
A Model to Improve the Accuracy of WSN Simulations

Óscar Gama1, Paulo Carvalho1, P. M. Mendes2

1Informatics Dept., 2Industrial Electronics Dept., University of Minho, Portugal
{osg, pmc}@di.uminho.pt, paulo.mendes@dei.uminho.pt

Abstract. Simulation studies have been extensively adopted in the networking
research community. Nevertheless, the performance of the software
components running within the network devices is often not modeled by
generic network simulators. This aspect is particularly important in wireless
sensor networks (WSN). As motes present very limited computing resources,
the overhead of the software components cannot be ignored. Consequently,
WSN simulation results may diverge significantly from the reality. After
showing experimentally the validity of this assumption, the paper proposes a set
of generic equations to model the performance of WSN software components.
Validation tests using contention and multiplexing-based MAC protocols show
that the inclusion of the proposed model in a WSN simulator improves the
confidence degree in the simulation results significantly.

Keywords: wireless sensor network, simulation, real tests, parameterized
model.

1 Introduction

Many studies within the WSN research community resort commonly to simulators. A
review based on 151 wireless network articles from a five-year-period reported that
76% of those works used simulations [1]. The preference for simulators is justified by
the difficulty of deploying real networks, as programming a large number of motes,
gathering performance metrics, and managing the power sources is tedious and time
consuming. Simulators allow building and modifying network scenarios easily, and
tests are easily monitored. A comparison of simulators for WSNs is provided in [2].

WSN simulation studies use frequently unrealistic assumptions, such as, flat
physical environment, circular radio transmission area, channel with bidirectional
symmetry, and no fading or shadowing phenomena. These assumptions lead to
simulation results that differ significantly from experimental results [3].

Since simulators can use different models to represent the same physical
phenomenon, appreciable divergences in the results may be obtained using distinct
simulators. The performance results of a simple algorithm using diverse simulators
proved this fact [4]. Furthermore, models cannot represent reality with absolute
accuracy [5]. Simulation scenarios can also ignore diverse hardware and software
aspects that may influence the final results. An example is the time required by the
base-station (BS) and the motes to process the incoming or outgoing packets.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aware of the difficulty that a simulator may have in presenting accurate results,
this work studies software-related aspects of a WSN that contribute to the differences
between simulation results and real measurements. This important topic is usually
neglected in WSN simulations. First, within the IEEE 802.15.4 domain, the results
obtained in a simulated WSN are compared to those obtained in an analogous
physical scenario, and the causes of divergence in the results are identified. Then, a
model using empirical software-related parameters to improve the accuracy of the
simulation results is proposed. Instead of trying to present accurate values for the
model parameters, which are necessarily specific to each testbed, this work intends to
model software-related issues which have influence on the testbed results, and which
may also occur in another WSN testbed. The main contribution of this paper is to
present a model reflecting the impact of the software components on a physical WSN.
The proposed model is generic to be easily implemented in current WSN simulators,
being also an important contribute for future development of simulation tools.

2 Experimental Platforms

The physical and simulated experimental platforms as well as the test conditions used
in this work are presented next. The reference testbed is composed of 16 ZigBit-A2
motes [7] placed statically in a semi-circle around the BS, about one meter away from
the BS. To evaluate the impact of software components on the performance of a
WSN, a static small-area WSN was adopted to minimize the effects of additional
source of errors, such as nodes mobility and fading phenomena. The testbed is limited
to sixteen motes due to the RAM memory constraints of the BS. Indeed, a minimum
amount of memory in the BS is required to hold data for packet statistical analysis,
and this memory is dependent on the number of active motes in the WSN.

The ZigBit-A2 mote is an IEEE 802.15.4/ ZigBee-compliant module operating in
the 2.4 GHz band. It contains one AT86RF230 transceiver and one ATmega1281V
microcontroller. Motes run TinyOS, an event-oriented operating system. The testbed
uses the BS available from the manufacturer. As the BS is built-in around a ZigBit-A2
module, in terms of software performance the BS is identical to a mote.

To study the validity of the proposed model in a different test scenario, traffic from
another IEEE 802.15.4 WSN is admitted in the channel used by the reference testbed.
The reference WSN and the interfering WSN have distinct personal area network
identifiers, and are close enough to sense the carrier signals mutually.

