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Abstract

Background and aims: Graph theoretic analysis of structural covariance networks (SCN)

provides an assessment of brain organization that has not yet been applied to alcohol

dependence (AD). We estimated whether SCN differences are present in adults with AD

and heavy-drinking adolescents at age 19 and age 14, prior to substantial exposure to

alcohol.

Design: Cross-sectional sample of adults and a cohort of adolescents. Correlation matrices

for cortical thicknesses across 68 regions were summarized with graph theoretic metrics.

Setting and participants: A total of 745 adults with AD and 979 non-dependent controls

from 24 sites curated by the Enhancing NeuroImaging Genetics through Meta Analysis

(ENIGMA)–Addiction consortium, and 297 hazardous drinking adolescents and 594 con-

trols at ages 19 and 14 from the IMAGEN study, all from Europe.

Measurements: Metrics of network segregation (modularity, clustering coefficient and

local efficiency) and integration (average shortest path length and global efficiency).

Findings: The younger AD adults had lower network segregation and higher integration

relative to non-dependent controls. Compared with controls, the hazardous drinkers at

age 19 showed lower modularity [area-under-the-curve (AUC) difference = −0.0142,

95% confidence interval (CI) = −0.1333, 0.0092; P-value = 0.017], clustering coefficient

(AUC difference = −0.0164, 95% CI = −0.1456, 0.0043; P-value = 0.008) and local effi-

ciency (AUC difference = −0.0141, 95% CI = −0.0097, 0.0034; P-value = 0.010), as well

as lower average shortest path length (AUC difference = −0.0405, 95% CI = −0.0392,

0.0096; P-value = 0.021) and higher global efficiency (AUC difference = 0.0044, 95%

CI = −0.0011, 0.0043; P-value = 0.023). The same pattern was present at age 14 with

lower clustering coefficient (AUC difference = −0.0131, 95% CI = −0.1304, 0.0033;

P-value = 0.024), lower average shortest path length (AUC difference = −0.0362, 95%

CI = −0.0334, 0.0118; P-value = 0.019) and higher global efficiency (AUC differen-

ce = 0.0035, 95% CI = −0.0011, 0.0038; P-value = 0.048).

Conclusions: Cross-sectional analyses indicate that a specific structural covariance network

profile is an early marker of alcohol dependence in adults. Similar effects in a cohort of

heavy-drinking adolescents, observed at age 19 and prior to substantial alcohol exposure at

age 14, suggest that this pattern may be a pre-existing risk factor for problematic drinking.
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INTRODUCTION

Alcohol dependence (AD) is characterized by persistent and compul-

sive alcohol use despite negative health consequences [1]. Alcohol

use entails an enormous burden for society and is a leading cause

of preventable mortality world-wide [2]. AD has been associated

with lower gray matter volume across widespread regions of the

brain and especially within prefrontal cortex and brain areas related

to reward processing [3–5]. The extent to which these effects arise

from exposure or reflect pre-existing differences which contribute

to the development of AD remains unclear. Alcohol use initiates

during adolescence [6], and early onset increases the risk for later

problematic patterns of consumption including dependence [7].

There is some evidence that alcohol use may disrupt brain matura-

tion [8,9]. While some studies have found regional gray matter dif-

ferences in alcohol-naive adolescents at risk for AD [10,11] others

have found changes following exposure [12]. The specifics regarding

interactions between alcohol use and the brain in terms of pre-

existing risk factors, age and duration/quantity of use still require

substantial clarification.

The study of structural covariance networks (SCN) provides an

assessment of brain organization. Similar to functional connectivity,

SCN are defined by regional covariance of distinct brain features. In

SCN these features are structural, such as gray matter volume or

cortical thickness. This method detects networks that are partially

consistent with those identified by functional and diffusion-based

MRI [13]. The presence of correlated brain features may indicate

synchronized maturation due to shared plastic or trophic influences.

Evidence from neurodegenerative studies suggests that network dis-

turbances precede global gray matter decline, for example, in

frontotemporal dementia [14], Parkinson’s disease [15] and mild

cognitive impairment [16]. Network differences have also been

reported in dependence upon alcohol and other substances [17–19].

Remarkably, network alterations were found in alcohol-naive adoles-

cents at greater risk for AD [20], suggesting that these effects pre-

date exposure and may represent a risk factor. However, such

evidence comes from resting state functional magnetic resonance

imaging (fMRI) studies and no work has reported such effects using

SCN to date.

