
 1 

Monte Carlo homogenized limit analysis model for randomly 

assembled blocks in-plane loaded 

Gabriele Milani(1), Paulo B. Lourenço(2) 
(1) Corresponding Author. Dipartimento di Ingegneria Strutturale (DIS), Politecnico di Milano, 

Piazza Leonardo da Vinci 32, 20133 Milano, Italy. E-mail: milani@stru.polimi.it. 
(2) ISISE, Department of Civil Engineering, School of Engineering, University of Minho, Azurém, 

4800-058 Guimarães, Portugal. E-mail: pbl@civil.uminho.pt. 

Abstract 

A simple rigid-plastic homogenization model for the limit analysis of masonry walls in-plane 
loaded and constituted by the random assemblage of blocks with variable dimensions is proposed. 
In the model, blocks constituting a masonry wall are supposed infinitely resistant with a Gaussian 
distribution of height and length, whereas joints are reduced to interfaces with frictional behavior 
and limited tensile and compressive strength. Block by block, a representative element of volume 
(REV) is considered, constituted by a central block interconnected with its neighbors by means of 
rigid-plastic interfaces. The model is characterized by a few material parameters, is numerically 
inexpensive and very stable. A sub-class of elementary deformation modes is a-priori chosen in the 
REV, mimicking typical failures due to joints cracking and crushing. Masonry strength domains are 
obtained equating the power dissipated in the heterogeneous model with the power dissipated by a 
fictitious homogeneous macroscopic plate. Due to the inexpensiveness of the approach proposed, 
Monte Carlo simulations can be repeated on the REV in order to have a stochastic estimation of in-
plane masonry strength at different orientations of the bed joints with respect to external loads 
accounting for the geometrical statistical variability of blocks dimensions. Two cases are discussed, 
the former consisting on full stochastic REV assemblages (obtained considering a random 
variability of both blocks height an length) and the latter assuming the presence of a horizontal 
alignment along bed joints, i.e. allowing blocks height variability only row by row. The case of 
deterministic blocks height (quasi-periodic texture) can be obtained as a subclass of this latter case. 
Masonry homogenized failure surfaces are finally implemented in an upper bound FE limit analysis 
code for the analysis at collapse of entire walls in-plane loaded. 
Two cases of engineering practice, consisting on the prediction of the failure load of a deep beam 
and a shear wall arranged with random texture are critically discussed. In particular, 
homogenization results are compared with those provided by a heterogeneous approach. Good 
agreement is found both on the failure mechanism and on the distribution of the collapse load. 

Keywords: Masonry, in-plane loads, homogenization, random pattern, Monte Carlo simulations. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

1 Introduction 

Masonry walls constituted by random assemblages of blocks and stones of variable dimensions, 

Figure 1, are very common in existing historical buildings. Therefore, the prediction of their 

ultimate strength under in-plane actions is a key issue for practitioners involved in the safety 

assessment of existing masonry structures.  

At present, a key problem in the development of accurate stress analyses for random assemblages of 

blocks is the definition and the use of suitable material constitutive laws for masonry.  

Micro-modeling, e.g. [1]-[4], considers units and mortar joints separately, characterizing them 

through different constitutive laws. Blocks and mortar mechanical properties adopted are usually 

obtained through experimental tests conducted on the single materials (compressive test, tension 

test, bending test, etc.). This approach is, of course, the most indicated for a detailed description of 

irregular masonry, but leads to structural analyses characterized by great computational effort, 

requiring several finite elements for a separate discretization of joints and blocks, even for small 

specimens. For the aforementioned limitations, micro-modeling can be successfully adopted only 

for walls of small dimensions (e.g. Lourenço and Rots [1], Lotfi and Shing [4]). 

Macro-models, e.g. [5]-[6], substitute the heterogeneous material with a fictitious anisotropic 

homogeneous one, thus needing much less time when used in complex non linear analyses, but 

requiring a calibration of the model with expensive experimental data fittings. 

Homogenization [7]-[11] appears a good compromise between micro and macro-modeling, as it 

allows to derive in a rational way stress-strain relationships for masonry, accounting in a suitable 

manner for the mechanical properties of each constituent material only at a cell level. Moreover, it 

may lead to effective models, with reduced computational effort for real scale simulations [7]-[11]. 

Stochastic homogenization concepts have been recently applied to random blocks assemblages both 

in the elastic and inelastic range [12]-[15], using suitable representative elements of volume (REVs) 

to describe the overall behavior of the wall under consideration. 

In all cases where the periodicity of the structure is strictly not respected, it can be demonstrated 

[14]-[16] that a boundary value problem where periodic conditions are suitably relaxed has to be 

solved on the unit cell, in order to have a numerical estimation of the macroscopic inelastic 

properties to be used at a structural level. It is very straightforward to deduce that the geometrical 

variability of the REV, due to the variable geometry of the blocks, requires a statistical treatment of 

resultant (output) average masonry mechanical properties obtained through homogenization, since 

masonry strength strongly depends on the effective geometry of the REV considered. Therefore, a 
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full set of Monte Carlo simulations are needed to have an estimation of mechanical properties 

distributions in case of both in- and out-of-plane loads. 

In recent papers, e.g. [14]-[16], the effect of the stochastic variability of the blocks length on the in-

and out-of-plane elastic response of a periodic masonry wall has been studied. In particular, starting 

from a periodic running bond pattern consisting of rigid blocks with elastic interfaces, a random 

perturbation on the horizontal positions of the vertical interfaces between the blocks was 

introduced. Here, a similar compatible model constituted by a REV with a central block 

interconnected with neighboring blocks is studied, but (a) generalizing the problems in the case of 

stochastic variability of both height and length of the blocks and (b) assuming a rigid-plastic 

behavior for the constituent materials in order to have a prediction of masonry macroscopic 

behavior at failure.  

As well known, limit analysis has been widely used for the study of masonry structures, see for 

instance [17]-[21], because it requires only a reduced number of material parameters, providing 

limit multipliers of loads, failure mechanisms and, at least on critical sections, the stress distribution 

at collapse. In this framework, with the aim of reproducing the behavior of masonry panels 

constituted by the random assemblage of blocks with variable dimensions, a mesoscopic compatible 

identification model is proposed. 

Following what was presented in the case of regular assemblages of blocks in [22] and [23], joints 

are reduced to interfaces with a cohesive associated frictional behavior with limited tensile and 

compressive strength and blocks are supposed infinitely resistant. It is worth underlining here that 

frictional phenomena may require the adoption of non-associated flow rules for the constituent 

materials (see for instance [18], [19] and [24]). On the other hand, it has been demonstrated that 

even simple associated limit analyses (de Buhan and de Felice [17]) are able to provide reliable 

results, especially when failure mechanisms are mainly due to joints tensile cracking (e.g. [20]).  

The present study concerns a random assemblage of blocks with variable height and length 

following a predetermined random distribution. In this way, the horizontal position of vertical joints 

as well as the vertical position of horizontal joints is statistically variable.  