The physical testbed scenario was equally implemented in the Castalia-2.3b [6], an
open-source, discrete event-driven simulator designed specifically for WSNs.

2.1 Test Conditions

In the reference WSN, each mote transmits a packet with 90 bytes (B) of MAC
payload to the BS every 250 ms approximately. This traffic volume is typical in
WSNs with high data rates, such as e-health WSNs monitoring electrocardiographic
signals. In these scenarios, the influence of the software components on the overall

network performance is not negligible. In the interfering WSN, one mote sends a
packet with 100 B of MAC payload to its BS every 50 ms approximately.

The non-slotted CSMA-CA MAC protocol described in IEEE 802.15.4 standard
was used in the reference WSN and interfering WSN. In the reference WSN, the
CSMA-CA algorithm used the default parameters. The interfering WSN also used the
default parameters apart from the maximum number of frame retries, which is zero to
guarantee that the CSMA algorithm execution ends before 50 ms.

The reference WSN operated in a channel free of IEEE 802.15.4 traffic. For this
purpose, a channel analyzer was used to find a free channel. To reduce the impact of
spurious interferences, motes transmit at maximum power (3 dBm).

Tests were carried out in the physical testbed and in the simulator for an increasing
number of motes in the WSN. The test duration was 16 minutes for each set of motes.
Tests were run with and without 802.15.4 interfering traffic in the operating channel.

3 Experimental Results

The results for round-trip (RT) delay, and Delivery Error Ratio (DER) obtained both
in the physical testbed and in the simulator are discussed next. Both metrics are
considered from the perspective of the application layer. In the context of this study,
RT delay is the time spent between sending an application data packet from a mote
and the successful confirmation of the operation, which occurs after receiving the
MAC ACK frame from the BS. DER expresses the probability of an application data
packet sent from a mote to the application layer of the BS failing the delivery.

Fig. 1 and Fig. 2 present the results obtained without the presence of interfering
traffic. Fig. 1 shows the simulation results for the DER when increasing the number
of motes sending packets to the BS. The graphical bars correspond to the DER
obtained in the physical testbed. For each number of active motes in the WSN, it is
represented the maximum, average, and minimum DER values. Fig. 2 shows the
maximum and average round-trip delays obtained in the simulator and in the physical
testbed. In Fig. 1, while the simulation results reveal a WSN scaling up to 16 nodes
with a maximum DER always below 1%, the physical testbed results show that above
six active motes the maximum DER becomes higher than 1%. Fig. 2 reveals that the
delays obtained in the simulator are significantly distinct from the real results.

 Fig. 1. DER without interferences. Fig. 2. RT delay without interferences.

Fig. 3 and Fig. 4 present the DER and round-trip delay results obtained with the

presence of interfering traffic. The results shown in both figures were obtained in the
simulator and in the physical testbed. As expected, the network performance degrades
before the presence of interfering traffic. The differences in the results registered in
the physical testbed and in the simulator are considerably distinct.

 Fig. 3. DER with interferences. Fig. 4. RT delay with interferences.

4 Model Parameters

The main causes for the divergence of the results obtained in the simulator and in the
physical testbed are identified and discussed next. As result of this analysis, a
parameterized model is proposed for the simulator to minimize the differences to the
testbed results. This aspect is of particular relevance to bring simulation scenarios
close to real environments, increasing the meaningfulness of simulations results.

4.1 Software components

The first reason for the differences observed in the results is that the simulator does
not take into consideration both the behavior of the operating system used in the
network devices and the software processing time. As TinyOS can only schedule and
handle single events and computing resources are very limited, significant delays may
occur in scheduling and processing those events, as well as in processing the code of
the protocol layers software. This overhead in terms of delay may be responsible for
packet loss. To understand why, let us suppose that a packet has been received by the
BS’ transceiver. After processing it, the physical layer software triggers events to
forward the payload to the upper protocol layers. Since the delivering time to the
application layer is not null, another packet may be received by the BS’ transceiver
during this transactional phase. In this case, TinyOS does not attend the hardware
interrupt from the transceiver indicating that a new packet is ready to be transferred to
the microcontroller, and the new received packet is dropped. This situation was
observed in the testbed. Yet, other operating system might attend the hardware
interrupt from the transceiver indicating a new packet, and drop the packet in process
previously received. In both cases, an incoming packet is completely processed by the

application layer only if a time interval elapses without other packet being received by
the mote's transceiver. Next, it is proposed a model to reflect this behavior in a
simulator. Its parameterized nature makes the model generic and independent of the
type of operating system and hardware used in the WSN.

