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Training traffic light behavior with end-to-end
learning

Maël Wildi[ ]1, Alexandre Alahi[ ]1, and Arnoud Visser[ ]2

1 EPFL, Visual Intelligence for Transportation Laboratory,
Bâtiment GC, Station 18, CH-1015 Lausanne, Switzerland
2 Universiteit van Amsterdam, Intelligent Robotics Lab,
Science Park 904, 1098 XH Amsterdam, The Netherlands

Abstract. In this work, we study neural network architectures that will
reduce the number of infractions made by autonomous-driving agents.
These agents control vehicles by providing future waypoints directly from
a forward-facing camera. Building on top of the teacher-student approach
of Cheating by Segmentation, we investigate the impact of Pyramid Pool-
ing Module and Feature Pyramid Network with the aim to learn more
representative features. We run our experiment with CARLA simulator
and show that pyramid perception modules have a positive impact in
reducing the number of traffic light infractions and collisions.

Keywords: conditional imitation learning, feature pyramid network

1 Introduction

In 2021, Honda in Japan and Mercedes in Germany received the authorization
to deploy a vehicle where the driver is allowed to let the car drive itself, as long
as they do not exceed a speed of 60km/h and are able to take back control if
needed.

Most self-driving vehicles are based on a modular approach, where percep-
tion, planning and control are separated from one another [13]. In the last decade,
the use of convolutional neural networks (CNN) has exploded, thanks to the in-
creased power of computers. It is now widely used for perception tasks, as it
enables to learn a model capable of recognizing objects from a large amount
of annotated images. For autonomous driving, this enabled the possibility of
end-to-end learning, an alternative to the modular method [10]. The control
commands for the autonomous car are directly derived from the sensory input
(such as a forward-looking camera), letting the network learn the intermediate
features relevant for this task.

Imitation learning is, alongside the emerging reinforcement learning approach,
the main method to perform end-to-end learning for autonomous cars [9]. It con-
sists in training a model to reproduce the actions an expert would have performed
if presented to the same situation.

Many models rely on data collected by a human driver [1], however driving
simulators such as Car Learning to Act (CARLA) [6] are more and more used
as they are getting very realistic. Most importantly, a simulator allows to put
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Fig. 1: Illustration of CARLA simulator, widely used for autonomous driving [5]

the autopilot in constant varying situations, which is essential for efficient learn-
ing. Secondly, it enables to have scenarios where other cars and pedestrians are
disrespecting traffic rules, which is important in order to learn a robust policy
trained for worst-case scenarios.

Learning by Cheating (LBC) [3], one of the best performing driving policy
on CARLA simulator, was modified in Cheating by Segmentation (CBS) [8] to
rely only on images coming from a driver perspective instead of a bird’s-eye view
(BEV). It led to promising results, however the number of collisions and traffic
lights infractions increased due to the less informative viewpoint.

Thus, this study pursues the goal of generating a robust end-to-end imitation
learning driving policy using RGB and semantically segmented images from a
driver perspective as only inputs. The focus is on reducing the number of traffic
light infractions and collisions. In order to do this, we rely on pyramid perception
modules that are described in the Method section.

2 Related work

Although there are several interesting developments in learning to drive based on
existing datasets (see for instance [12], [4] and [9]), we concentrate for conciseness
on methods that train in an end-to-end fashion an autonomous agent to drive
using CARLA simulator.

2.1 Conditional imitation learning

Learning by Cheating Learning by Cheating (LBC) [3] proposes a novel way
of training an agent to learn a robust driving policy. It separates the learning
process in two: learning to act and learning to perceive using a teacher-student
network approach.

The teacher agent is trained offline with the supervision of a dataset of expert
trajectories and is privileged in the sense that it has access to a bird’s-eye view
(BEV) semantically segmented image. The student agent is trained under the
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supervision of the teacher and has only access to a standard forward-facing RGB
picture.

Both the teacher and student agents have multiple prediction heads con-
nected to the backbone, which outputs for each of the possible directional com-
mand (turn left, turn right, go straight, follow lane) heatmaps that are con-
verted into waypoints using a soft-argmax operation. These waypoints are then
converted to vehicle commands by a PID controller.

