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Abstract 

 
The use of virtualization in HPC clusters can 

provide rich software environments, application 
isolation and efficient workload management 
mechanisms, but system-level virtualization introduces 
a software layer on the computing nodes that reduces 
performance and inhibits the direct use of hardware 
devices. We present an unobtrusive user-level platform 
to execute virtual machines inside batch jobs that does 
not handicap the computing cluster’s ability to execute 
the most demanding applications. A per-user platform 
uses a static mode in which the VMs run entirely within 
the resources of a single batch job and a dynamic 
mode in which the VMs navigate at runtime between 
the continuously allocated jobs node time-slots. In the 
dynamic mode fault-tolerant system agents are 
integrated using group communication to control the 
system, to execute user commands and to implement 
user-defined scheduling policies. In our tests compute 
intensive applications suffered negligible performance 
overhead compared to the native configuration, but the 
user-mode network overlay introduced a significant 
penalty on the more taxing networked applications.  
 
1. Introduction 
 

Virtualization has become pervasive in many areas 
of computing, but it is still avoided in HPC systems in 
order to achieve maximum performance and to adapt to 
complex environments that use diverse computing and 
networking elements [1,2].  

Several techniques have been developed to 
minimize the overhead of virtualization in HPC, which 
is also offset by the effective use of the resources 
enabled by virtualization [1,3]. In the computing 
nodes, in particular, it can be used to construct i) rich, 
purpose adapted software configurations, ii) constant 
application environments not dependent on the 
underlying hardware and iii) flexible and efficient 
workload management systems.  

The User Domains (UD) platform we introduce 
executes user provided virtual machines (VMs) in 
batch-oriented cluster computing nodes allocated for 
typical user jobs. It offers an unobtrusive execution 
environment that is only deployed on the nodes when 
required to avoid permanent software that might limit 
the nodes’ ability to execute typical cluster applications 
at peak performance. The system can function in two 
distinct execution modes. In the static mode the job 
collects several time-slots in which VMs are 
immediately ran; the setup is fixed at start-up and VMs 
must execute within the time slots allocated for the job. 
In the dynamic mode more flexible configurations are 
possible with variable time-slot allocation; the jobs 
starts a proxy to represent the user platform in the 
computing nodes. The proxy agents cooperate to build 
an overlay infrastructure that is foundational to 
execute, suspend and move VMs on user request. It 
allows migration to be explored for long running VMs, 
as they can be transported from node to node according 
to the availability of time slots in the batch system. A 
user provided management function can trigger VM 
transfer between time slots to provide a quasi-
continuous mode for service-oriented workloads.  

The platform is part of a broader project to deploy 
replicated VMs on a Grid, so it was largely influenced 
by the need to easily exploit several clusters in distinct 
administrative authorities. To this end only user mode 
execution is used and network overlays control 
network access and maintain safe and integrated user 
environments. The focus was on the ability of running 
coherently a few VMs in existing batch clusters. The 
design does not scale well to a large number of 
machines per user, limited mainly by the network 
overlays. But larger deployments are already served by 
a number of specialized Cloud infrastructures.  

The main issues addressed to run VMs in cluster 
batch jobs are presented in section II, the support for 
dynamic VM configurations in section III and the 
system performance in section IV, followed by the 
related work and the conclusions sections.  



2. Executing VMs in cluster batch jobs 
 

The execution of VMs is more demanding than that 
of typical HPC applications because the system must 
not only execute the intended application but also the 
environment that contains it [7]. In a conventional 
batch-oriented computing cluster this is further 
complicated by our need to run in user mode and to 
support vary dissimilar environments in the VMs, 
which meant that no special OS or device drivers 
should be mandatory in the host or in the VMs.   

A non-invasive virtualization layer becomes 
fundamental to ensure that: i) the cluster nodes can 
simultaneously execute typical cluster applications and 
VMs, ii) no significant changes to the software base 
are required, iii) there is no interference in the host 
system when virtualization is unused and iv) no 
administrative privileges are required. The main issues 
were: i) how to run the VMs in the cluster computing 
nodes and ii) how to network the VMs. Presently the 
cluster file system stores the VMs, but research on a 
fast and compact user-mode storage system is ongoing.  

