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Tyne, United Kingdom, 2Institute for Biodiversity and Ecosystem Dynamics, University of
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Open University, Milton Keynes, United Kingdom, 4Grupo de Investigación en Biodiversidad, Medio
Ambiente y Salud ‐BIOMAS‐ Universidad de Las Américas (UDLA), Quito, Ecuador,
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Reference ecosystems used in tropical forest restoration lack the temporal

dimension required to characterise a mature or intact vegetation community.

Here we provide a practical ‘palaeo-reference ecosystem’ for the eastern

Andean forests of Ecuador to complement the standard ‘reference

ecosystem’ approach. Pollen assemblages from sedimentary archives

recovered from Ecuadorian montane forests are binned into distinct time

periods and characterised as 1) Ancient (pre-human arrival), 2) Pre-European

(Indigenous cultivation), 3) Successional (European arrival/Indigenous

depopulation), 4) Mature (diminished human population), 5) Deforested (re-

colonisation), and 6) Modern (industrial agriculture). A multivariate statistical

approach is then used to identify the most recent period in which vegetation

can be characterised as mature. Detrended correspondence analysis indicates

that the pollen spectra from CE 1718-1819 (time bin 4 – Mature (diminished

human population)) is most similar to that of a pre-human arrival mature or

intact state. The pollen spectra of this period are characterised by

Melastomataceae, Fabaceae, Solanaceae and Weinmannia. The vegetation of

the 1700s, therefore, provides the most recent phase of substantial mature

vegetation that has undergone over a century of recovery, representing a

practical palaeo-reference ecosystem. We propose incorporating

palynological analyses of short cores spanning the last 500 years with

botanical inventory data to achieve more realistic and long-term

restoration goals.

KEYWORDS

Neotropics, Andes, restoration, deforestation, palaeoecology, pollen, reference ecosystem,
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Introduction

The 2020’s are the United Nations ‘Decade on Ecosystem

Restoration’ with the goal of ‘preventing, halting, and reversing

the degradation of ecosystems worldwide’ (United Nations, 2020).

In the Neotropics unparalleled levels of forest restoration have

been called for to reverse decades of deforestation and aid in

combating climate change (IPCC, 2018; IPBES, 2018; Dave et al.,

2019). The aim is to conserve biodiversity whilst enhancing

carbon sequestration, mitigating soil erosion and improving

water security, whilst maximising beneficial outcomes and

engaging with stakeholders (Keenleyside et al., 2012; Holl, 2017;

Chazdon, 2017). Successful restoration of cleared tropical forest

depends on understanding past human impact and identifying the

rate and route (forest succession) in which tropical forests

regenerate through time (decades-centuries) and over

landscape-scales (Guariguata and Ostertag, 2001). This is then

followed by effectively working towards placing the degraded site

back onto a successional trajectory that mimics the natural

dynamism of the ecosystem (Gann et al., 2019).

The subset of restoration projects that focus primarily on re-

establishing a near-natural state i.e., those indicative of minimal

human impact, may employ a ‘reference ecosystem’ approach.

This is where evidence from the recent past, present and

projected future is used to derive a model of the ecosystem

had it not been degraded (Gann et al., 2019). Local mature

ecosystems are favoured as reference targets if considered

analogous to that of the pre-degraded past (Gann et al., 2019).

However, determining if they are indeed intact, and to what

extent, is challenging. Cleared Neotropical forest takes more

than c. 50 years to recover its basal area and species richness

(Guariguata and Ostertag, 2001; Chazdon et al., 2007; Rozendaal

et al., 2019), c. 130 years to recover its structure (Martin et al.,

2013; Loughlin et al., 2018a), and likely centuries if ever to

recover its species composition (Poorter et al., 2016; Rozendaal

et al., 2019). The sole reliance on recently (< 100 years) disturbed

forests as reference ecosystems risks species characteristic of

mature forests being overlooked in restoration plans.