The dataset of expert trajectories is collected directly in the simulator us-
ing an agent based on CARLA autopilot. It collects both the BEV semantically
segmented image and the forward-facing RGB image. Data augmentation is per-
formed by rotating the BEV to simulate steering noise. Multiple driving episodes
are gathered in different traffic and weather conditions.

Cheating by Segmentation Although the student of LBC could be trans-
ferred to the real-world without too much difficulties according to the authors,
the teacher used to train it relies on the ground-truth BEV semantic segmen-
tation image which could be difficult and expensive to gather. Cheating by Seg-
mentation (CBS) [8] addresses this by replacing it by a 120deg field-of-view
forward-facing camera (although still semantic segmented for the teacher). This
would enable to use pre-existing large datasets to train the student.

CBS gives promising results, but has difficulty anticipating braking actions,
which results in a much higher amount of collisions and traffic light infractions
than LBC on the NoCrash [5] benchmark. According to its author, it could be a
consequence of the change of perspective in the segmentation camera from BEV
to forward-facing: in the perspective view, close objects appear bigger which
results in a shorter-term behaviour (a strong signal at a late moment, resulting
in late braking).

2.2 Reinforcement learning

World on rails Learning to drive from a world on rails (WoR) [2], published in
2021 by the same authors as LBC, proposes a model-based reinforcement learning
method. It relies on a model of the ego-vehicle, which enables to simulate the
outcome of the agent’s actions. This model is learned by training a network to
predict the next agent’s state (location, orientation, speed) given its initial state
and an action (steer, throttle, brake). This is done using pre-recorded driving
logs from CARLA.

The main assumption of the paper is that the world is on rails, meaning that
the agent has no influence on its environment. Consequently, the latter does
not depend on the agent’s state or actions which means the initial world state
determines the entire sequence of world states. As the agent is unable to change
this sequence, the state transitions for the world are simply the ordered sequence
of pre-recorded world states from the driving logs.

The model of the ego-vehicle (and the known sequence of world states) are
used alongside a reward function to compute the Q-value, Qt(s, a), for all possible
combination of agent state s and action a at timestep t. The Q-value is the
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reward received for taking a given action in the current state plus the discounted
estimated optimal return on the long term that it will get in the state it ends
up in. The reward function is designed in a way to encourage the vehicle to stay
within the target lane as well as to stop for a pedestrian or a traffic light, and is
penalized otherwise. The Q-value table is used to supervise a visuomotor agent
that takes a RGB image and the vehicle speed as input.

3 Method

The approach taken in this study uses as starting point Cheating by Segmentation
(CBS): a teacher learns to drive from a dataset of forward-facing semantically
segmented images and predicts waypoints in the image frame. It then supervises
a student, that has the same image perspective as the teacher but with an RGB
image input. Finally, the learned student model is used alone in the environment
and its predicted waypoints are converted by a controller into vehicle commands.

In this study, the goal is to modify the student network architecture using
two pyramid perception modules, PPM and FPN, which will be described later
in this section.

3.1 Network Architecture

This section presents the network architecture on which this study relies. The
learning process uses a teacher-student approach. The teacher is supervised by
ground truth waypoints retrieved from expert driving logs and, once trained, is
used to supervise a student. Figure 2 illustrates the whole framework. In the
following sub-sections, the teacher and student are presented in detail.

Teacher The teacher architecture is unchanged from CBS. The network gets as
input the forward speed of the ego-vehicle spd and the forward-facing semanti-
cally segmented image SSI representing roads, road lines, red traffic lights, cars,
and pedestrians. The image is fed into a Resnet18 backbone and its output at
the 4th layer, just before the fully connected layers, is retrieved. It is then con-
catenated with a repeated version of the forward speed spd and fed to one of
the specialized waypoint prediction head, according to the directional command
cmd.

These prediction heads perform deconvolution to predict heatmaps that are
converted into waypoints in the image frame using a spatial arg-softmax. The
model is supervised by the ground truth waypoints coming from the dataset. The
loss function is the mean squared error (MSE) between the network predictions
and the ground truth waypoints.
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Fig. 2: Illustration of the network architecture. The teacher takes a semantically
segmented image as input, while the student gets an RGB image. The teacher
is supervised by the ground truth waypoints and the student by the teacher’s.

