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ABSTRACT
We analyze the impact of short-run (90 days) and long-run (30 years) earthquake risk on real estate
transaction prices in five Japanese cities (Tokyo, Osaka, Nagoya, Fukuoka, and Sapporo), using quarterly
data over the period 2006–2015. We exploit a rich panel dataset (331,343 observations) with property
characteristics, ward attractiveness information, macroeconomic variables, and long-run seismic hazard
data, supplemented with short-run earthquake probabilities generated from a seismic excitation model
using historical earthquake occurrences. We design a hedonic property price model that allows for sub-
jective probability weighting, employ a multivariate error components structure, and develop associated
maximum likelihood estimation and variance computation procedures. Our approach enables us to iden-
tify the total compensation for earthquake risk embedded in property prices, to decompose this into
pieces stemming from short-run and long-run risk, and to distinguish between objective and subjectively
weighted (“distorted”) earthquake probabilities. We find that objective long-run earthquake probabilities
have a statistically significant negative impact on property prices, whereas short-run earthquake probabil-
ities become statistically significant only when we allow them to be distorted. The total compensation for
earthquake risk amounts to an average −2.0% of log property prices, slightly more than the annual income
of a middle-income Japanese household. Supplementary materials for this article, including a standardized
description of the materials available for reproducing the work, are available as an online supplement.
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1. Introduction

In Japan, earthquake risk is a reality. Every day in and around
Japan, about three earthquakes occur with a magnitude of M >

4 on the Richter scale, and twice a month with a magnitude
of M > 6. Earthquake risk varies, over days and between and
within cities.

We are interested in analyzing the impact of natural catas-
trophe risk, Japanese earthquake risk in particular, on prop-
erty valuation. We distinguish between different measures of
earthquake risk. We consider long-run earthquake probabilities
providing a stable objective measure of the average earthquake
risk in a given (small) area in the next 30 years, and short-run
earthquake probabilities providing an objective measure of local
earthquake risk in the next 90 days. Objectively measured risk
is, however, not the same as the perception and subjective eval-
uation of risk, and by transforming objective probabilities using
subjective probability weighting we attempt to capture this. This
article thus analyzes the subjective evaluation of both short- and
long-run earthquake risk embedded in Japanese property prices.
These property prices serve, in a sense, as a vehicle to statistically
assess features of the human nature in relation to subjective risk
evaluation.

CONTACT Roger Laeven R.J.A.Laeven@uva.nl Department of Quantitative Economics, University of Amsterdam, Amsterdam, PO Box 15867, 1001 NJ, The
Netherlands.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

Earthquakes tend to occur in clusters rather than in isolation.
These seismic clusters may take the form of foreshocks and
aftershocks anticipating and following a major earthquake or
of a collection of major earthquakes triggering one another by
causing frictions that put strain on neighboring faults. There is
therefore objective predictive content embedded in the occur-
rence of earthquakes. This phenomenon is known as “seismic
excitation” and there exists a large literature in statistics aimed
at capturing it.

In a different strand of the literature in economics, several
articles analyze the impact of natural catastrophes on property
prices. Most commonly, this literature incorporates the prevail-
ing binary state of the world, depending on whether or not a
catastrophe has occurred, into a hedonic house price model of
the Rosen (1974) type, which has become the benchmark model
in analyzing property prices. Within a typical hedonic price
model, the characteristics of a property are viewed as detachable
components that each contribute to a part of the property price.
The selection of components ranges from traditional house
attributes such as square footage, location and building age, to
external factors such as macroeconomic effects. The negative
effect coming from hazardous environmental events, such as
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flood, hurricane and earthquake, has been addressed by var-
ious researchers; see, among others, Brookshire et al. (1985),
Kawawaki and Ota (1996), Beron et al. (1997), Yamaga, Nak-
agawa, and Saito (2002), Bin and Polasky (2004), Nakagawa,
Saito, and Yamaga (2007), Nakagawa, Saito, and Yamaga (2009),
Daniel, Florax, and Rietveld (2009), Naoi, Seko, and Sumita
(2009), Naoi, Seko, and Ishino (2012), Gu et al. (2011), Bin
and Landry (2013), Hidano, Hoshino, and Sugiura (2015), and
Hanaoka, Shigeoka, and Watanabe (2018).

In recent years, a large body of literature has documented,
empirically, that people do not typically treat objective proba-
bilities in a linear fashion, but rather tend to overweight small
probability events and underweight large probability events.
This is particularly relevant when evaluating catastrophic events
that are often of a low-probability high-impact nature. Various
modern theories of decision under risk, such as rank-dependent
utility theory (Quiggin 1982) and prospect theory (Tversky and
Kahneman 1992), feature a probability weighting function that
“distorts” objective probabilities.

In this article, we introduce into a hedonic price model an
objective measure of seismic excitation, next to a more conven-
tional measure of long-run earthquake risk, and allow for prob-
ability weighting in the spirit of the nonexpected utility theories
of rank-dependent utility and prospect theory. We use a rich
panel dataset containing property characteristics, ward attrac-
tiveness information, macroeconomic variables, seismic hazard
data, and historical earthquake occurrences. We design a hedo-
nic price model with a multivariate error components struc-
ture (Baltagi 1980, 2008; Magnus 1982) for which we develop
associated maximum likelihood estimation and variance com-
putation procedures. By exploiting the matrix form of the error
components, we are able to estimate the model while pooling
properties of different types together, in spite of the very large
dimension of the variance matrix and the fact that each property
type corresponds to different features and total price levels.
Our approach allows us to isolate the total compensation for
earthquake risk embedded in Japanese property prices, and to
decompose this into pieces stemming from short-run risk and
long-run risk, and a further decomposition into objective and
distorted risk components.

The occurrences of major earthquakes have served previ-
ously in hedonic price models with regression discontinuity
design as natural exogenous events to elicit causal pricing effects.
Limitations of this conventional approach include the purely
binary nature of this treatment, which does not reflect the
multiplicity of the events, the time elapsed since the last event,
and the severity of the events. By contrast, our approach relies on
a continuous-time predictive earthquake intensity that depends
on all previous earthquakes, with recent ones being more impor-
tant than older ones, and explicitly accounts for the severity
of the events. Moreover, and at least equally importantly, this
earthquake intensity can be translated into objective short-run
probabilities enabling us to analyze probability weighting.

