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1  |  INTRODUC TION

In the face of rapid environmental change and the continuous ex-
pansion of anthropogenic activities, near-term forecasts of animal 
movements are an essential decision tool for wildlife management 

(Allen & Singh,  2016; Dietze et al.,  2018; Lewison et al.,  2015; 
Shamoun-Baranes et al., 2017). Knowing when and where individu-
als or populations will move in the near future enables stakeholders 
to take targeted conservation measures and to systematically miti-
gate human-wildlife conflicts. Examples range from the temporary 
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Abstract
1.	 Weather radar networks provide wide-ranging opportunities for ecologists to 

quantify and predict movements of airborne organisms over unprecedented ge-
ographical expanses. The typically sparse spatial distribution of radar measure-
ments poses, however, a major challenge to spatiotemporal predictive modelling.

2.	 We propose FluxRGNN, a recurrent graph neural network that is based on a ge-
neric mechanistic description of population-level movements across the Voronoi 
tessellation of radar sites. The resulting hybrid model capitalises on local as-
sociations between environmental conditions and animal density as well as on 
spatiotemporal dependencies inherent to the movement process. We applied 
FluxRGNN to make 72-h forecasts of nocturnal bird migration over Western 
Europe using simulated trajectories and measurements from the European 
weather radar network.

3.	 For both datasets, FluxRGNN achieves higher predictive performance than 
baseline models based on environmental conditions alone. It effectively dis-
entangles local take-off and landing dynamics from aerial movements and cor-
rectly predicts migration directions with an accuracy of 87%.

4.	 Continental-scale forecasts of animal density and biomass fluxes have the po-
tential to improve the impact and cost-effectiveness of wildlife management and 
conservation efforts. With FluxRGNN this becomes feasible for nocturnal bird 
migration. In the future, other migration systems could benefit from applying 
the proposed method to similar static sensor networks.

K E Y W O R D S
deep learning, graph neural networks, movement ecology, nocturnal bird migration, physical 
constraints, sensor networks, weather radar
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removal of man-made barriers, obstacles, or sources of pollution 
(Liechti et al., 2013; Marschall et al., 2011; van Doren et al., 2021), 
to preventing local transmission of infectious diseases (Acosta 
et al.,  2021; Lisovski et al.,  2018), and protecting human infra-
structure and agriculture from damage through mass movements 
(Leskinen et al., 2009; van Gasteren et al., 2019). Focusing such ef-
forts on specific locations and times where interventions are most 
needed can greatly improve the ecological and societal impact while 
reducing the associated costs (Horton et al., 2021). This is particu-
larly relevant for migratory species whose seasonal movements can 
span hundreds and thousands of kilometres, making it impracticable 
to implement management strategies without any form of spatial 
and temporal prioritisation (Runge et al., 2014). To effectively inform 
stakeholders about potential hotspots along a migration route, it 
is essential to have access to both adequate data and methods for 
spatiotemporal predictive modelling over vast geographical extents.

With the advent of ecological sensor networks and the continu-
ing development of existing earth observation infrastructure, un-
precedented opportunities are opening up to monitor and analyse 
the movements of terrestrial, aquatic, and aerial species at regional, 
national and continental scales (Farley et al., 2018; Kays et al., 2020). 
A prominent example is the use of weather radars to study the aerial 
movements of birds, bats and insects (Bauer et al., 2019; Shamoun-
Baranes et al.,  2014). Although designed for meteorological pur-
poses, these radars can provide high-resolution information on the 
local density and velocity of flying organisms around the radar sta-
tion. The large spatial coverage of operational weather radar net-
works has proven particularly valuable for quantifying broad-front 
nocturnal bird migration at the continental scale (Dokter et al., 2018; 
Nilsson et al., 2019).

Despite recent technological and methodological advances 
that have enabled researchers to manage large amounts of data 
generated by weather radar networks and to translate raw obser-
vations into biologically relevant measures (Dokter et al., 2019; Lin 
et al., 2019; Stepanian et al., 2016), the step towards spatiotemporal 
predictive models of bird migration remains challenging. On the one 
hand, this is related to the complexity of the process. In contrast 
to well-understood physical processes like fluid flow, fully mech-
anistic models describing the movement of individual birds in re-
sponse their environment (Aurbach et al., 2020; Liechti et al., 2013) 
struggle to capture the dynamics of bird migration in sufficient 
detail. Moreover, these individual-based models remain difficult to 
calibrate and involve computationally expensive simulations which 
make them unsuitable for near real-time predictions. To generate 
reliable and timely forecasts, more flexible and scalable data-driven 
models are required. On the other hand, however, range-dependent 
radar biases limit such approaches to vertical profiles (Buler & 
Diehl, 2009; Dokter et al., 2011), that is point estimates of bird den-
sity and velocity per radar and altitude. The resulting spatially sparse 
and semi-structured datasets make it difficult to model the underly-
ing spatiotemporal movement process in a data-driven way.