Student The student uses the same framework as the teacher, except that
it takes an RGB image as input and uses a ResNet34 backbone instead of a
ResNet18. It is supervised by the waypoints predictions of the teacher. The
student uses the same loss function as the teacher.

The main objective of this study is to improve the traffic light perception in
the network, with the two modules detailed hereafter.

Pyramid Pooling Module Pyramid Scene Parsing Network (PSPNet) [14]
was introduced in 2017 and aim to increase the effective receptive field and add
context to the final feature maps of a feature extractor backbone such as ResNet.
The heart of the PSPNet is the Pyramid Pooling Module (PPM). For different
scales, adaptive average pooling is applied on these feature maps, followed by
an up-sampling step to bring them back to their original dimensions. Then, the
newly obtained maps are concatenated to the original ones. This provides for
each pixel multiple level of context: from global context (whole image) to local
context (small sub-region around the pixel). In other words, by looking at all the
feature maps at a same specific location, information about features concerning
the pixels outside its receptive field is also provided.

This PPM module is integrated into the architecture by placing it after the
ResNet34 backbone but before the concatenation with the ego-vehicle speed. It
thus takes as input the feature maps of the last ResNet34 convolutional layer.

Using PPM should provide a more robust representation of the image by
fusing together features from different sub-regions. Its authors have established
its effectiveness against mismatched relationships. In our case, a potential mis-
matched relationship would be to confound a car rear light for a red traffic light.
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Feature Pyramid Network Feature Pyramid Network (FPN) [7], also intro-
duced in 2017, is quite similar to PSPNet. However, its feature maps are coming
from different layers, not only the last one. They are obtained by concatenating
the intermediate feature maps of one layer with the up-sampled feature maps
of the next layer. Thus, combining the good spatial resolution of the earliest
layers with the higher semantic level in the features of the latest. This enables
to include more complex features in spatially more accurate maps, as well as
considering small objects that would not have been detected with the feature
maps of the latest layer only.

This FPN module takes as input the feature maps of each layer of the back-
bone, in our case ResNet34. Thus, it gets feature maps with different numbers of
channels and dimensions. The first step is to convolve each of these inputs with
256 kernels of size (feature_maps_in x 1 x 1) in order to get for each backbone
layer the same amount of channels, while keeping their original dimensions.

Fig. 3: Illustration of the proposed Feature Pyramid Network architecture.

To be able to integrate it to the existing student network without needing to
change it, we propose to add a down-sampling step so that each set of feature
maps has the same dimensions as the last backbone convolutional layer. Finally,
we concatenate them to end up with a unique output of the same dimensions as
PPM. The resulting architecture is illustrated in Figure 3.

By fusing together high semantic - low resolution features of the latest layers
with low semantic - high resolution of the earliest layers, a more accurate repre-
sentation of the image is constructed, which should help the waypoint prediction
heads in their task.

3.2 PID Controller

The controller responsible for transforming waypoints to vehicle commands is
the same as the one used for LBC and CBS. The target velocity is the average
speed needed to go from one waypoint to the next one. Given the current speed
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of the vehicle, a longitudinal PID controller must then compute the throttle and
brake commands that shall make it reach its target speed. The steer command is
computed by fitting an arc through the predicted waypoints. The angle formed
by the current position and the projection of one of the waypoints on the arc is
fed to a lateral PID controller.

Compared to LBC and CBS, the braking threshold is incremented from
2.0m/s to 3.8m/s in order to adapt the controller to the sensitivity our model
has to obstacles. Moreover, the target speed is clipped to be in a range from
0m/s to 5m/s as in CBS.

4 Experimental setup

The approach having been described, now we present the setup and dataset
used to train our networks, as well as the evaluation process used to measure
the performances of the different models. We compare two different modules that
can be added to the existing student network architecture, in order to favour
a better recognition of traffic lights. The process remains end-to-end and no
classification is made. Both modules can be introduced between the backbone
and the waypoint prediction heads. The architecture and code used for the study
is described in more detail in the thesis [11].

4.1 Simulation environment

We used CARLA 0.9.10.1 which allows to have reproducible runs with a fixed
random seed responsible for traffic generation and an evaluator that is now used
by the latest state-of-the-art implementations, allowing us to compare perfor-
mances with them on common metrics. Note that an earlier version 0.9.6 of
CARLA was employed to evaluate CBS algorithm (with a non-fixed random
seed), which means that some of those results had to be recreated in CARLA
0.9.10.1 to get a fair comparison.