We can summarize our main findings as follows. First, we
find that objective long-run earthquake risk has a significant
negative impact on property prices, and increasingly so at higher
risk levels. Second, given that long-run risk matters for property
prices, we find that the additional impact of objective short-run
earthquake risk on property prices, while estimated at negative

values, is not significantly different from zero. Upon allowing for
probability weighting, however, the distorted short-run earth-
quake probabilities do have a significantly negative effect on
property prices. Third, the probability weighting function for
short-run earthquake risk is found to be S-shaped, thus under-
weighting small probabilities and overweighting larger proba-
bilities, contrary to the inverse-S shaped probability weighting
function found in many experiments. This remarkable finding
may be explained by the fact that the background arrival rate of
earthquakes is positive rather than zero, in particular in Tokyo
where the short-run earthquake probabilities never drop below
35% in the period that we analyze. Therefore, people may tend
to evaluate and overweight temporary deviations of the short-
run earthquake probabilities from the background seismicity
caused by seismic excitation not with respect to zero but with
respect to a positive reference probability level. In an extension
of our base model, we also analyze probability distortions of
long-run time-invariant earthquake probabilities. In this case,
we find that small probabilities tend to be overweighted and
large probabilities tend to be underweighted, in accordance with
conventional wisdom.

Our work is related to the existing work on the interplay
between property prices and environmental hazards cited above,
and also to the financial econometrics literature on the esti-
mation of risk and financial excitation premia embedded in
asset and derivative prices; see Aït-Sahalia, Laeven, and Peliz-
zon (2014), Aït-Sahalia, Cacho-Diaz, and Laeven (2015), and
Boswijk, Laeven, and Lalu (2016).

The remainder of this article proceeds as follows. Section 2
explains our treatment of objective seismic excitation and of
probability weighting. Section 3 describes the dataset. Section 4
lays out our hedonic house price model with multivariate error
components and Section 5 develops the procedures for estima-
tion. Section 6 presents the estimation results. Section 7 consid-
ers an extension that also allows for probability distortions of
long-run earthquake probabilities. Section 8 concludes.

This article comes with three supplementary files. First, the
Appendix which contains various technical results, a discussion
of the robustness of our estimation results, an analysis of the
influence of each component to the total property prices and
the implied premia for earthquake risk, a brief literature review,
and an auxiliary figure. Second, the Data Documentation, which
contains a detailed description of the data.1 And third, the
cleaned and compiled datasets and all codes to implement the
procedures developed in this article, including our multivariate
error components regression R package mvecr.2

2. Seismic Excitation and Probability Weighting

In this section, we develop a regression design that considers
short-run earthquake probabilities as objective measures of seis-
mic excitation, and allows for probability weighting.

1The Data Documentation is available from https://bit.ly/3qHcTQ3.
2Data and codes are available from https://github.com/yy112/earthquake-

risk.
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2.1. Short-Run Earthquake Probabilities

Our approach estimates an epidemic-type aftershock sequence
(ETAS) model and generates a panel of model-implied short-
run earthquake probabilities which vary per quarter and per
city, to be used in our regression design. These probabilities can
be viewed as objective measures of short-run earthquake risk,
summarizing publicly available information per time period and
per city.

The ETAS model was introduced by Ogata (1988) and has
since been widely used to capture the quiescence and activa-
tion of seismic dynamics. The basic idea of the model is that
each earthquake can trigger a sequence of aftershocks like “epi-
demics” in that the occurrence of an earthquake makes future
earthquakes more likely and that the impact of the trigger event
diminishes over time (and distance). Despite the existence of
several space-time extensions, we choose the temporal version
of the ETAS model as described in the following, which we
estimate separately for each of the five cities. Because we con-
sider five cities this treatment is natural and simpler than first
estimating a space-time version to a large area that covers all
five cities and then isolating the city effects.

Formally, the ETAS model is a path-dependent marked
point process and a special case of a Hawkes self-exciting
process. Given observations of earthquake occurrences at times
t1, t2, . . . , tn over an interval [0, T] (T ≥ tn), the associated
counting process Nt is defined as Nt = ∑n

i=1 1ti≤t . Denoting by
Ft the information filtration up to time t, the corresponding left-
continuous Ft-conditional jump intensity process λt describes
the mean jump rate per unit of time,

λt = λ(t|Ft) = lim
h↓0

1
h

Pr [Nt+h − Nt > 0|Ft] .

In the temporal ETAS model, the conditional intensity function
may be written as

λt = λ∞ +
∑
ti<t

c(mi, mc)g(t − ti),

where λ∞ > 0 (measured in number of jumps per time unit)
is the background seismicity, g(t − ti) is the aftershock decay
(i.e., time response) function, and the weight assigned to the
aftershock decay is a function c(mi, mc) of the magnitude of the
earthquake mi and a cutoff (i.e., threshold) magnitude mc. Thus,
the earthquake intensity depends on the background intensity
and a weighted sum of all aftershock decays, where the sum
is taken over all earthquakes that have occurred before time t.
In the ETAS model, g takes the form of the so-called modified
Omori law and c takes an exponential form.

We estimate the ETAS model for each of the five cities that we
consider, based on the earthquake catalog of five areas covering
the five cities, over the period January 1, 1970 to December
31, 2015. Next, we use the estimated intensities to generate,
by simulation, 90-day probabilities of an earthquake exceeding
a magnitude threshold of 5.5, for each city. Our simulation
method follows Ogata (1981). We interpret these probabilities
as measures of objective short-term seismic risk, impacting the
prospective homeowner’s perception of seismic risk. We take
the spatial windows somewhat larger than the city of interest,
as seismic activity just outside the city may also impact the
risk perception. Furthermore, this also helps to reduce the bias
of the ETAS parameters stemming from seismicity originating
outside of the extent of the spatial window; see Figure E1 in
Appendix E (supplementary material). Further details about the
parameterization, estimation, and simulation within the ETAS
model are contained in our Data Documentation.

