
Running User-provided Virtual Machines in Batch-oriented
Computing Clusters

Vítor Oliveira, António Pina, André Rocha

Departamento de Informática, Universidade do Minho
Campus de Gualtar, Braga, Portugal

{vspo,amp,arocha}@di.uminho.pt

Abstract

The use of virtualization in HPC clusters can

provide rich software environments, application
isolation and efficient workload management
mechanisms, but system-level virtualization introduces
a software layer on the computing nodes that reduces
performance and inhibits the direct use of hardware
devices. We present an unobtrusive user-level platform
to execute virtual machines inside batch jobs that does
not handicap the computing cluster’s ability to execute
the most demanding applications. A per-user platform
uses a static mode in which the VMs run entirely within
the resources of a single batch job and a dynamic
mode in which the VMs navigate at runtime between
the continuously allocated jobs node time-slots. In the
dynamic mode fault-tolerant system agents are
integrated using group communication to control the
system, to execute user commands and to implement
user-defined scheduling policies. In our tests compute
intensive applications suffered negligible performance
overhead compared to the native configuration, but the
user-mode network overlay introduced a significant
penalty on the more taxing networked applications.

1. Introduction

Virtualization has become pervasive in many areas
of computing, but it is still avoided in HPC systems in
order to achieve maximum performance and to adapt to
complex environments that use diverse computing and
networking elements [1,2].

Several techniques have been developed to
minimize the overhead of virtualization in HPC, which
is also offset by the effective use of the resources
enabled by virtualization [1,3]. In the computing
nodes, in particular, it can be used to construct i) rich,
purpose adapted software configurations, ii) constant
application environments not dependent on the
underlying hardware and iii) flexible and efficient
workload management systems.

The User Domains (UD) platform we introduce
executes user provided virtual machines (VMs) in
batch-oriented cluster computing nodes allocated for
typical user jobs. It offers an unobtrusive execution
environment that is only deployed on the nodes when
required to avoid permanent software that might limit
the nodes’ ability to execute typical cluster applications
at peak performance. The system can function in two
distinct execution modes. In the static mode the job
collects several time-slots in which VMs are
immediately ran; the setup is fixed at start-up and VMs
must execute within the time slots allocated for the job.
In the dynamic mode more flexible configurations are
possible with variable time-slot allocation; the jobs
starts a proxy to represent the user platform in the
computing nodes. The proxy agents cooperate to build
an overlay infrastructure that is foundational to
execute, suspend and move VMs on user request. It
allows migration to be explored for long running VMs,
as they can be transported from node to node according
to the availability of time slots in the batch system. A
user provided management function can trigger VM
transfer between time slots to provide a quasi-
continuous mode for service-oriented workloads.

The platform is part of a broader project to deploy
replicated VMs on a Grid, so it was largely influenced
by the need to easily exploit several clusters in distinct
administrative authorities. To this end only user mode
execution is used and network overlays control
network access and maintain safe and integrated user
environments. The focus was on the ability of running
coherently a few VMs in existing batch clusters. The
design does not scale well to a large number of
machines per user, limited mainly by the network
overlays. But larger deployments are already served by
a number of specialized Cloud infrastructures.

The main issues addressed to run VMs in cluster
batch jobs are presented in section II, the support for
dynamic VM configurations in section III and the
system performance in section IV, followed by the
related work and the conclusions sections.

2. Executing VMs in cluster batch jobs

The execution of VMs is more demanding than that
of typical HPC applications because the system must
not only execute the intended application but also the
environment that contains it [7]. In a conventional
batch-oriented computing cluster this is further
complicated by our need to run in user mode and to
support vary dissimilar environments in the VMs,
which meant that no special OS or device drivers
should be mandatory in the host or in the VMs.

A non-invasive virtualization layer becomes
fundamental to ensure that: i) the cluster nodes can
simultaneously execute typical cluster applications and
VMs, ii) no significant changes to the software base
are required, iii) there is no interference in the host
system when virtualization is unused and iv) no
administrative privileges are required. The main issues
were: i) how to run the VMs in the cluster computing
nodes and ii) how to network the VMs. Presently the
cluster file system stores the VMs, but research on a
fast and compact user-mode storage system is ongoing.

Fig. 1 presents an overview of the process of
executing VMs in our system, including the dynamic
mode presented in the next section.

Fig. 1 Flow of VM execution

2.1. User-mode VM Execution

The key component to run VMs is the virtualization
hypervisor, which provides an artificial environment
that is multiplexed in the real hardware [5]. While
system level hypervisors take full control of the host
system and have a profound impact on the environment

even when no VMs running, the QEMU [6] process
level hypervisor was selected to encapsulate VMs in
normal processes and let the host assume scheduling
and resource allocation for VMs. QEMU is a full
featured hypervisor/emulator that addresses the
fundamental live migration of VMs and the support for
hardware virtualization (with KVM) to offer a
competitive level of performance. It also provides
mechanisms to plug user-level network and disk
interfaces to the VM safely and on demand.