Restoration of degraded sites that replace what was once

diverse tropical forest with a simplified vegetation community

risks undermining its very rationale and increasing the

vulnerability of these systems to collapse (Adolf et al., 2020;

Heilmayr et al., 2020). Tropical forests close to settled human

populations have almost certainly been burned, cleared, or

selectively logged during the last century, as baring relict

ecosystems, such as those found in the most inaccessible parts

of the Andes almost nowhere remains untouched by direct

human impact (Sylvester et al., 2017). Today at least two-

thirds of the world’s tropical forests show some degree of

human intervention (FAO and JRC, 2012; Hansen et al.,

2019). Without establishing reference ecosystems with a

greater temporal aspect there will always remain the risk of
Frontiers in Conservation Science 02
restoring a ‘shifted ecological baseline’ sensu Pauly (1995), one

that reflects long-term degradation as our expectations of what is

‘normal’ diminish over generations (Soga and Gaston, 2018).

Palaeoecology offers the ability to supplement the standard

‘reference ecosystem’ approach by providing near-natural

restoration targets rooted in empirical data. Using vegetation

proxy data e.g., pollen, phytoliths, sedaDNA, recovered from

sedimentary archives, long-term ecosystem changes and

community response to environmental and anthropogenic

drivers can be characterised over periods beyond that of

observational studies, which rarely exceed 60 years (Grubb

et al., 2020). The advantages of incorporating evidence of past

vegetation into conservation and restoration planning has long

been recognised (Godwin, 1956; Swetnam et al., 1999; Willis and

Birks, 2006; Jackson and Hobbs, 2009; Seddon et al., 2014; Gillson

and Marchant, 2014; Whitlock et al., 2018; Fordham et al., 2020).

However, the laborious nature of an in-depth, multi-millennial

palaeoecological analysis prior to restoration work means that the

outcomes are seldom incorporated into restoration goals (Bush

et al., 2014). Here we advocate for incorporating a practical

‘palaeo-reference ecosystem’ into the standard ‘reference

ecosystem’ approach where possible. Using pollen records from

sediments in the Quijos Valley on the eastern Andean flank of

Ecuador, a biodiversity hotspot and global priority conservation

area (Myers et al., 2000; Meyer et al., 2015; Cuesta et al., 2017), we

identify a time period that provides the most recent phase of

widespread mature forest vegetation in the region.
Study site

Eastern Andean montane forest forms a distinctive vegetation

corridor (1,300-3,600 m asl) separating the lowland rainforests of

Amazonia from the high-altitude grasslands (páramo) of the

Andes (Gentry, 1995; Webster, 1995). In northern Ecuador, the

Quijos Valley cuts perpendicular through the Andean forest

forming a historically important trade route connecting past

Andean civilizations such as the Inca to the peoples of

Amazonia (Newson, 1995). Today an increasing human

population, deforestation and cattle farming has led to the

formation of a secondary forest mosaic landscape driven by

human activity and encroaching on the outskirts of the

surrounding three protected areas (Figure 1). Restoration of this

degraded landscape is underway, driven by international (The

Bonn Challenge, 2020), national (REDD+ Early Movers Program,

2020) and local (Humans for Abundance, 2020) restoration

projects looking to restore forest ecosystems, through planting

native and culturally important species in areas previously cleared

for farming. However, without an appreciation of the long-term

vegetation history of the region, reforestation projects in highly

degraded areas based solely on planting a few endemic and native

species risks working towards a simplified vegetation community.
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Methods

To establish a palaeo-reference ecosystem pollen records from

the pre-human arrival landscape, recent past (c. last 700 years),

and the modern mosaic landscape were analysed (see Loughlin

et al., 2018a; Loughlin et al., 2018b). Data analysis and

visualisation was undertaken in the ‘R’ statistical computing

environment (R Core Team, 2020) using the package ‘vegan’