The model uses the delivery time parameters TBS mac!app(n) and TBS phy!mac(n). The
parameter TBS mac!app(n) indicates the time required by the BS to process the packet
received from mote n at MAC layer and deliver the data to the application layer.
Therefore, this parameter reflects both the event scheduling delay and the packet
processing delay imposed by the link, network, and transport layers. The delivery
time parameter TBS phy!mac(n) reflects the time required by the BS to process the packet
received from mote n at physical layer and deliver the payload to the MAC layer.
Note that MAC layer tasks can be split between the transceiver and the
microcontroller. In Zigbit motes, for example, address filtering, FCS check, and ACK
transmission operations of a receiving MAC frame are carried out in the transceiver,
but the MAC frame de-encapsulation and upper layer delivering are accomplished in
the microcontroller. As software components timings are very hard to be measured
directly in the transceiver’s firmware, the parameters TBS mac!app(n) and TBS phy!mac(n)
are measured relatively to the MAC layer component in the microcontroller.

The process time parameter TBS app(n) indicates the time required for the application
layer of the BS to process the received payload from mote n. So, an incoming packet
from mote n is completely processed by the application layer of the BS after a time
interval TBS totRX(n):

TBS totRX(n) = TBS phy!mac(n) + TBS mac!app(n) + TBS app(n) . (1)

The delivery time parameter TBS phy!mac(n) includes the following partial times: i)

the time required to receive the packet from mote n, TRX(n); ii) the packet processing
time in the physical and MAC layers of the transceiver, TBS phyRX(n); iii) the time
required by the microcontroller to read the bytes from the transceiver reception buffer
through the peripheral communication interface, TBS pciR(n):

 TBS phy!mac(n) = TRX(n) + TBS phyRX(n) + TBS pciR(n) . (2)

For a packet received from mote n with a physical header size PHYh bytes, a MAC

header plus trailer size MACh bytes, a MAC payload length MACd(n) bytes, and a
nominal transmission rate R bits/s:

 TRX(n) = (PHYh+MACh+MACd(n)).8/R . (3)

The parameter TBS phyRX(n) is very hard to be measured directly as it is related with
the firmware performance of the transceiver. However, it can be obtained indirectly
from the TBS phy!mac(n) measurement, because TRX(n) and TBS pciR(n) are known.

Usually the peripheral communication interface between the microcontroller and
the transceiver is a serial peripheral interface (SPI). In this case,

 TpciR(n) = (BC+ MACh + MACd(n))*(8/Sclk+ Tsep) , (4)

where BC is the number of bytes of a read command, Sclk is the SPI clock frequency,
Tsep is the separation time between the less significant bit of the last byte and the most
significant bit of the next byte. For Zigbit motes, BC=3 B, Sclk=4 MHz, Tsep=250 ns.

If TBS phy!mac(n) is lower than the Long Inter-Frame Spacing (LIFS) period (or Short
IFS, if the received MAC frame size ! maxSIFSFrameSize), then it takes the
respective IFS value. For an IEEE 802.15.4 WSN at 250 kbps, SIFS is 0.192 ms and
LIFS is 0.640 ms, at least; the maxSIFSFrameSize is 18 B.