In Figures 1 and 2, we plot the earthquake intensities along
with the corresponding short-run probability series for two of

Figure 1. Short-run earthquake risk: Simulated short-run earthquake probabilities and the logarithm of the earthquake intensity series for Tokyo. Events marked in the
graph: 1©: 2007-07-16 Chuetsu Offshore earthquake, M6.8. 2©: 2009-08-09 Izu Islands earthquake, M6.8 and 2009-08-11 Shizuoka earthquake, M6.5. 3©: 2011-03-11 Tohoku
earthquake, M9.0. 4©: 2012-01-01 Izu Islands, M7.0. 5©: 2013-10-26 Fukushima-ken oki earthquake, M7.1. (Source: Japan Meteorological Agency, M = magnitude).
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Figure 2. Short-run earthquake risk: Simulated short-run earthquake probabilities and the logarithm of the earthquake intensity series for Nagoya. Events marked in the
graph: 1©: 2007-03-25 Noto Hanto earthquake, M6.9. 2©: 2009-08-11 Shizuoka earthquake, M6.5. 3©: 2011-03-11 Tohoku earthquake, M9.0. (Source: Japan Meteorological
Agency).

the five cities: Tokyo and Nagoya. The probabilities spike up
immediately after a large earthquake and die out gradually until
another major earthquake occurs. The Tohoku earthquake of
Friday 11 March 2011 was the most powerful earthquake ever
recorded in Japan. The spike is visible in 2011/Q2 (rather than
in 2011/Q1), because the short-run probabilities are simulated
based on actual earthquakes up to and including the previous
quarter.

The objective measure of seismic excitation given by the
90-day earthquake probabilities is included in our regression
design. The rationale is that, in addition to the long-run earth-
quake risk that people may take into consideration when pur-
chasing a property, news from a recent nearby earthquake may
also temporarily affect property prices. Just like objective seis-
mic excitation generated by a self-exciting process, the impact
of such bad news on the people’s perception of risk peaks right
after the event and dies out as time proceeds.

2.2. Probability Weighting

To account for probability weighting, our regression design
furthermore allows for a parametric probability weighting func-
tion. There is a large literature on probability weighting. Prob-
ability weighting is an important ingredient of prospect theory
(Kahneman and Tversky 1979; Tversky and Kahneman 1992),
and of the related decision theories given by the dual theory
of choice under risk (Yaari 1987) and rank-dependent utility
(Quiggin 1982), which are building blocks of prospect theory.

We shall consider two canonical one-parameter families of
probability weighting functions, proposed by Tversky and Kah-
neman (1992) and Prelec (1998), respectively. The Tversky-
Kahneman function—see also Wu and Gonzalez (1996)—is

given by

w(p) = pψ

(pψ + (1 − p)ψ)1/ψ
, (1)

while the Prelec function is given by

w(p) = e−(− log p)ψ . (2)
The parameter ψ is restricted to be positive. When 0.279 <

ψ < 1 the Tversky-Kahneman function is inverse S-shaped,
while the Prelec function is inverse S-shaped for 0 < ψ < 1;
when ψ = 1 both functions reduce to w(p) = p; and when
ψ > 1 both functions are initially S-shaped, but (only) the
Tversky-Kahneman function becomes convex for large values
of ψ . These two parametric families of probability weighting
functions are the two most widely used models of probability
weighting in economics and decision sciences. Together they
allow for wide variation in the shape of the probability weighting
function, so we can let the data speak for themselves in the
current context.

In laboratory experiments (see Wu and Gonzalez 1996;
Abdellaoui 2000), the probability weighting function is often
found to be inverse S-shaped, first concave and then convex.
An inverse S-shape captures the phenomenon that people tend
to become less sensitive to changes in objective probabilities
as these probabilities move further away from the reference
point 0 and become more sensitive as they get closer to the
reference point 1. The inverse S-shape is consistent with a
positive third derivative of the probability weighting function.
The interpretation of the signs of the successive derivatives of
the probability weighting function was recently provided by
Eeckhoudt, Laeven, and Schlesinger (2020). Note that contrary
to the Tversky-Kahneman function the Prelec function has an
invariant fixed point and inflection point at p = 1/e = 0.37,
which implies that it can never be globally convex or concave.
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3. The Data

The data collection process for this project has been complex
and elaborate, and in this section we provide a brief summary.
Full details and references to sources are available in our Data
Documentation. We are interested in the impact of earthquake
risk on property prices in major cities in Japan, and we have
selected five cities for our purpose. Each city is divided into
wards and each ward is divided into districts. (In the original
dataset the word “area” is used. We prefer “district” to avoid
confusion with other uses of the word “area.”) Certain informa-
tion that can affect (and explain/predict) the attractiveness of
buying a property is available per ward. For example, population
characteristics, information about schools and medical facilities,
shopping, safety, etc. We distinguish between three types of
properties: “residential land (land and building),” “residential
land (land only),” and “pre-owned condominiums” (hereafter,
condos). Sales prices and property characteristics are available
for each of these types in each of the five cities. We do not know
the exact location of a property, but we do know in which district
the property lies and we also know the distance to the nearest
station and the name of that station. Some macro variables
are relevant and affect house prices nationally. Finally, we have
information on historical earthquake data and on earthquake
risk data.
Cities. Japan has 12 cities with a population of more than one
million people. Almost 100 million people, or 78% of the coun-
try’s total population of 127.4 million, live in urban areas. The
total population of Japan’s largest 103 cities amounts to 63.9
million or just over half of all the country’s residents. Tokyo, with
almost nine million inhabitants, is by far the largest Japanese
city. (Strictly speaking, Tokyo is not a city—it is a prefecture,
but we shall call it a city.) With a population of 3.7 million,
Yokohama, south of Tokyo, is the Japan’s second largest city.
Osaka and Nagoya are Japan’s third and fourth cities, each with
a population of over two million. Eight cities have between one
and two million inhabitants: Sapporo, Kobe, Fukuoka, Kyoto,
Kawasaki, Saitama, Hiroshima, and Sendai.

From these 12 cities, we selected five: Tokyo, Osaka, Nagoya,
Fukuoka, and Sapporo. This choice guarantees that each of the
three major metropolitan areas is represented: the greater Tokyo
area (Tokyo, Yokohama, Kawasaki, and Saitama) by Tokyo, the
Kansai region (Osaka, Kobe, and Kyoto) by Osaka, and the
Chukyo metropolitan area by Nagoya. To obtain a representative
geographical spread we added Sapporo, the largest city in
the North, and Fukuoka, the second largest city in the West
after Osaka. Data limitations prevented us from including
Hiroshima, while Sendai was not included because it is too
close to Fukushima where the 2011 nuclear disaster took place
following the Tohoku earthquake.
Wards. A designated city is a Japanese city that has a population
greater than 500,000 and has been designated as such by order
of the Cabinet of Japan. Designated cities are delegated many
of the tasks normally performed by prefectural governments,
such as public education, social welfare, sanitation, business
licensing, and urban planning. Designated cities are required
to subdivide themselves into wards (“ku”), each of which has a
ward office conducting various administrative functions for the
city government. The 23 special wards of Tokyo are not part of

this system, as Tokyo is a prefecture, and its wards are effectively
independent cities. The five cities together contain 80 wards
(regular and special together): 23 in Tokyo, 24 in Osaka, 16 in
Nagoya, 7 in Fukuoka, and 10 in Sapporo.