To summarize SCN features we use graph theory analysis, which

offers powerful yet simple metrics to describe the relations within a

network that is represented as a collection of nodes (e.g. brain

regions) and edges (e.g. correlations). We explored group-level differ-

ences in cortical thickness and graph theory metrics derived from

SCN in two large samples, comprising a cross-sectional data set of

adults with AD and non-dependent adult controls curated by the

Enhancing NeuroImaging Genetics through Meta Analysis (ENIGMA)–

Addiction consortium (https://www.enigmaaddiction.com) and a

longitudinal adolescent cohort collected at ages 14 and 19 by the

IMAGEN project (https://imagen-europe.com). We first examined

whether the relationship between AD and cortical thickness in the

adult sample was age-dependent. Next, we explored the same adult

sample for group differences in SCN metrics, assessing if these were

also related to age. Then, turning to the adolescent sample, we tested

whether cortical thickness and SCN properties were related to haz-

ardous drinking patterns at age 19. Finally we examined, retrospec-

tively, if similar findings were present in the same sample at age

14 before substantial alcohol use.

METHODS

Adult sample

A total of 1724 participants (745 with AD and 979 non-dependent

controls) ranging from 18 to 56 years were included from 24 studies

contributing to the ENIGMA–Addiction consortium. All procedures

were in accordance with the Declaration of Helsinki. A variety of

instruments were used to diagnose AD based on the DSM-IV criteria

(see Supporting information, Table SM1).

Participants with a history of neurological disease or contraindica-

tions for MRI were excluded. Additionally, individuals with AD were

excluded for any other Axis I disorder (i.e. including dependence upon

other substances) other than mood or anxiety.

Structural T1-weighted images were prepared using FreeSurfer

(version 5.3) [21,22] through CBRAIN (www.computecanada.ca), a

network of high-performance computing facilities in Canada [23].

ENIGMA quality control protocols were followed (http://enigma.ini.

usc.edu/protocols/imaging-protocols). Additional visual inspection

was performed at the University of Vermont on random subsamples

to confirm consistent quality across sites. Details regarding the scan-

ner vendor and image acquisition protocols are presented in

Supporting information, Table SM1. Average cortical thickness was

extracted from 68 regions of interest (ROIs) parcellated according to

the Desikan–Killiany atlas [24]. Inter-site scanner effects were

removed with ComBat [25]. This method allows elimination of

unwanted non-biological sources of variation in the data (i.e. scanner

effects) while preserving relevant information such as age, sex and

group within a Bayesian framework. For a more detailed explanation,

see Fortin et al. [25].

Age windows

SCN exploits inter-individual variance in thickness to derive estimates

of covariance at the group level (see below). Consequently, in order to

STRUCTURAL COVARIANCE NETWORKS AND ALCOHOL 1313

 13600443, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/add.15772 by U

va U
niversiteitsbibliotheek, W

iley O
nline L

ibrary on [15/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.enigmaaddiction.com
https://imagen-europe.com
http://www.computecanada.ca
http://enigma.ini.usc.edu/protocols/imaging-protocols
http://enigma.ini.usc.edu/protocols/imaging-protocols


generate groups of AD and control participants for comparisons

across different ages, the data set was analyzed using a moving win-

dow approach. The 6-year-wide age windows started at age 18 and

increased in 1-year steps (i.e. 18–24, 19–25, 20–26… 50–56). The

cut-off was set at age 56 due to limited numbers of individuals above

this age. A 6-year window was selected as it maximized the numbers

of individuals per window (100 on average) while being

reasonably narrow to detect age-related differences. We attempted

to match AD and non-dependent groups for age and sex (ratio 1:1) at

all windows using a nearest-neighbor algorithm from the MatchIt

package [26].

Adolescent sample

A sample of 1068 adolescents was drawn from the IMAGEN project,

a multi-site study which acquired longitudinal data at ages 14 (base-

line) and 19 (follow-up) at eight European imaging centers. Non-

siblings with MRI data available at baseline and follow-up were

included. Missing age at follow-up from 112 participants was imputed

with the average difference in years between baseline and follow-up

(i.e. 4.64 years). The Alcohol Use Disorders Identification Test

(AUDIT) was used to assess problematic alcohol use. AUDIT total

scores equal to or greater than 8 indicate hazardous drinking [27].

