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Abstract 

A close form solution is developed for the prediction of the moment-curvature relationship of cross sections of fiber 

reinforced concrete (FRC) elements failing in bending, and reinforced longitudinally with steel and fiber reinforced 

polymer (FRP) bars. The FRP bars are installed with the largest possible internal arm, e.g. with the minimum concrete 

cover that assures the bond conditions for a sound stress transfer from FRC to the FRP bars. The model is also able of 

simulating the flexural strengthening contribution provided by FRP bars installed according to the Near Surface Mounted 

(NSM) technique. To have good protection conditions against corrosion, the steel bars are applied with a relatively thick 

FRC cover. Since steel stirrups are the reinforcement with the smaller concrete cover thickness, they are the most 

susceptible to corrosion. In the reinforcement concept to be developed in the present research program, steel stirrups are 

replaced with discrete fibers. This hybrid reinforcement aims to develop high durable pre-fabricated elements that fail in 

bending. The proposed analytical formulation can simulate FRC with strain softening or strain hardening behavior. In the 

present work, the formulation is described and its predictive performance is appraised. 
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1. INTRODUCTION 

Corrosion of the steel reinforcement (SR) of concrete structures is the main material pathology responsible for the huge 

amounts of resources spent in the rehabilitation of the built infrastructure. The corrosion of SR can be caused by a 

deficient concrete quality, a too small concrete cover, inadequate construction practices, design inaccuracies, an improper 

maintenance of the buildings and an unexpected high level of aggressiveness of environmental agents. As a consequence 

of the SR corrosion, the sound cross sectional area decreases, the concrete cover spalls, the concrete cross sectional area 

diminishes and the concrete strength decreases. This leads to a decrease of the load carrying capacity of the reinforced 

concrete (RC) member, which can affect the structural safety. Therefore, all the strategies that can avoid the occurrence of 

corrosion of the reinforcement systems applied in concrete structural elements are of paramount importance in terms of 

decreasing the maintenance costs of these structures. This contributes decisively for the development of a new generation 

of high durable and sustainable RC buildings. 

The present work is part of a research project aiming to contribute to the development of a reinforcement system that 

combines Fiber Reinforced Polymers (FRP) and steel bars in an optimized arrangement of the bars, using the potentialities 

that each material can provide. In fact, non-corrodible FRP bars of high tensile strength, but with brittle behavior, are near 

surface mounted, while ductile steel bars have a concrete cover thickness that assures a high protection from the effects of 

corrosive agents. The steel reinforcement ratio is also designed in order to guarantee the safety of the structure in case of a 

fire occurrence and the consequent loss of FRP reinforcing capacities. 

A fiber reinforced concrete (FRC) of high shear strength is used to suppress the necessity of using steel stirrups, to 

improve the bond behavior of concrete-FRP and concrete-steel bars, and to increase protection to the steel bars from 

corrosive agents. 

The replacement of conventional steel reinforcement by FRP bars has been investigated [1-3] to prevent the corrosion 

problem and to improve the durability of concrete structures near marine environments, near the ground, in chemical and 

other industrial plants, in places where good quality concrete cannot be achieved, and in thin structural elements. In fact, 

in comparison with steel, FRP materials have higher resistance to corrosion, and higher strength-to-weight ratio [4]. 

Furthermore, they are non-electrical conductive and non-magnetic materials. However, the major obstacles of the 

application of FRP bars as a reinforcing material for concrete structures are the relatively high initial costs, low modulus 

of elasticity, lack of ductility (linear stress-strain diagram up to rupture with no discernible yield point), and absence of 

well-consolidated design guidelines [2-4]. Concrete members reinforced with FRP and subjected to bending moments 

behave linearly up to cracking, and almost linearly after cracking with a significant lower stiffness [5, 9]. Deflections and 
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strains of concrete members reinforced with FRP bars are generally larger than the homologous members reinforced with 

steel bars. This is due to the low modulus of elasticity and the different bond characteristics of the FRP reinforcements [3, 

6, 7]. In addition, as a result of a larger crack width and a smaller compressive stress blocks when using FRP bars for the 

flexural reinforcement, the shear capacity of FRP-reinforced concrete beams is smaller than in the case of steel-reinforced 

concrete beams of same reinforcement ratio [4]. 

In an attempt to overcome these drawbacks, Aiello and Ombres [8] proposed a combination of FRP and steel 

reinforcements for concrete beams. With this combination of the reinforcement materials, and considering the minor 

concrete cover required for FRP, an effective solution in terms of durability is obtained by placing the FRP bars near the 

outer surface of the tensile zone and steel bars at the inner level of the tensile zone. In terms of structural behavior of the 

concrete member, the presence of the steel bars in the above mentioned hybrid reinforcement system contributes 

significantly to ductility and stiffness.  

