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Abstract

A simple rigid-plastic homogenization model for thmit analysis of masonry walls in-plane
loaded and constituted by the random assemblab&odks with variable dimensions is proposed.
In the model, blocks constituting a masonry wadl aupposed infinitely resistant with a Gaussian
distribution of height and length, whereas joints eeduced to interfaces with frictional behavior
and limited tensile and compressive strength. Bloglblock, a representative element of volume
(REV) is considered, constituted by a central blotkrconnected with its neighbors by means of
rigid-plastic interfaces. The model is charactetiby a few material parameters, is numerically
inexpensive and very stable. A sub-class of eleamngrteformation modes is a-priori chosen in the
REV, mimicking typical failures due to joints cracl and crushing. Masonry strength domains are
obtained equating the power dissipated in the bgereous model with the power dissipated by a
fictitious homogeneous macroscopic plate. Due ®itiexpensiveness of the approach proposed,
Monte Carlo simulations can be repeated on the RE)Mder to have a stochastic estimation of in-
plane masonry strength at different orientationghef bed joints with respect to external loads
accounting for the geometrical statistical vari@pibf blocks dimensions. Two cases are discussed,
the former consisting on full stochastic REV asskgds (obtained considering a random
variability of both blocks height an length) ance thatter assuming the presence of a horizontal
alignment along bed joints, i.e. allowing blockagh variability only row by row. The case of
deterministic blocks height (quasi-periodic texjuran be obtained as a subclass of this latter. case
Masonry homogenized failure surfaces are finallplemented in an upper bound FE limit analysis
code for the analysis at collapse of entire wallplane loaded.

Two cases of engineering practice, consisting enpttediction of the failure load of a deep beam
and a shear wall arranged with random texture anéicadly discussed. In particular,
homogenization results are compared with thoseigedvby a heterogeneous approach. Good
agreement is found both on the failure mechanisthoamnthe distribution of the collapse load.
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1 Introduction

Masonry walls constituted by random assemblagelsladks and stones of variable dimensions,
Figure 1, are very common in existing historicalldings. Therefore, the prediction of their
ultimate strength under in-plane actions is a kesué for practitioners involved in the safety
assessment of existing masonry structures.

At present, a key problem in the development otieate stress analyses for random assemblages of
blocks is the definition and the use of suitabldamal constitutive laws for masonry.
Micro-modeling, e.g. [1]-[4], considers units andomar joints separately, characterizing them
through different constitutive laws. Blocks and taormechanical properties adopted are usually
obtained through experimental tests conducted ensithgle materials (compressive test, tension
test, bending test, etc.). This approach is, ofsmuhe most indicated for a detailed descriptibn
irregular masonry, but leads to structural analysesracterized by great computational effort,
requiring several finite elements for a separagerdtization of joints and blocks, even for small
specimens. For the aforementioned limitations, oaroodeling can be successfully adopted only
for walls of small dimensions (e.g. Lourenco andsRa], Lotfi and Shing [4]).

Macro-models, e.g. [5]-[6], substitute the hetermgmis material with a fictitious anisotropic
homogeneous one, thus needing much less time wkeh in complex non linear analyses, but
requiring a calibration of the model with expensdxperimental data fittings.

Homogenization [7]-[11] appears a good compromigsgvben micro and macro-modeling, as it
allows to derive in a rational way stress-strailatrenships for masonry, accounting in a suitable
manner for the mechanical properties of each coesti material only at a cell level. Moreover, it
may lead to effective models, with reduced companal effort for real scale simulations [7]-[11].
Stochastic homogenization concepts have been te@gylied to random blocks assemblages both
in the elastic and inelastic range [12]-[15], ussugtable representative elements of volume (REVS)
to describe the overall behavior of the wall uncansideration.

In all cases where the periodicity of the structisrstrictly not respected, it can be demonstrated
[14]-[16] that a boundary value problem where p#idgoconditions are suitably relaxed has to be
solved on the unit cell, in order to have a nunariestimation of the macroscopic inelastic
properties to be used at a structural level. ltesy straightforward to deduce that the geometrical
variability of the REV, due to the variable geometf the blocks, requires a statistical treatmént o
resultant (output) average masonry mechanical ptiegeobtained through homogenization, since

masonry strength strongly depends on the effeggemmnetry of the REV considered. Therefore, a



full set of Monte Carlo simulations are needed &véhan estimation of mechanical properties
distributions in case of both in- and out-of-plaoads.

In recent papers, e.g. [14]-[16], the effect of sh@chastic variability of the blocks length on the
and out-of-plane elastic response of a periodicomgswall has been studied. In particular, starting
from a periodic running bond pattern consistingrigid blocks with elastic interfaces, a random
perturbation on the horizontal positions of the ticat interfaces between the blocks was
introduced. Here, a similar compatible model caastd by a REV with a central block
interconnected with neighboring blocks is studieat, (a) generalizing the problems in the case of
stochastic variability of both height and length tbeé blocks and (b) assuming a rigid-plastic
behavior for the constituent materials in orderhi@mve a prediction of masonry macroscopic
behavior at failure.

As well known, limit analysis has been widely uded the study of masonry structures, see for
instance [17]-[21], because it requires only a cedunumber of material parameters, providing
limit multipliers of loads, failure mechanisms aiadl Jeast on critical sections, the stress distioiou

at collapse. In this framework, with the aim of negucing the behavior of masonry panels
constituted by the random assemblage of blocks wéttable dimensions, a mesoscopic compatible
identification model is proposed.

Following what was presented in the case of regadaemblages of blocks in [22] and [23], joints
are reduced to interfaces with a cohesive assaciatetional behavior with limited tensile and
compressive strength and blocks are supposedteifimesistant. It is worth underlining here that
frictional phenomena may require the adoption ofi-associated flow rules for the constituent
materials (see for instance [18], [19] and [24]h the other hand, it has been demonstrated that
even simple associated limit analyses (de Buhandanéelice [17]) are able to provide reliable
results, especially when failure mechanisms areiypdue to joints tensile cracking (e.g. [20]).

The present study concerns a random assemblagdocksbwith variable height and length
following a predetermined random distribution. mstway, the horizontal position of vertical joints
as well as the vertical position of horizontal jsirs statistically variable.

Since the case under consideration is in practicassemblage of regular blocks with variable
dimensions, it can be argued that the masonry tskelaay be represented by a 3D discrete system
of blocks interacting through interfaces (the moojtnts). Modeling the REV as a molecular
skeleton allows to strongly reduce degrees of fseednd therefore permits to perform full Monte
Carlo simulations in case of geometrical stochastr@ability of the geometry.