Fig. 1 presents an overview of the process of 
executing VMs in our system, including the dynamic 
mode presented in the next section. 

 

 
Fig. 1  Flow of VM execution  

 
2.1. User-mode VM Execution 
 

The key component to run VMs is the virtualization 
hypervisor, which provides an artificial environment 
that is multiplexed in the real hardware [5]. While 
system level hypervisors take full control of the host 
system and have a profound impact on the environment 

even when no VMs running, the QEMU [6] process 
level hypervisor was selected to encapsulate VMs in 
normal processes and let the host assume scheduling 
and resource allocation for VMs. QEMU is a full 
featured hypervisor/emulator that addresses the 
fundamental live migration of VMs and the support for 
hardware virtualization (with KVM) to offer a 
competitive level of performance. It also provides 
mechanisms to plug user-level network and disk 
interfaces to the VM safely and on demand.  

The system starts the hypervisor, or an agent, when 
the time slots are requested. The VMs then starts up 
and the user can execute the applications and then 
shuts down the VMs before the job time-slot expires. If 
necessary, the state can persist between job executions 
to allow the execution of applications longer then the 
available time slot by snapshotting the VM. 

 
2.2. User-mode Ethernet network overlay 

 
A private Ethernet VM network overlay based on 

VDE [7] is deployed per user. The interface between 
this private network of VMs and the exterior is the 
responsibility of the Gateway component (see fig. 2) 
which handles: i) routing to and from the network, ii) 
masquerading of the internal addresses, iii) server and 
port publishing to allow inbound connections and iv) 
DHCP and DNS services for the VMs. In order to 
manage the network addressing, the internal DNS and 
DHCP services were adapted to support the dynamic 
inclusion of VMs using a static implementation of an 
addressing policy that rebuilds the missing data in case 
the services fail and are restarted in a new location.  

While the use of NAT to masquerade out-bound 
VM network traffic effectively provides a layer of 
protection that isolates the internal nodes, it also limits 
the users ability to connect to the VM not only from 
nodes external to the cluster (outside the cluster 
gateway), but also from cluster nodes that have no 
direct access to the users network such as the login 
nodes from which the users connect. In order to 
support external connections a publishing mechanism 
was devised to map internal servers and ports on the 
network overlay gateway to which external processes 
connect. The port redirection allows reaching the IP 
ports of the VMs using a tunnel through a common ssh 
connection of a logged-in user session. The publishing 
of the server/port pairs required by each user VM is 
performed by the Gateway, which then tunnels the 
connections to the correct servers/ports. A Networker 
application can be executed on the nodes that require 
access to the VMs, such as the login nodes, to locate 
the Gateway and establish the connections. Unlike the 
internal Ethernet traffic, the migration of VMs is not 
transparent to the published connections. 
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3. Support for dynamic configurations 
 

The dynamic execution mode provides a greater 
degree of control over the execution of the VMs, as 
users take advantage of resources dynamically 
acquired, instead of being limited to the resources of a 
single batch job. As each time slots ends, the user can 
submit additional jobs that will spawn the required user 
agents into the recently allocated computer resources, 
which will then join the run-time to continue the 
execution of the VMs. A monitoring function can act 
as a second level scheduler and resource manager for 
user specific requirements, acting when the user is 
disconnected from the system and is unable to manage 
the assigned time slots and grow or shrink the resource 
pool as desired. If the user does not possess enough 
resources in the system before the time-slot expires, the 
VMs will be suspended until the corresponding 
resources are available. With the ability to migrate 
VMs between the time-slots this allows the system to 
execute VMs for long periods and to adjust to 
changing conditions or respond to resource scarcity.  

The run-time is composed of one or more agents, 
one per node, each capable of instantiating the services 
needed to execute user-provided VMs according to the 
user requests. This execution environment is unique for 
each user and includes a private reliable control 
network. It isolates the users VMs and presents an 
interface system to mediate the connection with the 
other components of the system.  