Participants surpassing this threshold at follow-up were classified as

hazardous drinkers. Those who did not meet this cut-off (i.e. seven or

fewer) at baseline and follow-up were considered controls. Groups

were matched for age and sex with a ratio of two controls for each

hazardous drinker (2:1). The final groups were composed of 594 con-

trols and 297 hazardous drinkers.

Structural T1-weighted scans were collected at each site follow-

ing Alzheimer’s Disease Neuroimaging Initiative (ADNI) protocols to

minimize site effects [28] (https://github.com/imagen2/imagen_mri/

tree/master/protocols). Preparation of images and site-effect adjust-

ments were the same as described for the adult sample.

Network construction

With this approach, a single network is derived from a correlation

matrix exploiting inter-individual variation generated by pooling sub-

jects from a predetermined group. The thickness of each ROI repre-

sents a node, and the correlation between ROIs describes an edge.

The strength of an edge illustrates within-group correlations in thick-

ness across pairs of nodes. Edges are thresholded and binarized and,

finally, graph theory metrics are derived at the group level. In both the

adult and adolescent samples, ROIs were residualized for mean global

thickness using linear regressions. Age and sex were residualized in

the adult sample where balancing groups for these features was not

possible. Adjacency matrices were generated with Pearson’s correla-

tions among the residualized ROIs for each group and age window in

the adult sample and for each group and time-point (i.e. follow-up and

baseline) in the adolescent sample. This step returned group-specific

(i.e. two groups, two matrices) correlation matrices of 68 by 68 nodes

with a maximum possible density of 2278 edges. Matrices were

proportionally thresholded along a wide range of densities to prevent

differences arising from unequal-sized networks or arbitrary

thresholds. Matrices spanned from Dmin to 0.3 in increasing steps of

0.01. Here, Dmin equaled the minimum density at which groups dis-

played at least one edge per node: this ensured that comparisons

were conducted on fully connected networks. Network construction

and graph theory metrics were derived with the brainGraph

package [29].

Graph theory metrics

Global SCN properties were summarized with a variety of graph the-

ory metrics assessing network segregation and integration across all

densities.

Metrics of segregation

Metrics of segregation rely upon short-range edges and capture

how correlated adjacent nodes are in terms of cortical thickness,

with higher scores reflecting higher correlations. Three metrics of

segregation were used: clustering coefficient (Cp), modularity and

local efficiency (Elocal). Cp reflects the extent to which the neighbors

of a node are each other’s neighbors [30]. That is, it represents

whether nodes that are related to a certain node are also correlated

with each other. Modularity exposes the degree to which same-

module nodes are correlated with each other but not with other

modules [31]. Elocal expresses the ability of a cluster to remain

connected (correlated) after a node is removed [32]. If low, it may

suggest that the relationships within a cluster are reliant upon too

few nodes.

Metrics of integration

Metrics of integration reveal between-community correlations and

depend on shortcuts or long-distance paths to bring distant nodes

together. We used the average shortest path length (Lp) and global

efficiency (Eglobal). Lp denotes the average of the shortest number of

edges passed through to reach other nodes in the network. This

shortest path length is first calculated for all pairs of nodes sequen-

tially (i.e. the average shortest path from A to B, from A to C,… from X

to Z) and then averaged across all nodes. Eglobal is comparable to the

inverse of Lp (i.e. 1/Lp) with the exception that it incorporates all

paths among two nodes (i.e. not just the shortest path but the full set

of paths between A and B). By capturing these parallel or redundant

paths, Eglobal is often preferred for networks that contain disconnected

nodes [30]. Note that these edges are in the graph space and reflect

correlations in cortical thicknesses between brain regions so do not

represent anatomical connectivity. Lower Lp and higher Eglobal imply a

1314 OTTINO-GONZ�ALEZ ET AL.
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greater presence of shorter paths and better integrated networks [30]

and indicate that distant nodes are more correlated. See Methods in

Supporting information, SM3, for more details on these metrics.

Statistical analyses

None of the analyses conducted in the current work were pre-

registered and should be therefore considered exploratory.

Cortical thickness comparisons

First, we examined if the difference in cortical thickness between AD

and non-dependent groups was age-dependent. For this purpose, we

conducted linear regression models in the full adult sample

(n = 1724) to predict global (mean) cortical thickness by including

group, sex and age and their interactions. Next, we adopted the mov-

ing age window approach to map group age-related differences in

both global and regional cortical thickness. Age and sex balance was

assessed at every window with parametric tests (i.e. t-test, χ2 test). If

groups were different, age and sex were entered as covariates.