The system starts the hypervisor, or an agent, when
the time slots are requested. The VMs then starts up
and the user can execute the applications and then
shuts down the VMs before the job time-slot expires. If
necessary, the state can persist between job executions
to allow the execution of applications longer then the
available time slot by snapshotting the VM.

2.2. User-mode Ethernet network overlay

A private Ethernet VM network overlay based on

VDE [7] is deployed per user. The interface between
this private network of VMs and the exterior is the
responsibility of the Gateway component (see fig. 2)
which handles: i) routing to and from the network, ii)
masquerading of the internal addresses, iii) server and
port publishing to allow inbound connections and iv)
DHCP and DNS services for the VMs. In order to
manage the network addressing, the internal DNS and
DHCP services were adapted to support the dynamic
inclusion of VMs using a static implementation of an
addressing policy that rebuilds the missing data in case
the services fail and are restarted in a new location.

While the use of NAT to masquerade out-bound
VM network traffic effectively provides a layer of
protection that isolates the internal nodes, it also limits
the users ability to connect to the VM not only from
nodes external to the cluster (outside the cluster
gateway), but also from cluster nodes that have no
direct access to the users network such as the login
nodes from which the users connect. In order to
support external connections a publishing mechanism
was devised to map internal servers and ports on the
network overlay gateway to which external processes
connect. The port redirection allows reaching the IP
ports of the VMs using a tunnel through a common ssh
connection of a logged-in user session. The publishing
of the server/port pairs required by each user VM is
performed by the Gateway, which then tunnels the
connections to the correct servers/ports. A Networker
application can be executed on the nodes that require
access to the VMs, such as the login nodes, to locate
the Gateway and establish the connections. Unlike the
internal Ethernet traffic, the migration of VMs is not
transparent to the published connections.

use
dynamic
model?

spawn SAs in
each node

yes

save state of
running VMs

shutdown VM
network overlay

no

signal SAs to
shutdown

near the end
of time-slot?

no

yes

prepare VM
network overlay

spawn hypervisors
(w/ saved state)

near the end
of time-slot?

no

yes

start
VM/job

end
VM/job

VM1VMs

SAs
(cycle)SAs

request initial
VMs execuion

3. Support for dynamic configurations

The dynamic execution mode provides a greater
degree of control over the execution of the VMs, as
users take advantage of resources dynamically
acquired, instead of being limited to the resources of a
single batch job. As each time slots ends, the user can
submit additional jobs that will spawn the required user
agents into the recently allocated computer resources,
which will then join the run-time to continue the
execution of the VMs. A monitoring function can act
as a second level scheduler and resource manager for
user specific requirements, acting when the user is
disconnected from the system and is unable to manage
the assigned time slots and grow or shrink the resource
pool as desired. If the user does not possess enough
resources in the system before the time-slot expires, the
VMs will be suspended until the corresponding
resources are available. With the ability to migrate
VMs between the time-slots this allows the system to
execute VMs for long periods and to adjust to
changing conditions or respond to resource scarcity.

The run-time is composed of one or more agents,
one per node, each capable of instantiating the services
needed to execute user-provided VMs according to the
user requests. This execution environment is unique for
each user and includes a private reliable control
network. It isolates the users VMs and presents an
interface system to mediate the connection with the
other components of the system.

3.1. An autonomous System Agent

The Systems Agents (SA) are proxies of the system

in nodes assigned to the user, deployed by the batch
system when a job starts and that execute until the end
of the request time slot. These multi-threaded
processes interface with each other over a dedicated
overlay and connect to i) the local hypervisors to send
requests to perform VM related operations, ii) the VM
overlay network daemons and iii) the user interface to
handle commands and status information.

The SAs orchestrate the tasks related to the
management of the environment and to the user VMs,
including to: i) set up the supporting software in the
nodes, ii) link to the storage system, iii) spawn and
monitor the user-mode hypervisor, iv) accept action
requests for migrating the VMs between nodes and
suspending a VM to disk, and v) monitor the behavior
of the system. One SA (mc) is elected to centralize
some support functions, such as to initiate, terminate
and repair the VM network overlay, and to execute the
user-defined function to monitor the system.

3.2. A reliable SA network overlay

Since the components required to support VM/jobs

run entirely within time-slots allocated in the nodes, as
each time-slot expires the associated components will
be terminated and need to be restart elsewhere to keep
the associated services available. In order to make
coherent decentralized decisions it is essential to use an
efficient and resilient method to detect failures of the
various SAs in the system.