Within this simple model, a full description of tmeasonry material can be given considering a

representative volume constituted by a generickbioterconnected with its neighbors. A sub-class



of possible elementary deformation modes (mimickgizontal and vertical stretching, a pure
shear deformation, pure bending and torsion aloaternal axes) acting in the unit cell is a priori
chosen in order to describe joints cracking undemm@al and tangential actions. Then, power
dissipated in the discrete model is equated to tledipated in a continuum macroscopic 2D
equivalent plate. Such identification is based ainaple correspondence between motions in the
3D discrete model and the continuum. Since intedisdipation can take place only at the interface
between blocks, a simple constrained minimizatiooblem in a few variables is obtained.
Macroscopic masonry failure surfaces are numeyi@lhluated as a function of the macroscopic
in-plane actions (shear and normal actions). Hegeworth noting that, despite the fact that irs th
paper only in-plane actions are considered, theemsdsufficiently general to analyze also random
assemblages of blocks subjected to out-of-plandsloa

Due to the inexpensiveness of the approach proptege Monte Carlo simulations are repeated at
a cell level, generating automatically a numbediéfierent REVs, sampling each time at random
height and length of the blocks constituting the/RE

At a fixed geometry (i.e. within a single Monte @asampled REV), in-plane masonry strength at
different orientations of the bed joints with resp& external loads are numerically evaluated,
solving for each orientation of the joint, sevedifferent linear programming problems, each
optimization problem corresponding to a fixed dil@e of the load dependent from the load
multiplier in the homogenized stress-space.

Two cases are discussed, the former consisting BN Bssemblages without a preferential
horizontal alignment, the latter assuming contirsuchworizontal joints. Afterwards, masonry
homogenized failure surfaces are implemented in@rer bound FE limit analysis code for the
analysis at collapse of in-plane loaded structelenents.

Two examples of engineering interest, consistirgpeetively on the prediction of the failure load
of a deep beam and a shear wall arranged with rarteleture are critically discussed and compared
with expensive heterogeneous approaches. The deam lis selected as bending strength is
significantly depending on the arrangement of titernal masonry structure, in the usual case of
steeped cracks, and the shear wall is a typicalatadn structural element in the case of masonry
structures. Good agreement is found at structwatllbetween the models, meaning that the
homogenization model proposed may be a valuableftodimit analysis of masonry structures

constituted by random assemblages of blocks.



2 Masonry homogenized failure surfaces: a model with
infinitely resistant blocks and plastic mortar interfaces

In this section, a procedure to obtain a generatiepiodel (i.e. suitable both for in- and out-of-
plane loaded panels) and based on a correspontiethween equivalent class of motions in a 3D
discrete blocks system and a 2D Cauchy continuuprdsented. The two models are described
separately and then an equivalence procedure betiveekinematic descriptors in the two systems
is performed, in order to study masonry as a 2Ddgeneous continuum. First of all, the 3D model
constituted by rigid infinitely resistant blockstenconnected by plastic mortar interfaces is
introduced. The kinematic variables involved in tip¢imization problem used to find homogenized
failure surfaces are only blocks velocities anétion rates and plastic multipliers of the integs.c
While the procedure is general and can be applsmifar out-of-plane load, here only the in-plane
behavior is investigated.

After a brief recall of the basic features of th2 discrete model, a transition between a discrBte 3
block model and a 2D continuum model is preseriféd is based on a simplified homogenization
approach, where the discrete representative eleofeviblume is connected to the 2D model by
means of the assumption that the power dissipatedth models is identical. It is worth noting that
the formulation of the model does not impose alfiecal solution as, for instance, occurs using
standard homogenization procedures, but imposeg ankinematic correspondence between
motions. This assumption implies that the obtais@dtion is kinematically admissible and, hence,

an upper bound of the actual strength domains raaybbained with the model proposed.

2.1 An automatic procedure to obtain a REV constituted by the random
assemblage of blocks

In order to repeat large scale Monte Carlo simoetion different REVs, an automatic routine of
generation of REVs with blocks of different dimeorss is needed.

In the present paper, we consider two differentlblassemblages, as schematically depicted in
Figure 1 and Figure 2. The first distribution, here denotesl Case I, concerns the random
assemblage of blocks with variable height and lengihe second case (Case Il) is again a
distribution with variable length and height of tks, but with a horizontal alignment of blocks
along the bed joint. An important sub-class of jpeois is obtained from Case Il when the height is

a deterministic variable (quasi periodic assemblage

Let C® be the position of the centroid of the genericchi®; in the 3D Euclidean space. Lef-

e,-e, indicate the global frame of reference wehindicating horizontal directiong, indicating



vertical direction ance, indicating the direction normal to the wall, Figu8 and Figure 4. and j

indices assume integer values indicating the mwsii the blocks with respect to the central blocks

For instancej =1 and j =1 indicate the first block positioned on the righth respect to the central

block. Subsequent blocks are disposed with onerfati® common to the central block in

counterclockwise order.

More in detail, the random REV is built block byobk starting from the central block by

introducing a random perturbation on horizontal awettical position of blocks centroids

neighboring central block and assuming that bldekgth and height are stochastic variables with

assigned distribution, i.e.:

L L
X, =Xg, +O,— 140, 28
- (1)
_v 4y Hes . Ha
Va, = Vo, *hat Vo

Where L and H are sampled values of blocks length and heighh frmrmal distribution with
mean valued and H and standard deviations, ando,,, respectively. The parameteds, and

¥, Suitably assume values equal to -1, 0, 1 follovargpunterclockwise disposition.

Depending on the choice of parametéis and y,,, two different classes of problems have been

analyzed, namely a disposition with no alignmemingl the horizontal and vertical direction, as
shown in Figure 2-a, or a preferential dispositwaserving the bed joint direction, as depicted in

Figure 2-b.

2.2 Heterogeneous model
The heterogeneous model is represented by the marmdsemblage of infinitely resistant blocks

connected by mortar joints reduced to interfacdhl wgid-plastic behavior (Figure 3). The motion

of a generic blockA may be described as a function of its center vgloc™ = [vaA Vi vaA]T and

its rotation ratesp” = [CDQX oy bez]T Starting from this assumption, the motions ofttadl blocks
in contact to blockA may be described. Hence, to describe the kinemaddel it suffices to take
into consideration the interaction of a genericatewf blocks, A,B).