(Oksanen et al., 2019). Pollen assemblages covering six time-bins

were characterised using a stratigraphically constrained cluster

analysis (CONISS) on pollen percentage data corresponding to 1)

Ancient (pre-human arrival); 2) Pre-European (Indigenous

cultivation), 3) Successional (European arrival/Indigenous

depopulation), 4) Mature (diminished population), 5)

Deforestation (re-colonisation), and 6) Modern (industrial

agriculture) time periods (Figure 2). Detrended correspondence

analysis (DCA) was then used to provide a method of visualising

the relationship between these pollen assemblages within their

respective time bins (Figure 3).
Results and interpretation

The ordination (Figure 3) shows the signal from the pre-

human arrival landscape (c. 45,000-42,000 years ago), indicative of

a mature vegetation assemblage, is most similar to that which

occurred in the historical record between CE 1718-1819, a period

following peak Indigenous depopulation and the abandonment of

the region by Europeans (time bin 4 – diminished population).

Whilst the period after re-colonisation (post-CE 1819 and

industrial agriculture) was shown to be most like that of the
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early secondary forest succession which followed European arrival

and early Indigenous depopulation (c. CE 1588-1718). The open-

agricultural landscape managed by the pre-European Indigenous

population showed the greatest disparity and is characterised by

evidence of intensive land management (Loughlin et al., 2018a).

The vegetation history of the Andean forest in the Quijos

Valley viewed through this palaeoecological lens shows a direct

response to changing human impact characteristic of the

narrative of European arrival in the Americas (Koch et al.,

2019). Within 30 years of the establishment of the first

European settlement in the Quijos Valley (Baeza; CE 1559),

the Indigenous cultivated landscape began a 250-year sequence

of forest regrowth (c. CE 1588-1819). As the Indigenous peoples

were exploited as forced labour by the occupying Europeans

their numbers declined, culminating in CE 1578 with the

Indigenous revolt led by the “great cacique Jumandi”

(Uzendoski, 2004). As much of the surviving Indigenous

population fled reprisals and disease, the region was gradually

abandoned by the European colonizers (Newson, 1995). For c.

130 years (CE 1588 -1718) secondary forest regrowth occurred,

characterised by pioneer taxa such as grasses and the fast

growing tree Cecropia. This was subsequently followed by a

more mature and structurally developed forest becoming

established c. CE 1718-1819, characterised by the pollen of

Melastomataceae, Fabaceae, Solanaceae and Weinmannia, in a

region that was by then virtually uninhabited (Newson, 1995).

Not until c. CE 1819 does any evidence of renewed human

impact on the palynological signal occur in the form of an

increase in disturbance indicators (Figure 2), and even then, the

former population centre at Baeza consisted of only three small

huts (Jameson, 1858).
FIGURE 1

(A) Republic of Ecuador with elevations corresponding to Andean montane forest (1300-3,600 m asl) highlighted in green. (B) The Quijos Valley
and surrounding protected areas, Antisana Ecological Reserve (AER), Cayambe Coca National Park (CCNP), and Sumaco Napo-Galeras National
Park (SNP). Black squares indicate population centres. Black dots indicate location of study sites (Loughlin et al., 2018a; Loughlin et al., 2018b).
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Discussion

Prior to European arrival in the Americas (CE 1492), it has

been estimated that c.60 million people lived in social structures

from small groups of hunter gathers to vast civilisations (Koch

et al., 2019). For thousands of years people domesticated crops,

moulded landscapes to fit their needs and drove changes in

ecosystems (Montoya et al., 2020; Duncan et al., 2021). However,

within a century as much as 90% (c. 54 million people) of the

population were dead as the result of European conquest and

imported diseases (Koch et al., 2019). This continental scale

depopulation led to population centres, managed land, and

cultivated fields (c. 56 million hectares (Koch et al., 2019))

undergoing secondary succession, as vegetation reoccupied

what was previously cleared (Hamilton et al., 2021).