Since the case under consideration is in practice an assemblage of regular blocks with variable 

dimensions, it can be argued that the masonry skeleton may be represented by a 3D discrete system 

of blocks interacting through interfaces (the mortar joints). Modeling the REV as a molecular 

skeleton allows to strongly reduce degrees of freedom and therefore permits to perform full Monte 

Carlo simulations in case of geometrical stochastic variability of the geometry. 

Within this simple model, a full description of the masonry material can be given considering a 

representative volume constituted by a generic block interconnected with its neighbors. A sub-class 



 4 

of possible elementary deformation modes (mimicking horizontal and vertical stretching, a pure 

shear deformation, pure bending and torsion along material axes) acting in the unit cell is a priori 

chosen in order to describe joints cracking under normal and tangential actions. Then, power 

dissipated in the discrete model is equated to that dissipated in a continuum macroscopic 2D 

equivalent plate. Such identification is based on a simple correspondence between motions in the 

3D discrete model and the continuum. Since internal dissipation can take place only at the interface 

between blocks, a simple constrained minimization problem in a few variables is obtained. 

Macroscopic masonry failure surfaces are numerically evaluated as a function of the macroscopic 

in-plane actions (shear and normal actions). Here it is worth noting that, despite the fact that in this 

paper only in-plane actions are considered, the model is sufficiently general to analyze also random 

assemblages of blocks subjected to out-of-plane loads. 

Due to the inexpensiveness of the approach proposed, large Monte Carlo simulations are repeated at 

a cell level, generating automatically a number of different REVs, sampling each time at random 

height and length of the blocks constituting the REV. 

At a fixed geometry (i.e. within a single Monte Carlo sampled REV), in-plane masonry strength at 

different orientations of the bed joints with respect to external loads are numerically evaluated, 

solving for each orientation of the joint, several different linear programming problems, each 

optimization problem corresponding to a fixed direction of the load dependent from the load 

multiplier in the homogenized stress-space.  

Two cases are discussed, the former consisting on REV assemblages without a preferential 

horizontal alignment, the latter assuming continuous horizontal joints. Afterwards, masonry 

homogenized failure surfaces are implemented in an upper bound FE limit analysis code for the 

analysis at collapse of in-plane loaded structural elements. 

Two examples of engineering interest, consisting respectively on the prediction of the failure load 

of a deep beam and a shear wall arranged with random texture are critically discussed and compared 

with expensive heterogeneous approaches. The deep beam is selected as bending strength is 

significantly depending on the arrangement of the internal masonry structure, in the usual case of 

steeped cracks, and the shear wall is a typical validation structural element in the case of masonry 

structures. Good agreement is found at structural level between the models, meaning that the 

homogenization model proposed may be a valuable tool for limit analysis of masonry structures 

constituted by random assemblages of blocks. 
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2 Masonry homogenized failure surfaces: a model with 

infinitely resistant blocks and plastic mortar interfaces 

In this section, a procedure to obtain a general plate model (i.e. suitable both for in- and out-of-

plane loaded panels) and based on a correspondence between equivalent class of motions in a 3D 

discrete blocks system and a 2D Cauchy continuum is presented. The two models are described 

separately and then an equivalence procedure between the kinematic descriptors in the two systems 

is performed, in order to study masonry as a 2D homogeneous continuum. First of all, the 3D model 

constituted by rigid infinitely resistant blocks interconnected by plastic mortar interfaces is 

introduced. The kinematic variables involved in the optimization problem used to find homogenized 

failure surfaces are only blocks velocities and rotation rates and plastic multipliers of the interfaces. 

While the procedure is general and can be applied also for out-of-plane load, here only the in-plane 

behavior is investigated.  

After a brief recall of the basic features of the 3D discrete model, a transition between a discrete 3D 

block model and a 2D continuum model is presented. This is based on a simplified homogenization 

approach, where the discrete representative element of volume is connected to the 2D model by 

means of the assumption that the power dissipated in both models is identical. It is worth noting that 

the formulation of the model does not impose a field local solution as, for instance, occurs using 

standard homogenization procedures, but imposes only a kinematic correspondence between 

motions. This assumption implies that the obtained solution is kinematically admissible and, hence, 

an upper bound of the actual strength domains may be obtained with the model proposed. 

2.1 An automatic procedure to obtain a REV constituted by the random 

assemblage of blocks 

In order to repeat large scale Monte Carlo simulations on different REVs, an automatic routine of 

generation of REVs with blocks of different dimensions is needed.  

In the present paper, we consider two different block assemblages, as schematically depicted in 

Figure 1 and Figure 2. The first distribution, here denoted as Case I, concerns the random 

assemblage of blocks with variable height and length. The second case (Case II) is again a 

distribution with variable length and height of blocks, but with a horizontal alignment of blocks 

along the bed joint. An important sub-class of problems is obtained from Case II when the height is 

a deterministic variable (quasi periodic assemblage). 

Let BC  be the position of the centroid of the generic block ijB  in the 3D Euclidean space. Let 1e -

2e - 3e  indicate the global frame of reference with 1e  indicating horizontal direction, 2e  indicating 
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vertical direction and 3e  indicating the direction normal to the wall, Figure 3 and Figure 4. i  and j  

indices assume integer values indicating the position of the blocks with respect to the central blocks. 

For instance, i =1 and j =1 indicate the first block positioned on the right with respect to the central 

block. Subsequent blocks are disposed with one interface common to the central block in 

counterclockwise order. 

More in detail, the random REV is built block by block starting from the central block by 

introducing a random perturbation on horizontal and vertical position of blocks centroids 

neighboring central block and assuming that blocks length and height are stochastic variables with 

assigned distribution, i.e.: 
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Where L
~

 and H
~

 are sampled values of blocks length and height from normal distribution with 

mean values L  and H  and standard deviations Lσ  and Hσ , respectively. The parameters 2,1δ  and 

2,1γ suitably assume values equal to -1, 0, 1 following a counterclockwise disposition.  

Depending on the choice of parameters 2,1δ  and 2,1γ , two different classes of problems have been 

analyzed, namely a disposition with no alignment along the horizontal and vertical direction, as 

shown in Figure 2-a, or a preferential disposition preserving the bed joint direction, as depicted in 

Figure 2-b. 

2.2 Heterogeneous model 

The heterogeneous model is represented by the random assemblage of infinitely resistant blocks 

connected by mortar joints reduced to interfaces with rigid-plastic behavior (Figure 3). The motion 

of a generic block A  may be described as a function of its center velocity [ ]TC
zz

C
yy

C
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C AAAA vvv=v  and 

its rotation rates [ ]TA
zz

A
yy

A
xx

A ΦΦΦ=Φ . Starting from this assumption, the motions of all the blocks 

in contact to block A  may be described. Hence, to describe the kinematic model it suffices to take 

into consideration the interaction of a generic couple of blocks, (A , B ). 

