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Abstract In a distributed embedded system, it is often necessary to share variables
among its computing nodes to allow the distribution of control algorithms. It is
therefore necessary to include a component in each node that provides the service
of variable sharing. For that type of component, this paper discusses how to create a
Colored Petri Nets (CPN) model that formally expresses the following elements in
a clearly separated structure: (1) assumptions about the behavior of the environment
of the component, (2) real-time requirements for the component, and (3) a possible
solution in terms of an algorithm for the component. The CPN model can be used
to validate the environment assumptions and the requirements. The validation is
performed by execution of the model during which traces of events and states are
automatically generated and evaluated against the requirements.

1 Introduction

In this paper, we describe an approach to requirements engineering using Colored
Petri Nets that has been devised during an industrial case study concerning an au-
tomated hospital bed. A control system allows the bed to be adjusted into different
positions by moving the sections on which the mattress rests. The control system
depends on transparent sharing of variables among a group of embedded nodes. For
this purpose, a communication component has been developed and, in this paper, we
focus on the documentation and validation of the requirements for this component.

Fig. 1 shows a simplified overview of the control system. The system consists of
a collection of autonomous embedded nodes, connected by a communication bus.
Each node is physically connected to a collection of actuators (A1...3) and sensors
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(S1...2) that are controlled and monitored by local applications (App1...5). The control
system is distributed, because an application running in one node is able to monitor
sensors and control actuators connected to any node with the limitation that each
actuator is controlled by exactly one application. Remote monitoring and control is
made possible by a collection of shared variables. A variable value can be used for
(1) the current reading of a sensor (e.g. an angle or a push button), (2) the current
output for an actuator (e.g. the displacement of a linear actuator), or (3) a link be-
tween two applications. Two kinds of variable instances exist: originals and copies.
A variable original exists in the node where new values to the variable is written by a
locally running application. One example could be that App2 in Node1 periodically
reads a current from the S1 sensor and writes the measurement to the Var2 variable
original. In Node2, the application App3 relies on the readings of S1 for its task of
controlling the A2 actuator. For this reason, Node2 houses a variable copy instance
of Var2 that is kept updated to have the same value as the variable original and thus
providing the input from S1 to App3.
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Fig. 1 Informal system overview

The task of keeping variable copies updated with the values of their matching
variable originals is handled by the communication component that exists in each
node. Messages about variable values are exchanged among the communication
component instances through the communication bus. The component could be im-
plemented as for example software in a micro controller or logic in an FPGA. The
work presented in this paper focuses on the requirements for the communication
component. The following three requirements are informally specified and should
be seen as examples of the types of requirements we usually want to express using
the approach described in this paper:

Req. 1: Whenever the value of a variable original is changed, all matching vari-
able copies should be updated within a given period of time.

Req. 2: All variable originals are required to be unique.
Req. 3: Measured over any period of time, the percentage of time when the values

of variable copies match those of their matching variable originals should be
above a minimum level.
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2 The CPN Model

This section presents an approach to developing a CPN model that contains a formal
representation of (1) the assumed behavior of the environment of the communica-
tion component, (2) the real-time requirements, and (3) a possible solution satisfying
the requirements (i.e. an initial design for the communication component). The ap-
proach extends previous work [3, 10, 11] by the introduction of explicitly expressed
real-time requirements and validation of these.

CPN is a formal modeling language with a graphical representation. It is a high-
level extension of standard Petri Nets to which it adds: complex data types for token
values (allowing distinction of tokens and modeling of data manipulation), a pro-
gramming language for guard expression and data manipulation, hierarchical con-
structs, and real-time modeling through timestamps on tokens. The CPN language
is supported by CPN Tools [1], which provides a graphical modeling environment
where models are developed and experimented with through simulation and state
space analysis. The main concepts of the modeling language will be introduced in
the description of the CPN model in this section. Further details are found in [7].