Analogously, TtotTX(n) is the total time required for mote n to complete the
transmission process of an application data packet. Hence, the application packet
delay comes increased by the sum of TtotRX(n) and TtotTX(n), where

 TtotTX(n) = Tapp(n) + Tapp!mac(n) + Tmac!phy(n) + Tconf(n) . (5)

Tconf(n) is the time required for the application layer to obtain the confirmation of

the transmission request success, as required in common MAC protocols (e.g., IEEE
802.15.4); T app(n) is the time needed for the application layer of the mote n to prepare
the data payload; Tapp!mac(n) is the time required by mote n to deliver the data payload
to the MAC layer, and prepare the MAC frame; Tmac!phy(n) is the time required by
mote n to deliver the MAC frame to the physical layer, prepare the packet and
transmit it. This last parameter includes the following partial times: i) the time
required by the microcontroller to write the bytes in the transceiver’s transmission
buffer and registers through the peripheral communication interface, TpciW(n); ii) the
packet preparing time in the physical layer (and MAC layer, if present) of the
transceiver, TphyTX(n); iii) the listen state to transmission state switching latency,
Tl!tx(n); iv) the time required to transmit the packet, TRX(n), which is equal to TTX(n).

Tmac!phy(n) = TpciW(n) + TphyTX(n) + Tl!tx(n) + TTX(n) . (6)

The parameter TphyTX(n) is very hard to be measured directly because it is related

with the firmware performance of the transceiver. However, it can be obtained
indirectly from the Tmac!phy(n) measurement, because TTX(n), TBS pciW(n), and Tl!tx(n)
are known. Tl!tx(n) is read from the transceiver technical specifications of mote n.

If the peripheral communication interface between the microcontroller and the
transceiver is SPI, then TpciW(n) can be calculated using Eq. 4, being BC the number of
bytes of a write command. For Zigbit motes, BC is 2 B and Tl!tx is 0.18 ms.

After sending a packet, a mote must wait TnextTX(n) before sending another packet,
where:

TnextTX(n) = TtotTX(n) – TTX(n) . (7)

This equation is important since it may limit the performance of mote n regarding

data throughput or retransmission trials.
Let us consider now that the application timers of mote a and mote b fire

respectively at time T(a) and time T(b) to send application data, and that T(b) > T(a).
Also, let us assume that both motes use a MAC algorithm which does not perform any
Clear Channel Assessment (CCA) to detect a clear channel or backoff contention
procedures, i.e., once the timer fired, packets are directly sent to the wireless channel.

This is a usual procedure in TDMA-based MAC protocols. In this context, mote a
ends transmitting the physical packet a into the wireless channel at time TendTX(a):

TendTX(a) = T(a) + TtotTX(a) – Tconf(a) . (8)

Mote b starts sending the physical packet b into the channel at time TstartTX(b):

 TstartTX(b) = T(b) + TtotTX(b) – TTX(b) – Tconf(b) . (9)

If TstartTX(b) < TendTX(a) then a packet collision occurs and both packets are lost.

To avoid this situation, TstartTX(b) must occur after TendTX(a), which means that the
application timer of mote b must trigger after T(a) the following time:

 T(b) – T(a) > max{0, TTX(b) + (TtotTX(a) – TtotTX(b)) + (PTconf(b) – PTconf(a))} . (10)

In this case, if the condition
 TstartTX(b) + TTX(b) > TendTX(a) + TBS totRX(a) – TRX(a) (11)

holds (TRX(a) is subtracted because it is included in both TendTX(a) and TBS totRX(a)),
then mote b finishes the transmission after the BS having completely processed the
packet a. In this case, the BS ends processing packet b at time TBS end(b), where:

TBS end(b) = TstartTX(b) + TBS totRX(b) . (12)

However, if Eq.(11) is false, then mote b finishes the transmission while the BS is

still processing the packet a, and consequently one of the packets is dropped (packet b
in Zigbit motes). To guarantee that packet b is successfully processed by the BS, it
must not collide with packet a, and it must be totally received after the BS finishes
processing packet a. The first condition is expressed by Eq.(10). The second condition
implies that T(b) must be incremented by TBS totRX(a) – TRX(a). Additionally, if TBS

totRX(a) – TRX(a) > TTX(b), then T(b) can be decremented by TTX(b), because the
transceiver can receive packet b while the microcontroller processes packet a. So,

TendTX(b)–TendTX(a)>TBS totRX(a)–TRX(a)–(TBS totRX(a)–TRX(a)>TTX(b)?TTX(b):0) . (13)