Models included global or regional cortical thickness as the depen-

dent variable and group as its main predictor. A false-discovery rate

(FDR) correction was adopted to minimize type I errors in regional

cortical thickness analyses (i.e. 68 ROI = 68 tests per age window, 33

age windows).

In the adolescent sample, linear regressions for global and

regional cortical thickness were performed separately for follow-up

and baseline with group as the main predictor and also FDR-adjusted

(i.e. 68 tests, two time-points). All analyses were done in R version

4.1.0 [30].

Graph theory metrics comparisons

For both the adult and adolescent samples, between-group differ-

ences in graph theory metrics (i.e. Cp, modularity, Elocal, Lp, Eglobal)

were addressed with two-sided permutation tests at each density.

Non-parametric permutation testing was required as metrics were cal-

culated on the group level (i.e. one value per group). Area under the

curve (AUC) analyses were used to prevent results from depending

upon a single threshold. Individuals were randomly shuffled among

groups 1000 times and two-sided AUC tests performed. The observed

AUC differences were compared with critical values based on the

95th percentile of the distribution of permuted AUC differences. The

level of significance was set at P-value < 0.05 uncorrected. These ana-

lyses were performed at every age window (n = 33) in the adult sam-

ple and for follow-up and baseline visits in the adolescent sample.

Supplementary tests involved a subset of hazardous drinkers (n = 110)

and controls (n = 220) with no alcohol use at baseline (AUDIT = 0) to

investigate if any observed effect could be disentangled from

exposure.

Behavioral and cognitive tests

To more clearly characterize the phenotype of each group in the ado-

lescent sample, we examined group differences on the development

and well-being assessment (DAWBA) externalizing problems scale,

the impulsivity scale from the temperament and character inventory

(TCI) and the risk-taking score from the Cambridge gambling task

(CGT). Groups were compared in a series of cross-sectional linear

mixed models adjusting for fixed (i.e. age and sex) and random effects

(i.e. site). Because of their exploratory nature, the significance level for

these tests was Bonferroni-adjusted and set at P-value < 0.008 (three

tests per two time-points: 0.05/6 = 0.008).

RESULTS

A summary of socio-demographic characteristics of the adult and ado-

lescent samples is available in Table 1.

Cortical thickness results

In the adult sample, the AD group exhibited lower global cortical thick-

ness compared to the non-dependent group (t1716 = −4.42, P-value <

0.001). The group × age interaction was significant (t1716 = −3.20, P-

value = 0.001), whereas the group × sex interaction was not (t1716 =

−0.52, P-value = 0.606). The AD group had a steeper age-related slope

(r = −0.32) than non-dependent controls (r = −0.24) (see Figure 1). The

main effect of sex (t1716 = −0.60, P-value = 0.547) and its interaction

with age (t1716 = 0.75, P-value = 0.454) were not significant.

Contrasts performed at each age window showed groups differed

on global cortical thickness at age window 25–31 and in each subse-

quent age window (see Figure 2). Also, ROI-level contrasts revealed

T AB L E 1 Demographics of the adult and adolescent samples (mean � standard deviation or frequency)

n Age (years) Females AUDIT total

Adults Alcohol-dependent 745 33.9 � 10.3 239 –

Non-dependent controls 979 28.9 � 9.58 406 –

Follow-up Adolescents Hazardous drinkers 297 19.1 � 0.74 126 11.6 � 3.87

Controls 594 19.1 � 0.72 255 3.63 � 2.12

Baseline Adolescents Hazardous drinkers 297 14.4 � 0.36 126 1.95 � 2.58

Controls 594 14.4 � 0.41 255 0.84 � 1.41

Abbreviation: AUDIT, Alcohol Use Disorders Identification Test.

STRUCTURAL COVARIANCE NETWORKS AND ALCOHOL 1315
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that the number of regions with a significant difference in thickness

increased in the older age windows (e.g. from four ROIs at age win-

dow 18–24 to 54 ROIs at age window 41–47). Further ROI results are

provided in the Supporting information, Figure SM2 (plots performed

with the ggseg package [31]). Table 2 presents demographic summa-

ries at each age window.