The CPN model presented here is hierarchical and has the structure of a tree in
which the nodes are modules and the edges are connections between modules. The
root node is called the top module and is shown in Fig. 2. The module contains four
substitution transitions (double-edged rectangles) connected by arcs to four places
(ellipses) through which interaction and observation is possible. Both the arcs and
the places carry inscriptions. A substitution transition represents an instance of a
module which may be found in multiple instances throughout the model. A module
is itself a CPN structure that may contain further levels of substitution transitions
which allows the model to be structured using many hierarchical levels. In the top
module, the substitution transitions represent domains. The places represent col-
lections of shared phenomena about which the domains communicate. A shared
phenomenon is either a state or an event, which is controlled by exactly one domain
but may be observed by multiple domains. A domain controls a phenomenon if it
causes it to happen in the case of an event or cause it to change in the case of a state.

The shared phenomena places carry two kinds of inscriptions: color set defini-
tions (ev1, sv1, ev2, and ev2) and initial markings (originals(), copies(), etc.).
The color set definition of a place specifies the data type of the tokens that are al-
lowed to exist in the place. The names of the color sets match those defined in the
reference model introduced in [4]: the color sets ev1 and ev2 contain visible phe-
nomena controlled by the environment (variable originals and incoming messages
from the bus respectively) while the color sets sv1 and sv2 contain those controlled
by the communication component (variable copies and outgoing messages from the
nodes respectively). In addition to the visible/shared phenomena, all domains con-
tain collections of hidden and locally controlled phenomena. The initial marking
definition of a place tells which tokens will exist in a place in its initial state - for
state phenomena, this initialization value will be the initial value of the state and for
event phenomena it will typically be a token value representing the information that
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no events of a given type have been generated before the initial state of the model.
The actual contents of these phenomena places will be introduced in Section 2.1.

The top module captures a description of how we have chosen to structure our
assumptions about the environment in which our problem and its possible solution
is found. The top level module is structured in the same way as a Jackson Problem
Diagram [6] and can be described in the following way: the problem is to develop
a communication component that, given the environment assumptions about the be-
havior of the applications and the communication bus, performs the task of keeping
the variable copies updated to match the changing values of the variable originals
in a way that satisfies the requirements.

The top module contains a representation of the requirements connected to two
shared phenomena places (ev1 and sv1). This connection implies that the require-
ments be expressed in terms of the phenomena found in ev1 and sv1 - the variable
originals and copies. Implicitly, this tells us that requirements cannot be expressed
in terms of messages being exchanged through the communication bus since the
substitution transition has no connection to these phenomena places. The top mod-
ule represents the structure of the domains seen from one node and the modeling
language allows us to use this structure to represent the behavior of a parameterized
number of concurrently operating nodes.

2.1 Modeling Shared Phenomena

The shared phenomena allow interaction among domains. The trivial approach to
modeling the shared phenomena would be to define data types for events and states
of different kinds and then represent each instance of a state or an event as an in-
dividual token in a shared phenomena place. In fact, we have done so in previous
works [3, 10]. In the work presented here, we express requirements over timed traces
of phenomena observations (changes to states or occurrences of events) and we
therefore need a slightly richer representation of shared phenomena in the places,
namely one that preserves the history of phenomena observations rather than just
snapshots. For this purpose, the Trace color set has been defined (Listing 1). This

Fig. 2 The top module
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Listing 1 Definition of the Trace color set

1 colset NodeID = int with 1..NumberOfNodes;
2 colset State =
3 union VariableOriginalValue:VariableValue+VariableCopyValue:VariableCopyValue;
4 colset Event =
5 union MessageInValue:VariableValue + MessageOutValue:VariableValue;
6 colset PhenomenonID = union
7 VariableOriginalID:VariableID + VariableCopyID:VariableID +
8 MessageOutID:VariableID + MessageInID:VariableID;
9 colset Phenomenon = union State:State + NewEvent:Event + OldEvent:Event;

10 colset TimedPhenomenon = product Phenomenon * Timestamp;
11 colset Phenomena = list TimedPhenomenon;
12 colset Trace = product NodeID * PhenomenonID * Phenomena timed;

listing is an example of declarations in the CPN model expressed in terms of the
built-in functional language CPN ML - a variant of Standard ML. The Trace color
set is a superset of all the color sets found in Fig. 2 (ev1, sv1, etc.).