Let us consider that mote b is ready to transfer data from the microcontroller to the

transceiver, and mote a is transmitting to the BS. The transceiver of mote b must
listen for packet a to read its physical and MAC headers. In Zigbit motes, it was
observed that the transceiver of mote b can only accept data from the microcontroller
after its radio circuit has finished the listening for the whole packet a. No channel
collision occurs between packet a and packet b. This phenomenon imposes an
additional delay, ThdrD(b,a), when sending a packet b to the channel due to the
influence of packet a, where ThdrD(b,a) ! TTX(a). This delay must be added to TtotTX(b),
expressed in Eq.(5). As T(b) cannot occur before T(a), it results altogether that,

 T(b) – T(a) > max{0, TTX(b) + (TtotTX(a) – TtotTX(b)) + (PTconf(b) – PTconf(a)) +
TBS totRX(a) – TRX(a) – (TBS totRX(a) – TRX(a) > TTX(b) ? TTX(b) :0) – ThdrD(b,a)} . (14)

If mote a and mote b are identical, run the same software, and send packets with

the same size, then TtotTX(a)=TtotTX(b), PTconf(b)=PTconf(a), and Eq.(14) simplifies to,

T(b) – T(a) > TBS totRX(a) – TTX(a) – ThdrD(b,a) . (15)

In the ideal case of mote a and mote b presenting a null delay in all software

components and sending equal size packets, Eq.(14) becomes T(b) – T(a) > TTX(a).
Let us assume now that mote a and mote b use a contention-based MAC protocol.

Since random backoffs and CCA operations are carried out by the CSMA algorithm
to find a clear channel, it is not possible to establish an equation relating T(b) with
T(a). However, packet a and packet b are successfully processed by the BS only if the
condition expressed in Eq.(13) holds.

Experimental tests with Zigbit motes revealed that the BS’ transceiver is able to
send a MAC ACK frame to a mote only if Tack milliseconds have passed since the
transmission of the MAC ACK frame of the last received packet.

MAC ACK frames sent by the BS’ transceiver while the BS microcontroller is
processing a received packet deteriorate the DER. To understand why, let us consider
that the BS microcontroller is processing packet a when packet b is received by the
BS’ transceiver, and the respective MAC ACK frame arrives with success to mote b.
As BS is processing packet a, packet b will be dropped. Since no retransmission will
occur at mote b, packet b will not be delivered to the application layer of the BS.
However, if the MAC ACK frame is not sent by the BS, packet b may be
retransmitted and delivered successfully to the application layer of the BS, if
meanwhile packet a has been completely processed.

4.2 Time drift

The second reason for the differences in the results is that the motes present an
appreciable time drift. The cause of this time drift is distinct of the CPU clock time
drift, which is typically a few microseconds per second. While the latter is due to
physical characteristics of the semiconductor components, the former is mainly due to
the CPU internal software performance running under limited computing resources.
To reflect this feature, the drift parameter Dab was introduced in the simulator. To set
this parameter correctly, measurements were carried out using the BS and pairs of
motes. Generically, if the drift between mote a and the BS is Da, and the drift between
mote b and the BS is Db, then the drift between mote a and mote b is Dab= Da – Db.
This means that if mote a and mote b start transmitting separated in time by Tab, and if
Da > Db, then both motes will contend for the wireless channel after sending Tab / Dab
packets. The Dab value can be calculated experimentally through the relation:

Dab = ((Tai+1 – Tbi+1) – (Tai – Tbi)) / (Tbi+1 – Tbi) , (16)

where Tai, Tai+1, Tbi, and Tbi+1 express the local time of the BS when packet i and
packet i+1 are received from mote a and mote b, respectively. It is assumed that
packet i from mote b arrives after packet i from mote a, as well as all successive

MACd 30 B 90 B

TBS app 1.8 ms 1.8 ms

TBS mac!app 1.0 1.3

TBS phy!mac 1.0+TRX 1.4+TRX
Tack 3.3 3.7

TBS pciR 0.10 0.23

TBS phyRX 0.90 1.17

TRX, TTX 1.50 3.42

TBS totRX 3.8+TRX 4.5+TRX

received packets from both motes during the period Tbi and Tbi+1. Since Tab < 125 ms
in the physical testbed, and assuming Dab = 0.1%, channel contentions between a pair
of motes may occur whenever 125 packets are sent at maximum. However, no
channel contention occurs if Dab is zero and Tab is above the full-loaded packet
transmission time. In this situation, the simulator results presented a null DER in a
WSN with more than sixteen active motes. To prevent this unrealistic situation, the
simulation results in Figs. 1, 2, 3, 4 were taken using a Dab equal to 0.005%.