When considering to buy a property in a given city, one
is likely to be interested in certain characteristics of these
wards. The original dataset contains one hundred characteristics
divided into 11 categories. Since many of these are highly
correlated, we first select 11 of these divided into 6 categories:
2 from population; 3 from schools, culture and welfare; 1 from
medical facilities; 1 from safety; 2 from shopping facilities; and
2 from employment. Only four of these appear in our base
model, but extensive sensitivity analyses will be conducted in
Appendix B (supplementary material) to assess how adding
more characteristics may affect the results.
Districts. Within each city there are wards, and within each
ward there are districts (usually “cho,” sometimes “machi”).
An average ward in Nagoya contains 86 districts, an average
ward in Osaka only 23. The number of districts ranges from
318 in Fukuoka to 1383 in Nagoya (1379 after prescreening). In
total, there are 3714 districts (3710 after prescreening) in the 5
cities together. We use district as a fine measure of location for
various explanatory variables including property characteristics
and the long-run earthquake risk data (see below). The fine
grid provided by the districts allows us to accurately capture
the significant cross-sectional variation in these explanatory
variables.
Property types. In a given district i, we have observations on
three types of (residential) properties: land and buildings, land
only, and condos. Most properties are condos (45.1%), followed
by land and buildings (34.1%) and land only (20.8%). We have
observations over T = 38 quarters, from 2006/Q2 to 2015/Q3.

Records with obvious errors have been excluded. Also
excluded are records where the walking time to the nearest
station is longer than 30 min or the nearest station is unknown;
records with a living area larger than 2000 square meters; and
properties built before the war (1945). After applying the above
criteria, we are left with N = 3710 districts in total. The number
of wards, districts, properties of each type, and stations in each
city is displayed in Table 1.
Property prices and characteristics. We work with sales prices
rather than with rental prices, because sales are more permanent
than rentals and we would therefore expect that the effect
of earthquake risk on choosing a property will be more
informative.

Nakagawa, Saito, and Yamaga (2009) used land prices over
various years (from 1980 onwards) and described the data in
their Section 3 (for the Tokyo area). Their data are based on

Table 1. Distribution of properties over cities, wards, and districts.

City Ward District Land and Land Condo Station
building only

Tokyo 23 898 57,568 33,991 92,518 482
Osaka 24 564 21,064 6,901 21,855 220
Nagoya 16 1,379 14,640 13,110 11,029 159
Fukuoka 7 318 7,847 5,660 12,475 75
Sapporo 10 551 11,763 9,461 11,461 86
Total 80 3,710 112,882 69,123 149,338 1,022
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the Koji-Chika dataset published by the Ministry of Land,
Infrastructure, Transport, and Tourism (MLIT). The Koji-
Chika dataset provides fictional sales prices (as produced by
“experts”) and they are only available at annual intervals,
which we consider to be too long for our purpose. We use
a different dataset, which provides self-reported transaction
prices at three-months intervals. This dataset, also provided
by the MLIT, is known as the “real estate transaction-price
information;” see https://www.land.mlit.go.jp/webland_english/
servlet/MainServlet. The information in this dataset is based
on the results of a questionnaire survey of persons involved
in real estate transactions conducted by MLIT, compiled and
published quarterly. We thus know the transaction price and
the transaction date (quarter), and also in which district the
property lies and the name of the nearest station. In addition,
many property characteristics are provided, of which we shall
only consider: total area in square meters, total floor area in
square meters, distance to nearest station measured in walking
minutes, age of the building (if applicable), building structure
with varying degrees of earthquake resistance (reinforced
concrete, steel, or wood), purpose of city planning in the urban
control area, maximum building coverage ratio (BCR), and
maximum floor area ratio (FAR). Furthermore, as there were
major changes in the regulations on earthquake-resistance
building standards in 1981 and 2000, our regression design
also features built-1981–2000 and built-after-2000 dummies.
Different types may have different regressors. For example, the
equation for land only does not have “building structure” or
“building age” as a regressor; and the equation for condos does
not use “building structure” as a regressor.
Economic indicators. Property prices are affected by general
economic conditions. To incorporate possible effects of these
economic conditions, we have selected two national macroeco-
nomic indicators: GDP and CPI.
Long-run earthquake risk. We consider two measures of
earthquake risk: short-run risk (i.e., seismic excitation; see
Section 2.1) and long-run risk. Long-run earthquake risk is
defined as the probability of an earthquake exceeding certain
intensity thresholds in the next 30 years in a given area, provided
by the Japan Seismic Hazard Information Station (JSHIS). We
select the threshold intensities “5-lower” (medium risk) and
“6-lower” (high risk) in our analysis. The JSHIS probabilities
are provided in various mesh sizes, varying from one square
km to 250 square meters. For each district, we identify its
center and then define the risk of that district as the JSHIS risk
associated with the smallest available mesh in which this center
lies. Although the JSHIS exceedance probabilities are updated
every one or two years, we take the average of the JSHIS risk data
over all available years, thus obtaining a time-invariant measure
of long-run risk for each district, not influenced by short-
term deviations. Clearly, new events happening or new insights
within this time window may have impacted the modeling of
JSHIS, and lead to different predictions. However, the variation
in the long-term earthquake probabilities provided by JSHIS
is mostly modest. These probabilities are included as objective
measures of long-run earthquake risk in our regression design,
at the district level. Choosing a district of relative safety may
be viewed as a form of self-insurance. Therefore, provided
this information, which is publicly available, is known among

Table 2. Seismic hazard probabilities per city, averaged over districts and time
(2005–2014).

City Mean Min 25% 50% 75% max sd

Exceeding intensity level “5 lower”
Tokyo 1.00 0.99 0.99 1.00 1.00 1.00 0.00
Osaka 0.93 0.90 0.92 0.94 0.95 0.97 0.02
Nagoya 0.96 0.91 0.94 0.97 0.98 0.98 0.02
Fukuoka 0.39 0.06 0.30 0.42 0.48 0.56 0.12
Sapporo 0.33 0.05 0.21 0.33 0.44 0.51 0.12
Exceeding intensity level “6 lower”
Tokyo 0.35 0.16 0.22 0.28 0.49 0.59 0.13
Osaka 0.37 0.22 0.30 0.39 0.44 0.52 0.09
Nagoya 0.56 0.21 0.41 0.61 0.67 0.77 0.14
Fukuoka 0.03 0.00 0.02 0.03 0.03 0.05 0.01
Sapporo 0.01 0.00 0.01 0.01 0.02 0.03 0.01

consumers, we would expect higher property prices in relatively
safe areas all else being equal.