Let the point P  (local coordinates 1ξ , 2ξ ) be a generic point on the interface I  between A  and B , 

as illustrated in Figure 5. Since IP ∈  belongs respectively to A  and B  (where I  indicates the 

common interface between the two blocks), the following relations can be written: 
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Here, ( )PAv  ( ( )PBv ) is the velocity of point P , which is considered belonging to block A  ( B ), 

and ( )ΦM  is the following 3×3 skew matrix: 
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In equation ( 2 ), the position of point P  is evaluated with respect to a local frame ( )21 ξξ  with 

origin on the centroid on the interface, see Figure 5. It is worth mentioning that the kinematic model 

here proposed is restricted to small rotation rates. The jump of velocity ( )[ ]Pv  between blocks A  

and B  in a point I∈ξ  is expressed by: 

( )  ( ) ( ) ( )( ) ( )( )BBAACCAB PPPPP
BA
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and the power dissipated at the interface I  can be written as: 
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where ( ) ( ) ( ) ( )[ ]TA PPPP 332313 σττ=t  ( ( )PBt  is the stress vector acting at ξ  on block A  ( B ), 

see Figure 5, with ( ) ( )PP BA tt −= ). 

Obviously, power dissipated in the whole REV is simply the sum of power dissipated on all 

interfaces, i.e. 

written as: 

∑
=
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In

I

I
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with In total number of interfaces in REV. Here it is worth noting that both the number of joints 

(horizontal and vertical) and the geometry of the interfaces in the REV varies case by case. At a 

fixed REV sampled with the Monte Carlo approach proposed, in the numerical model proposed, a 

sub-routine allows to store in a suitable database nodes and connectivity matrix of each interface 

automatically. 

2.3 Identification of the 3D blocky model with a 2D continuum 

Without loss of generality, for the most general case of REVs loaded in- and out-of-plane, a 

standard 2D Cauchy continuum, identified by its middle plane S  of normal e3 (Figure 4), is 

assumed as an equivalent plate homogenized model. The velocity field of a point P  (coordinates 
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[ ]PPP xxx 321 ) belonging to the equivalent continuum plate is given by fields ( )xw  (components 1w , 

2w  and 3w ) and ( )xΨ  (components 1Ψ  and 2Ψ ), representing respectively the velocity and 

rotations rates of the plate in correspondence of the point [ ]021
PP xx=x  laying in the middle plane 

of the plate. 

The stored energy density in the equivalent plate model is: 
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Where the symbols in equation ( 7 ) have the following meaning: 
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vector, assuming t  as the masonry thickness, [ ]Twww 321=w  the velocity field in the 

continuous model (local frame of reference) and [ ]T
321 ΨΨΨ=Ψ  the rotation rate field; 
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&χ  is the curvature rate vector; 

- [ ]TMMM 221211=M  is the homogenized moments vector, with 11M  and 22M indicating 

bending and 12M  torsion; 

- [ ]TTT 2313=T  is the homogenized out-of-plane shear vector; 

- [ ]TNNN 221211=N  is the homogenized membrane actions vector. 

With the aim of limiting the analyses to in-plane actions, we assume in the continuous model that 

M = 3O , =χ& 3O , =T 2O  and =γ& 2O , where 3O  and 2O  are 3×1 and 2×1 vector of all zeros 

respectively. 

2.4 Simplified homogenization 

The aim of the homogenized approach proposed is to substitute the heterogeneous material with a 

homogeneous equivalent 2D model, see Figure 6, where the term "equivalent" refers to an 

equivalence in terms of internal power dissipation. With this target in mind, a simple but effective 

compatible identification model is proposed, where we assign a sub class of possible deformation 
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modes and we constraint that the power dissipated by blocks assemblage, equation ( 5 ), is equal to 

the power dissipated by the equivalent model, equation ( 7 ). For this purpose, fields ( )xw  and 

( )xΨ  should be a priori chosen in a pre-assigned class of elementary deformations in the unit cell, 

corresponding to actual failure mechanisms occurring in presence of infinitely resistant blocks with 

weak joints reduced to interfaces. From a practical point of view, fields ( )xw  and ( )xΨ , 

corresponding to each sub-class of regular motions, are obtained assuming alternatively one 

component of vector E&  unitary and setting all the other components equal to zero, subsequently 

choosing the most simple polynomial expressions for ( )xw  and ( )xΨ  that comply with equation ( 7 

). Once fields ( )xw  and ( )xΨ  are known, rotations rates and velocities of each block belonging to 

the REV in the heterogeneous model are determined assuming point x  as the centroid of the block 

under consideration.  

For instance, when only 11E& ≠0 is applied on the REV, an obvious choice for ( )xw  and ( )xΨ  fields 

is: 

0321 =Ψ=Ψ=Ψ  
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1111

=
=
=

w

w

xEw &

 

( 8 ) 

Equation ( 8 ) allows to directly determine velocities and rotations of each block, provided that the 

coordinates of the respective centroid are introduced in ( 8 ). 

For instance, Figure 7-a shows the effect on a randomly assembled REV of a homogeneous 

deformation 11E& ≠0 with all the other strain measures set to zero. It must be noted that both head and 

bed joints are involved in the dissipation induced by this deformation. Figure 7-b shows the effect 

on the block-work of a homogeneous deformation in which 2112 EE && + ≠0 (shear mode) and all the 

other strain measures are set to zero, whereas Figure 7-c shows the effect of a vertical in-plane 

homogeneous deformation 22E& ≠0. Differently from a regular assemblage of blocks, for an irregular 

texture it is interesting to notice that both head and bed joints may contribute to the overall strength 

of the continuous material. On the contrary, when dealing with quasi-periodic masonry (i.e. with a 

horizontal alignment along bed joints), failure due to a macroscopic deformation 22E& ≠0 involves 

only the bed joints, similarly to the regular running bond case. Similar considerations may be 

repeated for the out-of-plane deformation modes, depicted from Figure 7-d to -f. The irregular 

disposition of blocks causes, analogously to the in-plane case, bending moment and torsion both in 

the head and bed joints.  
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2.5 Stochastic masonry failure surfaces 

In this section, following the original formulation provided by Suquet [25], a general numerical 

procedure for obtaining macroscopic masonry failure surfaces is presented. Both static and 

kinematic theorems of limit analysis can be used for this purpose. In this framework, it is worth 

noting that several different models have been presented in the literature for the evaluation of in-

plane (e.g. Milani et al. [20]) and out-of-plane masonry failure surfaces (Sab [26], Cecchi and 

Milani [22]). 

One of the basic assumptions of this approach is the utilization of associated flow rules for the 

constituent materials. Nevertheless, it is worth mentioning that sliding occurs in mortar joints with 

almost zero dilatancy, with typical non-associativity. The violation of one of the hypothesis of 

classic limit analysis [18][19], implies that the uniqueness of the ultimate load may be lost and a 

multiplicity of solutions can exist, see Begg and Fishwick [24]. On the contrary, the assumption of 

associated flow rules ensures the uniqueness of the ultimate load factor and leads to simple 

optimization problems which can be handled easily with linear programming (LP) packages.  