Previous studies have explored the use of species distribution 
models to tackle the aforementioned issues (Costa et al.,  2014; 

Elith & Leathwick,  2009; Soldevilla et al.,  2011; van Doren & 
Horton, 2018). These models exploit the correlation between envi-
ronmental variables and animal density at a particular site to reduce 
the complex problem of spatiotemporal prediction to a local regres-
sion task. Except for correlations in the predictor variables, they can 
thus not account for the spatial and temporal dependencies that are 
inherent to animal movements. This means that, firstly, they are lim-
ited in their predictive power because they cannot exploit relevant 
spatiotemporal patterns in the data, such as the onset and propaga-
tion of a migration wave, that may provide valuable information on 
how animal densities will change over time. And secondly, they can-
not be used in contexts where directional information on migratory 
fluxes is crucial for management strategies, for example with patho-
gen spreading. Although this shortcoming has been recognised be-
fore, attempts to make species distribution models spatially explicit 
remain tailored towards datasets that can easily be projected on reg-
ular grids (De Marco et al., 2008; Domisch et al., 2019; Ovaskainen 
et al., 2016; Thorson et al., 2015) and are thus not directly applicable 
to weather radar data. Conversely, geostatistical methods that ex-
ploit spatial and temporal correlations in the data have been used 
for high-resolution interpolation of bird densities based on sparse 
weather radar measurements (Nussbaumer et al., 2019). While this 
approach could in principle be extended to generate predictions 
based on environmental conditions, it does not lend itself to big data 
applications (Liu et al., 2020) or capturing biomass fluxes and associ-
ated physical constraints.

The objective of this study is to incorporate both spatial and 
temporal dependencies into large-scale bird migration forecasts 
based on environmental conditions and spatially sparse observa-
tions obtained from weather radar networks, and to demonstrate 
the opportunities that state of the art machine learning techniques 
have to offer in this regard. To this end, we develop a hybrid mod-
elling framework that combines a generic mechanistic description 
of migratory movements with deep learning techniques to account 
for (i) the temporal auto-correlation in the measurements of a single 
radar, (ii) the spatial dependencies between distributed radars that 
arise from migratory fluxes, and (iii) the influence of past and present 
environmental conditions on migration timing and direction.

Deep learning, a class of machine learning algorithms that 
use artificial neural networks to automatically extract complex 
features and relationships from large datasets, has revolution-
ised data-driven modelling in many different application do-
mains (Goodfellow et al., 2016). While deep neural networks are 
extremely flexible, they require large amounts of data and are 
prone to make inconsistent predictions. Incorporating physical 
constraints and other prior knowledge about the data-generating 
process into the model architecture can help overcome these 
problems, leading to lower model complexity, i.e. lower data re-
quirements, and more realistic and interpretable predictions (De 
Bézenac et al.,  2019). Graph neural networks, for example, can 
use information about the existence or absence of arbitrary spa-
tial dependencies to model the relations between many similar ob-
jects or locations (Battaglia et al., 2018; Zhang et al., 2020). This 
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approach has been successfully combined with recurrent neural 
networks for temporal sequence modelling to solve real-life spa-
tiotemporal problems such as traffic forecasting on road networks 
(Yu et al., 2018) or forecasting air and water quality based on envi-
ronmental sensor networks (Liang et al., 2018).

Building on these advances, we designed a recurrent graph neu-
ral network, called FluxRGNN, that encodes spatial and temporal 
dependencies resulting from a generic mechanistic model of migra-
tion. In analogy to fluid dynamics, the mechanistic model describes 
migratory movements in terms of biomass fluxes between discrete 
geographical areas, here defined by the Voronoi tessellation of radar 
locations, leveraging continuity and mass-balance constraints that 
are inherent to migration processes. Previous studies have suc-
cessfully applied this idea to estimate seasonal movement rates 
in bird migration networks from individual tracking data (Kölzsch 
et al.,  2018), to infer residence time from daily counts of marked 
migrating birds (Drever & Hrachowitz, 2017), and to estimate bio-
mass flows of nocturnal bird migration from weather radar data 
(Nussbaumer et al., 2021). Our approach differs from these studies 
in that we do not infer movement rates retrospectively but make 
(near real-time) predictions of migratory fluxes based on functional 
relations learned from data. The resulting hybrid modelling frame-
work benefits from the flexibility and scalability of deep neural net-
works and at the same time leverages generally applicable system 
knowledge, providing opportunities for biological or environmental 
interpretation without relying on hand-crafted features or strong as-
sumptions on species-specific behaviours.

As a proof of concept, we apply FluxRGNN to predict the noctur-
nal bird migration over Western Europe. We validate the proposed 
model based on simulated data as well as on observations from 22 
weather radars in Germany, the Netherlands and Belgium, and com-
pare its predictive performance with a range of baseline models in-
cluding local seasonal trends as well as species distribution models. 
To show the relevance of both temporal and spatial dependencies, 
we conduct ablation experiments where we remove different model 
components and evaluate the respective effect on the predictive 
performance.

2  |  MATERIAL S AND METHODS

Given a sequence of bird density and velocity estimates from a 
weather radar network together with past and future environmental 
conditions, we predict a sequence of future bird densities resulting 
from directed migratory movements across the observed spatial do-
main. We use a generic mechanistic description of population-level 
migratory movements to define the dependency structure of bird 
densities at the radar locations. The specific functional relations are 
then estimated based on data using a set of deep neural networks 
which are coupled according to the mechanistic model structure. 
This results in a recurrent graph neural network architecture that 
is completely differentiable and can thus be fitted to weather radar 
network observations using standard optimisation methods for 

machine learning. Figure 1 shows an overview of the overall model-
ling framework.

2.1  |  Mechanistic model

2.1.1  |  Migratory movements as fluid flow

The macroscopic patterns of broad-front bird migration arise from 
a large number of individuals pursuing similar strategies to move 
from one geographical area to another. In analogy to the contin-
uum assumption in fluid dynamics, we abstract away from these 
individual trajectories and consider bird migration as a continu-
ous process in space and time. This process can be described in 
terms of bird density � [birds km−3] and a dynamically changing 
velocity field v [km h−1] along which migrants move (Nussbaumer 
et al., 2021). The time evolution of the total number of individuals 
in any given volume Vi is then given by the continuity equation in 
integral form

In words, any change in abundance in Vi can be explained by (i) migra-
tory movements into or out of the volume, or (ii) individuals entering 
and leaving the sky during departure and stop-over. The former is ex-
pressed by the surface integral ∫�Vi

(�v) ⋅ ndAi which defines the net mi-
gratory flux across the volume surface �Vi as the rate at which migrants 
leave minus the rate at which migrants enter the volume through infin-
itesimal surface elements dAi. These rates depend on the bird density 
� as well as the velocity field v in relation to the corresponding surface 
normal vector n. The take-off and landing dynamics are encapsulated 
in the volume integral ∫

Vi
sdVi, where s is a local source/sink term that 

captures the number of migrants that are appearing or disappearing at 
a given location within the volume boundaries.