Let the pointP (local coordinates,, &,) be a generic point on the interfacebetweenA and B,

as illustrated in Figure 5. Sinded| belongs respectively té&\ and B (where | indicates the

common interface between the two blocks), the falhg relations can be written:



vA(P)=v®" +M(@*)P-c*)
ve(P)=v®" +M(@®)P-c?) (2)
Here, vA(P) (VB(P)) is the velocity of pointP, which is considered belonging to blogk (B),
and M ((I)) is the following 3«3 skew matrix:
0 -9, o,

M@)=| ®, 0 -,

-o, @ 0 (3)
In equation ( 2 ), the position of poift is evaluated with respect to a local fralﬁ(@ 52) with
origin on the centroid on the interface, see Fidurk is worth mentioning that the kinematic model
here proposed is restricted to small rotation rafée jump of veIocity[v(P)] between blocksA
and B in a point§ 01 is expressed by:
[v(P)|=v®(P)-v*(P)=v"" ~v** +m(0*)P-C*)-M(0°)P-C?) (4)
and the power dissipated at the interfacean be written as:

n‘ Ht P)v®(P)ds = jt (P)|ds (5)

WheretA(P):[rlg(P) r23( ) 033( )] (t%(P) is the stress vector acting &ton block A (B),
see Figure 5, with*(P) =-t®(P)).
Obviously, power dissipated in the whole REV is @ynthe sum of power dissipated on all
interfaces, i.e.
written as:
T=y 1T

= (6)
with n' total number of interfaces in REV. Here it is wortbting that both the number of joints
(horizontal and vertical) and the geometry of theeifaces in the REV varies case by case. At a
fixed REV sampled with the Monte Carlo approachppsed, in the numerical model proposed, a
sub-routine allows to store in a suitable datalbvas#es and connectivity matrix of each interface

automatically.

2.3 Identification of the 3D blocky model with a 2D continuum

Without loss of generality, for the most generatecaf REVs loaded in- and out-of-plane, a
standard 2D Cauchy continuum, identified by its dfeédplane S of normal e; (Figure 4), is

assumed as an equivalent plate homogenized mokelvdlocity field of a pointP (coordinates
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[xlP X5 x3PJ) belonging to the equivalent continuum plate igegiby fieldsw(x) (componentsw;,
w, and w;) and ‘I’(x) (componentsW¥, and W,), representing respectively the velocity and

rotations rates of the plate in correspondencéepbintx = [xf X5 OJ laying in the middle plane
of the plate.
The stored energy density in the equivalent platdehis:

Ell . Xll

. . y13 . .

= [Nll N12 N22 E12 + E21 + [T13 T23] y + [M 11 MlZ M 22 /Y12 +X21

. 23 .

E., X2z ( 7 )
Where the symbols in equation ( 7 ) have the falhgwneaning:

= L ow, / 0x, — x,0W, / 9
- E=|E,+E, = [ | 0w, /0%, + 0w, 10x, = x; (0w, /9x, +0W, /dx,) |dx, IS the in-plane strain rate
E,, 2 ow, / 0x, — x,0W, / 9x,

vector, assumingt as the masonry thicknessz;/:[wl W, w3]T the velocity field in the

continuous model (local frame of reference) &e [lPl Y, lPS]T the rotation rate field,

o]l it

}dx3 is the shear strain rate;

Vos| T, OWg/0X, + 0w, /0%,
Xll 1 t/2 al'IJl/aX:I.
4= K * Ko :E oW,/ ax, + 0w,/ dx, |dx, is the curvature rate vector;
X Ttz 0w,/ 0x,

- M :[M11 M, M22]T is the homogenized moments vector, with,, and M, indicating

bending andM,, torsion;
-T= [T13 T23]T is the homogenized out-of-plane shear vector;

-N= [N11 N,, N,,|" is the homogenized membrane actions vector.
With the aim of limiting the analyses to in-plangians, we assume in the continuous model that
M=0,, y=0,, T=0, and y=0,, whereO, and O, are 3x1 and 2x1 vector of all zeros

respectively.

2.4 Simplified homogenization

The aim of the homogenized approach proposed ssibbstitute the heterogeneous material with a
homogeneous equivalent 2D model, see Figure 6, evtiee term "equivalent” refers to an
equivalence in terms of internal power dissipatifith this target in mind, a simple but effective

compatible identification model is proposed, whese assign a sub class of possible deformation
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modes and we constraint that the power dissipagdaldcks assemblage, equation ( 5), is equal to
the power dissipated by the equivalent model, egugt 7 ). For this purpose, field\s/(x) and
¥(x) should be a priori chosen in a pre-assigned dfstementary deformations in the unit cell,
corresponding to actual failure mechanisms occgrinnpresence of infinitely resistant blocks with
weak joints reduced to interfaces. From a practjpaint of view, fields w(x) and ¥(x),
corresponding to each sub-class of regular moti@ms, obtained assuming alternatively one
component of vectoE unitary and setting all the other components e¢miaero, subsequently
choosing the most simple polynomial expressionsv\f(x) and ‘I’(x) that comply with equation ( 7

). Once fieldsw(x) and ¥(x) are known, rotations rates and velocities of dzlobk belonging to

the REV in the heterogeneous model are determisgainang pointx as the centroid of the block

under consideration.
For instance, when onl§,, 20 is applied on the REV, an obvious choice \fv(lx) and ‘I’(x) fields
is:

Y=y =y =0

W1:E11X1
w, =0
w, =0 (8)

Equation ( 8 ) allows to directly determine vel@stand rotations of each block, provided that the
coordinates of the respective centroid are intredun ( 8 ).

For instance, Figure 7-a shows the effect on aamauyg assembled REV of a homogeneous
deformationE,,#0 with all the other strain measures set to zénmust be noted that both head and
bed joints are involved in the dissipation indutgdthis deformation. Figure-@ shows the effect
on the block-work of a homogeneous deformation hictv E,, + E,,#20 (shear mode) and all the
other strain measures are set to zero, whereaseFigt shows the effect of a vertical in-plane
homogeneous deformatidg,,20. Differently from a regular assemblage of blodks,an irregular

texture it is interesting to notice that both haad bed joints may contribute to the overall stteng
of the continuous material. On the contrary, whealithg with quasi-periodic masonry (i.e. with a
horizontal alignment along bed joints), failure dvea macroscopic deformatios,,#0 involves
only the bed joints, similarly to the regular rumgibond case. Similar considerations may be
repeated for the out-of-plane deformation modegjotied from Figure 7-d to -f. The irregular
disposition of blocks causes, analogously to thplame case, bending moment and torsion both in
the head and bed joints.



2.5 Stochastic masonry failure surfaces

In this section, following the original formulatigorovided by Suquet [25], a general numerical
procedure for obtaining macroscopic masonry failstefaces is presented. Both static and
kinematic theorems of limit analysis can be usedtifics purpose. In this framework, it is worth
noting that several different models have beengmiesl in the literature for the evaluation of in-
plane (e.g. Milani et al. [20]) and out-of-plane soary failure surfaces (Sab [26], Cecchi and
Milani [22]).