A failure criterion ( )σφφ =  for the joints must be incorporated. The basic failure modes for 

masonry walls with weak mortar are a mixing of sliding along the joints (a), cracking of the joints 

(b) and compressive masonry crushing (c). These modes can be well reproduced adopting a Mohr-

Coulomb failure criterion combined with a tension cut-off and a cap in compression, see Figure 8, 

as suggested by Lourenço and Rots [1]. 

Aiming at treating the problem in the framework of linear programming, within each interface I  of 

area IA , a piecewise linear approximation of the failure surface ( )σφφ =  is adopted, constituted by 

linn  planes of equation lin
I
i

TI
i nic ≤≤= 1σA , where [ ]231333 ττσ=σ , 33σ  is the normal stress on 

the interface and 13τ  and 23τ  are tangential stresses along two assigned perpendicular directions 

( I
i

I
i

I
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I
i cAAA =++ 23

3
13

2
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1 ττσ  is the i -th linearization plane of the interface I , with 

[ ]I
i

I
i

I
i
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i AAA 321=A ), Figure 5 and Figure 8. 

The jump of velocity on interfaces varies linearly in the discrete model, equation ( 4 ). Thus, for 

each interface, only linn⋅3  independent plastic multiplier rates have to be introduced as optimization 

variables. Furthermore, for each interface I  between contiguous blocks, the following equality 

constraints between plastic multiplier rates ( )21,ξξλI
i
&  and jump of velocity ( )[ ]21,ξξv  on the 

interface must be imposed: 

( )[ ] ( )
σ

v
∂
∂=∑

=

φξξλξξ
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i

I
i

1
2121 ,, &  ( 9 ) 
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where: 

- ( )21,ξξ=ξ  is a local frame of reference laying on the interface plane and with axis 3ξ  

orthogonal to the interface plane, Figure 8; 

- ( )[ ] [ ]Tvvv 23133321, ∆∆∆=ξξv  is the jump of velocity field (linear in ( )21,ξξ ) on the I -th 

interface and ijv∆  corresponds to the jump along the direction j . 

- ( )21,ξξλI
i
&  is the i -th plastic multiplier rate field (linear in ( )21,ξξ ) of the interface I , 

associated to the i -th linearization plane of the failure surface. 

It is worth noting that, in order to satisfy equation ( 9 ) for each point of the interface I , nine 

equality constraints for each interface have to be imposed, which corresponds to evaluating ( 9 ) in 

three different positions ( )kk PP
kP 21 ,ξξ=  on the interface I  as follows: 
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Here, ( )kk PPI
i 21 ,ξξλ&  is the is i -th plastic multiplier rate of the interface I  corresponding to 

( )kk PP
kP 21 ,ξξ= . 

From the previous equations, the internal power dissipated on the I -th interface can be written as:  
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It is worth noting that in equation ( 11 ) only three of the four plastic multipliers are linearly 

independent, whereas 4=k depends linearly on 3,2,1=k  (the plastic multiplier field is linear on 

the interface). 

The external power dissipated can be written as ( )DΣΣ TT
ext 10 λπ += , where 0Σ  is the vector of dead 

loads, λ  is the load multiplier, T
1Σ  is the unitary vector of loads dependent on the load multiplier 

(i.e. the optimization direction in the space of macroscopic stresses) and D  is the vector of 

macroscopic kinematic descriptors. D  collects in-plane deformation rates ( ( ) 22211211 5.0 EEEE &&&& + ), 

Kirchhoff-Love out-of-plane curvature rates ( ( ) 22211211 2/ χχχχ &&&& + ) and out-of-plane shear 

deformation rates (13γ&  and 23γ& ). As the amplitude of the failure mechanism is arbitrary, a further 

normalization condition 11 =DΣT  is usually introduced. Hence, the external power becomes linear 

in D  and λ  and can be written as follows λπ += DΣT
ext 0 . 

From the above considerations, optimization variables necessary to determine masonry 

homogenized strength domain are respectively the vector of macroscopic kinematic descriptors D  

and the vector of assembled plastic multiplier rates Iλ& at each mortar interface. 
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From equations ( 8 ) and ( 4 ), a further set of linear equality constraints has to be imposed at each 

interface I , involving vector D  and jump of displacements field ( )[ ]21,ξξv : 

( )[ ] ( )DGv 2121 ,, ξξξξ I=  ( 12 ) 

where ( )21,ξξIG  is a 3x8 matrix that depends only on the geometry of the interface under 

consideration. It is interesting to notice that, from equations ( 10 ) and ( 12 ), the jump of velocities 

( )[ ]21,ξξv  does not enter as optimization variable in the optimization problem at a cell level, being 

( ) ( )[ ] ( ) IPPP k

n

i

PPI
ikk

I
lin

kk ∈
∂
∂== ∑

= σ
vDG

φξξλ
1

21 ,& . In particular, from equations ( 10 ), ( 11 ), ( 12 ) and 

from the kinematic formulation of limit analysis, the following constrained minimization problem 

has to be solved to obtain masonry failure surfaces: 

( )
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 ( 13 ) 

Here, In  is the total number of interfaces considered and x̂  is the vector of total optimization 

unknowns. The linear programming problem ( 13 ) involves a relatively small number of 

optimization variables and therefore can be solved by means of simplex or interior point methods 

(vector x̂  of global unknowns collects only I
lin nn ⋅⋅3  plastic multiplier rates and 8 macroscopic 

kinematic variables D ). When it is required to investigate only masonry homogenized in-plane 

behavior, D  is a vector of length three collecting in-plane macroscopic deformation rates (11E& , 

)(5.0 2112 EE && +  and 22E& ), whereas masonry macroscopic strength domain is a surface in the space of 

membrane actions (11N , 12N  and 22N ). Obviously, the optimal value λ  obtained from ( 13 ) 

represents only a point on Φ̂ , i.e. the intersection between surface Φ̂  and the direction unit vector 

1Σ , see also Figure 9. Consequently, in order to obtain a reliable linear approximation of Φ̂  by 

means of Delaunay tessellations, the linear programming problem ( 13 ) has to be solved several 

times, each problem corresponding to a different choice for 1Σ  direction. 

Usually, masonry failure surface sections are represented assuming a fixed angle ϑ  between the 

bed joint and the macroscopic horizontal action (hhσ ). Such sections are obtained keeping ϑ  fixed 

and varying point by point ψ  angle, defined as ψ =tan-1
vvσ / hhσ , where vvσ  is the macroscopic 

vertical action. In this framework, vector 1Σ  has the following form: 
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( 14 ) 

As already pointed out, we limit here the study to in-plane actions, but the procedure is much more 

general and random out-of-plane failure surfaces will be presented in another contribution.  

2.6 Two meaningful application at a cell level 

Two meaningful applications at a cell level are here analyzed, the first consisting in a random 

assemblage of blocks with variable size (i.e. with length and height regarded as stochastic variables, 

without preferential lines in their disposition - Case I) and the second relying in a so-called quasi 

periodic disposition of blocks, i.e. where horizontal alignment along bed joints is preserved (Case 

II). In both cases, large scale Monte Carlo simulations are performed (10,000) at fixed orientations 

ϑ  of the central block with respect to the direction of horizontal membrane loads. Three different 

ϑ  angles are considered, in analogy to Page [27] experimental results, namely 0°, 22.5° and 45°. 