2.1.2  |  Spatial discretisation

To model the dynamics of the entire system, we partition the spa-
tial domain of interest into a number of nonoverlapping volumes 
and apply Equation 1 to each volume respectively, which results in 
a coupled system of ordinary differential equations. Based on the 
finite volume method from computational fluid dynamics (Versteeg 
& Malalasekera, 2007), we then numerically integrate the net migra-
tory flux through the boundary surface of Vi:

where Fj→i is a numerical flux term that approximates the true mi-
gratory flux into Vi that is passing through the face fij between Vi 

(1)

�
�t ∫Vi

�dVi

⏟⏟⏟
number of migrants in volume

= − ∫�Vi

(�v) ⋅ ndAi

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
net rate of migration into volume

+ ∫Vi

sdVi

⏟⏟⏟
net rate of “ appearance ”

.

(2)− ∫�Vi

(�v) ⋅ ndAi ≈
∑

fij ∈ �Vi

Fj→i ,
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F I G U R E  1  FluxRGNN overview. (a) Migratory movements are modelled on the Voronoi tessellation of radar locations. Past environmental 
conditions, vertically integrated animal densities and velocities at each radar are fed to a long short-term memory neural network (LSTM) to 
extract relevant information. A second LSTM combines this information with environmental forecasts and previous model outputs. Finally, 
two multi-layer perceptrons (MLP) predict biomass fluxes between adjacent Voronoi cells and local source/sink terms. (b) The predicted 
terms are combined into animal density forecasts according to a mechanistic description of population-level movements.
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and the neighbouring volume Vj. Importantly, F is conservative, i.e. 
Fj→i = − Fi→j . This ensures that our model is consistent in the sense 
that any migrants entering volume Vi through fij must leave Vj through 
the same face.

A major advantage of the finite volume method is its flexibil-
ity regarding the size and shape of the so-called control volumes 
or cells, on which the fluxes of a conserved quantity are modelled. 
This makes it particularly suitable for the spatially sparse and semi-
structured observations from weather radar networks. Here, we 
define the set of control volumes based on the two-dimensional 
Voronoi tessellation (Ata et al., 2009; Beni et al., 2010) of radar loca-
tions (see Figure 2b), where each Voronoi cell represents the column 
of air above its polygon base. This ensures that each control volume 
corresponds to exactly one point measurement and no unobserved 
volumes are introduced as it would be the case with a regular grid. 
The total number of migrants in each volume Vi can then be approx-
imated by using the vertically integrated bird density (VID) �̂i [birds 
km−2] measured by the corresponding radar as an estimate of the 
average VID in the Voronoi cell with area Ai:

Finally, we introduce a numerical source/sink term Si = Nsource(i) − Nsink(i) 
that approximates the volume integral ∫

Vi
sdVi for each volume respec-

tively as the difference between the number of migrants taking off, 
Nsource(i), and the number of migrants landing, Nsink(i).

2.1.3  |  Temporal discretisation

Since weather radars take measurements at discrete time points, we 
further discretise the finite volume formulation by applying an ex-
plicit time integration scheme. That means, given measurements of 
the initial abundances N(t0)

i
 for each volume Vi at some time t0, future 

abundances are computed iteratively as

where the terms S(t→t+1)

i
 and F(t→t+1)

j→i
 are integrated over a fixed time 

interval Δt.

Discretising the continuous dynamics can result in numeri-
cal instability or untenable computational costs when the time 
resolution Δt is too low or too high with respect to the spatial 
tessellation and movement speed (Moin & Mahesh, 1998). The 
irregular geometry of the Voronoi tessellation makes it partic-
ularly difficult to find the optimal Δt that reduces the risk of 
migrants traversing multiple cells within one time step and 
thereby violating the continuity assumption, while ensuring suf-
ficiently large fluxes between neighbouring cells and preventing 
high computational costs due to many small system updates. To 
achieve a good trade-off, we advise choosing Δt such that the 
Courant number C = vmaxΔt ∕dmin for the maximum movement 
speed vmax and the minimum distance between any two sensors 
dmin is close to 1.

(3)∫Vi

� dVi ≈ Ai ⋅ �̂i = Ni .

(4)N
(t+1)

i
= N

(t)

i
+ S

(t→t+1)

i
+

∑

fij ∈ �Vi

F
(t→t+1)

j→i
,

F I G U R E  2  Weather radar locations in Germany, Belgium, the Netherlands, France and Switzerland with (a) 500 simulated trajectories of 
birds migrating from a line transect between 5848′N, 1436′E and 5012′N, 1954′E towards the destination area (surrounded by dashed line) 
in southern France, and (b) the corresponding 2D Voronoi tessellation using 25 unobserved boundary cells around the region of interest.
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2.2  |  Recurrent graph neural network