The listing contains the definitions of the two kinds of phenomena (states and
events), introduces timestamped phenomena, and defines a trace to be a triple con-
taining the (1) identity of a node, (2) the identity of a phenomenon, and (3) a list
of timestamped phenomena occurrences/changes. The PhenomenonID color set is a
union type of a collection of different identifiers. This is practical since some phe-
nomena may need to be identified using an index and a name, while others may be
more appropriately identified using an enumerated value or a string. The union type
approach is also used for the phenomenon values: this is again practical because it
makes it possible to use different data types of varying complexity to represent dif-
ferent phenomena. An event is either old or new: a NewEvent element is used to rep-
resent an event that has occurred but has not yet been observed while an OldEvent

represents an event that has been observed. This makes it possible to ensure that
the occurrence of an event is only detected once in each observing node. When an
observable phenomenon occurs in a domain, this is recorded by adding an element
to one or more trace tokens (one token exists per observing node).

The addition of elements to traces is performed using two functions state and
event. In the case of the occurrence of an event, a NewEvent element is added. In the
case of a state change, a new element is only added if the state indeed changed to a
new value. In both cases, the new element is associated with a timestamp indicating
the model time at which the phenomenon occurred.

2.2 Representing Environment Assumptions

Following the structure found in Fig. 2, the environment of the communication com-
ponent consists of the applications and the communication bus. The communication
component interfaces with these two domains through phenomena related to the
variables (originals and copies) and messages (outgoing and incoming) respectively.
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A description of the structure of the environment is captured in the top module
(Fig. 2), while description of the assumed behavior of the domains environment is
found in the Applications and CommunicationBus modules.

The Applications module (not shown) describes assumptions about how the
applications in the nodes write new values to local variable originals and about the
timing of these write operations. The CommunicationBus module (Fig. 3) describes
assumptions about how messages are exchanged between nodes with potential loss
of messages in the case of physical connection problems. The module is connected
to the top module through the places marked by
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labels. These places are con-
nected to the places with matching names in the top module. In this way, it is possi-
ble to describe the details of the communication bus inside the module while avoid-
ing too many possibly confusing details in the top module. Whenever a message is
sent by a node (modeled in the Communication Component module), a NewEvent

element is added to a trace token found in the sv2 place. The NodeID in this trace
token matches that of the sending node. When the element is added to the trace
token, it becomes visible to the CommunicationBus module through the sv2 place.

The semantics of CPN is based on the notions of enabling and occurrence. For
example, the Detect Message transition (Fig. 3) is said to be enabled whenever
its input place (sv2) contains a token that satisfies the constraints of the transition:
(1) the pattern expression in the input arc, and (2) the guard expression. The guard
expression is seen in brackets in the left-hand side of the transition and it speci-
fies that the transition can only become enabled if the trace contains a new (not
yet observed) event. When the transition is enabled it may occur (or fire) causing
the consumption of one token from the input place (sv2) and the production of a
collection of tokens in the output places (sv2 and Outgoing). The trace token is up-
dated and placed back in the sv2 place. The update consists in using the oldevent

function to change the type of the observed message event from a NewEvent to an
OldEvent element (preserving the parameter values). The consumption and pro-
duction of the token to the sv2 place can be seen as a data manipulation operation.
In the Outgoing place, a collection of tokens is produced by the broadcast func-
tion: one token representing a message for each receiving node - all with the same
variable value information. From the Outgoing place, tokens can be consumed in-
dividually by either the Loose Message transition (modeling a physical connection
being unavailable) or the Transmit Message transition (modeling a message being
successfully delivered to a receiving node). In the later case, the event function is

(n,vi,vv)
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Fig. 3 Environment assumptions expressed in the CommunicationBus module
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used to add a NewEvent element containing the variable information to the trace
related to the node in which the message is received.

