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ABSTRACT 

 

In this paper the blast resistance of cracked steel structures repaired with fibre-reinforced polymer (FRP) 

composite patch are investigated. The switch box which has been subjected to blast loading is chosen for a 

detailed study. For impulsively loaded structures, the structural damage and response depends on the impulse 

rather than the pressure pulse. In this regard, the blast wave is modelled as a uniform rectangular pressure pulse 

distributed over the sides of the switch box. The blast behaviour of a simple steel box is modelled using LS-

DYNA software.  The steel material is modelled using isotropic hardening model, pertaining to Von Mises yield 

condition with isotropic strain hardening, and strain rate-dependent dynamic yield stress based on the Cowper 

and Symonds model. Three different cracked structures are chosen to investigate their capability in dissipating 

the blast loading. To improve the blast resistance, the cracked steel structures are stiffened using carbon fibre-

reinforced polymer (CFRP) composite patches. The repaired patches reduce the stress field around the crack as 

the stress is transferred from the cracked zone to them. This situation prevents the crack from growing and 

extends the service life of the steel structure. It will be shown that CFRP repairing can significantly increase the 

blast resistance of cracked steel structures. 

 

  

1.  INTRODUCTION 

 

The susceptibility of civilian buildings when exposed to explosions has been shown by the latest terrorist attacks 

or industrial accidents. A blast wave from explosion acting directly in a building can cause major economic and 

human losses. As result, the number of studies in the structural response, retrofitting and repairing of structures 

has increased in the last years. As experimental full-scale test are quite expensive, the need of numerical analysis 

took a very important role in the development of knowledge in this field. 

 

In this paper the blast resistance of cracked steel structures repaired with carbon fibre-reinforced polymer 

(CFRP) composite patch are investigated. Three different cracked structures are chosen to investigate their 

capability in dissipating the blast loading. Experimental studies with HE (High Explosive) were conducted in 

steel switch boxes. The peak side-on overpressure ranged from 100 kPa to 800 kPa and the reflected pressure 

(pressure experienced in the side of the box that faced the charge) ranged from 320 kPa to 4 MPa. The duration 

of the positive phase of the blast wave was around 8 ms for the highest peak side-on overpressure and 17 ms for 

the lower one [1] . 

 

Previous studies have shown several different solutions to predict the structure response to blast loading. These 

studies lead to satisfactory results in the prediction of the permanent deformations of structures subjected to blast 
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loading using SDOF (Single Degree of Freedom) models [2]-[6]. This approach has however several limitations. 

With the increase of computers capacity and the constant development of software, FE (Finite Elements) method 

has been getting the attention of the scientific community in the past few years. Three major numerical codes, 

Abaqus [7], Ls-Dyna [8] and Autodyn [9] have been used to model structures and structural elements subjected 

to blast loading. Yuen et al [10],[11] studied the response of quadrangular stiffened plates subjected to uniform 

blast loading. They have also investigated [12] the deformation of mild steel plates subjected to large-scale 

explosions. According to their results the use of the Hopkinson-Cranz scaling laws have proven to be useful to 

evaluate pressures, time durations and impulses; and the use of proper explicit dynamic codes can lead to a 

reasonable agreement with experimental results. 

 

Jama et. al. [13] through numerical modelling studied square tubular steel beams subjected to transverse blast 

loading using LS-DYNA and concluded that these elements undergo local cross-sectional deformation followed 

by global beam bending deformation and highlighted the importance of the strain-rate hardening for proper detail 

in both local and global deformation. Nurick et al [14]-[16] studied the influence of boundary conditions of the 

loading of rectangular plates subjected to localized blast loading. They showed that axial crushing of tubes 

sandwiched between steel panels could be used to absorb significant energy from a blast load and studied the 

post-failure motion of steel plates subjected to blast loading. Sabuwala et. al. [17] analysed beam to column 

connections subjected to blast loads, showing that the TM5-1300 over-designs these elements. Krauthammer 

[18] proposed a model to predict the behaviour of structural concrete and structural steel connections subjected 

to blast loading conducting a series of numerical simulations and concluded that the current design procedures 

should be modified for a better prediction under these loading conditions. Børvic et. al. [19], [20] managed to 

predict the structural response of a protective structure subjected to blast loading using LS-DYNA achieving a 

good relation with the deformations verified in the experimental studies. Hanssen et. al. [21] investigated the 

behaviour of aluminium foam panels subjected to blast loading, and both the analytical and the non-linear finite 

element analysis shared the same conclusions. 