We chose to use a reliable group communication
library (GCL) for inter agent communication and to
manage agent membership [8]. The Virtual Synchrony
approach greatly simplifies reaching agreements
between the SAs and the management of dynamic SA
configurations. Failures are consistently converted to
group membership changes seen by all working nodes
and global decisions can be made using local messages
that circulate over the secure overlay. A consistent
view of the system also eases the replication of VMs in
less contained execution environments.

Even though a GCL has limited performance and
scalability, the traffic between SAs is not exceedingly
sensitive to latency and the number of nodes per user is
expected to be well within typical GCL installations.

Fig. 2 System architecture

In fig. 2 the architecture of UD is presented with an

example with three nodes running three jobs occupying
7 processing slots, with one job running 3 VMs. It
includes the interface application udrun – to launch
the system from the resource manager – and console
udcmd – used to send commands to a running system.

COMPUTE NODE 1

FRONTEND/LOGIN NODE

COMPUTE NODE 2

gateway

networker udcmd

COMPUTE NODE 3

external
networks

LAN

SA
mc

VM/job1

vm
A

VM/job1

vm
B

SA

job2

app
A

VM/job1

vm
C

job2

app
A

job2

app
A

job3

app
Budrun

VM net SA net VM net SA net

4. Performance evaluation

The performance of the system was evaluated by
benchmarks running on native hardware and on VMs
located on the same host and on different hosts. The
NAS Parallel Benchmarks (NPB) Multi-Zone edition
[9] was used to simulate the calculations and data
movement of computational fluid dynamics
applications typical of HPC systems. The network
bandwidth and latency were measured to evaluate the
performance of the Ethernet network overlay.

The tests ran in two compute nodes with two hexa-
core Intel Xeon X5650 processors per node, executing
Linux OS kernel 2.6.18-194 and the QEMU/KVM
0.14.0 hypervisor. The node interconnect was Gigabit
Ethernet and for VMs we tested both the user-mode
VDE2-2.3.1 network overlay used in UD and the
higher performance system mode TAP overlay. The 16
VMs were distributed evenly by socket and pinned to
the assigned core, reserving the remaining cores for
communication tasks. The median of 8 runs was used.

Fig. 3 Efficiency (top) and throughput (bottom) of NPB-MZ

4.1. NAS Parallel Benchmarks Multi-Zone

Figure 3 presents the NPB-MZ test results from 1 to

16 processors using two different views, representing
the percentage of native performance VMs achieved
(efficiency) and the total throughput. VMs achieved

above 97% of the native hardware performance in all
serial tests, close to the results in [4,5] for system level
virtualization. It also shows a significant penalty for
using the user-mode VDE Ethernet network instead of
system-mode TAP. For the BT and SP tests that
penalty raises steadily from 2% and 4% with 4
processors, to around 20% for 16 processors. As the
processors increases the TAP configuration BT loses
12%, while LU loses up to 26%. The throughput
always increased with the number of processors used.

Fig. 4 Native mode, TAP and VDE network bandwidth and latency

4.2. Network bandwidth and latency

NetPIPE measured the network bandwidth and

latency between two processes or VMs in the different
locations. The inter-socket VDE test is split on whether
the VDE switch is bound to the destination VM socket
(VDE) or to the source VM processor socket (VDE*).

The same-socket inter VM bandwidth is almost
1.4Gbps, but it is nevertheless one order of magnitude
lower than the bandwidth between two processes. The
inter-socket bandwidth for VDE degrades to 825Mbps
when the switch is not on the socket of the destination
VM. Between nodes using GbE the TAP VMs reached
almost 800Mbps, 15% away from the native bandwidth
of 944Mbps, while only 50% of the native bandwidth
is attained by VDE. VDE and TAP latencies between
VMs in the same node are around 90us, slightly lower
when VMs are on the same socket (around 80us), but
the penalty increases between different nodes, with
TAP doubling and VDE almost tripling native latency.

As expected, between VMs the network latency was
higher and the bandwidth was lower than between
processes. The network card virtualization makes the
difference to native unsurprising, but we believe that
two limitations in VDE contributed particularly to its
increased overhead: i) the lack of parallelism in the
VDE switch that hinders the performance when nodes
communicate simultaneously and ii) the delay induced
by inefficient VDE plugs and switch interconnections.

5. Related work

Xen, KVM and QEMU are used in [10] to deploy
VMs in a cluster environment benefiting from live
migration technology and load balancing with two-
different scheduling levels: between VMs in the same
physical node and between the physical nodes in the
cluster. In [11] VMs are used as a resource
provisioning mechanism for infrastructure-as-a-service
(IaaS) clouds. In [12] PBS is used to launch on demand
pre-defined VMs images in which user jobs can run.
VMs also lead to the extension of scheduling [13] to
include the automatic deployment of VMs before the
application launching time and the decomposition of
job submission in two phases: i) the deployment of the
VMs and ii) the effective application execution using
the standard MOAB capabilities. To provide support
for specific user workloads in many virtualized
environments, in [14] virtualization is used for
transparent, on demand launching of VMs for running
new jobs to form a MOSIX multi-cluster environment.
In [15] a distributed peer-to-peer self-organizing and
resilient environment is built by software running
inside a VM, which can run in several hypervisors.