F I GU R E 1 Global cortical thickness and age
interaction between groups

F I GU R E 2 Global cortical thickness and graph theory metrics plotted as a function of age using age windows for the adult Enhancing
NeuroImaging Genetics through Meta Analysis (ENIGMA)–Addiction consortium data set. Shaded areas represent statistically significant
differences (P < 0.05) between groups

1316 OTTINO-GONZ�ALEZ ET AL.

 13600443, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/add.15772 by U

va U
niversiteitsbibliotheek, W

iley O
nline L

ibrary on [15/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



T AB L E 2 Demographics of the adult sample across age windows (mean � standard deviation or frequency)

Age window (years) Alcohol-dependent Non-dependent controls Statistic (t/χ2)

18–24 n 182 182 –

Age 22.3 � 1.43 22.3 � 1.43 0

Female 75 79 0.10

19–25 n 209 209 –

Age 22.9 � 1.44 22.9 � 1.44 0

Female 84 88 0.09

20–26 n 243 243 –

Age 23.4 � 1.69 23.4 � 1.70 −0.13

Female 94 98 0.08

21–27 n 269 269 –

Age 23.7 � 1.94 23.7 � 1.91 0.18

Female 103 103 0

22–28 n 258 258 –

Age 24.7 � 1.98 24.7 � 1.99 0.18

Female 100 99 0

23–29 n 232 232 –

Age 25.6 � 1.92 25.6 � 1.92 −0.16

Female 90 90 0

24–30 n 217 217 –

Age 26.5 � 2.01 26.6 � 2.00 −0.17

Female 81 81 0

25–31 n 188 188 –

Age 27.6 � 1.96 27.6 � 1.95 0

Female 65 65 0

26–32 n 178 178 –

Age 28.6 � 2.05 28.5 � 1.92 0.53

Female 62 63 0

27–33 n 151 151 –

Age 29.5 � 1.90 29.5 � 1.93 −0.03

Female 52 52 0

28–34 n 147 147 –

Age 30.7 � 2.08 30.6 � 2.00 0.31

Female 50 57 0.53

29–35 n 132 132 –

Age 31.9 � 2.00 31.5 � 2.03 1.47

Female 37 37 0

30–36 n 130 130 –

Age 32.8 � 2.05 32.7 � 2.17 0.23

Female 39 44 0.28

31–37 n 121 121 –

Age 33.9 � 2.01 33.9 � 1.99 −0.06

Female 36 46 1.49

32–38 n 122 122 –

Age 35.0 � 2.07 35.0 � 1.94 −0.22

Female 36 44 0.91

(Continues)

STRUCTURAL COVARIANCE NETWORKS AND ALCOHOL 1317
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T AB L E 2 (Continued)

Age window (years) Alcohol-dependent Non-dependent controls Statistic (t/χ2)

33–39 n 113 113 –

Age 36.1 � 1.91 36.1 � 1.91 0.03

Female 31 34 0.09

34–40 n 120 120 –

Age 36.8 � 2.05 36.8 � 1.95 −0.10

Female 32 42 1.58

35–41 n 115 115 –

Age 38.0 � 2.02 37.8 � 1.89 0.98

Female 28 39 2.11

36–42 n 111 111 –

Age 38.9 � 1.96 38.6 � 1.94 1.24

Female 32 42 1.64

37–43 n 95 95 –

Age 39.4 � 1.75 39.6 � 1.82 −0.65

Female 30 34 0.21

38–44 n 93 93 –

Age 40.3 � 1.70 40.5 � 1.99 −0.59

Female 26 38 2.88

39–45 n 96 96 –

Age 41.5 � 1.67 41.9 � 2.26 −1.96

Female 22 44 10.18*

40–46 n 94 94 –

Age 43.7 � 1.71 43.2 � 2.21 1.66

Female 27 38 2.35

41–47 n 84 84 –

Age 45.2 � 1.70 44.3 � 1.85 3.17*

Female 32 35 0.10

42–48 n 85 85 –

Age 44.4 � 1.89 45.0 � 1.81 −2.36

Female 36 36 0

43–49 n 88 88 –

Age 46.7 � 1.52 46.0 � 1.88 2.43*

Female 31 35 0.22

44–50 n 92 92 –

Age 47.2 � 1.57 46.8 � 2.01 1.52

Female 27 36 1.54

45–51 n 88 88 –

Age 47.8 � 1.64 47.5 � 2.03 1.10

Female 28 28 0

46–52 n 74 74 –

Age 48.9 � 2.12 48.5 � 1.95 1.17

Female 9 20 4.29*

47–53 n 62 62 –

Age 49.4 � 2.05 49.6 � 1.80 −0.51

Female 0 16 16.15*

(Continues)
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A group difference in cortical thickness was not observed in the

adolescent sample at either baseline or follow-up.