Across the Americas in the following century (CE 1500’s) this

sequence of Indigenous depopulation followed by the expansion

of vegetation and an increase in carbon sequestration is repeated.

However, its effects were felt globally. Ice cores from Antarctica

show that c. CE 1600 a rapid (~20-50 years) decline (7-10 ppm) in

atmospheric CO2 occurred (Ahn et al., 2012). At the same time (c.
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CE 1600-1750) biomass burning in the southern hemisphere

reached a new low, only increasing again during the

industrialisation of the 1800’s (Marlon et al., 2008; Wang et al.,

2010). Vegetation, previously held at bay by Indigenous land

management recolonised the land, sequestering some 5-10 Gt C

(Gigatonnes of carbon) (Nevle and Bird, 2008; Lewis and Maslin,

2015; Koch et al., 2019) driving changes in global climate, and

potentially contributing to the Little Ice Age which reached its

peak c. CE 1610 (Dull et al., 2010; Lewis and Maslin, 2015).

However, the synchronicity of these events has been questioned as

land abandonment and forest regrowth throughout Amazonia has

been observed in the centuries prior to European arrival (Bush

et al., 2021; Hamilton et al., 2021).

Throughout tropical South America forest recovery driven by

Indigenous population decline is observable through

palaeoecological proxy records (Flantua et al., 2016). In

Neotropical rainforests (Bush et al., 2007; Maezumi et al., 2018;

de Souza et al., 2019), savannahs (Carson et al., 2014; Brugger

et al., 2016) and Andean montane forests (Chepstow-Lusty et al.,

2009; Bush et al., 2015; Loughlin et al., 2018a) pollen assemblages

record vegetation rebounding following depopulation, while
FIGURE 2

Synthetic summary diagram of selected pollen types grouped into time bins. 1) Ancient (pre-human arrival), 2) Pre-European (Indigenous
cultivation), 3) Successional (European arrival/Indigenous depopulation), 4) Mature (diminished population), 5) Deforestation (re-colonisation),
and 6) Modern (industrial agriculture). Sporormiella fungal spores and macro-charcoal included as proxies of herbivory and fire respectively.
Dashed lines in the ‘Ancient’ (1) time bin represent the position of volcanic tephra layers within the sediment. Due to the abundance of Poaceae
(grass) pollen in the ‘Historic’ record grass pollen was excluded from the pollen sum. Asterisks (*) in the ‘Historic’ (3) time bin represent where
Poaceae pollen exceeded 100% of the pollen sum. Zea mays presence recorded as dots (.) The ‘Modern’ records are displayed as bars as they
are distinct geographic sites (see Figure 1). Hash (#) indicates where macro-charcoal exceeds 300 fragments per cm3.
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evidence of Indigenous agriculture in the form of cultivar pollen

and phytoliths e.g. Zea mays, disappears from sedimentary

archives (Whitney et al., 2014; Loughlin et al., 2018a). In areas

regularly burned prior to European arrival, evidence of fire

disappears (Bush et al., 2008; Nevle and Bird, 2008; de Souza

et al., 2019), in contrast to areas naturally prone to fires such as dry

forests, where burning increased as the previously cleared forest

expanded (Liebmann et al., 2016).

Our case study shows that abandonment of the pre- CE 1500

agricultural land (Figure 4A) lead to more than two centuries of

vegetation succession through the 1600 -1700’s (Figures 4B, C)

followed by modern deforestation and cattle farming post-

CE1800 (Figure 4D). The 1700’s (Figure 4C) therefore provide

the most recent phase of substantial mature vegetation that has

undergone over a century of recovery and represents a practical

palaeo-reference ecosystem. Ancient pre-human arrival records

may provide more robust data when exploring issues such as

species migration, adaption and extinction (Vegas-Vilarrúbia

et al., 2011),while changes in climate through the late
Frontiers in Conservation Science 05
Quaternary may provide useful analogues of biotic responses to

our current human driven climate (Fordham et al., 2020).