2.2.1  |  Learning temporal dependencies

We assume both S(t→t+1)

i
 and F(t→t+1)

j→i
 to depend on previous envi-

ronmental conditions and migratory movements in the respec-
tive volume Vi. To learn these temporal dependencies, we use an 
encoder-decoder setup consisting of two recurrent neural networks, 
�encoder and �decoder, with a long short-term memory (LSTM) architec-
ture (Hochreiter & Schmidhuber,  1997). LSTMs hold an internal 
state, or “memory”, that is updated repeatedly as new information 
is fed to the network. In this way, temporal patterns, such as the 
accumulation of migrants due to poor migration conditions, can be 
extracted from sequential data. To map a sequence of past observa-
tions at time points t0 − C, … , t0 to a sequence of predictions for 
future time points t0 + 1, … , t0 + H, it is common to use two LSTMs, 
an encoder and a decoder, stringed together. The encoder iteratively 
processes the observations from past time points, here environmen-
tal conditions xi, bird velocities vi and abundances Ni, and at every 
time step t → t + 1 incorporates the relevant information into its in-
ternal state

Importantly, the same neural network is applied simultaneously to 
all cells. This greatly reduces the overall model complexity and the 
amount of data required to learn the network parameters. To account 
for spatial variability, the sensor position pi is included as an additional 
input to �encoder.

After processing all past observations, the final encoder state 
z
(t0)
i

 is fed into the decoder, which iteratively combines it with addi-
tional information about the current time t + 1, here environmental 
forecasts x(t+1)

i
, as well as the previous (predicted) abundance N(t)

i
, to 

update its own internal state

which is a high-dimensional latent representation of the information 
available about the past and present of Vi, that is relevant for predicting 
animal densities at time t + 1.

For each time step of the decoder, this latent representation is 
translated into an estimate of the source/sink term S(t→t+1)

i
, by apply-

ing a simple feed-forward neural network, or multi-layer perceptron 
(MLP), �S. The net source/sink term is then given by

Here, the source term N(t→t+1)

source(i)
 is a direct output of �S, whereas the 

sink term N(t→t+1)

sink(i)
 is computed as the product of the total amount of 

migrants in the cell, N(t)

i
, and the fraction of migrants leaving the cell, 

�(t→t+1)

sink(i)
, with the latter being estimated by �S. This decomposition en-

sures that not more than the available number of migrants is leaving 
the cell through a local process.

2.2.2  |  Learning spatial dependencies

In contrast to S(t→t+1)

i
, the flux terms F(t→t+1)

j→i
 describe spatial move-

ments between neighbouring cells and thus depend on the state of 
both Vi and Vj, as well as on their relative position to each other. To 
learn these spatial dependencies, we introduce another feed-
forward neural network �F, which models the fraction of migrants in 
Vj that move to the neighbouring cell Vi by accounting for the com-
bined effects of past conditions in the upstream cell (h(t)

j
 and x(t)

j
), 

current environmental conditions in the downstream cell (x(t+1)
i

), as 
well as static properties of the two cells (eij, consisting of the dis-
tance between the corresponding radars, their angle and difference 
in longitude and latitude, and the length of face fij). The absolute 
number of migrants moving from Vj to Vi, and the resulting net flux 
F
(t→t+1)

j→i
 through the face fij are then given by

where F(t→t+1)

j→i
 is either positive in the case where more migrants are 

moving from Vj to Vi or negative when more migrants are moving from 
Vi to Vj. Furthermore, the definition of F(t→t+1)

j→i
 in Equation 9 naturally 

leads to the local conservation of migrants (see Section 2.1.2).
The spatial dependency structure resulting from the mechanistic 

description in Section 2.1 can be represented as a graph , namely 
the Delaunay triangulation corresponding to the Voronoi tessella-
tion of radar locations. In this representation, the fluxes F(t→t+1)

j→i
 can 

be interpreted as messages being sent along the edges of , that is, 
across the Voronoi faces. All incoming messages are then aggre-
gated at each node, that is, Voronoi cell, and combined with local 
information to form a prediction of animal densities at the next time 
point. The specific functions associated with messages and node up-
dates are captured by the neural networks �encoder, �decoder and �F. 
This procedure follows the message passing framework underlying 
many graph neural network architectures (Gilmer et al., 2017). The 
overall model, defined by Equations 2–4, can thus be formalised as 
a recurrent graph neural network that explicitly incorporates the 
equations of the underlying mechanistic model into its architecture.

2.2.3  |  Boundary conditions

Due to the finite size of weather radar networks, the number of 
observed cells and thus the modelled domain is limited. To ensure 
that our model can account for all possible migratory movements, 
including movements across the domain boundary, we introduce 
a set of unobserved boundary cells B which enclose the observed 
control volumes (see Figure 2b). At every prediction step t → t + 1,  
we extrapolate the decoder states h(t)

k
 and predicted abundances 

N
(t)

k
 to these boundary cells by averaging over all observed neigh-

bouring cells. Assuming that all relevant environmental variables are 
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available for the otherwise unobserved boundary cells, the bound-
ary flux terms F(t→t+1)

j→k
 and F(t→t+1)

k→j
 with j ∈ B and k ∈ B can then be 

computed as before. Since bird densities are spatially correlated 
(Nussbaumer et al., 2019), the introduced errors are expected to be 
negligible compared to the gains in terms of physical consistency and 
additional information on environmental conditions.

2.3  |  Data

In autumn more than 800 million nocturnally migrating birds fly 
across western Europe, heading towards their wintering grounds in 
southern Europe and Africa (Nussbaumer et al.,  2021). Along this 
flyway a multitude of weather radars continuously monitor the sky 
and provide information on bird densities and velocities. We use this 
infrastructure to train and evaluate our model using both simulated 
and real-world data of nocturnal bird migration across Western 
Europe between 1 August and 15 November 2015, 2016 and 2017.