4.3 Setting of the model parameters

Whenever possible, the tuning of the model parameters was accomplished from
measurements performed in the physical testbed. Table 1 presents the values found
for the defined parameters, expressed in milliseconds, which are specific to this
physical testbed. MAC payloads of 30 B and 90 B were considered. These values
were measured on an analogical oscilloscope, and may present an error of +/– 0.5 ms.
The values in italic were calculated analytically: TBS phyRX derives from Eq.(2); TRX
and TTX from Eq.(3), TBS pciR and TpciW from Eq.(4), TphyTX from Eq.(6); Tl!tx was
obtained from the transceiver technical specifications. Recall that the IEEE 802.15.4
protocol stack is implemented in the firmware of the nodes’ transceiver.

Table 1. Values of the model parameters for: the BS (left) and the motes (right).

Measurements showed that the software time drift between motes may have values

up to 0.3%, depending on the pair of motes used. The time drift between a pair of
motes varies along the time. The simulator was programmed so that each mote at
start-up chooses an average time drift Dab up to 0.3% randomly.

The computing performance of the BS in the physical testbed is similar to a mote.
This situation is not normally found in a WSN since a BS presents typically stronger
computing resources and a more efficient operating system than motes. In this case,
the value of TtotRX and TtotTX may be negligible. However, in a multi-hop WSN the
packets may be routed through the motes, and so the value of these parameters can
influence significantly the network performance.

MACd 30 B 90 B

Tapp 1.8 ms 2.0 ms

Tapp!mac 1.2 2.0

Tmac!phy 1.4+TTX 2.5+TTX
Tconf 4.0 4.0

TpciW 0.10 0.23

TphyTX 1.12 2.09

Tl!tx 0.18 0.18

TtotTX 8.4+TTX 10.5+TTX

mote a mote b mote c Real Simul. w/ model Simul. w/o model

30 B 30 B 30 B 4.0 3.8 1.5
30 B 30 B - 4.0 3.8 1.5
90 B 90 B 90 B 4.5 4.5 3.4

 90 B* 90 B* - 3.0 3.5 3.4
30 B 90 B - 0.5 0.0 1.5
90 B 30 B - 8.5 8.5 3.4

5 Simulation results with the model

In order to validate the proposed model, tests were carried out in the physical and
simulation platforms using both TDMA and CSMA-based MAC protocols. The motes
used in the experiments are identical in terms of hardware, and run the same software.

5.1 TDMA algorithm

Validation tests of the proposed model were carried out in the physical and simulation
platforms using a simple TDMA-based algorithm. The BS sends a beacon every 100
ms. This value was chosen to minimize the effect of the time drift Dab. In each
superframe, two or three motes transmit once with the minimum time gap that
guarantees a null DER. Table 2 compares the values obtained in both platforms.
Simulation tests were accomplished with and without the proposed model
implemented in the simulator. As illustrated, the inclusion of the proposed model in
the simulator, brings the simulation outcome close to the real results, with differences
below 0.5 ms. The registered differences are justified taking into account the accuracy
error that affects the measured values. ThdrD presented a null value in all tests,
excepting the test marked with an asterisk, where ThdrD was 1.0 ms.
 An important conclusion taken from the real results is that slots should be allocated
to the motes in accordance with the respective packet sizes to be transmitted.
Whenever possible, smaller packets should be sent first, otherwise bandwidth waste
occurs. This is shown in Table 2 when mote a sends 90 B and mote b sends 30 B.

Table 2. Results from the physical and simulation (with and without the model) testbeds.