 
3.1. An autonomous System Agent 

 
The Systems Agents (SA) are proxies of the system 

in nodes assigned to the user, deployed by the batch 
system when a job starts and that execute until the end 
of the request time slot. These multi-threaded 
processes interface with each other over a dedicated 
overlay and connect to i) the local hypervisors to send 
requests to perform VM related operations, ii) the VM 
overlay network daemons and iii) the user interface to 
handle commands and status information.  

The SAs orchestrate the tasks related to the 
management of the environment and to the user VMs, 
including to: i) set up the supporting software in the 
nodes, ii) link to the storage system, iii) spawn and 
monitor the user-mode hypervisor, iv) accept action 
requests for migrating the VMs between nodes and 
suspending a VM to disk, and v) monitor the behavior 
of the system. One SA (mc) is elected to centralize 
some support functions, such as to initiate, terminate 
and repair the VM network overlay, and to execute the 
user-defined function to monitor the system.  

 

3.2. A reliable SA network overlay 
 
Since the components required to support VM/jobs 

run entirely within time-slots allocated in the nodes, as 
each time-slot expires the associated components will 
be terminated and need to be restart elsewhere to keep 
the associated services available. In order to make 
coherent decentralized decisions it is essential to use an 
efficient and resilient method to detect failures of the 
various SAs in the system.  

We chose to use a reliable group communication 
library (GCL) for inter agent communication and to 
manage agent membership [8]. The Virtual Synchrony 
approach greatly simplifies reaching agreements 
between the SAs and the management of dynamic SA 
configurations. Failures are consistently converted to 
group membership changes seen by all working nodes 
and global decisions can be made using local messages 
that circulate over the secure overlay. A consistent 
view of the system also eases the replication of VMs in 
less contained execution environments. 

Even though a GCL has limited performance and 
scalability, the traffic between SAs is not exceedingly 
sensitive to latency and the number of nodes per user is 
expected to be well within typical GCL installations.  

 

 
Fig. 2  System architecture 

 
In fig. 2 the architecture of UD is presented with an 

example with three nodes running three jobs occupying 
7 processing slots, with one job running 3 VMs. It 
includes the interface application udrun – to launch 
the system from the resource manager – and console 
udcmd – used to send commands to a running system.  
 
 

COMPUTE NODE 1

FRONTEND/LOGIN NODE

COMPUTE NODE 2

gateway

networker udcmd

COMPUTE NODE 3

external 
networks

LAN

SA
mc

VM/job1

vm
A

VM/job1

vm
B

SA

job2

app
A

VM/job1

vm
C

job2

app
A

job2

app
A

job3

app
Budrun

VM net SA net VM net SA net



4. Performance evaluation 
 

The performance of the system was evaluated by 
benchmarks running on native hardware and on VMs 
located on the same host and on different hosts. The 
NAS Parallel Benchmarks (NPB) Multi-Zone edition 
[9] was used to simulate the calculations and data 
movement of computational fluid dynamics 
applications typical of HPC systems. The network 
bandwidth and latency were measured to evaluate the 
performance of the Ethernet network overlay. 

The tests ran in two compute nodes with two hexa-
core Intel Xeon X5650 processors per node, executing 
Linux OS kernel 2.6.18-194 and the QEMU/KVM 
0.14.0 hypervisor. The node interconnect was Gigabit 
Ethernet and for VMs we tested both the user-mode 
VDE2-2.3.1 network overlay used in UD and the 
higher performance system mode TAP overlay. The 16 
VMs were distributed evenly by socket and pinned to 
the assigned core, reserving the remaining cores for 
communication tasks. The median of 8 runs was used. 

 

 

 
Fig. 3 Efficiency (top) and throughput (bottom) of NPB-MZ 
 

4.1. NAS Parallel Benchmarks Multi-Zone 
 
Figure 3 presents the NPB-MZ test results from 1 to 

16 processors using two different views, representing 
the percentage of native performance VMs achieved 
(efficiency) and the total throughput. VMs achieved 

above 97% of the native hardware performance in all 
serial tests, close to the results in [4,5] for system level 
virtualization. It also shows a significant penalty for 
using the user-mode VDE Ethernet network instead of 
system-mode TAP. For the BT and SP tests that 
penalty raises steadily from 2% and 4% with 4 
processors, to around 20% for 16 processors. As the 
processors increases the TAP configuration BT loses 
12%, while LU loses up to 26%. The throughput 
always increased with the number of processors used. 