If the intensity is “5 lower,” then according to the Japan
Meteorological Agency, many people will be frightened and feel
the need to hold on to something. Hanging objects (such as
lamps) will swing violently, books may fall from bookshelves,
and unstable furniture may topple over. Windows may break,
electricity poles may move, and roads may sustain damage.
There may be cracks in the walls of wooden properties. If the
intensity is “6 lower,” then the effects will be more severe. It will
be difficult to remain standing, unsecured furniture will move
and topple over, and cracks in walls, crossbeams, and pillars will
appear not only in wooden properties but also in properties built
from reinforced concrete.

Summary statistics are shown in Table 2. It is clear from
Table 2 that Tokyo, Nagoya, and Osaka are high-risk cities
with respect to “small” earthquakes. In fact, it is almost certain
that an earthquake will occur in Tokyo with an intensity more
severe than “5 lower” within the next 30 years. Regarding the
occurrence of “severe” earthquakes (“6 lower”), Nagoya is more
exposed than Tokyo and Osaka, and much more exposed than
Fukuoka and Sapporo. The variation in probabilities of severe
earthquakes in Tokyo, Osaka, and Nagoya is also much larger
than in the other two cities. Fukuoka and Sapporo are not
likely to have severe earthquakes, but there is still considerable
probability (and variation) of smaller earthquakes. This suggests
that it is important to use both thresholds, 5-lower and 6-lower,
in characterizing the distribution of long-run earthquake risk
for our purpose. This also guarantees sufficient variation of
long-run probabilities in the hedonic price model discussed in
Section 4.

4. The Model

The dependent variable is log-property price, and we denote the
hth observation of type k in district i during quarter t as y(h,k)

it .
The most common method of modeling the property market
is hedonic pricing, pioneered by Rosen (1974) who argued that
an item’s total price can be thought of as the sum of the price
of each of its homogeneous characteristics, so that the effect of
each characteristic on the price can be determined by regressing
(log)price on these characteristics. We shall follow the hedonic
approach. In our case, the (log)price is determined by charac-
teristics of the property itself (size, age, etc.), the surrounding

https://www.land.mlit.go.jp/webland_english/servlet/MainServlet
https://www.land.mlit.go.jp/webland_english/servlet/MainServlet
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environment (location, crime rate, schools, etc.), earthquake
risk factors, and macroeconomic influences.

The district i determines the city c(i), which takes values
1, . . . , 5 depending on the city in which district i is situated.
Also, the time variable t determines in which quarter q(t) the
transaction took place, taking values 1, . . . , 4 depending on
whether t refers to the first, second, third, or fourth quarter.
The number of observations varies per district, type and quarter,
and this affects the precision. We let H(k)

it denote the number
of observations on each type k = 1, 2, 3 in district i during
quarter t. We model the difference between cities by a shift αc(i)
in the intercept term, but we assume that all other parameters
are the same between cities. The difference between cities is thus
completely captured by αc(i).

Our model can now be written as

y(h,k)
it = α

(k)
0 + αc(i) + γq(t) + x(k)

i·
′β1 + x(k)

·t ′β2

+x(h,k)
it

′β3 + rit(ψ)′β4 + u(h,k)
it , (3)

where xi· denotes a variable that is constant over time, but varies
over districts (attractiveness variables), x·t denotes a variable
that is constant over districts, but varies over time (economic
indicators), xit denotes a variable that varies over districts and
over time (property characteristics), and rit denotes the risk data
(same for each type k) given by the (distorted) short- and long-
run earthquake probabilities. The reference dummies are the
city dummy for Tokyo and the quarter dummy for Q4; these are
set to zero.

The property price is log-linear in the (distorted) short-
run and long-run earthquake probabilities, instead of in
the logarithm of these earthquake probabilities. This is due
to two main reasons: statistical performance and economic
motivation. Indeed, in our analysis, the model specification
without a log-transformation of earthquake probabilities turns
out to statistically significantly outperform a specification with
log-transformed probabilities. Economically, a specification
with log-prices and probabilities (the latter without log-
transformation) occurs naturally in a simple (rank-dependent)
expected utility model (Von Neumann and Morgenstern 1944;
Quiggin 1982) with the canonical log-utility function. This
utility function is a special case of interest in the constant relative
risk aversion family of utility functions, by far the most widely
applied family of utility functions in economics and decision
sciences (Wakker 2008). Indeed, the certainty equivalent loss,
that is, the compensation for risk, in this canonical risk model
is log-linear in (distorted) probabilities.

Although the model appears to be linear in the parameters
this is not completely the case, because the risk variable rit is
a nonlinear function of one or more ψ ’s which appear in the
probability weighting function w(p) discussed in Section 2. This
complicates the estimation, and we shall discuss this issue in the
next section. To obtain a (balanced) panel we average over h, and
obtain

ȳ(k)
it = α

(k)
0 + αc(i) + γq(t) + x(k)

i·
′β1 + x(k)

·t ′β2

+x̄(k)
it

′β3 + rit(ψ)′β4 + ū(k)
it , (4)

where we average over H(k)
it items, which thus depends on how

many properties of type k there are in a given district. Next, we

combine the three types of property into one 3 × 1 vector:

ȳit = α0+(αc(i)+γq(t)) ı+X∗
i·β1+X∗·tβ2+X∗

itβ3+ırit(ψ)′β4+ūit ,
(5)

where ı = (1, 1, 1)′, which we write more succinctly as

ȳit = X̄itβ + ūit (i = 1, . . . , N; t = 1, . . . , T), (6)

where ȳit is a p × 1 vector of random observations, explained by
regressors X̄it = X̄it(ψ), an unknown parameter vector β , and
random errors ūit (p × 1). In our case p = 3.

