” model. 21 In the
supporting information we also report rCCEP and rCCE-MG estimates for R = 2.

6.3 Estimation results

At first, in Table 6 we discuss estimation results for the Mean Group Estimators. This way we can easily compare our
results with those of Yin et al. (2021). The results for the pooled estimators are presented in Table 7.

Mean group estimation. From Table 6 we see that regularization has no major effect on the estimation results in the
“Narrow” model. This is not very surprising, as the single regularized factor proxy F̂r is extracted from 3 cross-section aver-

21As we use only one dummy column in F̂+, the GR approach excludes the possibility that R = Kz.
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TABLE 7 Estimation results based on the Pooled CCE

Narrow Full
rCCE rCCEBC CCE rCCE rCCEBC CCE

ln(𝜎i,t) −0.62 −0.63 −0.61 −0.84 −0.84 −0.52
(−1.03;−0.21) (−1.04;-0.23) (−1.01;−0.22) (−1.21;−0.49) (−1.21;−0.49) (−0.93;-0.19)

ln
(

Hi,t

Li,t

)
0.36 0.36 0.40 0.37 0.37 0.48

(0.29;0.41) (0.29;0.41) (0.33;0.47) (0.30;0.43) (0.30;0.43) (0.41;0.54)
kequip

i,t −0.06 −0.06 −0.19
(−0.31;0.22) (−0.31;0.22) (−0.42;0.09)

(OCAM∕K)i,t −0.36 −0.36 1.23
(−0.81;0.18) (−0.81;0.18) (−0.58;2.83)

(HT∕K − OCAM∕K)i,t 0.86 0.86 0.25
(0.17;1.49) (0.17;1.49) (−0.38;1.16)

RDlag.i,t −0.25 −0.24 0.20
(−0.71;0.26) (−0.70;0.26) (−0.36;0.71)

OSnarr
i,t −0.14 −0.14 −0.08

(−0.29;−0.01) (−0.29;−0.01) (−0.24;0.06)
(OSbroad − OSnarr)i,t −0.13 −0.13 −0.09

(−0.28;0.04) (−0.28;0.04) (−0.28;0.10)

Note: See Table 6 for a detailed description of the regressors.

ages, where each individual entry follows a similar trending pattern over time (see figures in the supporting information).
The only real change is the inclusion of 0 in the confidence interval for ln(𝜎i,t) for the regularized estimator.

For the “Full” model the results for regularized and non-regularized versions of the mean-group estimators are also
comparable for the main regressor of interest ln(Hi,t

Li,t
). This provides sufficient evidence to conclude that high-skilled and

low-skilled labor are substitutes. On the other hand, the coefficient for ln(𝜎i,t) changes from −0.71 to −0.99, which is a
substantial decrease of the average elasticity coefficient. In particular, the standard CCE-MG coefficient is almost outside
of the confidence interval of the rCCE-MG estimator. Nevertheless, as for both estimators the coefficient is negative we
can at least confirm the results in Yin et al. (2021) that ITSC (summarized by ln(𝜎i,t)) substantially increases inequality.

As for control variables, the only two exceptions where the two methods produce different results are kequip
i,t and

(OCAM∕K)i,t. The corresponding estimates are substantially smaller (in absolute value) for the regularized approach.
Furthermore, for kequip

i,t the reported confidence interval includes 0, while this is not the case without regularization. On
the other hand, the opposite conclusion can be drawn for (OCAM∕K)i,t. Also, one can observe substantially narrower
confidence intervals for these coefficients after regularization.

Overall, the effect of regularization is mostly visible in (slightly) narrower confidence intervals for all coefficients. This
can be partially attributed to the fact that for each sector i the ordinary CCE-MG approach requires estimation of 18 unit
specific coefficients, while that number is only 11 after regularization. This is a substantial reduction given that T = 48.

Pooled estimators. Moving toward the pooled estimator in Table 7, we observe that for the “Narrow model” the results
are almost identical as those obtained using the MG approach. In particular, regularization has no visible effect on the
estimated coefficients. Furthermore, bias-correction has no visible effects on coefficient estimates. This conclusion is not
too surprising, given that N is substantially larger for this dataset, thus the magnitude of the overall bias is expected to be
small.