 

In this work Finite Element (FE) software Ls-Dyna was used to model a blast loading problem. This software 

allows three different approaches:  (i) Pure Lagrangian formulation, the load is idealised as a pressure-time curve 

applied directly to the surface; (ii) Running an Eulerian simulation before the Lagrangian simulation, the 

objective is to obtain the pressure-time load on all faces around the structure; (iii) The Eulerian formulation can 

be applied with the Lagrangian formulation to have a full coupling between the blast waves and the structure 

deformations, the use of the coupled Eulerian-Lagrangian formulation increases considerably the computational 

time.  

 

Børvic et. al. [22] compared the response given using the coupled formulation and the pure Lagrangian 

formulation. The results showed a good agreement between these two approaches when using commercial 

software [23] or expressions in the literature [24]-[26] to obtain the pressure-time profile of the blast load. To 

model loading conditions on the switch boxes the pressure-time recorded in the experimental studies was applied 

to the structure using a pure Lagrangian formulation. The steel material is modelled using isotropic hardening 

model, pertaining to Von Mises yield condition with isotropic strain hardening, and strain rate-dependent 

dynamic yield stress based on Cowper and Symonds model. To improve the blast resistance, the cracked steel 

structures are stiffened using FRP composite patches. The capacity of the FRP to improve the structure response 

to blast loading has taken the attention of the scientific community, with several studies performed both 

experimental and numerical in RC structures [27]-[31] and masonry structures [32]-[37]. Most of previous 

researches have shown that the FRP has improved significantly the structural response of this kind of structures 

subjected to blast loading.  

 

The aim of this work is to show the CFRP as a valid solution for the repairing of steel structures, reducing the 

stress field around the crack as the stress is transferred from the cracked zone to the FRP. This situation prevents 

the crack from growing and extends the service life of the steel structure. By comparison with the experimental 
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results this work intends to provide guide lines for the modelling of this type of structures regarding blast 

loading. 

 

 

2.  EXPERIMENTAL STUDY 

 

A number of switch boxes were exposed to blast overpressure from HE in a number of tests. These boxes were 

carbon steel boxes. In each test, boxes were placed at locations to receive specific overpressure loading for the 

explosive charge used. Figure 1 shows a typical general arrangement. It can be seen that for each test, one box 

had the front face facing the charge and another had its side face facing the charge. 

 

Peak side-on overpressures in tests was ranged from 100 kPa to 800 kPa. The reflected pressure (pressure 

experienced by the side of the box that faced the charge) ranged from 320 kPa to 4 MPa. The duration of the 

highest peak side-on overpressure was around 8 ms and lower ones around 17 ms for the positive phase of the 

blast wave. These are within the range of pressure durations that are to be expected in detonations.  

 

 
 

Figure 1 – General scheme of the experimental study [1]. 

 

One of the characteristics of these HE tests is that pressure decayed rapidly at these levels of overpressure. Thus, 

the peak side-on pressure on the face closer to the charge is larger than another face at the back. It is noted that in 

some cases the back face was pushed outwards (rather than crushed inwards). This is due to the effect of 

adiabatic compression. The crushing of the front face caused an increase in internal pressure which deformed the 

back face outwards. After the test, the subjects were measured in terms of residual deformation and the results 

recorded. No significant deformation occurred until peak side-on overpressure exceeded 470 kPa (reflected 

pressure of 2.7 MPa) on the side facing the blast [1]. For the purpose of the following work the T3 test will be 

used. In this test the reflected pressure, Pr, was 2.39 MPa, the incident pressure, Pi, was 0.53 MPa and the 

positive phase duration, td, was 11.58 ms. 

 

 

3.  FINITE ELEMENT MODELLING (FEM) 

 

To model the switch boxes the pressure-time recorded in the experimental studies was applied to the structure 

and used a pure Lagrangian formulation for the explicit simulation. The box was modelled with thin-shell 

elements specific for explicit dynamic analysis, with a thickness of 1.5 mm; the dimensions are presented in 

Figure 3a. The steel was modelled using isotropic hardening model and for the material properties several 

previous researches were studied and according to the expected strain rate for this kind of action and observing 

the work presented in [13], the mechanical properties applied to the material model are shown in Figure 3b.  

 



4 SÍSMICA 2010 – 8º CONGRESSO DE SISMOLOGIA E ENGENHARIA SÍSMICA 

 

 
 

Figure 3 – a) Scheme of the switch box and b) Bilinear isotropic material model of steel (All dimensions in mm). 