The CommunicationBus module also shows an example of how assumptions
about the timing properties of the environment are modeled: the Transmit Message

transition carries a delay inscription (@+MessageDelay) indicating that each suc-
cessful transmission of a message takes MessageDelay time units. In this case, the
delay is a constant (the average assumed delay), but for a more detailed modeling
of this assumption, a stochastic distribution function could have been applied.

The modules described here explicitly represent our assumptions about the be-
havior and structure of the environment in which the communication component
must provide a solution to the problem of maintaining the consistency between the
variables.

2.3 Expressing Requirements

In the introduction, three requirements were informally presented. Here, we will
give an example of how one of these requirements has been formally expressed in
the CPN model using the concepts of Duration Calculus [12]. As seen in Fig. 2, the
model contains a Requirements module (shown in Fig. 4). This module contains
the expression of all requirements about the communication component. The re-
quirement transitions are connected to the phenomena places using double-headed
arcs. Informally, this means that the transitions are observing but not modifying the
contents of the phenomena places - i.e. the requirements are expressed using transi-
tions that monitor the traces of the shared phenomena (in this case the variables).

The Requirements module contains the Requirements Satisfied place that
initially holds three tokens identifying the three requirements (Req1, Req2, and
Req3). The module also has three transitions with guards containing negations of
the three requirements. If a requirement is not satisfied, the respective transition will
become enabled. If a requirement transition occurs during the execution of the CPN
model, the token identifying the requirement is removed from the Requirements

Satisfied place. By monitoring the contents of this place after or during execution,
we are able to detect situations in which the solution fails to satisfy the requirements.
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Fig. 4 The Requirements module
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Listing 2 The requirement1 function

1 fun req1(trace1,trace2,t1,t2) =
2 let val original_trace = intervals(t1,t2,trace1)
3 val copy_trace = intervals(t1,t2,trace2)
4 val max_delay = 500 val min_length = 50 val warmup_delay = 10000
5 in forall original_trace (fn(t1,t2,v) =>
6 implies(t2>warmup_delay andalso t2-t1>=min_length
7 andalso upper_bound(copy_trace)>t2+max_delay,
8 exists copy_trace (fn(t1’,t2’,v’)=>
9 (t1’>t1 andalso v’=v andalso t1’-t1<max_delay))

10 )) end;

We briefly discuss how execution of the CPN model is used for experimenting with
a possible solution in Section 2.4.

As described in Section 2.1, the phenomena are recorded in traces in which the
elements carry timestamps that record when the phenomena happened - i.e. when a
state changed or when an event occurred. The requirements are expressed about the
variable copies and originals. For this reason, the transitions in the Requirements

module are connected to the phenomena places holding the traces about variable
copies and originals through interface places.

We now focus on the definition of Req. 1 seen in Listing 2. The req1 function
is used as a guard expression for the matching requirement transition in Fig. 4. The
function returns true if and only if Req. 1 is satisfied for a trace of a specific vari-
able original (trace1) and a trace of a matching variable copy (trace2) within
a timespan (t1...t2). Fig. 4 shows how pattern matching in the input arcs to the
Requirement 1 transition is applied to specify that the variable ID of the traces for
the variable original and the variable copy should match (bound to the variable vi)
while the node IDs (bound to n and n’) and the traces (bound to p and p’) may
(and will) differ. The satisfaction of Req. 1 is evaluated by comparing the trace of
a variable original to one trace representing a matching variable copy. For a given
variable ID, there is only one trace for a variable original while multiple traces
representing variable copies may exist (one per reading node). The evaluation is
performed one copy trace at a time and each evaluation is performed using the req1
function (Listing 2). Line 1 gives the signature of the function. In lines 2 and 3, the
intervals function is used to generate lists of intervals based on the traces for eas-
ier traversal. Line 4 defines constants used in the representation of the requirement
found in lines 5-10. The forall function is used for universal quantification over
the original trace (line 5). This value is a list of intervals defined by triples: start
time of an interval (t1), end time of the interval (t2), and the state value within the
interval (v). For all intervals (elements), the implies function is used to require that
if the interval ends after a warmup delay and is longer that min length and the last
interval of the copy trace ends after t2+max delay (lines 6-7), then there should
exist an interval in the copy trace ((t1’,t2’,v’)) that starts after t1 and has the
value v and starts within max delay time units after t1 (lines 8-9).