For each orientation ϑ  and at a fixed REV geometry (corresponding to a single Monte Carlo 

simulation), failure surface sections are obtained with the model proposed investigating 40 different 

ψ  angles equally stepped, thus requiring to solve iteratively a total of 1,200,000 optimization 

problems ( 13 ) for each example. 

In both cases, due to the very limited number of variables involved in the simulations, the 

computational effort required to perform such large scale Monte Carlo simulations did not exceed 

3,600 seconds for each ϑ  section, meaning that the procedure proposed may be a valuable 

numerical tool for all practitioners interested to a reliable and fast estimation of collapse load 

distributions of random blocks assemblages.  

2.6.1 Case I: random assemblage through blocks with variable dimensions 

Let us consider a masonry wall arranged through rectangular blocks disposed in irregular texture 

(Case I) and mortar joints reduced to interfaces. This pattern typology is somewhat diffused in 

historical buildings (see Figure 1-a) and it is therefore of interest to determine typical REV behavior 

near failure when loaded in-plane. We assume for the blocks a stochastic normal distribution for 

length L and height H, with mean values equal to 300 and 200 mm respectively for L and H. 

Standard deviations are set equal to 80 and 60 mm respectively for length and height. Mechanical 

properties at failure adopted for the constituent materials are summarized in Table I. In particular, 
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for mortar joints, a linearized Lourenço and Rots [1] failure criterion is adopted, whereas blocks are 

assumed infinitely resistant.  

In Figure 10, vvhh σσ −  masonry in-plane strength domains obtained with the model proposed 

sampling a total number of 10,000 different REVs and assuming ϑ =0° are represented. The same 

results are replicated respectively in Figure 11 and Figure 12 for ϑ =22.5° and ϑ =45°. 

For the sake of completeness, in Figure 13 some typical failure mechanisms obtained at fixed ψ  

and ϑ  angles are reported for some sampled REV dispositions.  

From an overall analysis of simulations results, the following remarks are worth noting:  

1) The minimum envelope of the resultant homogenized failure surfaces is isotropic and 

obviously corresponds to a homogenized failure surface obtained supposing masonry 

constituted by mortar joints reduced to interfaces interconnected by blocks disposed in stack 

bond texture (i.e. with both vertical and horizontal alignment). 

2) The possible non Gaussian behavior of the failure multipliers (see for instance Figure 12) at 

different ψ  angles of the resultant homogenized failure surface can be easily explained 

remembering that very different failure mechanisms are associated -at fixed ψ  angles- to 

very different failure multipliers. Therefore, it is straightforward to conclude that such 

distributions collect failure loads not necessarily connected between each other, because 

they are related to different failure mechanisms. 

3) The very limited computation effort required to perform the simulations justifies the two 

steps procedure here proposed, consisting in collecting failure surfaces in a database to 

implement successively at a structural level for upper bound limit analyses of entire 

structures. 

2.6.2 Case II: random assemblage with preferential horizontal disposition 

A random assemblage of blocks with preferential horizontal disposition is studied as a second 

example. The same stochastic distribution of the previous example is assumed here for the block, 

but maintaining in this case the horizontal alignment fixed and staggering blocks along two 

contiguous rows. Mechanical properties at failure adopted for the constituent materials are the same 

of the previous example, see Table I.  

In Figure 14, vvhh σσ −  masonry in-plane strength domains obtained with the model proposed at 

fixed ϑ  angle equal to 0° and resulting from a large scale Monte Carlo set of simulations is shown. 

The same results are replicated respectively in Figure 15 and Figure 16 for ϑ =22.5° and ϑ =45°. 

For the sake of completeness, in Figure 17 some typical failure mechanisms obtained at fixed ψ  

and ϑ  angles are reported for some sampled REV dispositions.  
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From an overall analysis of simulations results, the following remarks are worth noting:  

1) due to the horizontal alignment of the blocks forming a continuous bed joint, there is no 

variability of vertical strength. In fact, the REV always fails along the preferential plane of 

weakness formed by the bed joint.  

2) the typical anisotropic behavior of masonry along the material axes is more marked with 

respect to the previous case. In Case I, the general major strength of the REV along 

horizontal direction is essentially due to the ratio between blocks length and height >1. This 

generates a small staggering of the blocks along two contiguous horizontal courses, 

contributing to an additional horizontal resistance. In this case, blocks staggering is a priori 

imposed in the disposition of the blocks and only the position of the vertical joints is 

stochastically perturbed, thus justifying the more marked anisotropic behavior of the REV. 

3 Structural level implementation 

A homogenized upper bound approach is utilized for the stochastic structural analysis at collapse of 

entire masonry walls. The formulation is based on a triangular discretization of 2D domains and on 

the introduction of discontinuities of the velocity field along the edges of adjacent triangles. For the 

homogenization model, also a mesh adaptation based on a sequential linear programming approach 

recently presented by Milani and Lourenço [28] is adopted, in order to obtain reliable evaluation of 

collapse loads even with very coarse meshes (thus allowing expensive Monte Carlo simulations at a 

relatively low computational cost). 

For each element E , two velocity unknowns per node i - i
xxu and i

yyu  (one horizontal and one 

vertical, see Figure 18-a) are introduced, so that the velocity field is linear inside an element, 

whereas the strain rate field is constant. 

Jumps of velocities on interfaces are supposed to vary linearly. Hence, for each interface, four 

unknowns are introduced ( [ ]TI uvuv 2211 ∆∆∆∆=∆u ), representing the normal ( iv∆ ) and tangential 

( iu∆ ) jumps of velocities (with respect to the discontinuity direction) evaluated on nodes 1=i  and 

2=i  of the interface (see Figure 18-b). For any pair of nodes on the interface between two adjacent 

triangles ( ) ( )nm − , the tangential and normal velocity jumps can be written in terms of the 

Cartesian nodal velocities of elements ( ) ( )nm −  (Sloan and Kleeman [29]), so that four linear 

equations in the form 0uAuAuA =∆++ IeqEneqEmeq
131211  can be written for each interface, where Emu  

and Enu  are the 16x  vectors that collect velocities of elements ( )m  and ( )n  respectively. 

For the continuum, three equality constrains representing the plastic flow in continuum (obeying an 

associated flow rule) are introduced for each element: 
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plε&  is the plastic strain rate vector of element 

E , 0≥Eλ&  is the plastic multiplier and homS  is the (non) linear failure surface. A linear 

approximation (with m  planes) of the failure surface is at disposal in the form ininS bΣA ≤≡hom ; 

therefore three linear equality constraints per element can be written in the form 

0λAuA =+ EeqEeq &
1211 , where Eu  is the vector of element velocities and Eλ&  is a 1mx  vector of 

plastic multiplier rates (one for each plane of the linearised failure surface). 