4.2 Dataset

The dataset is collected using a collector agent which follows the approach of
WoR, but has been collected especially for this work. It receives a route through
a given CARLA town and receives rewards for attaining intermediate waypoints,
for breaking at red lights as well as for pedestrians and cars. Information about
the agent’s surroundings is based on the semantically segmented BEV retrieved
from the simulator. For example, attributing a non-zero reward for braking for a
pedestrian is possible only if the latter is visible in the BEV. The BEV is centered
on the ego-vehicle and has a range of 32 meters in each cardinal direction. The
collected dataset is then split into two distinct datasets used respectively for
training and validation, with a 80%-20% ratio.
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4.3 Evaluation

Our models are evaluated on the NoCrash benchmark, in which a run is stopped
as soon as the agent collides. It is also the case if it deviates by more than 30
meters from the route or if it does not move for 180 seconds (timeout). NoCrash
assesses the performances of the agent in train (Town01 ) and test (Town02 )
environments, as well as train (#1, #3, #6, #8) and test (#10, #14) weather
conditions. For all of these combinations, the agent is always evaluated in three
different traffic conditions: Empty, Regular and Dense, detailed in Table 1.

Config. Vehicles Pedestrians

T1-Empty 0 0
T1-Regular 20 50
T1-Dense 100 250

Config. Vehicles Pedestrians

T2-Empty 0 0
T2-Regular 15 50
T2-Dense 70 150

Table 1: Number of vehicles and pedestrians under the three traffic conditions,
Empty, Regular and Dense, in Town01 (left) and Town02 (right).

There are 25 predefined routes in each town that are evaluated in every traffic
and weather conditions. Each of these runs is called an episode. For instance,
in the test town with test weather conditions, there are 25 routes x 4 weathers
x 3 traffics resulting in 300 episodes. Therefore, with three algorithms to be
evaluated, the complete benchmark consists in total in 900 episodes.

We compare the performances not on the Success Rate, the metric used for
WoR, but zoom in on underlying metrics like the Route Completion, In Lane
Rate, No Collision Rate, No Block Rate and finally the metric which is the
focus of the study: Lights ran per hour. Note that on average in each episode
(depending on the route) two traffic lights are encountered. Those performance
measures are compared with WoR, the leading implementation on NoCrash and
the former state-of-the-art, LBC.

5 Results

For the results, first the learning process is described and followed by the eval-
uation of the selected models on the NoCrash benchmark.

5.1 Learning curves

Figure 4 shows the training and validation curves of all the models. The teacher’s
50th epoch checkpoint (loss of respectively 0.0028 and 0.015) is chosen to super-
vise the student network. Training it for longer lead to an increased validation
loss that signify an overfit of the training dataset. Three student models are
trained with the supervision of the teacher previously obtained. One without
additional module (Original), one with a PPM, and one relying on a FPN. The
chosen model is the one with the lowest validation loss after 100 epochs at
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Fig. 4: Evolution of the training and validation loss of the teacher (left) and of
the three students (right) with the number of epochs. The loss function is the
mean L2 distance between predicted and supervision waypoints.

most. Their validation loss is similar, which, although it is not increasing, stays
quite constant and maintain a non-negligeable gap with the training curve. This
could indicate a small overfit of the dataset. To overcome this in the future,
the regularization could be strengthened for instance by performing more data
augmentation or by introducing a weight decay in the optimizer.

5.2 NoCrash results

We evaluate the three student models selected in the previous section on NoCrash
and compare them with the results of WoR and LBC as published in [2], if
available. For a fair comparison, the results for CBS marked as ’Original’, are
the results of the original CBS algorithm trained in the exact same circumstances
as FPN and PPM, so these are not based on the previous reported results.

Overall results As shown in Figure 5 (left), the Route Completion results are
still well below the state-of-the-art. This is not due to the vehicle leaving the
road or even its lane. Our three student models have actually learned to drive
and to follow a route through the city. The performances on lane keeping are
excellent in every configuration, as illustrated in Figure 5 (right).