Structural covariance results

In the adult sample, the AD group exhibited significantly lower modu-

larity, Cp and Elocal relative to the non-dependent group in the younger

age windows, consistent with lower segregation. Whereas modularity

effects were present at the 18–24 age window only, Cp and Elocal

effects were significant in all windows starting at 18–24 until age win-

dow 26–32 (see Figure 2). A single effect emerged at age window

41–47 but only for Cp. The AD group had significantly higher Eglobal in

age window 19–25. This group showed lower Lp and higher Eglobal

from age windows 21–27 to 24–30, suggesting greater integration.

The AD group additionally showed higher Eglobal from age windows

25–31 to 26–32. At age window 41–47, this group had lower Lp and

greater Eglobal [note: all analyses were repeated using different age

window solutions (e.g. 5-, 7-, 8-, 9- and 10-year-wide windows) and

results remained significant in the younger AD; results not shown].

The observed differences and confidence intervals (CI) are available in

the Supporting information, SM4.

In the adolescent sample, significant effects were found at

follow-up for all graph theory metrics. Similar to the early age win-

dows in the adult AD group, the adolescent hazardous drinking group

exhibited lower modularity (AUC difference = −0.0142, 95% CI =

−0.1333, 0.0092; P-value = 0.017), Cp (AUC = −0.0164, 95% CI =

−0.1456, 0.0043; P-value = 0.008) and Elocal (AUC difference =

−0.0141, 95% CI = −0.0097, 0.0034; P-value = 0.010) compared to

controls (see Figure 3). Similarly, adolescent hazardous drinkers also

presented lower Lp (AUC difference = −0.0405, 95% CI = −0.0392,

0.0096; P-value = 0.021) and greater Eglobal (AUC difference = 0.0044,

95% CI = −0.0011, 0.0043; P-value = 0.023). A number of effects

were observed at baseline mimicking those observed at follow-up and

at the early age windows in the adult sample. At baseline (i.e. age 14),

and prior to substantial alcohol exposure, the future hazardous drink-

ing group had lower Cp (AUC difference = −0.0131, 95% CI =

−0.1304, 0.0033; P-value = 0.024), lower Lp (AUC difference =

−0.0362, 95% CI = −0.0334, 0.0118; P-value = 0.019) and higher

Eglobal (AUC difference = 0.0035, 95% CI = −0.0011, 0.0038); P-

value = 0.048). A subset of the hazardous drinking adolescents who

were alcohol-naive at baseline (i.e. AUDIT = 0) showed a similar pat-

tern to the larger group at follow-up, although the effects were not

significant at baseline (see Figure 3).

Behavioral and cognitive results

At follow-up, the hazardous drinking group exhibited higher external-

izing symptoms (t747.58 = 3.94, P-value < 0.001), impulsivity

(t631.87 = 4.83, P-value < 0.001) and risk-taking scores (t868.93 = 3.61,

P-value < 0.001) compared to the control group. Similarly, at baseline,

the (future) hazardous drinking group scored higher on externalizing

symptoms (t825.09 = 2.87, P-value = 0.004) and impulsivity

(t756 = 2.71, P-value = 0.007). Risk-taking results did not survive

Bonferroni-adjustments (t605.12 = 2.12, P-value = 0.035).

DISCUSSION

In a large adult cross-sectional sample, we found that the difference in

global cortical thickness between AD and non-dependent groups was

influenced by age, being greater in older individuals. The moving age

window analysis identified an initial significant group difference in

global cortical thickness in the 25–31 age window and in all the older

age windows. With regard to SCN, the AD group consistently pres-

ented lower segregation and higher integration of SCN compared to

non-dependent controls in the younger but not the older age win-

dows, an opposite pattern to what was observed with the average

cortical thickness. We found similar SCN effects in an independent

sample of adolescents with no cortical thickness differences in hazard-

ous drinkers at age 19. Most notably, SCN differences were observed

in the same adolescents 5 years earlier who, at age 14, had little to no

life-time alcohol exposure. Taken together, results indicate that SCN

effects are related to alcohol drinking (i.e. alcohol dependence or haz-

ardous drinking) in the absence of cortical thickness differences.