The few tests that were executed confirmed this idea. In fact, Tian and Yuan [7] concluded that the deflection of concrete 

beams reinforced with FRP and steel bars was smaller than that of beams reinforced with GFRP. Aiello and Ombres [8] 

verified that, in comparison with beams exclusively reinforced with FRP bars, the presence of steel bars reduces crack 

width and crack spacing values. These studies also indicate that the hybrid reinforcement system (steel and FRP) is a 

competitive solution when the long term costs with repairing activities are also taken into account. 

Available research [10-14] evidences that steel fibers can replace steel stirrups, especially when high strength concrete is 

used, and when beams are relatively shallow [12, 13]. Steel fibers also reduce the width of shear cracks, thus also 

contributing to improve concrete durability [14]. Research also shows that up to a maximum crack width of 0.5 mm, steel 

fibers are not affected by corrosion [15]. Furthermore, advances in the manufacture technology of synthetic fibers show 

that these non-corrodible fibers have high potentialities for the shear resistance of RC elements [16]. 

In the present work, a close-form solution is developed for the design of cross section elements of FRC reinforced with 

longitudinal steel and FRP bars that fail in bending. This model is an extension of the one proposed by Soranakom [17] for 

FRC beams failing in bending and reinforced with steel bars. This Author has shown that this reinforcing strategy can be 

cost effective. In the present extended model, the contribution of FRP bars is simulated, since the favorable benefits of 

using, simultaneously, steel and FRP bars can contribute for the development of cost competitive and durable structural 

concrete elements. In Soranakom’s model a strain softening (SS) FRC was simulated when applied simultaneously with 

tensile steel bars [17]. In the model to be presented hereafter, the FRC can have strain softening or strain hardening (SH) 

post-cracking behavior [18], and can be reinforced with steel bars, FRP bars or both reinforcements. The predictive 



4 

 

performance of the model is assessed by using a cross section layer model that takes into account the constitutive laws of 

the materials [19]. Using the moment-curvature relationship derived from this model and applying the concepts of the 

stiffness method, the force-deflection relationship of statically determinate elements are determined. This numerical 

strategy was applied to assess its potentiality for the evaluation of the force-deflection response recorded experimentally in 

non-fibrous concrete beams reinforced with longitudinal steel bars and flexurally strengthened with carbon fibre 

reinforced polymer (CFRP) laminate strips applied according to the near surface mounted (NSM) technique [19]. 

 

2. CONSTITUTIVE LAWS FOR THE INTERVINING MATERIALS 

2.1 Tensile and compressive behavior of FRC 

The stress-strain (σ-ε) response for the FRC is based on the model proposed by Soranakom and Mobasher, represented in 

Fig. 1 [20]. These diagrams are based on an idealized model indicated by Lim et al. [21] for steel fiber reinforced 

concrete. As shown in Fig. 1a, the linear portion of an elastic–perfectly plastic compressive stress–strain response ends at 

the pseudo-yield point (���, ���) and remains constant at compressive “yield” stress (���) until the ultimate compressive 

strain (���). After this strain limit the concrete strength capacity is assumed null. The concrete stiffness factor ��� 
represents the ratio between the Young’s modulus of the FRC in compression �	�� and in tension �	�. In this model � is 

the normalized compressive “yield” stress, and ��� is the normalized ultimate compressive strain. As shown in Fig. 1b, the 

tensile behavior is described by a trilinear diagram with an elastic range defined by the tensile modulus �	�, followed by a 

branch characterized by the post-cracking modulus �	�
� that can be obtained by using a post-crack modulus parameter 

���. By attributing to � a negative or a positive value, the same model can be used to simulate strain softening (SS) or 

strain hardening (SH) FRC, respectively. At the third region of tensile response, tensile strength remains constant and 

equal to ����. The  ���  is the normalized ultimate tensile strain, after which the concrete tensile strength capacity is 

assumed null. The stress–strain relationship for compression and tension can be expressed as: 

 

������ � ���
��  	��                               0 � �� � ��
 	��
 � 	�
��� � ��
�  ��
 � �� � ��
��	��
                            ��
� � �� � ���0                                     �� � ���             

�                                     (1) 

������ � �
 	���  0 � �� � ���	����      ��� � �� � ���0       �� � ���       �                                                            (2) 
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where ��, ��, �� and �� are the compressive and tensile stresses and strains, respectively. In the following equations, the 

model is represented in normalized format by utilizing the first cracking tensile strain ���
� and tensile modulus �	� as 

two inherent parameters of the material:  

 !�"�#$%& � ���
��  �                               0 � � � 1        1 � ��� � 1�                1 � � � (         �                                  ( � � � ���      0                                     � � ���             

�                                  (3) 