 

The applied load was modelled as a pressure time curve with a triangular shape as shown in Figure 4. In the side 

facing the blast the reflected pressure was applied and also in all other faces the incident pressure was applied. In 

all cases the pressure was applied inwards. 

 

 
 

Figure 4 – Triangular shaped load applied in the models. 

 

 

3.1.  FEM of Simple steel box 

 

The first step of this study was to properly calibrate a geometric and material model. This was possible by 

comparison of the simple tested boxes with the simple model. In this simple model the normal switch box is 

modelled and the T3 loading data is applied. 

 

As shown in Figure 5 the deformed shape of the experimentally tested box and the modelled box are identical. 

The residual maximum deformation in the side face of the test subject is 55 mm and the residual maximum 

deformation in the side face of the modelled box is 53.90 mm. This represents a difference of 2%.  

 

 
 

Figure 5 - Comparison of the FE model with the relevant experimentally tested box. 

3.2.  FEM of cracked steel box 

 

The objective of this part of the study was to model the box with a “crack” on the side facing the blast. At this 

stage the influence of the crack orientation was studied, three different orientations were taken into 

consideration. Cracks are 20 mm long and the centre of the crack is coincident with the centre of the side face of 
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the switch box. The mesh around the crack was taken into special consideration and it was refined in its edges as 

shown in Figure 6. 

 

 
 

Figure 6 - Detailed mesh around the crack for the three models: a) crack at 0 degrees; b) crack at 45 degrees; c) 

crack at 90 degrees. 

 

In Figure 7 various stages of the deformed shape during the analysis are shown for the model with the crack at 0 

degrees.  

 

 
 

Figure 7 - Various stages of element deformation for a steel box with a crack (0˚) in the middle. 

 

Displacement distribution of the principal load direction for different time steps is presented in Figure 8a. The 

node with the most deformation has the displacement history presented in Figure 8b.  

 

 
 

Figure 8 – a) Various stages of displacement distribution for a steel box with a crack (0˚) in the middle and b) 

obtained displacement-time diagram. 

 

The comparisons between residual deformations of simple box with three cracked boxes are in Table 1. As it is 

shown there is no significant difference derived from the crack orientation and both three crack models present 

themselves with an increase of around 39% in the residual deformation when compared with the un-crack model. 

 

Table 1 – Summarised results for the cracked models. 
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Model 
Crack Length 

(mm) 

Crack Orientation 

(degrees) 

Residual deformation 

(mm) 

T3 - - 53.90 

CR1_20_0 20 0 75.34 

CR1_20_45 20 45 74.67 

CR1_20_90 20 90 74.27 

 

The behaviour in time of all four models presented above can be seen in Figure 9. As the behaviour are similar, 

for the rest of this work only the cracked model at 0 degrees is considered.  

 

 
 

Figure 9 – Deformation in time for the simple model and three cracked models. 

 

 

3.3.  FEM of repaired cracked steel box 

 

To repair the structure, the cracked steel structures are stiffened using CFRP composite patches. The capacity of 

the FRP to improve the structure response to blast loading has taken the attention of the scientific community, 

with all the previous research showing that the FRP can be a good choice when dealing with stiffness necessities. 

 

In this particular work the objective was to repair the cracked structure with CFRP patches and evaluate the 

improvement of this repair. The influence of several aspects regarding the CFRP patch was also studied, by 

using several different models to study the influence of the patch thickness, the patch size and the orientation of 

the patch fibres. The CFRP patch was modelled with a layered thin-shell element type specific for explicit 

dynamic analysis and applied on top of the cracked zone as shown in Figure 10. The contact between the FRP 

patch and box was modelled using a nodes impacting surface with a friction coefficient of 0.30 which was 

measured experimentally to avoid lateral movements. The CFRP patches were modelled based on Chang-Chang 

failure criterion applied in composite damage model. 
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Figure 10 – a) FEM of repaired cracked box with CFRP patch and b) various stages of FE simulations. 

 

 

3.3.1.  Effect of the patch thickness 

 

In this part the effect of patch thickness on the blast resistance of cracked box is investigated. With the same 

position as before the CFRP patch with three different thicknesses of 1.5, 2.0 and 2.5 mm were modelled. The 

results are summarised in table 2. As shown in the next table, there are no significant differences when varying 

the patch thickness when applied in this situation. 

 

Table 2 – Effect of CFRP patch thickness on the residual deformation. 