T AB L E 2 (Continued)

Age window (years) Alcohol-dependent Non-dependent controls Statistic (t/χ2)

48–54 n 56 56 –

Age 50.0 � 1.73 50.2 � 1.76 −0.81

Female 10 14 0.48

49–55 n 52 52 –

Age 51.0 � 1.43 51.1 � 1.98 −0.23

Female 13 13 0

50–56 n 39 39 –

Age 51.5 � 1.07 52.0 � 1.87 −1.41

Female 11 8 0.28

*P < 0.05.
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Alcohol and brain volume

Initiation of alcohol use typically occurs during adolescence [6], and

early onset increases the risk for later problematic patterns of use

including dependence [7]. Youths initiating alcohol use by age 14 or

earlier are five times more likely to be diagnosed as AD later in life

than those who started at age 21 or later. From age 14 onwards, each

year by which onset of drinking is delayed is followed by a 14% drop

in the risk for life-time dependence [32]. Onset of AD peaks in the

early 20s [33], with most cases (94.1%) being diagnosed before age

25 [34]. With regard to the brain, older individuals with AD show

more regional differences in cortical volume compared to non-

dependent controls and to younger individuals with AD [35–37]. The

effects of age and chronic alcohol use on the brain have been con-

firmed in animal models [38]. Sustained alcohol exposure reduces

brain-derived neurotrophic factor and nerve-growth factor release,

triggers oxidative stress and glutamate excitotoxicity and disturbs

mitochondrial function due to the accumulation of toxic metabolites

[12]. Some of these factors are related to the etiology of neurodegen-

erative disease [39]. While the cross-sectional nature of the adult

sample results warrants caution, differences in cortical thickness as a

function of age quite plausibly reflect the cumulative effect of expo-

sure. However, it is equally possible that older brains are more suscep-

tible to the alcohol neurotoxicity or that the AD duration is influenced

by pre-existing gray matter differences.

Alcohol use and structural covariance

Consistent with the present findings, resting-state fMRI studies have

reported lower network segregation in alcohol-naive adolescents at

risk of AD [18] and AD severity in adults [20]. Lower segregation has

also been found in cocaine and heroin dependence [17,19] and

internet-gaming disorder [40]. In contrast, the literature is less consis-

tent regarding differences in network integration in both AD and

other addictions [17–20,40]. In the present findings, segregation and

F I GU R E 3 Average score of graph theory metrics across densities at follow-up (first row) and baseline (second row). Right-column barplots
represent analyses performed in a subset of participants that were alcohol-naive at baseline. Error bars depict the standard error for each
measure across densities. Lp values were log-scaled to fit the rest of the variables. *P < 0.05; NS = non-significant
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integration effects appeared at age windows 18–24 and 21–27 and

were not observed in age window 26–32 or older. Although we can-

not confirm with cross-sectional data that SCN differences predict

gray matter decay as in neurodegenerative work, we speculate that

the absence of SCN differences at later windows could be related to

the onset of cortical thickness disturbances that obscure SCN effects.

We extended the investigation to an adolescent longitudinal data

set to explore if SCN differences could be observed in those who do

not have AD but are showing patterns of hazardous drinking. The

adolescent sample replicated the young adult AD group’s SCN find-

ings, including the absence of cortical thickness differences relative to

controls. At follow-up, the hazardous drinking group had lower segre-

gation (i.e. lower modularity, Cp and Elocal) and higher integration

(i.e. lower Lp and higher Eglobal) than controls. At baseline, the (future)

hazardous drinking group showed lower segregation (i.e. lower Cp)

and higher integration (i.e. lower Lp, higher Eglobal) than controls. Of

note, most of the individuals from this group had below-threshold

scores (AUDIT < 8), and 37% had reported no alcohol use (AUDIT = 0)

at baseline. While supplementary tests on this alcohol-naive subset

(i.e. 37%, n = 110) showed similar effects to the larger group at fol-

low-up, null results were found at baseline. Nevertheless, this analysis

drastically reduced the sample size and thus chances of Type II error

cannot be dismissed.