For the interfaces, a 2D projection of the 3D failure surfaces is required, which depends on the 

orientation ϑ  of the interface with respect to the horizontal direction. The general procedure 

suggested by Krabbenhoft et al. [30] is here adopted and the reader is referred there for further 

details. 

Once the linearised domains for interfaces are provided by means of (6), the power dissipated on 

the discontinuities is computed introducing plastic multipliers for every interface I as follows: 
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Where ξ is the abscissa of I, )(ifσ∇ are constant gradients for the failure surface (being )(if , the ith 

segment of the multi-linear failure surface), )(i
Iλ&  are the interface plastic multiplier rates, evaluated 

in correspondence of ξ , integrated along the infinitesimal thickness of interfaces and associated 

with the ith segment of the multi-linear failure surface, v∆  and u∆  have been already introduced 

and are respectively the normal and tangential jump of velocities on the discontinuities. 

After some elementary assemblage operations, a simple linear programming problem is obtained, 

where the objective function consists in the minimization of the total internal power dissipated:  

{ }





















≥

≥
=

+

0λ

0λ
bUA

λCλC

assE

assI

eqeq

assIT
I

assET
E

,

,

,,

thatsuch

min

&

&

&&

 ( 16 ) 

where:  

- T
EC  and T

IC  are the (assembled) right-hand sides of the inequalities that determine the linearised 

failure surface of the homogenized material respectively in the continuum and in the interfaces. 

- [ ]assIassIassE ,,, λuλuU && ∆=  is the vector of global unknowns, which collects the vector of 

assembled nodal velocities (u ), the vector of assembled element plastic multiplier rates ( assE ,λ& ), the 
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vector of assembled jump of velocities on interfaces ( assI ,u∆ ) and the vector of assembled interface 

plastic multiplier rates ( assI ,λ& ). 

- eqA  is the overall constraints matrix and collects velocity boundary conditions, relations between 

velocity jumps on interfaces and elements velocities, constraints for plastic flow in velocity 

discontinuities and constraints for plastic flow in continuum. 

It is worth noting that assET
E

,λC &  and assIT
I

,λC &  in the objective function represent respectively the 

total power dissipated in continuum and in interfaces. 

When dealing with the homogenized approach, a mesh adaptation based on a sequential linear 

programming scheme (SLP, see the original formulation proposed by Milani and Lourenço [28]) is 

adopted in order (-a) to utilize very coarse meshes and hence to take advantage of the most 

important potential of homogenization (i.e. disregard blocks pattern at structural level) and (-b) to 

improve step by step the reliability of the failure load provided by a coarse mesh. 

A full description of the SLP scheme adopted is available in [28]. Here, it is worth noting that, 

differently from the original formulation proposed in [28], (a) linear triangles are used instead of 

splines based elements and (b) plastic dissipation is allowed also inside triangular elements. 

Convergence is usually reached after a few iterations (5 to 15) and therefore the procedure is 

particularly suited to be extended to the Monte Carlo simulations here performed. 

All the numerical simulations reported in the paper have been performed under Matlab 7.8.0 on a 

Windows Vista PC equipped with an Intel Core 2 Duo CPU @ 2 GHz and 4 GByte RAM. Here it is 

worth noting that, from a numerical point of view, a parallelization of the analyses through large 

clusters would be very beneficial for the problem at hand, since large scale Monte Carlo simulations 

would require much less time to be performed or, conversely, at fixed time, the number of 

simulations would increase drastically. However, a single PC commonly available in the market 

stock has been used having in mind that results should be replicated by any practitioner interested in 

a relatively fast stochastic analysis of real scale engineering structures.  

4 Deep beam subjected to a vertical concentrated load 

A masonry deep beam of dimensions 600x200 cm arranged in random texture with blocks 

dimensions (mean values) equal to 300x120 mm (length x width) and simply supported in 

correspondence of the first and last block of the first row of blocks starting from the bottom (see 

Figure 19) is considered. A vertical concentrated load is placed at the middle top of the wall and 

incremented until failure (Lp=300 mm). The behavior at failure of the panel assuming for the blocks 

the dispositions shown in Figure 2 is extensively analyzed, with comparisons with alternative 

expensive heterogeneous approaches. In both models, a frictional failure surface with limited tensile 
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strength and cap in compression is considered (Lourenço and Rots [1] failure criterion) for mortar 

joints. Mechanical properties assumed in the simulations are summarized in Table II. 

4.1 No horizontal alignment (Case I disposition): homogenized 

analyses 

A set of Monte Carlo simulations is performed on the structural model at hand, discussing the effect 

of changing the coefficient of variation (COV) of the height and the length of the blocks, assuming 

the wall arranged through the first disposition of blocks (Case I) discussed in the previous sections. 

Six different values of COV for H and L are investigated, respectively equal to 2.5-5-10-15-20-

25%. At fixed values of H and L COVs, a set of 2,000 Monte Carlo simulations is performed, 

meaning that a total of 72,000 structural analyses are repeated for the problem under consideration. 

In Figure 20, results obtained from the numerical simulations are represented in terms of empirical 

cumulative distribution functions (ECDFs), at fixed length and height COVs. Mean values of the 

distributions estimated thorough the Monte Carlo simulations are also represented, along with the 

deterministic values obtained assuming a stack bond and a running bond disposition for the blocks, 

using respectively black, red and purple thick curves. 

The following four key aspects are worth noting from the distributions, confirming that the 

procedure proposed is able to reproduce accurately -but at a fraction of the computational time 

needed by standard heterogeneous approaches- the behavior of irregular assemblages of blocks near 

failure: 

1. When a small COV for both the height and the length of the blocks (upper left diagram of 

Figure 20) is assumed (e.g. 2.5%), the behavior of the wall is closer to the stack bond 

situation. As can be seen from Figure 2-a, due to the adopted definition of geometry, Case I 

arrangement reduces to a stack bond disposition when H and L COVs tend to zero. 

2. The mean failure load and standard deviation increase with the height H and length L COVs. 

Both parameters play an important role, with a slightly more relevant role on the length: for 

a L COV of 5% the mean failure loads are 107 and 123 kN, for a H COV of 5% and 25% 

respectively; for a L COV of 25% the mean failure loads are 131 and 146 kN, for a H COV 

of 5% and 25% respectively. 

3.  The limiting upper bound case of the running bond texture cannot be achieved with the 

increasing COVs, because the extra resistance due to the full staggering of the blocks is 

never reached. 
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4.2 Case II disposition: quasi periodic arrangement 

A second set of Monte Carlo simulations (2,000) is performed assuming a quasi periodic disposition 

of the blocks, i.e. imposing that bricks height is constantly equal to the mean value and considering 

the second disposition of the blocks shown in Figure 2 (Case II). In order to validate the results 

obtained with the model proposed an expensive set of heterogeneous Monte Carlo simulations is 

also performed, in which mortar joints are reduced to interfaces and blocks are supposed infinitely 

resistant. 

