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Abstract

An optimization methodology based on the use of Multi-Objective Evolutionary
Algorithms (MOEA) in order to deal with problems of feature selection in data
mining was proposed. For that purpose a Support Vector Machines (SVM) classi-
fier was adopted. The aim being to select the best features and optimize the classi-
fier parameters simultaneously while minimizing the number of features necessary
and maximize the accuracy of the classifier and/or minimize the errors obtained.
The validity of the methodology proposed was tested in a problem of cardiac Sin-
gle Proton Emission Computed Tomography (SPECT). The results obtained allow
one to conclude that MOEA is an efficient feature selection approach and the best
results were obtained when the accuracy, the errors and the classifiers parameters
are optimized simultaneously.

1. Introduction

Feature selection is of crucial importance when dealing with problems with high
amount of data. This importance can be due to various reasons: i) the processing
of all features available can be computational infeasible; ii) the existence of high
number of variables for small number of available data points can invalidate the
resolution of the problem; iii) an high number of features can be redundant or ir-
relevant for the classification problem under study. Therefore, taking into account
the large number of variables usually present, and the frequent correlation between
these variables, the existence of a feature selection method able to reduce the
number of features considered for analysis is of essential importance [1].

Multi Objective Evolutionary Algorithms (MOEA) is a valid and efficient
method to deal with this problem. Recently, some works using this approach have
been proposed. A framework for SVM based on multi-objective optimization with



the aim of minimizes the risk of the classifier and the model capacity (or accuracy)
was proposed by Bi [2]. An identical approach was followed by Igel [3], but now
the objective concerning the minimization of the risk was replaced by the minimi-
zation of the complexity of the model (i.e., the number of features). Oliveira et al.
in [4] used an hierarchical MOEA operating at two levels: performing a feature se-
lection to generate a set of classifiers (based on artificial neural networks) and se-
lecting the best set of classifiers. Hamdani et al. in [5] optimized simultaneously
the number of features and the global error obtained by a neural network classifier
using the NSGA-II algorithm [6]. Both errors of type | (false positive) and type Il
(false negative) were taking into account individually through the application of a
MOEA by Alfaro-Cid et al. [7]. MOEA were also applied in unsupervised learn-
ing. Handl and Knowles studied the problem of feature selection by formulating
them as a multi-objective optimization problem [8].

The main ideas of a previous work proposed by the author were take into ac-
count [9]. It consisted in using a MOEA to accomplish simultaneously two objec-
tives: the minimization of the number of features used and the maximization of the
accuracy of the classifier used [9]. This is an important issue since parameter tun-
ing is not an easy task [10]. In this work these ideas were extended to deal with the
issue of selecting the best accuracy measures [11-13]. Thus, different accuracy
measures, such as maximization of the Fpeasure and the minimization of errors
(type I and type 1) will be tested. Also, an analysis based on ROC curves will be
carried out [13]. Simultaneously, the parameters required by the classifier will be
optimized. The motivation for doing this work is the development of a methodol-
ogy able to deal with bigger problems like gene expression data. However, before
applying the methodology to difficult problems the methodology must be tested in
small and controllable problems.

This text is organized as follows. The MOEA used will be presented and de-
scribed in detail in section 2. In section 3 the classification methods employed and
the main accuracy measures employed will be presented and described. The meth-
odology proposed will be applied to a case study and the results will be presented
and discussed in section 4. Finally, the conclusion will be drawn in section 5.

2. Multi-Objective Evolutionary Algorithms

Due to the complexity in dealing with multiple conflicting objectives problems,
MOEAs have been recognized in the last two decades as good methods to explore
and find an approximation to the Pareto-optimal front. This is due to the difficulty
of traditional exact methods to solve this type of problems and by their capacity to
explore and combine various solutions to find the Pareto front in a single run. The
Pareto front is constituted by the non-dominated solutions, i.e., the solutions that
are not better neither worst than the others. Thus, a MOEA must be able to ac-
complish simultaneously two objectives, a homogeneous distribution of the popu-



lation along the Pareto frontier in the objective domain and an improvement of the
solutions along successive generations [6, 14]. The Reduced Pareto Set Genetic
Algorithm with elitism (RPSGAe) is adopted here [14, 15]. This algorithm is
based on the use of a clustering technique to reduce the number of solutions on the
efficient frontier, which enabled simultaneously the distribution of the solutions
along the entire Pareto front and the choice of the best solutions for reproduction.
Thus, both the exploration and exploitation of the search space are simultaneously
taking into account. Detailed information about this algorithm can be found else-
where [14, 15].