5. Estimation Method

We wish to estimate the parameters and their precisions of
the model thus described. This is essentially, apart from the
nonlinearity caused by ψ , a linear mixed model with a large
variance matrix. Such models arise in many contexts (genomics:
Lippert et al. 2011; Heckerman et al. 2016; spatial statistics:
Dutta and Mondal 2015, 2016), and various estimation pro-
cedures have been developed; see also Demidenko (2013). In
our setup, we will employ a (multivariate) error components
structure, since this has a natural interpretation in our context.
For our purpose, we need not only the estimate of ψ , which
could conceivably be obtained via profile-likelihood, but also
its (asymptotic) estimated variance. This means that we need
a comprehensive approach to our estimation problem, which
provides all estimated variances jointly, as follows.3

The errors are assumed to follow a p-variate three-error
components structure,

ūit = ζi + ηt + εit , (7)

a sum of three independent components each of which is iid
with zero means and variances

var(ζi) = 
ζ , var(ηt) = 
η, and var(εit) = 
ε ,
(8)

where 
ζ and 
η are positive semidefinite, and 
ε is positive
definite, all of order p × p. Multivariate two-error components
were first employed by Chamberlain and Griliches (1975) using
maximum likelihood techniques. Multivariate three-error com-
ponents were first considered by Avery (1977) who derived
a feasible Aitken estimator, which is however not maximum
likelihood and turns out to be asymptotically inefficient. Balt-
agi (1980) derived an alternative estimator, also not maximum
likelihood, which is asymptotically efficient. Magnus (1982)
discussed the estimation and testing of the multivariate two-
and three-error components models in a maximum likelihood
context.

Our error structure implies that

E(ūit ū′
js) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩


ζ + 
η + 
ε if i = j and t = s,

ζ if i = j and t 	= s,

η if i 	= j and t = s,
0 if i 	= j and t 	= s.

(9)

3The multivariate error components regression R package mvecr that we
have developed for this article is available from the article’s github page.
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Let

Y =

⎛
⎜⎜⎜⎝

ȳ11 ȳ12 . . . ȳ1T
ȳ21 ȳ22 . . . ȳ2T

...
...

...
ȳN1 ȳN2 . . . ȳNT

⎞
⎟⎟⎟⎠ ,

U =

⎛
⎜⎜⎜⎝

ū11 ū12 . . . ū1T
ū21 ū22 . . . ū2T

...
...

...
ūN1 ūN2 . . . ūNT

⎞
⎟⎟⎟⎠ , (10)

and

X̄(t) =

⎛
⎜⎜⎜⎝

X̄1t
X̄2t

...
X̄Nt

⎞
⎟⎟⎟⎠ , X =

⎛
⎜⎜⎜⎝

X̄(1)

X̄(2)

...
X̄(T)

⎞
⎟⎟⎟⎠ . (11)

Then, we can write Equation (6) in stacked form as

y = Xβ + u, (12)

where y = vecY and u = vecU. We shall assume that y is
normally distributed with mean μ = Xβ and variance �(θ) =
var(u), so that β refers to the mean parameters and θ to the
variance parameters.

Maximum likelihood estimation for the model in Equation
(12), via optimization of the corresponding loglikelihood under
normality, and associated variance computation pose several
nontrivial challenges. One complication lies in the fact that
the nonrandom matrix X depends on a parameter (vector) as
well, so that X = X(ψ). Another complication is the high
dimensionality of the variance matrix � = �(θ). Appendix A
(supplementary material) provides our detailed treatment of
how to overcome these and related challenges.

Although the variance matrix � = var(u) is of a very large
dimension, the error components structure allows us to write it
in a convenient form, allowing simple expressions for its inverse
and determinant, and also for quadratic forms like v′�−1v and
X′�−1X. The relevant formulas are provided in Appendix A
(supplementary material).

In a nutshell, estimation of the parameters then proceeds as
follows. For given ψ , we maximize the concentrated likelihood
with respect to the variance parameters θ , where using the
explicit expression for the gradient will speed up the optimiza-
tion. Performing a grid search on ψ we obtain the maximum
likelihood estimates θ̂ and ψ̂ . Next, we find β̂ and finally the esti-
mated variances of β̂ and ψ̂ ; see the development in Appendix A
(supplementary material), in particular (A.7)–(A.12).

6. Estimation Results

Our primary interest is in earthquake risk and its impact on
property prices. More specifically, we wish to answer three ques-
tions: (i) do objective long-run earthquake probabilities have an
effect on property prices, (ii) do objective short-run earthquake
probabilities have an effect on property prices, in addition to the
effect of long-run probabilities, and (iii) do potentially distorted
short-run earthquake probabilities have an effect on property
prices, in addition to the effect of long-run probabilities?

Table 3. Estimation results under various risk assumptions.

Variable LR LR and Base
only objective SR model

Intercepts Land & building 3.7592 4.5593 4.3812
Land only 3.5949 4.3940 4.2155
Condo 3.1025 3.9024 3.7244

City Dummies Osaka −0.2273 −0.2625 −0.2615
Nagoya −0.3801 −0.4100 −0.4139
Fukuoka −0.8770 −0.9133 −0.9108
Sapporo −1.2050 −1.2458 −1.2388

Ward Immigrants 6.7245 6.7224 6.7218
Attractiveness Crime −0.0437 −0.0436 −0.0436

Unemployment −4.3360 −4.3395 −4.3399
Executives 3.3426 3.3447 3.3464

Economic log(GDP) 0.5606 0.5220 0.5229
indicators log(CPI) 1.5347 1.4687 1.5030

Property Area (m2) 0.0025 0.0025 0.0025
Characteristics Floor area (m2) 0.0006 0.0006 0.0006

Distance to nearest station −0.0145 −0.0145 −0.0145
Age −0.0121 −0.0121 −0.0121
Built 1981–2000 0.1674 0.1658 0.1652
Built after 2000 0.4136 0.4126 0.4123
Structure: reinf. concrete 0.4348 0.4344 0.4343
Structure: steel 0.1867 0.1867 0.1867
Structure: wood −0.1264 −0.1266 −0.1266
Urban control −0.8972 −0.8967 −0.8967
max BCR −0.0019 −0.0019 −0.0019
max FAR 0.0004 0.0004 0.0004

Risk Long run 45–55 −0.1433 −0.1427 −0.1427
Long run 55+ −0.5037 −0.5039 −0.5041
Short run – −0.0915‡ −0.0514
ψ̂ – – 3.74†

 log L −68.5 −15.8 –

Before we answer these questions and comment on our esti-
mates in Table 3, we explain our econometric modeling strategy.
This strategy is based on two ingredients. First, we aim for par-
simony. We want the smallest model that captures the essence
of our story. This means that sometimes regressors have been
deleted from our model even when the associated parameters
are “significant.” Significance does not imply importance, and
importance is what interests us. Second, we make a distinction
between focus and auxiliary regressors. The focus regressors are
the effects that we are interested in or are part of the minimum
set that would make up a credible model, while the auxiliary
regressors are only in the model because they improve the
estimation of the focus parameters.