One of the basic assumptions of this approachesutilization of associated flow rules for the
constituent materials. Nevertheless, it is wortmtim&ing that sliding occurs in mortar joints with
almost zero dilatancy, with typical non-associayiviThe violation of one of the hypothesis of
classic limit analysis [18][19], implies that th@iqueness of the ultimate load may be lost and a
multiplicity of solutions can exist, see Begg ansghiwick [24]. On the contrary, the assumption of
associated flow rules ensures the uniqueness ofultireate load factor and leads to simple
optimization problems which can be handled easiti Vinear programming (LP) packages.

A failure criterion ¢:¢(c) for the joints must be incorporated. The basidufai modes for

masonry walls with weak mortar are a mixing of isigdalong the joints (a), cracking of the joints
(b) and compressive masonry crushing (c). Theseesodn be well reproduced adopting a Mohr-
Coulomb failure criterion combined with a tensiart-off and a cap in compression, see Figure 8,
as suggested by Lourenco and Rots [1].

Aiming at treating the problem in the frameworkiiokar programming, within each interfateof

areaA', a piecewise linear approximation of the failuneface ¢ = ¢(c) is adopted, constituted by

. T . .
n,, planes of equatiod| 6 =c' 1<i<n,,, wherec = [033 T3 rzg], 0,; is the normal stress on
the interface andr,, and r,, are tangential stresses along two assigned pdam#addirections

(Ao, +A'r,+A’1,,=c' is the i-th linearization plane of the interfacd , with

Al = [Al' A" AY ]), Figure 5 and Figure 8.
The jump of velocity on interfaces varies linearythe discrete model, equation ( 4 ). Thus, for

each interface, onl@glh. independent plastic multiplier rates have tortteduced as optimization

lin
variables. Furthermore, for each interfatebetween contiguous blocks, the following equality
constraints between plastic multiplier ratds(¢,,&,) and jump of velocity[v(fl,fz)] on the

interface must be imposed:

Min

V&0 = 2 6. ) 5 (9)
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where:

- F,:(El,{z) is a local frame of reference laying on the irde€f plane and with axig,
orthogonal to the interface plane, Figure 8;

- [V(£,.8,)] =[Av,, Avy, Av, ] is the jump of velocity field (linear ifé,,£,)) on the | -th

interface andAv; corresponds to the jump along the direction

- A'(&,.&,) is the i-th plastic multiplier rate field (linear ir(fl,{z)) of the interfacel ,

associated to thie-th linearization plane of the failure surface.
It is worth noting that, in order to satisfy eqoati( 9 ) for each point of the interfade, nine
equality constraints for each interface have tanggosed, which corresponds to evaluating (9 ) in

three different position®, :( 0 ;k) on the interfacd as follows:
Mer,en )| => A (e, ;k)g—f k=123 (10)
i=1

Here, /ii'( 0, zpk) is the isi-th plastic multiplier rate of the interfacé corresponding to

Pk:(lpk’ 2Pk)-

From the previous equations, the internal powesipéed on thd -th interface can be written as:

= Moo = [S2(6.6) 32| oo =130 S e en (11)

It is worth noting that in equation ( 11 ) only ékr of the four plastic multipliers are linearly
independent, whereds = 4depends linearly ork = 1,2,3 (the plastic multiplier field is linear on
the interface).

The external power dissipated can be writtemgs= (Eg +AX] )D, whereX, is the vector of dead
loads, A is the load multiplier,X] is the unitary vector of loads dependent on tlael lowultiplier
(i.e. the optimization direction in the space ofcnescopic stresses) and is the vector of
macroscopic kinematic descriptom®. collects in-plane deformation ratek,( 05(E,, + E,,) E,,),
Kirchhoff-Love out-of-plane curvature ratesy,( (., + X».)/2 X»,) and out-of-plane shear
deformation rates ), and y,,). As the amplitude of the failure mechanism isitaaiby, a further
normalization conditiont; D = Is usually introduced. Hence, the external poweromes linear
in D and A and can be written as follows,, = £ D + /.

From the above considerations, optimization vaesblnecessary to determine masonry

homogenized strength domain are respectively tlieeowv@f macroscopic kinematic descriptdds

and the vector of assembled plastic multipliergateat each mortar interface.

11



From equations ( 8 ) and ( 4 ), a further setmddr equality constraints has to be imposed at each

interfacel , involving vectorD and jump of displacements fie[d(fl,fz)]:
[V(fvfz)]:GI(Evfz)D (12)
where G'(£,,&,) is a 3x8 matrix that depends only on the geomefryithe interface under

consideration. It is interesting to notice thadnfrequations ( 10 ) and ( 12 ), the jump of velesit

[V(El,fz)] does not enter as optimization variable in thenoghation problem at a cell level, being
G'(R)D=[v(R)] :Z/l,'( &S )g—¢ P01 . In particular, from equations ( 10 ), ( 11 ),X }land
i=1 C

from the kinematic formulation of limit analysidet following constrained minimization problem

has to be solved to obtain masonry failure surfaces

r,'D=1 (13)
o' (R =RJ= 3 (6 £2)22 R0
()

i=1

Here, n' is the total number of interfaces considered &ndis the vector of total optimization
unknowns. The linear programming problem ( 13 )olegs a relatively small number of

optimization variables and therefore can be solwgdneans of simplex or interior point methods

(vector X of global unknowns collects onlgh, ' plastic multiplier rates and 8 macroscopic

lin
kinematic variablesD). When it is required to investigate only masohgmogenized in-plane
behavior, D is a vector of length three collecting in-planecnaacopic deformation ratesE(,,

05(E,, + E,,) andE,,), whereas masonry macroscopic strength domairsisface in the space of
membrane actionsN;;, N,, and N,,). Obviously, the optimal valuel obtained from ( 13 )

represents only a point ob, i.e. the intersection between surfabeand the direction unit vector
X, see also Figure 9. Consequently, in order toioldareliable linear approximation ab by
means of Delaunay tessellations, the linear progriaug problem ( 13 ) has to be solved several
times, each problem corresponding to a differeotaghfor X, direction.

Usually, masonry failure surface sections are mpred assuming a fixed angle between the
bed joint and the macroscopic horizontal actior, §. Such sections are obtained keepihdixed
and varying point by pointy angle, defined ag =tan'lawlahh, where g, is the macroscopic

vertical action. In this framework, vect&; has the following form:

12



[EEY

%, = (cody)(1+ cod(29)) +sin(y )1 - cof29))

2
£,, = (cody)L-cod2s))+sinfy )+ cod29)) (14)
5= % (codw) cod29) - sin(y) cod29)) tan(29)
zl— 456 = 0

As already pointed out, we limit here the studyntglane actions, but the procedure is much more

general and random out-of-plane failure surfacdisb&ipresented in another contribution.