2.3.1  |  Time resolution

For weather radars in Western Europe, the average distance to the 
closest radar is 118km, with a minimum of 61km and a maximum of 
179km. The maximum ground speed of migratory birds measured 
by these weather radars is approximately 20ms−1, or 72kmh−1. We 
thus chose a time resolution of 1 h for all experiments to address the 
trade-off discussed in Section 2.1.3.

2.3.2  |  Simulated data

For validation purposes, we simulated the movements of 100,000 
migrating birds using an individual-based model. For simplicity, we 
limited movements to the two-dimensional plane. A detailed de-
scription of the behavioural rules and model parameters is provided 
in Supporting Information C.

The simulated trajectories (see Figure  2) were converted into 
artificial radar measurements using the locations of 48 operational 
weather radars distributed over Germany, the Netherlands, Belgium, 
France and Switzerland. For every cell in the corresponding Voronoi 
tessellation, we generated hourly measurements of the number of 
migrating birds and the average velocity vector, assuming that each 
radar perfectly observes its Voronoi cell. In addition, we computed 
F
(t→t+1)

i→j
, N(t→t+1)

source(i)
 and N(t→t+1)

sink(i)
 based on the number of birds moving be-

tween Voronoi cells and the number of birds departing and landing 
in each cell respectively.

2.3.3  |  Weather radar data

To evaluate our modelling framework in a real-world setting, we 
used data from 22 C-band Doppler weather radars in Germany, 

the Netherlands, and Belgium. The vol2bird algorithm (Dokter 
et al., 2011) with a radar cross section of 11cm2 per bird was applied 
to the raw polar volumes to extract vertical profiles of bird densities 
and velocities based on data points within a range of 5–25 km from 
the radar location. Finally, the profiles were vertically integrated 
from 200m above the radar elevation up to 5000m above sea level 
and aggregated in time to obtain point measurements of the migra-
tory activity above each radar at hourly time intervals. Assuming a 
uniform distribution of animal densities within each Voronoi cell, ver-
tically integrated densities were extrapolated to the entire volume 
by multiplying with the corresponding cell area (see Section 2.1.2). 
Since we were interested in nocturnal migrations, all measurements 
between civil dawn and dusk were set to zero.

2.3.4  |  Environmental data

To account for the effect of dynamically changing atmospheric con-
ditions on migration timing and direction, we use a range of weather 
variables retrieved from the ERA5 reanalysis dataset (Hersbach 
et al., 2020) as inputs to our model. For the simulated data, this in-
cludes the same u and v wind components at 850hPa (ca. 1500m 
a.s.l.) that were used as input to the individual-based model. For the 
real-world weather radar data, we additionally include 10m surface 
winds, temperature, cloud cover, specific humidity, total (cumulative) 
precipitation, surface pressure, and sensible heat flux. All variables 
were aggregated into a single value per Voronoi cell and time point, 
using the average of 100 randomly sampled locations.

Furthermore, we include a set of time-related variables to ac-
count for more general daily and seasonal trends. This includes the 
day of the year, solar position and its derivative, a binary variable 
indicating if it is day or night, and two binary variables marking the 
time points of civil dusk and dawn. Together, these variables form 
the vector of environmental conditions x(t)

i
 for cell Vi and time point 

t  , which is used as input to both the temporal and spatial compo-
nents of our model.

2.4  |  Neural network training

2.4.1  |  Dataset preparation

With both simulated and radar data, we used years 2015 and 2016 for 
training (90%) and validation (10%), and left 2017 as an independent 
test set on which the final model performance was evaluated. The 
validation set was used to monitor the learning process, and for hyper-
parameter tuning, i.e. finding the best settings for parameters that 
are not optimised during training (see Supporting Information A). For 
each subset a number of contiguous 64-h sequences was obtained by 
sliding a window of length 64 over the entire time period. This way, 
a subset consisting of T time points yields T − 63 unique sequences 
starting at various times of the day and year. The first 24 h of each se-
quence are fed to �encoder as contextual information, and the last 48 h 
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are used for prediction. For the test set, we extended the forecasting 
horizon to 72 h to evaluate if the model generalises well to conditions 
beyond the training scope. Sequences with more than 10% missing 
data were excluded, resulting in a training set of 4897 sequences for 
the simulated data and 3772 sequences for the radar data.

2.4.2  |  Training procedure

During training, the mean squared error (MSE) over all cells and time 
points of the training set is computed to determine the mismatch be-
tween the predicted and observed bird densities. The model param-
eters are then adjusted using the Adam optimiser (Kingma & Ba, 2015) 
to reduce the mismatch. This procedure is repeated until the MSE for 
the validation set stops improving by more than 10−6 every 50 itera-
tions, or until a maximum of 300 iterations has been reached.

To facilitate a more stable training procedure, we used scheduled 
sampling (Bengio et al., 2015) and rescaled all input variables linearly 
to a range between 0 and 1. For all spatial features, such as sensor 
coordinates, wind, and animal velocity vectors, each dimension was 
rescaled by the same factor to retain directional information.

2.5  |  Predictive performance

For both simulated and radar data, we evaluated FluxRGNN's predic-
tive performance in terms of commonly used metrics for forecast-
ing problems, namely root mean square error (RMSE) and Pearson 
r correlation coefficient, evaluated based on normalised hourly bird 
densities. Since FluxRGNN is trained using a stochastic learning al-
gorithm, we repeated the training process five times using varying 
random seeds and report the mean and standard deviation over 
these trials for each evaluation metric, respectively.

2.5.1  |  Comparison to baseline models

We compared the predictive performance of our modelling framework 
to three baseline models, ranging from a simple historical average (HA), to 
a generalised additive model (GAM) similar to Kranstauber et al. (2022), 
capturing daily and seasonal trends based on temporal features alone, to 
a more complex species distribution model based on gradient-boosted 
regression trees (GBT) similar to van Doren and Horton (2018). For GBT, 
we performed a cross-validated grid search to determine the best hyper-
parameter settings (see Supporting Information B).