The standard deviation for blocks length is assumed equal to 60 mm whereas blocks height is 

assumed constantly equal to 120 mm. Wall thickness is assumed equal to 100 mm. 

A typical heterogeneous discretization by means of triangular elements with interfaces 

discontinuities for the wall under consideration is depicted in Figure 19-b, whereas the mesh used 

when dealing with the homogenization approach is reported in Figure 19-c. 

The aim of the example is to compare failure load distributions, namely mean value, standard 

deviation and possible non Gaussian behavior, and failure mechanisms provided by the 

homogenized and the heterogeneous model. In this structure the collapse is due to the formation of 

a central plastic bending hinge, and hence tensile masonry strength along the horizontal axis is 

predominant. Since horizontal masonry strength is somewhat dependent on blocks staggering (see 

for instance [20]), the output value of the structural limit analysis (failure load) has a statistical 

distribution strictly connected to blocks length variability.  

It is worth noting that, as a rule, a single simulation on the heterogeneous model required around 20 

minutes to be performed, whereas less than 120 seconds were required for the homogenized 

approach. This justifies the relatively limited number of simulations performed (2,000) to evaluate 

the output distributions, which in any case required around 30 days of processing time only for the 

heterogeneous model. Considering also that three hours were required to collect the database of 

failure surfaces (see previous sections) for the homogenized approach, around one day was needed 

to complete the homogenized simulations, meaning that the simple two steps limit analysis 

procedure here proposed competes very favorably with direct models based on a distinct 

discretization of blocks and joints. 

In Figure 21, a comparison between deformed shapes at collapse obtained with a typical 

heterogeneous mesh and the homogenized approach (final mesh after 14 adaptations) is represented 

(failure mechanisms corresponding to the average collapse load value). As it is possible to notice, 

an asymmetric failure is reached, which is obviously a consequence of the asymmetric disposition 

of the blocks. In any case, the failure mechanism provided by the heterogeneous model is almost 

perfectly reproduced by the homogenized approach. Finally, in Figure 22, the failure load 
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distribution provided by the heterogeneous and the homogenized approach are compared, along 

with the corresponding confidence bounds. The distributions are quite similar, with rather similar 

average values (5% difference) and standard deviations (1% difference). As expected, the behavior 

of both distributions is almost Gaussian (kurtosis value of three), with very low asymmetry 

(skewness of zero). 

5 Masonry shear wall 

A masonry shear wall, originally tested with a regular disposition of bricks by Raijmakers and 

Vermeltfoort [31], is here re-analyzed with a random disposition of bricks. The width/height ratio 

(L/H) of the shear walls is 990 /1000 ([mm]/[mm]); the walls were built up with 18 courses of 

bricks, from which 16 courses were active and 2 were clamped in stiff steel beams, Figure 23. The 

brick dimensions are 210 (mean value)x52x100 mm3 and the mortar joints are 10 mm thick. A 

vertical pre-compression load p equal to 2.12 N/mm2 is applied on the top, keeping the resultant 

vertical load constant during the complete loading procedure. The stiff steel beam did not allow 

rotations of the top and was subsequently pushed with an increasing horizontal force.  

In order to preclude top horizontal beam rotations, in the limit analysis simulations, vertical 

displacements of the nodes belonging to the horizontal top edge were constrained to be all equal.  

Analogously to the previous case, two random bricks assemblages are analyzed, corresponding 

respectively to the arrangements depicted in Figure 2 –a and –b and extensively analyzed at a cell 

level in the previous section.  

In both models, for mortar joints a Lourenço and Rots [1] failure criterion is used, with mechanical 

properties summarized in Table III.  

5.1 No horizontal alignment (Case I disposition): homogenized 

analyses 

As for the deep beam example, a preliminary set of Monte Carlo simulations is performed on the 

shear wall, discussing the effect of changing the COV of height and length blocks and assuming a 

disposition of blocks without horizontal alignment (Case I arrangement). Six different values of 

COV for H and L are investigated, respectively equal to 2.5-5-10-15-20-25%. At fixed values of H 

and L COVs, 2,000 structural analyses are repeated in order to obtain empirical cumulative 

distribution functions (ECDFs) of the failure load from the homogenized model. In Figure 24, 

numerical simulations results are depicted, representing ECDFs of the failure total shear at the base 

corresponding to fixed length and height COVs. Estimated distributions mean values, deterministic 
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failure loads assuming a running bond and a stack bond disposition are also represented, using 

respectively black, red and purple thick curves. 

Similarly to what pointed out for the deep beam case, when a COV near to zero for both the height 

and the length of the blocks (upper left diagram of Figure 24) is considered, the wall approximates a 

stack bond disposition. Intuitively, failure load standard deviation tends to increase increasing block 

dimensions COVs. Analogously to the previous case, the upper bound is not theoretically 

represented by a running bond texture, because an extra resistance (both in shear and in vertical 

membrane action) may be present in Case I, due to full staggering of the blocks. Moreover, the 

stack bond lower bound is well approximated by the low COVs, which is again due to the adopted 

definition of geometry, and not necessarily represents the physics of irregular masonry bonds. 

Finally, it is worth noting that, considering that both failure is dominated by shear resistance and 

standard deviation of strength distributions in pure shear is smaller than the horizontal one 

(compare, for instance Figure 10-b and Figure 12-c), it is very straightforward to conclude that 

failure load standard deviation is generally smaller compared to that of the deep beam example. 

5.2 Case II disposition: quasi periodic arrangement 

A second sub-set of Monte Carlo simulations is performed for the case at hand, assuming a quasi-

periodic blocks disposition (Case II of Figure 2), with a standard deviation for bricks length equal to 

50 mm.  

Meshes used for the heterogeneous and the homogenized limit analyses are depicted in Figure 23. 

Two rows of elements at the base and at the top of the wall (blue or darker triangles in Figure 23) 

have been assumed infinitely resistant in order to model the effect of the stiff steel beam. 

Homogenized mesh of Figure 23 refers to the mesh used at the beginning of the SLP mesh 

adaptation. 

The aim of the example is to compare failure loads and failure mechanisms provided by the 

homogenized and the heterogeneous model in a case where the collapse is due to the formation of a 

inclined strut, with a plastic region of significant dimension at the compressed toe. Differently to 

the previous example, a complex interaction among tensile, compressive and shear strength of 

masonry contribute to the overall resistance of the wall. 

Due to the relatively small number of elements required for a heterogeneous discretization, only 

two minutes and less than 20 seconds were required for a single heterogeneous and homogenized 

Monte Carlo simulation respectively. Hence, a total of 10,000 simulations to evaluate the output 

collapse load distribution have been performed, requiring around 20 days of processing time for the 

heterogeneous approach. Also in this case, the homogenization model competes favorably with 
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micro-modeling, requiring only three days, comprising 10,000 simulations and the preliminary 

evaluation of the stochastic failure surface. 