Comparing the point estimates for the main regressors of interest, we find the most substantial coefficient change is
visible for ln(𝜎i,t). This mirrors exactly the situation we observed also for the MG estimator. In particular, the coefficient
for ln(𝜎i,t) changes from −0.52 to −0.84 when going from the standard CCE estimator to its regularized version. Moreover,
a substantial decrease in the elasticity coefficient for ln

(
Hi,t

Li,t

)
is also noticeable (in contrast to the MG setup), when

comparing the results of the CCE and rCCE estimators.
Alternative methods. In the remainder of this section we briefly compare the (pooled) empirical results based on the

rCCE estimator with those of the IFE/PC estimator Bai (2009). We follow the suggestion of Petrova and Westerlund (2020)
and implement this estimator after double de-meaning the data (i.e., after the two-way fixed effects transformation).22

22We use the rCCE estimator to initialize the non-linear estimation procedure. As the results for the bias-corrected IFE estimator are nearly identical
to those without bias-correction, we report the latter.
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Narrow Full
R = 1 R = 2 R = 1 R = 2

ln(𝜎i,t) −0.85 −0.65 −0.87 −0.65
(−1.24;−0.52) (−1.11;−0.36) (−1.25;−0.54) (−1.08;−0.32)

ln
(

Hi,t

Li,t

)
0.35 0.40 0.35 0.40

(0.29;0.41) (0.33;0.47) (0.29;0.41) (0.33;0.47)
kequip

i,t −0.17 −0.07
(−0.49;0.13) (−0.49;0.21)

(OCAM∕K)i,t −0.06 0.48
(−0.74;0.63) (−0.53;1.30)

(HT∕K − OCAM∕K)i,t 0.56 0.21
(−0.20;1.26) (−0.36;1.07)

RDlag.i,t −0.10 −0.17
(−0.65;0.42) (−0.61;0.23)

OSnarr
i,t −0.07 −0.06

(−0.24;0.09) (−0.22;0.07)
(OSbroad − OSnarr)i,t −0.08 −0.08

(−0.27;0.09) (−0.28;0.14)

Note: The iterative optimization procedure is initialized using the rCCEP estimator. All variables are
double de-meaned prior to estimation as in Petrova and Westerlund (2020). See Table 6 for a detailed
description of the regressors.

TABLE 8 Estimation results based on the
IFE Estimator of Bai (2009)

Estimation results for the model with one and two factors (i.e., R = 1 and R = 2) are summarized in Table 8.23 The
optimal number of factors estimated using the Eigenvalue Ratio (ER) criterion of Ahn and Horenstein (2013), as well as
using the alternative implementation suggested by Chen et al. (2021), is always 1. In this regard, the results are comparable
with those in Table 5. Overall, the estimated coefficients both in the “Narrow” model as well as the “Full” model are
either directly comparable in their magnitude to those of the rCCE estimator, or (at least) fall within the corresponding
bootstrap CI of the rCCE estimator.

7 CONCLUDING REMARKS

In this paper, we develop a simple method to estimate factor-augmented regressions using regularized cross-section aver-
ages of the observed data. The novelty of our approach is the regularization step that uses normalized cross-section
averages of the data. This step is crucial to ensure that the proposed estimator is invariant to non-singular transformations
of the data, while the regularization step ensures that all factor estimates are asymptotically well-behaved.

The proposed procedure is intuitive to use and is easy to implement numerically by practitioners using any software that
has in built functions for the singular value decomposition, for example, STATA, Eviews, Python, or R. Thus we suggest
that the proposed procedure to be (at least) used as a part of the sensitivity analysis for any model estimated using the
CCE approach.

The resulting regularized Common Correlated Effects (rCCE) estimator shares most of the advantages of the original
CCE estimator of Pesaran (2006). At the same time, regularization safeguards against the potential problems when there
are more observables than the underlying factors. The applicability of pooled and mean-group versions of the regularized
estimator is illustrated using the dataset of Voigtländer (2014) and Yin et al. (2021).

There are several open problems that remain to be investigated, that we only briefly mention in this paper. In particular,
while we partially motivated this paper by non-linear (generalized linear) cross-section augmented-models as in Boneva
and Linton (2017) or Desbordes and Eberhardt (2019), any rigorous results for those models are yet to be formalized. We
leave these, and other related questions for future research.
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APPENDIX A

FIGURE A1 Finite sample distribution of the scaled and centered common correlated effects pooled (CCEP) and rCCEP estimators using
B = 105 Monte Carlo replications. N = T = 200. For more details regarding the DGP, see Section 5
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