2.5.2  |  Ablation experiments

To investigate the relevance of the different model components, we per-
formed three ablation experiments, a common approach in deep learning 
research where individual components are removed and the perfor-
mance of the diminished model is compared to the full model (Deneu 

et al., 2021). In particular, we considered model variants (i) without spa-
tial dependencies, i.e. without migratory fluxes, (ii) without encoding 
past conditions, and (iii) without introducing unobserved boundary cells.

2.6  |  Simulation study

FluxRGNN predicts bird densities by combining the source and sink of 
a cell with all fluxes across its boundary. Since weather radar measure-
ments do not provide full information on these biomass fluxes, we used 
the simulated data to evaluate if FluxRGNN can accurately disentangle 
take-off and landing dynamics from aerial movements without being 
explicitly trained to do so. We aggregated all terms over the first pre-
dicted night, using only sequences from the test dataset that start at 
the first hour of a night, and quantified the agreement between simula-
tion and prediction in terms of the Pearson r correlation coefficient. For 
aerial fluxes between neighbouring cells, we determined the distance 
of all faces to the domain boundary by computing the shortest path 
from either of the two Voronoi cells to any boundary cell in the as-
sociated adjacency graph and analysed how the correlation coefficient 
varies with this distance. In addition, we computed the accuracy with 
which the correct sign, that is, movement direction, was predicted.

2.7  |  Radar case study

We demonstrate the use of FluxRGNN for ecological purposes based 
on predictions of bird densities and fluxes using the best perform-
ing model instance trained on the real-world weather radar data. In 
particular, a map of averaged predicted nightly fluxes for the autumn 
migration in 2017 is presented. We compare the apparent patterns to 
the general distribution of flight directions measured by all weather 
radars during the same period. Finally, we showcase an example pre-
diction for a single radar and its Voronoi cell, illustrating the various 
biological and environmental insights FluxRGNN can provide.

2.8  |  Model implementation

FluxRGNN is implemented in Python 3.8 using the packages pytorch 
and pytorch-geometric. The code, including all model implementa-
tions and scripts for training, testing and data analysis, are publicly 
available at https://github.com/Fiona​Lippe​rt/FluxRGNN.

3  |  RESULTS

3.1  |  Predictive performance

3.1.1  |  Comparison to baseline models

Due to the recurrent nature of FluxRGNN, the predictive perfor-
mance generally decreases as a function of the forecasting horizon 
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(see Figure 3). For both simulated and radar data, the two evaluation 
metrics show a strong deterioration within the first 5 h and level off 
afterwards. With the simulated data, another drop in performance 
occurs after 24 h, indicating that multi-night predictions (i.e. on aver-
age >24 h into the future) are more difficult than single-night predic-
tions. With the radar data, this effect is less prominent. More details 
on nightly patterns of evaluation metrics are available in Supporting 
Information D.

In contrast, the considered baseline models do not include any 
temporal dependencies. Their predictive performance is thus the 
same regardless of the forecasting horizon. Up to a forecasting hori-
zon of 24 h, FluxRGNN outperforms all baseline models in terms of 
RMSE and Pearson r , for both datasets respectively. With the radar 
data, FluxRGNN's Pearson r eventually converges towards that of 
the species distribution model GBT, but does not drop below. In all 
other cases, FluxRGNN retains its leading position up to the max-
imum considered forecasting horizon. Given the relatively stable 
performance for forecasting horizons between 24 and 72 h, it can 
be expected that even for longer horizons FluxRGNN will produce 
useful predictions.

3.1.2  |  Ablation experiments

Figure  3 shows the results of removing different components from 
FluxRGNN. For both simulated and radar data, ablations generally lead 
to a degraded predictive performance. As expected, the model vari-
ant without boundary fluxes is less predictive at all times, indicating 

that errors due to extrapolation are negligible compared to the gains 
in terms of physical consistency. The only case in which the reduced 
model performs better or equal to the full model is when disregarding 
fluxes using the radar data. This is likely related to noisy measurements 
and the relatively small spatial domain, which makes it more difficult 
to leverage information on migration waves for predictions at down-
stream cells. For the simulated data, removing the encoder results in a 
less stable performance over time, with Pearson r peaking and RMSE 
dipping every 24 h. This reflects the strong periodic patterns in simu-
lated migratory movements. Without additional information about the 
past, the model focuses on exploiting this pattern by projecting the 
initial bird densities at time t0 onto the same time in subsequent nights.

3.2  |  Simulation study

Figure  4 visually compares the seasonal average of simulated and 
predicted nightly fluxes between Voronoi cells. Despite some dis-
crepancies in flux magnitudes over Switzerland and central France, 
the general movement pattern of simulated birds is captured well by 
the model. Especially the strong predicted influx of birds across the 
eastern border of Germany and the on average south-western mi-
gration direction are in good agreement with the simulation. Overall, 
the sign, i.e. direction, of nightly fluxes was correctly predicted with 
an accuracy of 0.87 ± 0.01. The Pearson correlation coefficient 
between simulated and predicted nightly fluxes is r = 0.64 ± 0.04. 
Interestingly, this correlation increases with the distance to the do-
main boundary, reaching values up to 0.87 ± 0.02 (see Figure 5a).