In Figure 25, a comparison between deformed shapes at collapse obtained with a heterogeneous 

mesh and the homogenized one (final mesh after eight adaptations) is reported (failure mechanisms 

correspond to the average collapse load values). As it is possible to notice, an almost perfect 

agreement between deformed shapes is obtained, meaning that the procedure proposed may be used 

for a reliable evaluation of failure mechanisms and collapse loads.  

Finally, in Figure 26, failure loads distributions provided by the heterogeneous and the 

homogenized approach are represented, with the corresponding confidence bounds. Again, the 

distribution provided by the homogenized approach is very similar to the heterogeneous one, with 

comparable average values (2% difference) and standard deviations (6% difference). As expected, 

the behavior of both distributions is almost Gaussian, with low asymmetry. 

6 Conclusions 

A simple homogenized rigid-plastic plate model for a fast and reliable analysis of masonry 

structures constituted by blocks disposed in irregular texture has been presented. A two-steps 

approach has been adopted, including a preliminary homogenization of the random assemblage of 

bricks, followed by structural Monte Carlo homogenized FE analyses to compare to full expensive 

stochastic heterogeneous approaches.  

A full description of the model has been given considering a representative volume constituted by a 

generic regular block with parallelepiped shape interconnected with its neighbors. A sub-class of 

possible elementary deformation modes (mimicking horizontal and vertical stretching and a pure 

shear deformation) acting in the unit cell has been a priori chosen in order to describe joints 

cracking under normal and tangential actions. Then, power dissipated in the discrete model has been 

equated to that dissipated in a continuum macroscopic 2D equivalent plate. Such identification is 

based on a simple correspondence between motions in the 3D discrete model and the continuum. 

Following what was presented in the case of regular assemblages of blocks, joints have been 

reduced to interfaces with a cohesive associated frictional behavior with limited tensile and 

compressive strength, whereas blocks have been supposed infinitely resistant.  

Two different dispositions have been investigated in detail, assuming that block dimensions exhibit 

a stochastic variability with predetermined random distribution. In this way, the horizontal position 

of vertical joints as well as the vertical position of horizontal joints has been treated as statistically 

variable.  
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After a fast numerical evaluation of stochastic masonry failure surfaces to use (step I), a masonry 

deep beam and a shear wall have been analyzed at a structural. In the first case, failure is mostly 

controlled by the tensile strength parallel to the joints, link to the staggering of the joints, whereas, 

in the second case, a complex failure mode involving tension, shear and crushing is present. The 

speed up of the proposed methodology in the case studies presented is in the order of 10 to 30. 
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8 Figures 

 

 

 

 

 

-a -b 

Figure 1: Typical random patterns in existing historical buildings. –a: without 

horizontal alignment. –b: with horizontal alignment. 

 

  

-a -b 

Figure 2: Randomly generated REVs. –a: without horizontal alignment (Case I). –b: with 

horizontal alignment (Case II). 
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Figure 3: Masonry kinematic model. Two adjacent blocks (A , centroid AC  and B , centroid 

BC ) connected by means of a mortar interface I  where plastic dissipation occurs. For each 

block three velocities unknowns and three rotation rates must be introduced in the 

optimization problem at a cell level (infinite strength of blocks hypothesis). 
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Figure 4: Reference surface chosen for masonry. 
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Figure 5: Jump of velocities and stress field acting on an interface I  between contiguous 

blocks A  and B . 
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Figure 6: Representative volume element and identification between discrete model and 

continuous model. 
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Figure 7: Elementary homogeneous deformations applied to the representative volume 

element. –a: 11E& . –b: 12E& . –c: 22E& . –d: 11χ& . –e: 12χ& . –f: 22χ& .  
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Figure 8: Piecewise linear approximation of the failure criterion adopted for joints. Mohr-

Coulomb failure criterion with tension cut-off and linearized compression cap. 
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Figure 9: Meaning of λ  multiplier in the optimization problem 

and α  angle. 
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Figure 10: Case I results, °= 0ϑ . Monte Carlo failure surfaces in the plane hhσ - vvσ . 
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Figure 11: Case I results, °= 5.22ϑ . Monte Carlo failure surfaces in the plane hhσ - vvσ . 
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Figure 12: Case I results, °= 45ϑ . Monte Carlo failure surfaces in the plane hhσ - vvσ . 
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Figure 13: Case I. Some typical deformed shape at collapse obtained with the kinematic model 

proposed. 
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Figure 14: Case II results, °= 0ϑ . Monte Carlo failure surfaces in the plane hhσ - vvσ . 
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Figure 15: Case II results, °= 5.22ϑ . Monte Carlo failure surfaces in the plane hhσ - vvσ . 
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Figure 16: Case II results, °= 45ϑ . Monte Carlo failure surfaces in the plane hhσ - vvσ  
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Figure 17: Case II. Some typical deformed shape at collapse obtained with the kinematic model 

proposed. 
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Figure 18: Finite element used for the structural stochastic limit analysis. 
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Figure 19: Deep beam example. Geometry, loading and constraints 

condition (-a), typical heterogeneous (-b) and homogenized mesh (-c) 

used. 
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Figure 20: Deep beam example. Failure load distribution at different COVs of blocks length and 

height (Case I). 
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Figure 21: Deep beam example. Failure mechanism provided by a random heterogeneous mesh 

and the homogenized approach. 

 

 

 

Figure 22: Deep beam example. ECDF of the failure load provide through a direct 

heterogeneous approach and homogenized limit analysis simulations. 
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Figure 23: Shear wall example. Geometry, loading and constraints condition, typical 

heterogeneous and homogenized mesh used. 
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Figure 24: Shear wall example. Failure load distribution at different COVs of blocks length and 

height (Case I). 
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Figure 25: Shear wall example. Failure mechanism provided by a random heterogeneous mesh 

and the homogenized approach. 

 

 

Figure 26: Shear wall example. ECDF of the failure load provide through a direct 

heterogeneous approach a homogenized limit analysis simulations. 
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Tables 

Table I: Representative element of volume level. Mechanical characteristics assumed for mortar 

joints reduced to interfaces (tf : tension cut-off, c : cohesion, Φ : friction angle, cf : compressive 

strength, 2Φ : shape of the linearized compressive cap). 

tf  MPa c  Φ  cf  MPa 2Φ  

0.05 1.4 tf  37° 1.5 60° 

 

 

Table II: Structural level, deep beam wall. Mechanical characteristics assumed for mortar joints 

reduced to interfaces (tf : tension cut-off, c : cohesion, Φ : friction angle, cf : compressive 

strength, 2Φ : shape of the linearized compressive cap). 

tf  MPa c  Φ  cf  MPa 2Φ  

0.29 1.4 tf  30° 8.6 60° 

 

 

Table III: Structural level, shear wall. Mechanical characteristics assumed for mortar joints 

reduced to interfaces (tf : tension cut-off, c : cohesion, Φ : friction angle, cf : compressive 

strength, 2Φ : shape of the linearized compressive cap). 

tf  MPa c  Φ  cf  MPa 2Φ  

0.16 1.4 tf  37° 11.5 30° 

 