5.2 CSMA algorithm

Validation tests of the proposed model were also carried out in the physical and
simulation platforms using the IEEE 802.15.4 MAC protocol. Fig. 5 and Fig. 6 show
the simulation results using the proposed model when IEEE 802.15.4 interfering
traffic was not present. It is observed that the DER simulation results approximate
closely to the DER values found in the physical scenario (the corresponding physical
testbed results are also replicated for better comparison). The results of the maximum
and average delays also become close to those obtained in the physical scenario.

Simulations without using the proposed model showed that the average DER
improves over 75% when the MAC payload decreases from 90 B to 30 B. As the
channel occupation decreases, the number of collisions diminishes, and so the DER

improves. However, tests on the physical platform revealed that the average DER
degrades about 20% when the MAC payload decreases from 90 B to 30 B. The same
degradation was observed in the simulations with the proposed model, confirming the
validity of the model. As the packet size decreases, the probability of having multiple
packets arriving without collisions to the BS during TtotRX becomes higher, and
consequently the DER increases too. Fig. 7 and Fig. 8 present the simulation results
when IEEE 802.15.4 interfering traffic was present. The DER results keep close to the
DER values found in the physical scenario. The results of the average and maximum
delays are also identical to those obtained in the physical scenario.

 Fig. 5. DER without interferences. Fig. 6. Delay without interferences.

 Fig. 7. DER with interferences. Fig. 8. Delay with interferences.

 Fig. 9. <DPR> without the model. Fig. 10. <DPR> with the proposed model.

With the CSMA-CA algorithm, a mote may send a duplicate packet if it does not
receive the MAC ACK frame from the BS. The average Duplicate Packets Ratio
(<DPR>) is defined as the percentage of the total number of data packets received in
duplicate by the application layer of the BS comparatively to the number of
application data packets received for the first time from all motes in the WSN.

Fig. 9 shows the <DPR> obtained with and without the presence of IEEE 802.15.4
interfering traffic, not using the proposed parameterized model. Fig. 10 presents de
<DPR> using this model. In this latter case, the simulation results are very identical to
those obtained in the physical testbed.

6 Conclusions

Since motes present typically very limited computing resources, the performance of
the operating system and high-level software running inside the motes impose
significant constrains to the overall performance of a WSN. This paper showed that if
the limitations of the software components are not considered, the simulation tests
may produce results significantly more optimistic than those obtained in real
conditions. Indeed, tests showed that it is difficult to obtain satisfactory simulation
results using only the parameters of the wireless channel, the physical layer, and the
MAC layer provided by the WSN simulator. This important aspect is often neglected
in many works presenting WSN evaluation studies carried out on simulators.

In order to obtain satisfactory simulation results, a parameterized model was
proposed, tuned, and included in the simulator. Simulation tests showed that the
results obtained with the proposed model match satisfactory to those obtained in real
conditions. Therefore, the inclusion of this model in a WSN simulator helps to
improve the confidence on the simulation results. The model is generic enough to be
also included in simulators running network scenarios other than WSNs.

References

1. Kurkowski, S., Camp, T., Colagrosso, M.: Manet Simulation Studies: the Incredibles. ACM
 Mobile Computing and Communications Review, vol. 9, no. 4, pp. 50–61, (2005)
2. Singh, C. P., Vyas, O. P., Tiwari, M. K.: A Survey of Simulation in Sensor Networks. IEEE,

Computational Intelligence For Modelling Control & Automation, Washington, (2008)
3. Kotz, D., Newport, C., Gray, R. S., Liu, J., Yuan, Y., Elliott, C.: Experimental Evaluation of

Wireless Wimulation Assumptions. Intern. Conf. on Modeling, Analysis and Simulation of
Wireless & Mobile Systems, ACM, New York, USA, (2004).

4. Cavin, D., Sasson, Y., Schiper, A.: On the Accuracy of Manet Simulators. Principles of
Mobile Computing, ACM, pp. 38–43, New York, USA, (2002)

5. Banks, J., Carson, J., Nelson, B.: Discrete-Event System Simulation. Prentice Hall, (1996)
6. Castalia: A Simulator for WSN, http://castalia.npc.nicta.com.au. (accessed in March 2011)
7. ZigBit Modules, http://www.atmel.com/dyn/resources/prod_documents/doc8226.pdf (idem)