F I G U R E  3  Root mean square error (RMSE) and Pearson r as a function of the forecasting horizon, evaluated for baseline models (HA, 
GAM, GBT), FluxRGNN and three variants with different model components removed, for simulated (left) and radar data (right) respectively. 
Shaded regions correspond to the standard deviation over 5 model instances using different random seeds.
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The per-cell quantities, that is, source, sink, influx and outflux, 
show a reasonable agreement between simulation and prediction. 
The average Pearson correlation coefficient exceeds r = 0.5 for all 
four components (see Figure 5b), suggesting that our model learns 
both the spatial and temporal aspects of bird migration and does 
not focus on one over the other. Figure 5b shows that outbound 
components, that is, sink and outflux, reach lower correlation co-
efficients than inbound components. This can be attributed to a 
few cells close to the domain boundary (mostly over Switzerland 
and France) where predicted bird densities are generally less 
accurate, which in turn constrains the quality of predicted out-
fluxes and sink terms (see Sections  2.2.1 and 2.2.2). Excluding 
all cells that border at least one boundary cell from the analysis 
increases the agreement between simulated and predicted out-
fluxes (from r = 0.69 ± 0.05 to r = 0.79 ± 0.04) and sink terms (from 
r = 0.54 ± 0.05 to r = 0.64 ± 0.02 ). We provide a more detailed 

breakdown of correlation coefficients by cell in Supporting 
Information D.

3.3  |  Radar case study

Figure 6a visualises average nightly fluxes predicted by FluxRGNN. 
A clear general migration direction from north-east to south-west 
is visible, which corresponds well with the flight directions meas-
ured by weather radars (Figure 6b). Most birds are predicted to enter 
the spatial domain through the north-eastern border of Germany, 
while outfluxes are strongest over the Alps as well as from southern 
Belgium and south-west Germany towards France. In general, fluxes 
are weaker in the Netherlands and Belgium.

Figure 7 illustrates an example prediction for the radar dehnr 
in Hannover, Germany. The shape of nightly migration pulses 

F I G U R E  4  Visual comparison of (a) simulated and (b) predicted nightly migratory fluxes, averaged over all sequences for autumn 2017. In 
only 0.5% of the cases, simulated birds move to a nonadjacent cell within one time step, indicating that the chosen time resolution of 1 h is 
appropriate for the given movement process and radar network structure.

F I G U R E  5  Pearson correlation (a) 
between simulated and predicted nightly 
fluxes between neighbouring cells, and 
(b) between simulated and predicted 
nightly source and sink, as well as nightly 
in- and outfluxes per cell. Error bars 
show standard deviations over 5 model 
instances.

 2041210x, 2022, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14007 by U
va U

niversiteitsbibliotheek, W
iley O

nline L
ibrary on [22/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  2821Methods in Ecology and Evolu
onLIPPERT et al.

for radar measurements and predictions is largely congruent. In 
the first predicted night, the radar detects migration occurring 
mainly within the first few hours after dusk. FluxRGNN predicts 
a very similar pattern. Due to the underlying mechanistic de-
scription, FluxRGNN can, however, provide additional insights 
into this pattern. After an initial phase of birds taking off from 
the ground (source > sink), our model suggests that the subse-
quent reduction in bird density is caused by birds leaving the cell 
and flying towards the south. In contrast, the relatively strong 
migration during the third forecasted night is predicted due to a 
long period of influx from the north-east (deboo and deumd) into 
the cell, followed by birds landing within the cell instead of flying 
further to the south. Given the environmental conditions in the 
previous two nights, this hypothesis seems plausible since birds 
are likely to accumulate on the ground around deboo and deumd 
during times of comparatively strong rain (end of first predicted 
night) and unfavourable wind directions (second predicted 

F I G U R E  6  (a) Average nightly migratory fluxes predicted by 
FluxRGNN using radar measurements of nocturnal bird migration in 
autumn 2017. And (b) distribution of flight directions measured at 
all considered radars and time points.

F I G U R E  7  FluxRGNN prediction of nocturnal bird migration at radar dehnr for a selected sequence from 18 September 2017 18:00 
UTC to 22 September 17:00 UTC. (top) Predicted fluxes between the Voronoi cell of dehnr and its neighbouring cells, integrated over 24 h 
respectively. (bottom) Hourly measured and predicted bird densities together with source/sink terms, net fluxes across the Voronoi cell 
boundary and a selection of relevant environmental variables (hourly precipitation and wind conditions at 850hPa). The first 24 h were fed to 
FluxRGNN as contextual information. Night-time hours are shaded in grey.
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night). As soon as the conditions improve these birds depart all 
together and fly towards south-west, leading to a strong influx 
into the region around dehnr.

4  |  DISCUSSION

FluxRGNN leverages information on environmental conditions to-
gether with spatial and temporal dependencies between spatially 
sparse measurements of weather radars to predict population-
level movements over large geographical expanses. In contrast to 
other spatiotemporal deep learning approaches for sparse and ir-
regular data (Liang et al., 2018; Seo et al., 2020), our framework 
is a hybrid between mechanistic and data-driven modelling. In 
this way we can effectively disentangle local take-off and land-
ing dynamics from aerial movements across the Voronoi tessella-
tion of radar locations. Our case study illustrates how this leads to 
comprehensive bird migration forecasts, which can be used to an-
ticipate the spread and accumulation of migrants over time. Such 
insights are crucial to, for example, develop targeted containment 
strategies for the spread of pathogens like avian influenza (Acosta 
et al., 2021).