3. Classification Methods

The methodology proposed here consists in using a MOEA to determine the best
compromise between the two and/or the three conflicting objectives. For that pur-
pose Support Vector Machines (SVM) will be used to evaluate (or classify) the
trial solutions proposed by the MOEA during the successive generations. Support
Vector Machines (SVMs) are a set of supervised learning methods based on the
use of a kernel, which can be applied to classification and regression. In the SVM
a hyper-plane or set of hyper-planes is (are) constructed in a high-dimensional
space. In this case, a good separation is achieved by the hyper-plane that has the
largest distance to the nearest training data points of any class. Thus, the generali-
zation error of the classifier is lower when this margin is larger. SVMs can be seen
an extension to nonlinear models of the generalized portrait algorithm developed
by Vapnik in [16]. In this work the SVM from LIBSVM was used [17].

The SVM performance depends strongly on the selection of the right kernel, as
well the definition of the best kernel parameters [3]. In the present study only the
C-SVC method using as kernel the Radial Basis Function (RBF) was tested [17].
Thus, two different SVM parameters are to be selected carefully: the regulariza-
tion parameter (C) and the kernel parameter (). Another important parameter is
the training method. Two different approaches were used for training the SVM,
holdout and 10-fold validation. Thus two additional parameters were studied: the
Learning Rate (LR) and the Training Fraction (TF). The choice of a performance
metric to evaluate the learning methods is nowadays an important issue that must
be carefully defined [11-13]. Some recent studies demonstrate that the use of a
single measure can introduce an error on the classifier evaluation, since two type
of objectives must be accomplished simultaneously, maximization of the classifier
accurateness and minimization of the errors obtained [13]. The selection of the
best learning algorithm to use and the best performance metric to measure the ef-
ficiency of the classifier is nowadays the subject of many studies [11, 13].

The simplest way evaluate a classifier is the use the accuracy given by the ratio
between the number instances correctly evaluated and the total number of in-
stances, i.e., Accuracy = (TP + TN) /(TP + TN + FP + FN), where, TP are the posi-



tives correctly classified, TN are the negatives correctly classified, FP are the posi-
tives incorrectly classified and FN are the negative incorrectly classified. It is also
important to know the level of the errors accomplished by the classifier. Two dif-
ferent error types can be defined, type | and type Il, given respectively by: ¢, =
FP/(FP + TN) and e;, = FN/(FN + TP). Another traditional way to evaluate the in-
formation is using the sensitivity or recall (R) and the precision (P) of the classi-
fier: R = TP/(TP + FN) and P = TP/(TP + FN). Fpeasure, Fepresenting the harmonic
mean of R and P, is a global measure often used to evaluate the classifier: Fieasure
= (2.P.R)/(P + R). In order to take into account the problem of simultaneously
maximize the classifier accurateness and minimize the errors obtained, ROC
curves can be adopted instead [12, 13]. On a ROC graph the False Positive rate
(FPra) is plotted in the X axis and the True Positive rate (TP,.) is plotted on the
Y axis. Thus, defining a bi-dimensional Pareto frontier where the aim is to ap-
proach the left top corns of this graph [12, 13]. The FP,4 is given by the error of
type | (e)) and the TP, is given by the recall (R).

4. Results and Discussion

The MOEA methodology proposed will be used in a diagnostic problem of cardiac
Single Proton Emission Computed Tomography (SPECT) images [18]. Each of
the patients is classified into two categories: normal and abnormal. The database
of 267 SPECT image sets (patients) was processed to extract features that summa-
rize the original SPECT images. As a result, 44 continuous feature patterns were
created for each patient. The pattern was further processed to obtain 22 binary fea-
ture patterns. The aim was finding the minimum number of features while maxi-
mizing the accuracy and/or the Fpeasure @nd minimizing the errors. The database
was downloaded from the UCI Machine Learning Repository [19].

Table 1 shows the different experiments tested. Concerning the definition of
the decision variables, two possibilities were considered. Initially, a pure feature
selection problem was analyzed. In this case the parameters of the classifier, such
as type of training and learning rate, the SVM parameters (C and y) and the train-
ing fraction of holdout validation, were initially set. In a second approach, these
parameters were also included as variables to be optimized. The range of variation
allowed for these variables is shown on Table 1. The RPSGAe was applied using
the following parameters: 100 generations, crossover rate of 0.8, mutation rate of
0.05, internal and external populations with 100 individuals, limits of the cluster-
ing algorithm set at 0.2 and the number of ranks (Ngans) at 30. These values re-
sulted from a carefully analysis made previously [14, 15]. Due to the stochastic
nature of the initial tentative solutions several runs have to be performed (in the
present case 10 runs) for each experiment. Thus, a statistical method based on at-
tainment functions was applied to compare the final population for all runs [20,
21]. This method attributes to each objective vector a probability that this point is



attaining in one single run [20]. It is not possible to compute the true attainment
function, but it can be estimated based upon approximation set samples, i.e., dif-
ferent approximations obtained in different runs, which is denoted as Empirical
Attainment Function (EAF) [21]. The differences between two algorithms can be
visualized by plotting the points in the objective space where the differences be-
tween the empirical attainment functions of the two algorithms are significant
[22].

Table 1. Experiments.