As graph theory metrics derived from SCN describe the degree

of synchronized maturation across nodes [41–43], lower segregation

hints at de-synchronization among adjacent nodes in the young AD

and the adolescent hazardous drinking groups. By contrast, higher

integration means greater synchronization with nodes that belong to

other communities. In other words, brain regions are showing atypi-

cal similarity in thicknesses to other regions that are distant in the

alcohol-drinking groups. Poor segregation and higher integration have

previously been related to other psychiatric and neurological condi-

tions [44], including dependence on alcohol and other substances

[16–18]. Typically, segregation peaks by late adolescence and young

adulthood, probably reflecting functional specialization among corti-

cal regions [44,45]. Therefore, we speculate that our results suggest

a protracted cortical maturation in the alcohol-drinking groups

[13,42,46]. Asynchronous cortical growth has previously been related

to poor decision-making and self-regulation and to elevated reward-

seeking behaviors [46,47]. Delayed cortical growth has been associ-

ated with inattention [48] and anxious/depression symptoms [49] as

well. It has been proposed that disturbed cortical growth renders

youth vulnerable to risky behaviors such as early alcohol drinking

[47,50]. In Holla et al. [18], delayed maturation of functional net-

works in adolescents at greater risk for AD was associated with more

externalizing problems. Externalizing problems suggest failures in

self-regulation also resulting as a risk factor for alcohol use [49]. We

have found that the hazardous drinking group presented higher

externalizing symptom severity scores, were more impulsive and took

more risky decisions in a gambling task at ages 14 and 19. Addition-

ally, if the SCN results are an indicator of delayed cortical growth,

then the absence of SCN effects after age window 26–32 in AD

adults could align with the end of the delayed developmental period.

That is, the group differences in SCN may disappear because the rel-

evant maturational processes are complete in both the AD and non-

dependent controls. For instance, the Cp trajectories in Figure 1

show that the peak in the AD group (age window 28–34) appears

delayed as to the peak in the control group (age window 23–29). An

alternative possibility is that SCN differences persist but are

obscured by the widespread cortical thinning associated with

adult AD.

To summarize, the younger AD group exhibited lower segregation

and higher integration in the absence of global differences in cortical

thickness relative to the control group. Exactly the same pattern was

found at age 19 in adolescents with hazardous drinking behavior. This

profile was again detected in the same group 5 years earlier prior to

substantial alcohol exposure at age 14. Overall, we hypothesize that

the SCN profile might reflect the delayed growth of cortico-cortical

networks central to the development of functional specializations and

related to the successful regulation of reward-related processes. We

have also found behavioral signs that suggest delays in cortical matu-

ration. Impaired self-regulation during adolescence (i.e. higher impul-

sivity and risk-taking) increases the likelihood of engaging in

problematic behaviors such as alcohol use [46,47,50]. However, with

the current design and approach we cannot confirm whether SCN dif-

ferences constitute a risk factor for alcohol use or dependence nor if

these were independent from exposure; similar but not significant

effects were found in a sample of alcohol-naive individuals at age

14, which we attribute to losses in statistical power. However, our

analyses provide evidence of a promising brain marker for AD in

young adults and for heavy alcohol use at age 19. We offer a retro-

spective prediction in which a known outcome (i.e. heavy drinking at

age 19) is predated by SCN differences at age 14 before any substan-

tial alcohol use. Despite the exploratory nature and methodological

limitations, the current study brings intriguing new hypotheses about

potential brain markers for future alcohol use.

The current study was limited by several factors. First, alcohol use

duration was not measured at many of the ENIGMA–Addiction sites,

so it was not possible to disentangle the potential effects of duration

and age. Many studies have reported that age and alcohol use dura-

tion are highly collinear, especially among heavy drinkers [36]. Despite

dependence upon other substances and the presence of other psychi-

atric disorders being considered reasons for exclusion, we cannot dis-

card other factors such as recreational use of other drugs, anxiety and

depression symptoms, or lower education and socio-economic status,

partially explaining the results. Age distribution was skewed in the

adult sample which required the analyses to go no further than age

56. More notably, the cross-sectional nature of the adult sample

restricts the conclusions that we can draw regarding SCN effects pre-

ceding, or indeed being causally related to, cortical thickness alter-

ations within an AD individual. Moreover, contrasts for both the adult

and adolescent samples were performed at the group level as the

SCN approach exploited inter-individual variation so did not provide

individual-level metrics. Due to insufficient numbers of female individ-

uals (32% in the AD group), relevant questions on sex differences

were left unexplored. Last, and to the best of our knowledge, this is
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the first study using SCN metrics and alcohol and hence the current

work has a strong exploratory component.

In conclusion, based on two of the largest data sets with neuroim-

aging data and relevant alcohol phenotypes, young adults with alcohol

dependence showed a specific pattern of SCN differences. This SCN

profile was replicated in adolescents identified as hazardous drinkers

at age 19 and prior to substantial exposure to alcohol at age 14. SCN

differences were found in the absence of global differences in cortical

thickness. This pattern of lower segregation and higher integration

may indicate disruptions in cortico-cortical growth. Further work

should address whether such effects represent an early marker for

future alcohol use and dependence.
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