2.6 Two meaningful application at a cell level

Two meaningful applications at a cell level areehanalyzed, the first consisting in a random
assemblage of blocks with variable size (i.e. Watigth and height regarded as stochastic variables,
without preferential lines in their disposition as§e 1) and the second relying in a so-called quasi
periodic disposition of blocks, i.e. where horizralignment along bed joints is preserved (Case
I). In both cases, large scale Monte Carlo simaoitet are performed (10,000) at fixed orientations
J of the central block with respect to the directmfrhorizontal membrane loads. Three different
J angles are considered, in analogy to Page [27¢réxental results, namely 0°, 22.5° and 45°.
For each orientationy and at a fixed REV geometry (corresponding to raglsi Monte Carlo
simulation), failure surface sections are obtaiwéti the model proposed investigating 40 different

¢ angles equally stepped, thus requiring to soleeaiively a total of 1,200,000 optimization

problems ( 13 ) for each example.

In both cases, due to the very limited number ofialdes involved in the simulations, the
computational effort required to perform such lasgale Monte Carlo simulations did not exceed
3,600 seconds for eacl section, meaning that the procedure proposed neay lvaluable
numerical tool for all practitioners interested doreliable and fast estimation of collapse load

distributions of random blocks assemblages.

2.6.1 Case I: random assemblage through blocks with variable dimensions

Let us consider a masonry wall arranged througtanglar blocks disposed in irregular texture
(Case 1) and mortar joints reduced to interfacdss Ppattern typology is somewhat diffused in
historical buildings (see Figure 1-a) and it isréiere of interest to determine typical REV behavio
near failure when loaded in-plane. We assume ferbilocks a stochastic normal distribution for
length L and height H, with mean values equal t0 a@d 200 mm respectively for L and H.
Standard deviations are set equal to 80 and 60 espectively for length and height. Mechanical

properties at failure adopted for the constitueatamals are summarized in Table I. In particular,
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for mortar joints, a linearized Lourenco and Rdfsffilure criterion is adopted, whereas blocks are
assumed infinitely resistant.

In Figure 10, 0,, -0, masonry in-plane strength domains obtained with riiodel proposed

sampling a total number of 10,000 different REVd assumingd =0° are represented. The same
results are replicated respectively in Figure 1d Bigure 12 ford =22.5° andd =45°.

For the sake of completeness, in FiguresiBe typical failure mechanisms obtained at figed

andJ angles are reported for some sampled REV dispasiti
From an overall analysis of simulations results, ftiilowing remarks are worth noting:

1) The minimum envelope of the resultant homogenizaiture surfaces is isotropic and
obviously corresponds to a homogenized failure as@fobtained supposing masonry
constituted by mortar joints reduced to interfaicésrconnected by blocks disposed in stack
bond texture (i.e. with both vertical and horizdrilgnment).

2) The possible non Gaussian behavior of the failundiptiers (see for instance Figure 12) at

different ¢ angles of the resultant homogenized failure serfean be easily explained
remembering that very different failure mechanisans associated -at fixegt angles- to

very different failure multipliers. Therefore, is istraightforward to conclude that such
distributions collect failure loads not necessadbnnected between each other, because
they are related to different failure mechanisms.

3) The very limited computation effort required to feem the simulations justifies the two
steps procedure here proposed, consisting in tmigedailure surfaces in a database to
implement successively at a structural level fopermpbound limit analyses of entire

structures.

2.6.2 Case ll: random assemblage with preferential horizontal disposition

A random assemblage of blocks with preferentializomtal disposition is studied as a second
example. The same stochastic distribution of tlevipus example is assumed here for the block,
but maintaining in this case the horizontal aligninéixed and staggering blocks along two
contiguous rows. Mechanical properties at failudeped for the constituent materials are the same
of the previous example, see Table I.

In Figure 14,0, —o,, masonry in-plane strength domains obtained withrttodel proposed at
fixed & angle equal to 0° and resulting from a large shbate Carlo set of simulations is shown.
The same results are replicated respectively inr€id5 and Figure 1for J=22.5° andd =45°.

For the sake of completeness, in Figuresaihe typical failure mechanisms obtained at figed
andd angles are reported for some sampled REV dispaositi
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From an overall analysis of simulations results, ftiilowing remarks are worth noting:

1) due to the horizontal alignment of the blocks farghia continuous bed joint, there is no
variability of vertical strength. In fact, the REAfways fails along the preferential plane of
weakness formed by the bed joint.

2) the typical anisotropic behavior of masonry alohg material axes is more marked with
respect to the previous case. In Case |, the genesgor strength of the REV along
horizontal direction is essentially due to theadtetween blocks length and height >1. This
generates a small staggering of the blocks along tentiguous horizontal courses,
contributing to an additional horizontal resistanicethis case, blocks staggering is a priori
imposed in the disposition of the blocks and orfig position of the vertical joints is
stochastically perturbed, thus justifying the moraked anisotropic behavior of the REV.

3 Structural level implementation

A homogenized upper bound approach is utilizedHerstochastic structural analysis at collapse of
entire masonry walls. The formulation is based dniaagular discretization of 2D domains and on
the introduction of discontinuities of the velocftgld along the edges of adjacent triangles. Rer t

homogenization model, also a mesh adaptation basedsequential linear programming approach
recently presented by Milani and Lourenco [28]dsated, in order to obtain reliable evaluation of
collapse loads even with very coarse meshes (flawiag expensive Monte Carlo simulations at a

relatively low computational cost).

For each elemenE, two velocity unknowns per node-u!, and u;y (one horizontal and one

vertical, see Figure 18-a) are introduced, so thatvelocity field is linear inside an element,
whereas the strain rate field is constant.
Jumps of velocities on interfaces are supposedaty linearly. Hence, for each interface, four

unknowns are introduced\(1' = [Av1 Au, Av, AuZ]T), representing the normal\y, ) and tangential
(Au,) jumps of velocities (with respect to the discontty direction) evaluated on nodes 1 and

i =2 of the interface (see Figure 18-b). For any phimazles on the interface between two adjacent

triangles (m)—(n), the tangential and normal velocity jumps can héten in terms of the
Cartesian nodal velocities of elemer(m)—(n) (Sloan and Kleeman [29]), so that four linear
equations in the formAu®™ + ASu®™ + A%Au' =0 can be written for each interface, wheré"

andu™ are the6xl vectors that collect velocities of elemefis) and (n) respectively.