Informally, warmup delay is included to allow some update messages to be ex-
changed before the requirement to the maximum delay is required to be satisfied.
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When this point is reached, any change to a variable original should be reflected in
all its variable copies within the period defined by max delay. The requirement is
softened slightly by specifying that the update is only required if the original value
remains stable for a period of at least min length time units. Hence, transient values
of an original are not required to be reflected in all matching copies.

2.4 Experimenting with Possible Solutions

Until now, following the suggestions of [5], we have deliberately avoided discussing
any concrete approaches to solving the problem of maintaining consistency through-
out the variables. Instead, we have focused on the environment assumptions and the
real-time requirements - i.e. constraints that apply to any possible solution we can
think of. Now, we will briefly discuss how the fact that the CPN model is executable
makes it possible to experiment with explicitly expressed solutions while monitoring
the satisfaction of the requirements through the effects on (part of) the environment.
A possible solution is expressed in the CommunicationComponent module of the
CPN model (Fig. 2). The details of this module are not shown.

The overall purpose of the communication component is to handle the task of
maintaining consistency between variable originals and their copies by exchanging
messages through the communication bus. Basically, two alternative approaches are
possible: event- and time-triggered communication. In an event-triggered approach,
the communication component transmits a message containing a new value when-
ever the value of a variable original is changed by a local application. In a time-
triggered approach, the communication component periodically transmit messages
containing the current values of local variable originals. In both cases, the values
of local variable copies are updated with the values found in incoming broadcast
messages received by the communication components.

We have experimented with a solution based on the principles of Soft State Sig-
naling [9] that combines a time-triggered messaging scheme with special validity
tags on the variables copies. A variable copy is tagged invalid if the periodic update
messages are not received for a predefined period of time.

In CPN Tools, the CPN model can be executed in an interactive manner - i.e.
allowing the user to select transitions to occur and their parameters. The model can
also be executed more freely in which case the tool will make free and fair choices
of transitions to simulate different scenarios. In addition to this, the monitor mech-
anism can be applied to give an alert (stop simulation) if a global state of the model
is reached where the Requirements Satisfied place (Fig. 4) does not contain all
requirement ID tokens. This is useful, because such a situation would indicate that
one or more of the requirement transitions have fired, meaning that a requirement
was not found to be satisfied in a state reached during the simulation of the model.
Whenever a requirement is found not to be satisfied during a simulation, the task is
to investigate whether the cause is to be found in the environment assumptions (or
their descriptions), too strict requirements, the proposed solution, or a combination.
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3 Conclusions and Future Work

Several authors have already proposed the adoption of Petri Nets for modeling the
structure and behavior of distributed embedded systems, and in particular for veri-
fying real-time requirements. For example, [2] discusses a Petri Net-based approach
to verification of embedded systems and introduces a systematic procedure to trans-
lating the descriptions into linear hybrid automata in order to use existing model
checking tools. A complete design flow based on high-level Petri Nets for real-time
embedded systems for modeling both discrete and continuous parts of the systems
by the event-based Petri net semantics is presented in [8]. The Petri Net model is
used for formal verification and hardware/software partitioning purposes. This pa-
per extends (and generalizes) the results presented in [11] and also suggests the use
of a unique language based on Petri Nets for modeling the system and its environ-
ment, but the focus is on validating the real-time requirements expressed in terms of
the required effects on the environment caused by the system.

Future work includes making the structuring approach introduced here more gen-
erally applicable by formally defining it as a structural subclass of CPNs with un-
modified semantics. Such a definition could also serve as a foundation for the def-
inition of refinement operations that could be used for refining requirements into
specifications taking the environment assumptions into account. It would also be in-
teresting, for example, to look at how environment entities could be modeled using
CPN representations of differential equations based on the principles of [8].
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