6. Conclusions

In this paper we presented a platform to provision,
manage and execute VMs entirely in user mode on
batch oriented clusters using: i) a static mode in which
the VMs run using the resources of a single batch job
and ii) a dynamic mode in which the VMs can navigate
at runtime between nodes and time-slots allocated to
several jobs. Without administrator intervention it
explores features of virtualization, including OS
customization, performance isolation, check pointing
and migration and enables typical cluster jobs to run
without incurring any performance degradation in the
same nodes. The dynamic mode uses reliable group
communication to integrate the fault-tolerant system
agents, to allow more complex scenarios to be built
using either direct user commands or automatic
scheduling decisions made by a user functions. The
dynamic mode is the foundation for advanced
scheduling policies that support continuous service
oriented workloads and that improve system-wide
cluster resource utilization.

The experiments showed that serial applications run
in VMs close to the native performance. The overhead
in parallel applications is dependent on their
communication pattern, but notwithstanding the
verified network bandwidth and latency degradation
the NPB-MZ benchmarks achieved 70% to 80% of the
native speed up to 12 processors.

Finally, the platform presented embraces the
challenges for an HPC virtualization solution [1]: it
deploys the hypervisor as needed to reduce its
footprint; it runs user-supplied VMs to support many
virtual systems environments; a GCL makes SAs
resilient and highly available; and a user-defined
scheduler enables advanced management solutions.

7. References

[1] Vallee, G. et. al., "System-Level Virtualization for High
Performance Computing", Proc. 16th Euromicro Conf. on
Parallel, Distributed and Network-Based Processing, 2008.
[2] R. Iyer, “DatacenteronChip Architectures Terascale
Opportunities and Challenges,” Intel Technology Journal,
vol. 11, Aug. 2007.
[3] W. Huang, J. Liu, B. Abali, and D.K. Panda, “A case for
high performance computing with virtual machines,” Proc. of
the 20th annual Int. Conf. on Supercomputing, 2006.
[4] M. A. Murphy and S. Goasguen. “Virtual Organization
Clusters: Self-Provisioned Clouds on the Grid,” submitted to
Elsevier Journal of Future Generation Computer Systems
special issue on Cloud Computing, 2010.
[5] K. Adams and O. Agesen, “A comparison of software and
hardware techniques for x86 virtualization,” ACM
SIGARCH Computer Architecture News, vol. 34, Oct. 2006.
[6] Fabrice Bellard. “QEMU, a Fast and Portable Dynamic
Translator”, In Proceedings of the 2005 USENIX Annual
Technical Conference, April 2005.
[7] M. Goldweber and R. Davoli., “VDE: an emulation
environment for supporting computer networking courses”.
In Proc. of the 13th annual Conf. on Innovation and
Technology in Computer Science Education, 2008.
[8] Amir, Y. Stanton, J. “The spread wide area group
communication system”. TR CNDS-98-4, The Johns
Hopkins University, 1998.
[9] Rob F. Van der Wijngaart and Haoqiang Jin. “Nas
parallel benchmarks, multi-zone versions”, Technical Report
NAS-03-010, July 2003.
[10] Z. Wang, C. Weng, “A resource management
mechanism and its impl. for virtual machines”, Proc. of 2nd
Int. Workshop on Systems and Virtualization Management:
Standards and New Technologies, Germany, 2008.
[11] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster,
“Resource Leasing and the Art of Suspending Virtual
Machines”, High Performance Computing and
Communications - HPCC, pp.59-68, 2009.
[12] R Espadamala, M Rodriguez, C Neissner, “Virtual
machines over PBS”, HEPiX Workshop, Spring 2010.
[13] W. Emeneker, D. Jackson, J. Butikofer, and D.
Stanzione, "Dynamic Virtual Clustering with Xen and
Moab", in Proc. ISPA Workshops, 2006, pp.440-451.
[14] Maoz T., Barak A. and Amar L., Combining Virtual
Machine Migration with Process Migration for HPC on
Multi-Clusters and Grids, IEEE Cluster, Tsukuba, 2008.
[15] A Ganguly, A Agrawal, PO Boykin, and RJ Figueiredo,
“WOW: Self-organizing Wide Area Overlay Networks of
Virtual Workstations,” Journal of Grid Computing, vol. 5,
Apr. 2007, pp. 151-172.