For the continuum, three equality constrains regresg the plastic flow in continuum (obeying an

associated flow rule) are introduced for each el@me
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: ou, Ou, Ou, Qdu ¢ OS"" E : ,
. —[ X Y g = )F , where¢$ is the plastic strain rate vector of element

&y =
0x oy 0x oy ox
E, Af =20 is the plastic multiplier andS™™ is the (non) linear failure surface. A linear

approximation (withm planes) of the failure surface is at disposahia form S™" = A" <b™;

therefore three linear equality constraints permelet can be written in the form
A%uE + ASLE =0, where u® is the vector of element velocities and is a mx1 vector of

plastic multiplier rates (one for each plane oflthearised failure surface).
For the interfaces, a 2D projection of the 3D falsurfaces is required, which depends on the
orientation J of the interface with respect to the horizontalediion. The general procedure
suggested by Krabbenhoft et al. [30] is here adbpied the reader is referred there for further
details.
Once the linearised domains for interfaces areigeavby means of (6), the power dissipated on
the discontinuities is computed introducing plastigltipliers for every interfackas follows:
o' (€)= i - E (oo,

= (15)

Where £is the abscissa df ch“) are constant gradients for the failure surfacendpei® , thei™

segment of the multi-linear failure surfacelf) are the interface plastic multiplier rates, evtdda
in correspondence of, integrated along the infinitesimal thickness wiferfaces and associated
with thei™ segment of the multi-linear failure surfaa®y and Au have been already introduced
and are respectively the normal and tangential jomgelocities on the discontinuities.
After some elementary assemblage operations, alesitmgar programming problem is obtained,
where the objective function consists in the miziation of the total internal power dissipated:

min{CTi B + CTi =)

A®U =pb™
suchthat A'*=20
AF=2>0 (16)

where:
- CL andC/ are the (assembled) right-hand sides of the irgigsathat determine the linearised

failure surface of the homogenized material respelgtin the continuum and in the interfaces.

- U= [u LB Ayl )L'*a’*J is the vector of global unknowns, which colledie wector of

assembled nodal velocities J, the vector of assembled element plastic muétipiates £5°°), the
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vector of assembled jump of velocities on interfag@su'**) and the vector of assembled interface
plastic multiplier ratesX'=).

- A% is the overall constraints matrix and collectsoedly boundary conditions, relations between
velocity jumps on interfaces and elements velogitieonstraints for plastic flow in velocity

discontinuities and constraints for plastic flowciontinuum.
It is worth noting thatCLA®* and CT1'* in the objective function represent respectivélg t

total power dissipated in continuum and in inteefac

When dealing with the homogenized approach, a naelstptation based on a sequential linear
programming scheme (SLP, see the original formutagiroposed by Milani and Lourenco [28]) is
adopted in order (-a) to utilize very coarse mesaed hence to take advantage of the most
important potential of homogenization (i.e. dismeghlocks pattern at structural level) and (-b) to
improve step by step the reliability of the failload provided by a coarse mesh.

A full description of the SLP scheme adopted isilalsée in [28]. Here, it is worth noting that,
differently from the original formulation proposéa [28], (a) linear triangles are used instead of
splines based elements and (b) plastic dissipasoallowed also inside triangular elements.
Convergence is usually reached after a few itamati(c to 15) and therefore the procedure is
particularly suited to be extended to the Montel@&simulations here performed.

All the numerical simulations reported in the papave been performed under Matlab 7.8.0 on a
Windows Vista PC equipped with an Intel Core 2 RU @ 2 GHz and 4 GByte RAM. Here it is
worth noting that, from a numerical point of view parallelization of the analyses through large
clusters would be very beneficial for the problenhand, since large scale Monte Carlo simulations
would require much less time to be performed omveosely, at fixed time, the number of
simulations would increase drastically. Howevesirsgle PC commonly available in the market
stock has been used having in mind that resultsldhae replicated by any practitioner interested in
a relatively fast stochastic analysis of real sealgineering structures.

4 Deep beam subjected to a vertical concentrated load

A masonry deep beam of dimensions 600x200 cm aedarig random texture with blocks
dimensions (mean values) equal to 300x120 mm (kengtwidth) and simply supported in
correspondence of the first and last block of ih& fow of blocks starting from the bottom (see
Figure 19) is considered. A vertical concentrateadlis placed at the middle top of the wall and
incremented until failure =300 mm). The behavior at failure of the panel asag for the blocks
the dispositions shown in Figure 2 is extensivehalgzed, with comparisons with alternative

expensive heterogeneous approaches. In both madeistional failure surface with limited tensile
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strength and cap in compression is considered @rmar and Rots [1] failure criterion) for mortar

joints. Mechanical properties assumed in the sitrarla are summarized in Table II.

4.1 No horizontal alignment (Case | disposition): homogenized

analyses

A set of Monte Carlo simulations is performed oe $tructural model at hand, discussing the effect
of changing the coefficient of variation (COV) diet height and the length of the blocks, assuming
the wall arranged through the first dispositiorblifcks (Case 1) discussed in the previous sections.
Six different values of COV for H and L are invegtied, respectively equal to 2.5-5-10-15-20-
25%. At fixed values of H and L COVs, a set of ®0donte Carlo simulations is performed,
meaning that a total of 72,000 structural analgsesrepeated for the problem under consideration.
In Figure 20, results obtained from the numeridcauations are represented in terms of empirical
cumulative distribution functions (ECDFs), at fixehgth and height COVs. Mean values of the
distributions estimated thorough the Monte Cartausations are also represented, along with the
deterministic values obtained assuming a stack lamada running bond disposition for the blocks,
using respectively black, red and purple thick estv

The following four key aspects are worth notingnfrdhe distributions, confirming that the
procedure proposed is able to reproduce accurabeiyyat a fraction of the computational time
needed by standard heterogeneous approaches-hhedreof irregular assemblages of blocks near
failure:

1. When a small COV for both the height and the leraftthe blocks (upper left diagram of
Figure 20) is assumed (e.g. 2.5%), the behaviothefwall is closer to the stack bond
situation. As can be seen from Figure 2-a, duéeocatdopted definition of geometry, Case |
arrangement reduces to a stack bond dispositiom\hend L COVs tend to zero.

2. The mean failure load and standard deviation irsgedth the height H and length L COVs.
Both parameters play an important role, with ahdligmore relevant role on the length: for
a L COV of 5% the mean failure loads are 107 an8 KI®, for a H COV of 5% and 25%
respectively; for a L COV of 25% the mean failunads are 131 and 146 kN, for a H COV
of 5% and 25% respectively.