 

 

Fig. 4 Native mode, TAP and VDE network bandwidth and latency 
 

4.2. Network bandwidth and latency 
 
NetPIPE measured the network bandwidth and 

latency between two processes or VMs in the different 
locations. The inter-socket VDE test is split on whether 
the VDE switch is bound to the destination VM socket 
(VDE) or to the source VM processor socket (VDE*).  

The same-socket inter VM bandwidth is almost 
1.4Gbps, but it is nevertheless one order of magnitude 
lower than the bandwidth between two processes. The 
inter-socket bandwidth for VDE degrades to 825Mbps 
when the switch is not on the socket of the destination 
VM. Between nodes using GbE the TAP VMs reached 
almost 800Mbps, 15% away from the native bandwidth 
of 944Mbps, while only 50% of the native bandwidth 
is attained by VDE. VDE and TAP latencies between 
VMs in the same node are around 90us, slightly lower 
when VMs are on the same socket (around 80us), but 
the penalty increases between different nodes, with 
TAP doubling and VDE almost tripling native latency.  

As expected, between VMs the network latency was 
higher and the bandwidth was lower than between 
processes. The network card virtualization makes the 
difference to native unsurprising, but we believe that 
two limitations in VDE contributed particularly to its 
increased overhead: i) the lack of parallelism in the 
VDE switch that hinders the performance when nodes 
communicate simultaneously and ii) the delay induced 
by inefficient VDE plugs and switch interconnections. 



5. Related work 
 

Xen, KVM and QEMU are used in [10] to deploy 
VMs in a cluster environment benefiting from live 
migration technology and load balancing with two-
different scheduling levels: between VMs in the same 
physical node and between the physical nodes in the 
cluster. In [11] VMs are used as a resource 
provisioning mechanism for infrastructure-as-a-service 
(IaaS) clouds. In [12] PBS is used to launch on demand 
pre-defined VMs images in which user jobs can run. 
VMs also lead to the extension of scheduling [13] to 
include the automatic deployment of VMs before the 
application launching time and the decomposition of 
job submission in two phases: i) the deployment of the 
VMs and ii) the effective application execution using 
the standard MOAB capabilities. To provide support 
for specific user workloads in many virtualized 
environments, in [14] virtualization is used for 
transparent, on demand launching of VMs for running 
new jobs to form a MOSIX multi-cluster environment. 
In [15] a distributed peer-to-peer self-organizing and 
resilient environment is built by software running 
inside a VM, which can run in several hypervisors. 
 
6. Conclusions 
 

In this paper we presented a platform to provision, 
manage and execute VMs entirely in user mode on 
batch oriented clusters using: i) a static mode in which 
the VMs run using the resources of a single batch job 
and ii) a dynamic mode in which the VMs can navigate 
at runtime between nodes and time-slots allocated to 
several jobs. Without administrator intervention it 
explores features of virtualization, including OS 
customization, performance isolation, check pointing 
and migration and enables typical cluster jobs to run 
without incurring any performance degradation in the 
same nodes. The dynamic mode uses reliable group 
communication to integrate the fault-tolerant system 
agents, to allow more complex scenarios to be built 
using either direct user commands or automatic 
scheduling decisions made by a user functions. The 
dynamic mode is the foundation for advanced 
scheduling policies that support continuous service 
oriented workloads and that improve system-wide 
cluster resource utilization. 

The experiments showed that serial applications run 
in VMs close to the native performance. The overhead 
in parallel applications is dependent on their 
communication pattern, but notwithstanding the 
verified network bandwidth and latency degradation 
the NPB-MZ benchmarks achieved 70% to 80% of the 
native speed up to 12 processors. 

Finally, the platform presented embraces the 
challenges for an HPC virtualization solution [1]: it 
deploys the hypervisor as needed to reduce its 
footprint; it runs user-supplied VMs to support many 
virtual systems environments; a GCL makes SAs 
resilient and highly available; and a user-defined 
scheduler enables advanced management solutions.  
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