 

Model 
Patch thickness 

(mm) 

Number of 

layers 

Patch size 

(mm) 
Lay-ups 

Residual 

deformation (mm) 

CR_1.5_40_0 1.5 3 40 [0]3 66.08 

CR_2_40_0 2.0 4 40 [0]4 66.80 

CR_2.5_40_0 2.5 5 40 [0]5 66.97 

 

 

3.3.2.  Effect of the patch size 

 

To verify the influence of the patch size in the residual deformation of the box five different sizes, all square, and 

all with the same thickness and fibre orientation were investigated. The results are presented in Table 3. 

 

Table 3 – Effect of FRP patch size on the residual deformation. 

 

Model Patch thickness 

(mm) 

number of 

layers 

Patch size 

(mm) 

Lay-ups Residual 

deformation (mm) 

CR_2_40_0 2.0 4 40 [0]4 66.80 

CR_2_50_0 2.0 4 50 [0]4 63.76 

CR_2_70_0 2.0 4 70 [0]4 58.63 

CR_2_80_0 2.0 4 80 [0]4 65.61 

CR_2_90_0 2.0 4 90 [0]4 84.47 

 

Figure 11 represents the relation between the maximum residual deformation on the box side facing the blast and 

the size of the FRP repair patch.  

 

It is important to realise that the behaviour of the system differs from size to size, as shown in Figure 12. As can 

be seen, the variation of patch size has no significant effect on the blast resistance of cracked steel structures. 

However, deformations are variable during the blast period. For example for small patch sizes (e.g. 40×40 mm
2
) 

the deformation increases sharply in comparison with the deformation of patch size of 90×90 mm
2
. 
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Figure 11 – Comparison of residual deformation vs Patch size in cracked box repaired with FRP patches. 

 

 
 

Figure 12 – Deformation in time for all modelled sizes of FRP patch. 

 

 

3.3.3.  Effect of the laminate design 

 

The final aspect was the influence of the orientation of the fibres in each layer of the CFPR patch. Three types of 

arrangements were chosen for the related thickness: a) [0]n, b) [90]n, c) [0/90]n, d) [0/90/0]n and [0/90/0/90/0]n. 

 

Table 4 – Effect of laminate design on the residual deformation. 

 

Model Patch thickness 

(mm) 

Number of 

layers 

Patch size 

(mm) 

Lay-ups Residual 

deformation (mm) 

CR_1.5_40_0 1.5 3 40 [0]3 66.08 

CR_1.5_40_90 1.5 3 40 [90]3 66.50 

CR_1.5_40_090 1.5 3 40 [0/90/0] 66.33 

CR_2_40_0 2.0 4 40 [0]4 66.80 

CR_2_40_90 2.0 4 40 [90]4 66.71 

CR_2_40_090 2.0 4 40 [0/90]2 66.59 

CR_2.5_40_0 2.5 5 40 [0]5 66.97 

CR_2.5_40_90 2.5 5 40 [90]5 67.14 

CR_2.5_40_090 2.5 5 40 [0/90/0/90/0] 66.99 

 

As can be seen in the presented results (Table 4) there are no much differences in the residual deformation when 

varying the orientation of the fibres. 
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4.  DISCUSSION AND CONCLUSIONS 

 

The use of Finite Element Analyses (FEA) is one of the most used techniques to predict the behaviour of 

structures. FE software like LS-DYNA has been proved capable of, with relative accuracy, model explicit 

dynamic situations. In this work we started by calibrating the geometric and material model by comparison with 

the experimental results obtaining a difference of 2% between both cases. After proper calibration the behaviour 

of three different crack possibilities were compared and concluded that there is no significant influence in the 

residual deformation of this thin steel structure when varying the orientation of the crack.  

 

To study the possibility of repairing this kind of structures several different possibilities were considered for the 

CFRP patch. In this part of the study we concluded that the thickness of the patch and the orientation of the 

fibres have no significant influence in the residual deformation. As for the size of the FRP patch it was shown 

that there is an optimum size for the FRP patch that produces the minimum residual deformation. 

 

Figure 13 represents the behaviour of the general three situations studied, the un-damaged situation, the damaged 

situation and the repaired situation. It is shown that repairing with FRP patch can improve the behaviour of the 

thin steel structure almost to the point of the un-damaged one. 

 

 
 

Figure 13 - Comparison of the three general situations studied. 

 

Explicit dynamic simulations are still in an early stage of development as many of the modelling possibilities for 

the implicit analysis are not yet available for the explicit analysis. Blast loading simulating still needs to 

concentrate the attention of researchers in terms of the material properties for high strain-rate situations. The 

commercial codes should be improved too in terms of available element types and material models. 
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