3. The limiting upper bound case of the running béexture cannot be achieved with the
increasing COVs, because the extra resistance altigetfull staggering of the blocks is
never reached.
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4.2 Case Il disposition: quasi periodic arrangement

A second set of Monte Carlo simulations (2,00q)agformed assuming a quasi periodic disposition
of the blocks, i.e. imposing that bricks heightanstantly equal to the mean value and considering
the second disposition of the blocks shown in Feglir(Case Il). In order to validate the results
obtained with the model proposed an expensive fsheterogeneous Monte Carlo simulations is
also performed, in which mortar joints are reduteéhterfaces and blocks are supposed infinitely
resistant.

The standard deviation for blocks length is assumgaal to 60 mm whereas blocks height is
assumed constantly equal to 120 mm. Wall thickreeassumed equal to 100 mm.

A typical heterogeneous discretization by means todngular elements with interfaces
discontinuities for the wall under consideratiordepicted in Figure 19-b, whereas the mesh used
when dealing with the homogenization approachpsmed in Figure 19-c.

The aim of the example is to compare failure loastridbutions, namely mean value, standard
deviation and possible non Gaussian behavior, amtliré mechanisms provided by the
homogenized and the heterogeneous model. In thistste the collapse is due to the formation of
a central plastic bending hinge, and hence temsdsonry strength along the horizontal axis is
predominant. Since horizontal masonry strengtlomesvhat dependent on blocks staggering (see
for instance [20]), the output value of the struatdimit analysis (failure load) has a statistical
distribution strictly connected to blocks lengthigdility.

It is worth noting that, as a rule, a single siniolaon the heterogeneous model required around 20
minutes to be performed, whereas less than 120ndecwere required for the homogenized
approach. This justifies the relatively limited noen of simulations performed (2,000) to evaluate
the output distributions, which in any case reqli@eound 30 days of processing time only for the
heterogeneous model. Considering also that threesheoere required to collect the database of
failure surfaces (see previous sections) for thedgenized approach, around one day was needed
to complete the homogenized simulations, meaniraj the simple two steps limit analysis
procedure here proposed competes very favorably witect models based on a distinct
discretization of blocks and joints.

In Figure 21, a comparison between deformed shatesollapse obtained with a typical
heterogeneous mesh and the homogenized approaahr{fesh after 14 adaptations) is represented
(failure mechanisms corresponding to the averaflapse load value). As it is possible to notice,
an asymmetric failure is reached, which is obviguskconsequence of the asymmetric disposition
of the blocks. In any case, the failure mechanisavided by the heterogeneous model is almost

perfectly reproduced by the homogenized approacdhallff, in Figure 22, the failure load
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distribution provided by the heterogeneous andhbmogenized approach are compared, along
with the corresponding confidence bounds. The ibigions are quite similar, with rather similar
average values (5% difference) and standard dewmi{1% difference). As expected, the behavior
of both distributions is almost Gaussian (kurtogédue of three), with very low asymmetry

(skewness of zero).

5 Masonry shear wall

A masonry shear wall, originally tested with a regulisposition of bricks by Raijmakers and
Vermeltfoort [31], is here re-analyzed with a ramddisposition of bricks. The width/height ratio
(L/H) of the shear walls is 990 /1000 ([mm]/[mmihe walls were built up with 18 courses of
bricks, from which 16 courses were active and Zewsamped in stiff steel beams, Figure 23. The
brick dimensions are 210 (mean value)x52x100°namd the mortar joints are 10 mm thick. A
vertical pre-compression logglequal to 2.12 N/mfis applied on the top, keeping the resultant
vertical load constant during the complete loadimgcedure. The stiff steel beam did not allow
rotations of the top and was subsequently push#édami increasing horizontal force.

In order to preclude top horizontal beam rotatioims,the limit analysis simulations, vertical
displacements of the nodes belonging to the hotiaop edge were constrained to be all equal.
Analogously to the previous case, two random briaksemblages are analyzed, corresponding
respectively to the arrangements depicted in Fi@ur@ and —b and extensively analyzed at a cell
level in the previous section.

In both models, for mortar joints a Lourenco andsH@] failure criterion is used, with mechanical

properties summarized in Table IIl.

5.1 No horizontal alignment (Case | disposition): homogenized
analyses

As for the deep beam example, a preliminary sétlofite Carlo simulations is performed on the
shear wall, discussing the effect of changing t@/@f height and length blocks and assuming a
disposition of blocks without horizontal alignmei@ase | arrangement). Six different values of
COV for H and L are investigated, respectively éqo&.5-5-10-15-20-25%. At fixed values of H
and L COVs, 2,000 structural analyses are repeatedrder to obtain empirical cumulative
distribution functions (ECDFs) of the failure lodbm the homogenized model. In Figure 24,
numerical simulations results are depicted, reprtasg ECDFs of the failure total shear at the base

corresponding to fixed length and height COVs. maated distributions mean values, deterministic
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failure loads assuming a running bond and a staxid ldisposition are also represented, using
respectively black, red and purple thick curves.

Similarly to what pointed out for the deep beamecaghen a COV near to zero for both the height
and the length of the blocks (upper left diagrarfigiure 24) is considered, the wall approximates a
stack bond disposition. Intuitively, failure loasdard deviation tends to increase increasingkbloc
dimensions COVs. Analogously to the previous cabe, upper bound is not theoretically
represented by a running bond texture, becausetaa mesistance (both in shear and in vertical
membrane action) may be present in Case |, dueltsthggering of the blocks. Moreover, the
stack bond lower bound is well approximated byltve COVs, which is again due to the adopted
definition of geometry, and not necessarily repneséhe physics of irregular masonry bonds.
Finally, it is worth noting that, considering tHadth failure is dominated by shear resistance and
standard deviation of strength distributions in epwhear is smaller than the horizontal one
(compare, for instance Figure 10-b and Figure 14tds very straightforward to conclude that

failure load standard deviation is generally smadtanpared to that of the deep beam example.

5.2 Case Il disposition: quasi periodic arrangement

A second sub-set of Monte Carlo simulations isqrened for the case at hand, assuming a quasi-
periodic blocks disposition (Case Il of Figure ®)th a standard deviation for bricks length equal t
50 mm.

Meshes used for the heterogeneous and the homegdemazt analyses are depicted in Figure 23.
Two rows of elements at the base and at the tdheotvall (blue or darker triangles in Figure 23)
have been assumed infinitely resistant in ordemiodel the effect of the stiff steel beam.
Homogenized mesh of Figure 23 refers to the mesd @ the beginning of the SLP mesh
adaptation.

The aim of the example is to compare failure loads failure mechanisms provided by the
homogenized and the heterogeneous model in a dae@ whe collapse is due to the formation of a
inclined strut, with a plastic region of signifidadimension at the compressed toe. Differently to
the previous example, a complex interaction amantsile, compressive and shear strength of
masonry contribute to the overall resistance ofth#.