Since we have many observations, most estimates are likely to
be significant at the usual 1.96 level. We provide more informa-
tion about the results by strengthening the significance require-
ment on the t-values. Thus, a ‡ will indicate that |t| ≤ 1.96,
which we interpret as not significant, while † indicates signifi-
cance with 1.96 < |t| ≤ 4.00. Estimates without superscript are
therefore significant with |t| > 4.00. The choice of 4.00 is some-
what arbitrary and chosen a posteriori in order to provide more
information about the precision of our estimates, in particular
our parameter estimates pertaining to the risk variables. (All
t-values test the null hypothesis that the parameter of interest
equals zero, except the t-value of ψ̂ which tests the null that
ψ = 1.)

Ideally, one would like to combine the concepts of model
selection and estimation into one procedure. This is called
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“model averaging.” Also, one would like to combine the concepts
of significance and importance into one procedure, and the
so-called “fence method” provides the required flexibility by
allowing the criterion of optimality for the selection within
the fence to incorporate scientific, economical, political, and
even legal concerns, in addition to statistical ones (Jiang et al.
2008; Jiang and Nguyen 2015). Both issues are, however, not
fully developed yet and their application is beyond us in this
nonstandard regression model.

Now consider the first question. The results are presented in
Table 3 under the heading “LR only” and we see that all estimates
are significant (i.e., appear without superscript), that is, their t-
value (in absolute terms) exceeds 4.00. Regarding the long-run
risk effects, we remark that long run 45–55 (medium risk) indi-
cates the JSHIS probability that an earthquake occurs in the next
30 years of higher intensity than 5-lower and lower intensity
than 6-lower; and that long run 55+ (high risk) indicates the
JSHIS probability that in the next 30 years an earthquake occurs
of intensity 6-lower or higher. Both medium risk and high risk
appear to have a significant negative impact on property prices.
The higher risk level has a more severe impact, which is intu-
itively reasonable. Hence, long-run risk matters. This answers
the first question.

Next, we consider the second question: given that long-run
risk plays a role, do objective short-run probabilities also have
an effect on property prices? The results are presented in the
next column of Table 3 under the heading “LR and objective SR”.
Apparently they do not: the effect of the risk variable short run,
while negative as we would expect, is not significantly different
from zero.

Finally, we consider the third question: given that long-run
risk plays a role, do potentially distorted short-run probabil-
ities also have an effect on property prices? The results are
displayed in the final column of Table 3 under the heading “Base
model”. Apparently they do: after distortion, short-run probabil-
ities have a significant negative effect on property prices.

The difference between objective and distorted short-run
risk is that short-run probabilities are now allowed to be
distorted using a probability weighting function, in this case
the one-parameter weighting function (2) proposed by Prelec
(1998), which yields the highest likelihood. The parameter ψ in
the Prelec function is estimated to be 3.74 and is significantly
different from unity, since the absolute value of its t-value lies
between 1.96 and 4.00; in fact |t| = 2.91.

As shown in Figure 3, the estimated probability weighting
function has an S-shaped pattern where small probabilities are
underweighted and large probabilities are overweighted, which
is in contrast to the inverse S-shaped probability weighting
function often found in experiments. This contrast may be
explained by the fact that with a positive background intensity
of earthquakes, temporary deviations of short-run earthquake
probabilities caused by seismic excitation are not evaluated (and
overweighted) with respect to a reference probability of zero
but with respect to a positive reference probability level. This
applies in particular to Tokyo where the 90-day probability of
an earthquake exceeding the magnitude threshold of 5.5 never
drops below 35% in the period that we analyze.

In summary: long-run risk matters, objective short-run risk
does not, but distorted short-run risk does. In addition, all

Figure 3. Estimated probability weighting of short-run probabilities, Prelec proba-
bility weighting function, ψ̂ = 3.74.

nonrisk parameter estimates in the second and third columns
are similar to the ones in the first column and all are significant
(with a t-value larger than 4.00 in absolute value).

We briefly comment on these other (nonrisk) parameters in
the base model:
Intercept and city dummies. Tokyo, of course, is the most
expensive city to buy property. If we set the property price level
of Tokyo at 1.00, then the average property price levels of the
other cities are 0.77 in Osaka, 0.66 in Nagoya, 0.40 in Fukuoka,
and 0.29 in Sapporo. (Recall that we do not regress price but
log-price on these dummies.) Also, if we set the price of land
and building at 1.00, then the average price of the other types of
property are 0.85 for land only and 0.52 for condos.
Ward attractiveness. As discussed in Section 3, we selected 11
characteristics for each ward, divided into 6 categories. Only
four of these 11 characteristics appear in our base model:
percentage of immigrants (representing population); number
of criminal offenses (representing safety); and unemployment
ratio and percentage of executives (representing employment).
Executives make a ward more attractive, while crime and
unemployment make it less attractive. Immigrants too make
a ward more attractive, which makes sense if we realize that
the word “immigrant” refers to somebody moving into the
ward from another municipality, usually within Japan. Hence,
the more people move in from other areas in Japan, the more
attractive the ward apparently is.
Economic indicators. Property prices are affected by general
economic conditions, and two indicators appear in Table 3 and
in our base model: log(GDP) and log(CPI), both of which have a
positive effect on property prices. The inclusion of log(CPI) has
the additional advantage that if we wish to explain real (rather
than nominal) property prices, then all results remain the same
except that the effect of log(CPI) is now 0.503 rather than 1.503.
Hence, CPI has a positive effect not only on nominal but also
on real property prices.
Property characteristics. A large (floor) area and proximity
to the nearest station contribute positively to the price. New
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buildings are preferred to old ones, where we have included two
dummies because major changes occurred in the regulations on
earthquake-resistance standards in both 1981 and 2000. As a
result, buyers prefer a house built between 1981 and 2000 over
a house built before 1981, and they like a house built after 2000
even better. Regarding the structure, wood is not desirable, steel
is desirable, but reinforced concrete is preferred. Urban control
signifies restrictions on development possibilities, and this has
a negative effect on prices.