4.1  |  Bird density predictions

As expected, FluxRGNN predicts bird densities more accurately 
than methods based on local correlations between bird density and 
environmental conditions alone. The results of our simulation-based 
ablation experiments indicate that FluxRGNN's spatial and temporal 
components are key to this predictive power. Nonetheless, when 
applied to real radar data, spatial fluxes do not lead to an improved 
predictive performance. This inevitably raises the question if a spa-
tially explicit approach is beneficial for bird density predictions in 
practice, or if existing local regression models (e.g. van Doren & 
Horton, 2018) are sufficient as long as no information on biomass 
fluxes is needed. Yet, we find that radar measurements exhibit clear 
spatiotemporal correlations along the major migration direction (see 
Supporting Information D). This suggests that the propagation of mi-
gration waves is indeed captured in the data and could in principle be 
exploited for better prediction accuracy. Therefore, considering also 
the increasing agreement between predicted and simulated fluxes 
with distance to the domain boundary, we are confident that the 
spatial model component will become more effective as the radar 
network size increases.

4.2  |  Migratory fluxes

The general migratory patterns predicted by FluxRGNN in our radar 
case study are in line with previous studies analysing nocturnal bird 
migration based on the European weather radar network. For exam-
ple, Nilsson et al. (2019) recover predominantly south-western flight 

directions from weather radar measurements during the autumn mi-
gration season 2016. Moreover, they found indications for observed 
migration traffic rates being lower along the North sea due to in-
tersecting migration routes and coastline effects which lead to high 
variability in flight directions. This could explain why FluxRGNN gen-
erally predicts lower net fluxes across the Netherlands and Belgium 
(see Figure 6). Lastly, our predictions of in- and outfluxes across the 
domain boundaries show clear similarities to work by Nussbaumer 
et al. (2021), with birds arriving from Scandinavia via Denmark and 
Poland, and leaving towards France. The comparatively strong pre-
dicted outflux over the Alps remains to be investigated further. We 
anticipate more realistic estimates of these fluxes when including 
additional environmental variables, such as landscape characteris-
tics, and expanding the spatial domain southwards.

4.3  |  Limitations

While modelling migratory movements on the Voronoi tessellation 
of weather radars allows us to explicitly infer biomass fluxes, it lim-
its the spatial resolution of the model. This is in contrast to existing 
local regression models that can produce high-resolution bird den-
sity maps, such as BirdCast (van Doren & Horton, 2022). Moreover, 
the assumption that bird densities are uniformly distributed across 
each Voronoi cell makes the resulting predictions sensitive to poten-
tial radar biases. Applying a simple linear interpolation to the model 
inputs and outputs could alleviate this issue and translate the dis-
continuous Voronoi cell estimates into spatially smooth bird density 
maps.

Generally, current constraints to better exploit the potential of 
FluxRGNN are not computational but due to limited data availabil-
ity. In particular, computational limits are not reached because scal-
ing-up the spatial domain of FluxRGNN is straightforward by design: 
using GPU acceleration the model can make predictions at all sen-
sor locations in parallel, and at the same time model complexity is 
contained by sharing parameter values among all sites. On the other 
hand, data is not easily accessible. Especially in Europe, obtaining 
unfiltered radar data from the many national meteorological ser-
vices remains cumbersome. A major effort should be made to make 
this data openly accessible and interoperable (Shamoun-Baranes 
et al., 2021).

4.4  |  Broader impact and future work

This study focused on modelling nocturnal bird migration based on 
vertically integrated observations from the European weather radar 
network. The proposed method can, however, easily be extended 
to work with full vertical profiles by defining multiple Voronoi tes-
sellation layers between which birds can move vertically. Moreover, 
since the underlying mechanistic description is extremely general, 
FluxRGNN can in principle be applied to any kind of static sensor net-
work, such as acoustic monitoring networks (Blumstein et al., 2011; 
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Marques et al., 2009; Spillmann et al., 2015) and camera traps (Kays 
et al., 2009; Rowcliffe et al., 2008), providing data on densities or 
abundances of a moving population. Importantly, no a priori esti-
mates of biomass flows are required since FluxRGNN infers these 
quantities in an unsupervised way. Moreover, while we use veloc-
ity measurements as additional inputs to the encoder neural net-
work, this is not strictly necessary. The same model architecture can 
be used to estimate spatial fluxes from density measurements and 
environmental conditions alone. In general, there are two major re-
quirements for FluxRGNN to be transferable to other domains. First, 
the space–time resolution of the data should match the scale of the 
underlying process. In particular, the continuity assumption has to 
be met in terms of cell sizes, time resolution and movement speed 
(see Section 2.1.3). Second, the spatial and temporal coverage of the 
data needs to be sufficient. For seasonal movements, at least 3 years 
of data should be available to avoid overfitting to a specific season. 
Spatially, we recommend using sensor networks with no less than 20 
sites to limit the effects of unobserved boundary cells. For systems 
that meet these requirements, FluxRGNN has the potential to gen-
erate comprehensive movement forecasts that inform stakehold-
ers about relevant hot spots and biomass fluxes and thereby help 
improve the ecological and societal impact of wildlife management 
efforts.

Finally, we see various opportunities for leveraging newly 
emerging methods from machine learning to further advance the 
application of model-data fusion techniques to animal movement 
systems. Building directly on FluxRGNN, we see especially oppor-
tunities to increase spatial resolution and identify processes by post 
hoc analyses. For example, recent work by Iakovlev et al.  (2020) 
shows promising results on deep learning unknown partial differ-
ential equations from sparse data points. Refining FluxRGNN to 
such a continuous setting will allow for more detailed predictions 
capturing also fine scale patterns related to topography, habitats 
and weather conditions, similar to van Doren and Horton (2018). 
Furthermore, post hoc analysis methods from the field of explain-
able artificial intelligence (Adadi & Berrada, 2018) could be applied 
to better understand the relations between movement patterns 
and environmental conditions learned by the neural network com-
ponents of FluxRGNN. In combination with the underlying mecha-
nistic model, this could help fill knowledge gaps existing for many 
migration systems.
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