Due to the relatively small number of elements neglifor a heterogeneous discretization, only
two minutes and less than 20 seconds were reqtorea single heterogeneous and homogenized
Monte Carlo simulation respectively. Hence, a tafall0,000 simulations to evaluate the output
collapse load distribution have been performeduiregty around 20 days of processing time for the

heterogeneous approach. Also in this case, the genmation model competes favorably with
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micro-modeling, requiring only three days, comprisil0,000 simulations and the preliminary

evaluation of the stochastic failure surface.

In Figure 25, a comparison between deformed shapesllapse obtained with a heterogeneous
mesh and the homogenized one (final mesh aftet amgptations) is reported (failure mechanisms
correspond to the average collapse load values)it As possible to notice, an almost perfect

agreement between deformed shapes is obtainedjmgdhat the procedure proposed may be used
for a reliable evaluation of failure mechanisms aalapse loads.

Finally, in Figure 26, failure loads distributiongrovided by the heterogeneous and the
homogenized approach are represented, with theesmonding confidence bounds. Again, the

distribution provided by the homogenized approachery similar to the heterogeneous one, with
comparable average values (2% difference) and atdmdeviations (6% difference). As expected,

the behavior of both distributions is almost Gaarsswith low asymmetry.

6 Conclusions

A simple homogenized rigid-plastic plate model forfast and reliable analysis of masonry
structures constituted by blocks disposed in irf@gtexture has been presented. A two-steps
approach has been adopted, including a prelimihamgogenization of the random assemblage of
bricks, followed by structural Monte Carlo homogesd FE analyses to compare to full expensive
stochastic heterogeneous approaches.

A full description of the model has been given ¢desng a representative volume constituted by a
generic regular block with parallelepiped shapertinnected with its neighbors. A sub-class of
possible elementary deformation modes (mimickingzomtal and vertical stretching and a pure
shear deformation) acting in the unit cell has baepriori chosen in order to describe joints
cracking under normal and tangential actions. Thewer dissipated in the discrete model has been
equated to that dissipated in a continuum macrescip equivalent plate. Such identification is
based on a simple correspondence between motiothe iBD discrete model and the continuum.
Following what was presented in the case of regaksemblages of blocks, joints have been
reduced to interfaces with a cohesive associat@tiofral behavior with limited tensile and
compressive strength, whereas blocks have beemseginfinitely resistant.

Two different dispositions have been investigatedetail, assuming that block dimensions exhibit
a stochastic variability with predetermined randdistribution. In this way, the horizontal position
of vertical joints as well as the vertical positiohhorizontal joints has been treated as stadiltyic

variable.
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After a fast numerical evaluation of stochastic ommg failure surfaces to use (step I), a masonry
deep beam and a shear wall have been analyzedtaictural. In the first case, failure is mostly
controlled by the tensile strength parallel to jimats, link to the staggering of the joints, whese

in the second case, a complex failure mode invglténsion, shear and crushing is present. The

speed up of the proposed methodology in the caskestpresented is in the order of 10 to 30.
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8 Figures

-a -b
Figure 1: Typical random patterns in existing hist@ buildings. —a: without

horizontal alignment. —b: with horizontal alignment

Figure 2: Randomly generated REVs. —a: withoutZworial alignment (Case I). —b: with
horizontal alignment (Case II).
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Figure 3: Masonry kinematic model. Two adjacentk#(A, centroidC” and B, centroid

C®) connected by means of a mortar interfacehere plastic dissipation occurs. For each
block three velocities unknowns and three rotataies must be introduced in the
optimization problem at a cell level (infinite stigth of blocks hypothesis).
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Figure 4: Reference surface chosen for masonry.
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Figure 5: Jump of velocities and stress field actin an interfacé between contiguous
blocks A and B .
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continuous model.
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Figure 7: Elementary homogeneous deformations eghpdi the representative volume
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Figure 8: Piecewise linear approximation of théufa criterion adopted for joints. Mohr-

Coulomb failure criterion with tension cut-off ahdearized compression cap.
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Figure 10: Case | results, = 0°. Monte Carlo failure surfaces in the plagig - o, .
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Figure 11: Case | results, = 225°. Monte Carlo failure surfaces in the plagg - o, .

34



A 9=45° 0,

Material &
I

| | l
| |
T \ﬁ o
a ff REV centre .

-2 . -1 0.5 0 0.5
T [MPa]

Figure 12: Case | results, = 45°. Monte Carlo failure surfaces in the plaog,- o, .
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Figure 13: Case |. Some typical deformed shapelkdpse obtained with the kinematic model

proposed.
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Figure 15: Case Il results) = 22.5°. Monte Carlo failure surfaces in the plaog, - o, .
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Figure 16: Case Il results) = 45°. Monte Carlo failure surfaces in the plaog, - o,,
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Figure 17: Case Il. Some typical deformed shapelapse obtained with the kinematic model

proposed.
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Figure 18: Finite element used for the structut@tisastic limit analysis.
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Figure 20: Deep beam example. Failure load diginbuat different COVs of blocks length and

height (Case I).
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Figure 21: Deep beam example. Failure mechanismiged by a random heterogeneous mesh

and the homogenized approach.
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Figure 22: Deep beam example. ECDF of the failusadl provide through a direct

deep beam test
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Figure 23: Shear wall example. Geometry, loadingl aonstraints condition, typical

heterogeneous and homogenized mesh used.
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Figure 24: Shear wall example. Failure load distidn at different COVs of blocks length and

height (Case 1).
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Figure 25: Shear wall example. Failure mechanisoviged by a random heterogeneous mesh

and the homogenized approach.
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Figure 26: Shear wall example. ECDF of the failload provide through a direct

heterogeneous approach a homogenized limit anaiysigations.
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Tables

Table I: Representative element of volume levelcMical characteristics assumed for mortar

joints reduced to interfaced (: tension cut-off,c : cohesion,®: friction angle,f_: compressive

strength,®, : shape of the linearized compressive cap).

f, MPa c ® f, MPa o,

0.05 1.4 f, 37° 15 60°

Table II: Structural level, deep beam wall. Mecleahicharacteristics assumed for mortar joints

reduced to interfaces f(: tension cut-off, c : cohesion, ®: friction angle,f.: compressive

strength,®, : shape of the linearized compressive cap).

f, MPa C ® f. MPa D,
0.29 14 f, 30° 8.6 60°
Table IlI: Structural level, shear wall. Mechanicztharacteristics assumed for mortar joints

reduced to interfaces f(: tension cut-off, c : cohesion, ®: friction angle,f.: compressive

strength,®, : shape of the linearized compressive cap).

f, MPa c P f. MPa P,

0.16 14 f, 37° 115 30°
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