However, the primary issue that limits the implementation of

palaeoecology into restoration practice is ‘practicality’ and here

ancient sediment becomes ‘impractical’. Ancient palaeo-reference

ecosystems i.e. those established prior to human arrival in the

Americas and therefore during the last ice-age are 1) unlikely to

best represent the vegetation composition required today; 2)

would completely eliminate any human signal, representing

millennia of Indigenous selective cultivation and domestication

(Levis et al., 2017); 3) the paucity of ancient sediment within the

tectonically dynamic Andes and fluvially dynamic Amazon,

would lead to large regions being categorised on single records;

and 4) ancient sediments, requiring large lakes would produce

proxy signals (particularly pollen) from a wide region, leading to a
FIGURE 3

Practical palaeo-reference ecosystem. Detrended correspondence
analysis of pollen data grouped into time bins (re-plotted from
Loughlin et al., 2018a). 1) Ancient (pre-human arrival) (Loughlin
et al., 2018b), 2) Pre-European (Indigenous cultivation), 3)
Successional (European arrival/Indigenous depopulation), 4)
Mature (diminished population), 5) Deforestation (re-colonisation),
and 6) Modern (industrial agriculture). Red arrow indicates an
increasing signal of human impact.
FIGURE 4

Summary diagram of Ecuadorian montane forest succession driven
by changes in land use. (A) pre-CE 1588 Indigenous agriculture, (B)
CE 1588-1718 European arrival and Indigenous depopulation leading
to secondary forest growth, (C) CE 1718-1819 a diminished
population and establishment of mature forest, and (D) post-CE
1819 re-colonisation of the landscape and modern farming.
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homogenisation of the local landscape signal (Jacobson and

Bradshaw, 1981).

The use of a recent target i.e. the 1700’s, overcomes these

issues as 1) only short (< 1m) sediment cores are required, easily

obtainable from frequently occurring bogs and small ponds; 2)

cores can be quickly and easily recovered and dated with

confidence that the required sediments are present; 3) multiple

short cores focused on a narrow time frame can be examined,

overcoming the issue of relying on single sites; and 4) the

Indigenous land-use signal, containing taxa culturally favoured

over the preceding millennia are retained. Expanding the search

for practical palaeo-reference ecosystems across the Americas will

likely identify differing periods for individual regions dependant

on historical changes in human impact on the landscape.

However, the scale of continental forest regrowth following

Indigenous depopulation across the Americas occurring on a

scale detectable in global climate records, provides a compelling

marker. The addition of a ‘palaeo-reference ecosystem’ offers to

supplement the standard ‘reference ecosystem’ approach allowing

for a greater understanding of the structure and composition of

local mature forests. However, it does not demand that specific

species or plant communities are restored, this decision remains

the purview of the restoration ecologist, land managers and

stakeholders, whose mandate is to restore and rehabilitate.

There is little doubt that massive global restoration efforts

are required to help mitigate anthropogenic climate change and

combat deforestation (IPCC, 2018; IPBES, 2018; Chazdon and

Brancalion, 2019; Dave et al., 2019). Despite this, active

restoration of cleared tropical forests cannot continue to

overlook the long-term impact of humans in areas where the

target is to place degraded sites back onto a successional

trajectory that mimics the natural dynamism of the ecosystem.

It is now clear that in many regions human populations have

significantly modified tropical ecosystems over thousands of

years (Denevan, 1992; Heckenberger et al., 2003; Sylvester et

al., 2017; Loughlin et al., 2018a; Lombardo et al., 2020; Prümers

et al., 2022). However, if reference ecosystems continue to be

used in restoration ecology, then the vegetation of the recent past

must be incorporated into establishing practical and robust

(palaeo-) reference ecosystems, that reduce the risk of

recreating ecologically diminished ecosystems that today we

may erroneously see as ‘natural’.
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