Fig. 5: Left: Percentage of the route completed without collision. Right: Percent-
age of the route driven within the lane. Metrics are measured according to the
town-weather configuration (1:train, 2:test).
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Error sources When staying within the lane, still three error sources for not
completing the route in the NoCrash benchmark remain. The agent can collide
with cars and pedestrians in their lane (No Collision Rate), stop due to a "false
obstacle" or fail to restart when a traffic light becomes green (No Block Rate) or,
finally, run a red light (Lights ran per hour). This latter was a major error source
for CBS, but with PPM and FPN this is no longer the case, as demonstrated at
the end of this section.

Fig. 6: Left: Percentage of episodes ended without collision according to the
traffic condition. Right: Percentage of episodes ended without being blocked.
This is defined to be the case when the vehicle does not move for 180 seconds.

Unfortunately, the No Collision Rate and No Block Rate are hard to balance.
The student models’ sensitivity to other vehicles is moderate. Other vehicles are
detected, because the network reduces its target speed, but too often that is not
sufficiently to avoid a collision. This can be repaired by adjusting the braking
threshold of the PID controller, described in Section 3.2. Yet, this also influence
the risk of getting stuck due to a "false obstacle" such as a puddle of water. This
trade-off can be clearly seen in Figure 6.

Fig. 7: Traffic light ran per hour of driving according to the town and weather.
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We can observe that the agent is less likely to be blocked in heavy traffic, as
the resulting change in the visible environment is the only reason for it to make a
change in its waypoint predictions, thereby giving it a chance to move. Moreover,
it is clear that the PPM model is more often stuck. This could be explained by
the fact that it is more capable than the others to differentiate objects from
the road even if they have a similar texture. Nonetheless, this higher sensitivity
also has the effect that PPM is better at perceiving cars. This is illustrated on
the left of Figure 6, where the percentage of episodes ended without collision is
depicted.

Correct behavior The original goal and the positive result of this study is
that, with the FPN algorithm, the traffic light infractions are no longer the major
source of error. The major improvement against the original CBS algorithm can
be clearly seen in Table 2 and summarized in Figure 7.

Train town Test town

Train weather Test weather Train weather Test weather

Empty Reg Dense Empty Reg Dense Empty Reg Dense Empty Reg Dense
LBC 1.35 1.89 3.27 0.36 0.81 0.52 8.45 8.22 7.26 8.17 8.61 4.87
WoR 0.00 0.43 2.61 0.00 0.00 4.29 10.68 6.95 12.90 14.46 11.30 13.28

Original 15.07 18.45 20.7 16.74 18.06 16.1 19.27 20.1 24.34 25.23 24.94 16.28
PPM 3.37 5.71 4.37 14.9 16.66 20.9 17.84 13.87 10.12 2.53∗ 24.62 18.05
FPN 1.15 2.12 2.51 0.49 1.65 1.57 6.70 9.13 8.69 7.74 10.70 13.27

Table 2: Number of traffic lights infractions per hour

FPN provides a robust traffic light handling, competitive to WoR and close
to LBC3. Fusing feature maps from different layers of the backbone enables it to
recognize more precisely where and which features in the image are responsible
for stopping or restarting. Also, it generalizes well to unseen environments, with
a number of infractions per hour of only 10.57 in the test town - test weather
configuration. Besides, it seems that the weather conditions have a very limited
impact on its performances.

6 Conclusion

In this study, we trained an agent end-to-end to imitate an expert using only
images taken from a driver perspective. Two different student network architec-
tures were tested. Both the Pyramid Pooling Module and the Feature Pyramid
Network resulted in an agent presenting a very good lane keeping. PPM enabled
to react more strongly to cars but also to inoffensive obstacles.
3 Note: the infraction score of the PPM agent in the Empty scenario of the test town

and weather (marked with ∗) is underestimated due to it being significantly more
stuck (72% of the episodes) compared to the other traffic scenarios.
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FPN enabled to significantly reduce the number of traffic lights ran, reaching
a number of infractions per hour of 10.6% in test conditions on NoCrash. This
brings it close to the state-of-the-art implementations Learning to drive from a
world on rails and Learning by Cheating. Diversifying the distance at which the
expert stops for a traffic light could further improve the model.

This study has shown insights on the potential of pyramid perception modules
for conditional imitation learning and hopefully their perception abilities will
contribute to the improvement of autonomous driving.
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