Exp. | y C ™ LR TF Objectives
HO1 | 10 1 K(10) | 0.01 * NA + PA
H02 | 10 1 K(10) | 0.01 * NA + g,

HO03 | 10 1 K(10) | 0.01 * NA + ¢y
HO04 | 10 1 K(10) | 0.01 * NA + Fy
HO05 | 10 1 K(10) | 0.01 * NA + e + Fy
HO06 | [0.01,10] | [1,150] | K(10) | [0.001,0.1] | * NA + F,
HO07 | [0.01,10] | [1,150] | K(10) | [0.001,0.1] | * NA + ¢+ Fy
H08 | 10 1 H 0.01 0.7 NA + Fp,
HO09 | [0.01,10] | [1,250] | H [0.001,0.1] | [0.2,0.9] | NA+ Fy
H10 | [0.01,10] | [1,250] | H [0.001,0.1] | [0.2,0.9] | NA+e +Fy
H11 | 10 1 K(10) | 0.01 * NA+¢ +R
H12 | [0.01,10] | [1,150] | K(10) | [0.001,0.1] | * NA+¢ +R
H13 | [0.01,10] | [1,150] | K(10) | [0.001,0.1] | * NA +e +R+Fp,

* Not applicable

Figure 1 shows the initial population and the Pareto front after 100 generations
for the first run of Experiments HO1 and H02 (Table 1). Identical results were ob-
tained for the remaining runs. As can be observed there is a clear improvement of
the solutions proposed during the search process. The algorithm was able to
evolve to good values of the Accuracy (graph at the left) using a few features. In
fact only six or seven features are needed to reach more than 90% of accuracy.
Concerning the experiments were the e, was minimized simultaneously with the
number of features (HO2) identical improvements can be noticed. More results can
be found at
http://www.dep.uminho.pt/agc/agc/Supplementary_Information_Page.html.

The results for the first run of experiment 5 were plotted in Figure 2. In this
case a 3-dimensional Pareto front was obtained and some of the points that seem
to be dominated in one of the graphs (in each 2D plots) are in reality non-
dominated due to the third objective considered in the optimization run. These
plots are very similar to those obtained for experiments HO1 and H02, but now the
solutions resulted from a compromise between the 3 objectives considered simul-
taneously. Thus, more features are needed to satisfy simultaneously the maximiza-
tion of Freasue and the minimization of e;. These plots allow us to observe the




shape of the curves and to get some information about the relation between the ob-
jectives. This information is important in the sense that will help the decision
maker selecting the best solution satisfying their requirements.
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Fig. 1. Pareto fronts after 100 generations for runs HO1 and HO2 of table 1.
1 1 LR A A
sese®?
0.8 1 0.8
*
_067 a4 £ 0.6
[} PS [T
041 0.4 1
2
0.2 *se 0.2 1
*
LS
0 —7¢ . . 0 . . . . .
0 4 8 12 16 20 4 8 12 16 20

NF NF

Fig. 2. Three-dimensional Pareto fronts after 100 generations for run HO5.

The EAFs functions were used to compare experiments H04, HO6, HO8 and H09
(due to a lack of space these results were presented in the supplementary informa-
tion page identified above). This analysis allowed concluding that the best per-
formance is obtained with the k-fold validation method when the classifier pa-
rameters are optimized simultaneously (experiment HO6). Finally, the advantages
of using the proposed methodology for dealing with this type of problems, is
shown in Figure 3 (Pareto fronts for experiment H13). In this figure is possible to
observe that the algorithm is able to converge to very good solutions since high
values for TP,4. Were obtained simultaneously with low values for FP 4. This in-
dicates that the application of a MOEA, where the features to be selected and the
parameters of the SVM are optimized simultaneously, is a method with good po-
tentialities for solving this type of problems. The solutions identified in this plots
are presented in Table 2. These include the decision variables (features selected,
and classifier parameters) and the objective values. Identical results were obtained
for runs H11 and H12.
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Fig. 3. Pareto fronts for experiment H13 (at left is possible to observe the solutions generated in

the ROC curve domain).

Table 2. Best solutions for the first run of experiment H13 and identified in Figure 3.

Sol. Decision Variables Obijectives
Features selected 4 C LR | NF | FPrate |[TPrate| Fp
1 |F3,F4,F11,F13F14,F16,F18,F22 |0.078| 0.17 |62.7| 8 | 0.013 | 0.91 | 0.951
2 [F4,Fl11 0.040| 043 [78.7| 2 | 0.975 | 1.00 | 0.886
3 [F11,F13 0.043| 046 [81.7| 2 | 0.818 | 0.97 |0.892

5. Conclusions

In this work a MOEA was used for feature selection in data mining problems us-
ing a Support Vector Machines classifier. The methodology proposed was able not
only to propose solutions with a few number of features necessary but is able also
to provide relevant information to the decision maker, such as the best features to
be used but, the best parameters of the classifier and the trade-off between the dif-
ferent objectives used. Finally, the approach followed here showed good potenti-
alities in obtaining a good approximation to the ROC curves.
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