For all three property types, the designated maximum BCR
and the maximum FAR are provided. These ratios are legally
allowed maxima, different for each piece of land. The BCR is
the percentage of the building area to the site area; the FAR is
the percentage of the total floor area to the site area. We use
both ratios in our regression and find a negative effect of BCR
and a positive effect of FAR. Shimizu and Nishimura (2006)
and Nakagawa, Saito, and Yamaga (2009) used only FAR and
found mixed effects and a positive effect, respectively. Hidano,
Hoshino, and Sugiura (2015) used both ratios (as we do) and
found a negative effect of BCR and a mixed effect of FAR.
Quarterly effects. Estate agents sometimes tell customers that
some months are better to buy or sell than others. Our results
(in quarters, not months) are ambiguous, which is why we
have omitted the quarter dummies from our regression. We
return to this issue in our sensitivity analysis, see Appendix B
(supplementary material).
Error components. We estimated the coefficients using the mul-
tivariate three-error components structure, as described in Sec-
tion 5. It turns out that

tr(
ε) = 0.406 > tr(
ζ ) = 0.129 
 tr(
η) = 0.002,

and as a result we set 
η = 0, so that we end up with a two-error
components structure. The effect of this is negligible and will
be discussed further in our sensitivity analysis in Appendix B
(supplementary material).

Appendix C (supplementary material) provides a detailed
analysis of the corresponding impact of each of the explanatory
variables component on the (log) property prices, and the
premia for earthquake risk embedded in property prices. We
find in particular that the joint impact of long-run and distorted
short-run earthquake risk amounts to an average −2.0% of
log property prices, which translates in monetary terms into
a marginal effect of around −7 million Japanese yen per
property—slightly more than the average annual income of a
middle-income Japanese household in the period 2006/Q2 to
2015/Q3 we analyze. The impacts of long-run and distorted
short-run earthquake risk are nearly the same for all property
types but differ substantially among cities. Furthermore, the
earthquake risk variables stand almost on equal footing with
ward characteristics in explaining dispersion in property prices.

7. An Extension

In our base model, we use objective long-run probabilities and
distorted short-run probabilities based on the Prelec probability
weighting function. This raises various questions. First, one
could argue that we should allow long-run probabilities to be
distorted too; and second, we could experiment with different
probability weighting functions.

In Table 4, we experiment with an alternative functional
form for the short-run risk variable, namely the weighting func-
tion (1) introduced by Tversky and Kahneman (1992). In par-
ticular, in column 2 (Dist. SR, TK) we replace the Prelec func-
tion applied to the short-run earthquake probabilities with the
Tversky-Kahneman probability weighting function. The estima-
tion results are similar to the base model, but somewhat less pre-
cise, and the loglikelihood decreases. The Tversky-Kahneman
probability weighting function is found to be S-shaped, just like
the Prelec function, confirming the robustness of this finding.

Next, we also allow long-run risk to be distorted using both
the Prelec and the Tversky-Kahneman weighting functions. The
model contains two related time-invariant long-run probabili-
ties and we quite naturally assume that these two probabilities
share the same weighting function with the same parameter γ .
(In particular, distorted long run 45–55 is computed as distorted
long run 45+ minus distorted long run 55+, consistent with
Choquet integration.) In columns 3 and 4 of Table 4 we allow
both long-run risk and short-run risk to be distorted.

The model with the higher likelihood is the one with an
inverse S-shaped Tversky-Kahneman weighting function for

Table 4. Sensitivity and extension—probability weighting functions.

Base Dist. SR Dist. LR Dist. LR
TK Prelec TK

Area (m2) 0.0025 0.0025 0.0025 0.0025
Floor area (m2) 0.0006 0.0006 0.0006 0.0006
Distance to nearest station −0.0145 −0.0145 −0.0143 −0.0143
Age −0.0121 −0.0121 −0.0121 −0.0121

Long run 45–55 −0.1427 −0.1427 −0.8644 −0.4856
Long run 55+ −0.5041 −0.5039 −1.3838 −1.5028
Short run −0.0514 −0.0733‡ −0.0517 −0.0518
ψ̂ 3.74† 1.40‡ 3.78† 3.77†

γ̂ – – 0.17 0.32

 log L – −14.6 152.8 167.6

Figure 4. Implied probability weighting functions of long-run and short-run earth-
quake risk.
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long-run risk and an S-shaped Prelec weighting function for
short-run risk, as shown in Figure 4. We note that the Prelec
function for long-run risk, although yielding a lower loglikeli-
hood than the Tversky-Kahneman weighting function, is also
found to be inverse S-shaped, which is again reassuring for
the robustness of our results. Thus, in an extension of our
base model that allows for distortion of time-invariant long-
run earthquake probabilities we find evidence of a conven-
tional inverse S-shaped probability weighting function for long-
run earthquake probabilities. This means that when purchasing
property in Japan, people tend to overweight small long-run
probabilities and underweight large long-run probabilities.

8. Conclusion

We have studied the impact of earthquake risk on Japanese
property prices using a rich panel dataset. We have not only
allowed for time-invariant long-run earthquake probabilities to
impact property prices, but we have also analyzed the impact
of short-run earthquake probabilities generated from a seismic
excitation model. We have designed a hedonic property prices
model that accommodates probability weighting, employing a
multivariate error components structure, and have developed
the associated maximum likelihood and variance computation
procedures. We have shown that long-run earthquake proba-
bilities negatively impact property prices and increasingly so at
higher risk levels. We have also shown that short-run earthquake
probabilities have a negative impact on property prices, and that
this effect becomes statistically significant only after we allow for
probability weighting.

The probability weighting function associated with short-
run earthquake probabilities is found to be S-shaped. That
stands in contrast to the familiar inverse S-shaped probability
weighting functions predominantly found in experiments. The
shape we find may be explained by the fact that in our setting
there is a nonnegligible positive background arrival rate of
earthquakes. People may therefore tend to evaluate earthquake
probabilities, and overweight their temporary deviations under
seismic excitation, not with respect to zero but with respect
to a positive reference probability level. This remarkable find-
ing calls for the development of reference-dependent models
for probabilities to augment the large literature on reference-
dependent models for changes in wealth levels.

Our objective short-run earthquake probabilities are based
on a purely temporal ETAS model. Within the spatial windows
used for estimation of the ETAS model, it is assumed that
the earthquake intensity functions, and people’s perception of
seismic risk, are homogeneous (see also our Data Documenta-
tion). A refinement that accounts for spatial variation would be
desirable, but is subject to statistical and computational compli-
cations. Addressing the potential limitations inherent in using
a purely temporal ETAS model in this context is an interesting
and challenging problem for future research.
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