 %�)�#$%& � * ��           0 � � � ���              � � � � ���0                  � � ���       �                                                          (4) 

where the dimensionless parameters have the following meaning (Fig. 1): 

� � $%+$%&                                                                                                   (5) 

��� � $%,$%&                                                                                                  (6) 

� � #%#                                                                                                       (7) 

( � $!&-$%&                                                                                                    (8) 

��� � $!,$%&                                                                                                  (9) 

� � #%&#                                                                                                    (10) 

� �  %.!#$%&                                                                                                  (11) 

The normalized tensile strain at the bottom fiber (�) and the normalized compressive strain at the top fiber (�) are defined 

as: 

� � $!/0!$%&                                                                                                  (12) 

� � $%!01$%&                                                                                                  (13) 

Due to linear variation of strain along the height of the section, � and �  have the following dependence: 

� � 2342 �                                                                                                (14) 

where k is the normalized depth of the neutral axis, being determined by dividing the depth of the neutral axis by the depth 

of section, d (Fig. 4). 
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2.2 Tensile behavior of steel and FRP bars 

The FRC cross section (Fig. 4), of width b and height d, can be reinforced with steel and FRP bars, being 5� � 6�/�89�� 
and 5: � 6:/�89:�  the reinforcement ratio of steel and FRP bars, respectively, where 6� and 6: are the area of steel and 

FRP bars cross section, and 9� � 9 � ;� and 9: � 9 � ;: are the internal arms of steel and FRP bars, respectively, being 

;� and ;: the concrete cover for the steel and FRP bars, respectively. 

As Fig. 2 illustrates, the tensile behavior of the steel bars is simulated by a bilinear stress-strain diagram, with a 

linear-elastic branch up to the yield strain  �����, followed by a perfectly plastic branch up to attain the ultimate tensile 

strain (���), after which the steel tensile strength capacity is assumed null. The steel modulus of elasticity �	�� is defined 

from the concrete tensile modulus of elasticity (E) by using the steel stiffness factor ����. The ultimate strain ��� is defined 

as a multiple of the concrete strain at crack initiation (��
) by using the <�� factor (Fig. 2). The stress–strain relationship to 

simulate the tensile behavior of steel bars can be expressed as: 

 .�=�#$%& � *��<           0 � < � >��<              > � < � <��0                  < � <��       �                                                          (15) 

where the dimensionless parameters are represented by the following equations: 

> � $.+$%&                                                                                                   (16) 

<�� � $.,$%&                                                                                               (17) 

�� � #.#                                                                                                    (18) 

< � $.$%&                                                                                                  (19) 

Due to linear variation of strain along the height of the cross section, normalized steel strain (<) can be obtained from the 

following equation: 

< � 3424∆?342 �                                                                                        (20) 

 

where ∆@ is the normalized concrete cover thickness for the steel bars (Fig. 4). 

Fig. 3 represents the stress-strain linear-elastic diagram for modeling the FRP tensile behavior. When attaining the 

ultimate tensile strain ��:�� the FRP bar fails. The modulus of elasticity of the FRP (	:) can be defined as being a multiple 

of the Young’s modulus of the FRC in tension (	:), by using the FRP tensile stiffness factor (�:�. The stress–strain 

relationship for the tensile behavior of FRP bars can be expressed as: 
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 A�B�#$%& � ν�:                                                                                       (21) 

C:� � $A,$%&                                                                                           (22) 

�: � #A#                                                                                              (23) 

where 

C � $A$%&                                                                                                        �24� 
Due to linear variation of strain along the depth of the cross section, FRP normalized strain �C� can be obtained from the 

following equation: 

C � 3424∆F342 �                                                                                    (25) 

where G: is the normalized concrete cover thickness for the FRP bars (Fig. 4). 

 

3. CLOSE FORM SOLUTION FOR THE EVALUATION OF THE MOMENT-CURVATURE OF A HYBRID 

REINFORCED SECTION 

Assuming that a plane section remains plane after bending, and shear deformation of the section can be ignored, the 

moment-curvature (M-χ) diagram of a rectangular cross section, composed of FRC reinforced by tensile steel and FRP 

bars, can be obtained in accordance with Fig. 5.  

The distribution of tensile and compressive stresses in this figure results from the stress-strain constitutive laws assumed 

for the intervening materials. The three possible stages for the tensile strain at bottom fiber are represented in Fig. 5a 

(0 � � � 1), 5b (1 H � � (), and 5c (( H � � ���). Each of stage 2 and 3 has four possible conditions due to the value 

of compressive strain at top fiber in either elastic �0 H � � �� or plastic �� H � � ���� behavior in compression, and 

also due to the tensile strain of steel bars in either elastic �0 H < � >� or plastic �> H < � <��� behavior, and also due to 

the tensile strain of FRP bars in elastic behavior (0 H C � C:��. The details of each stage are summarized in Table 1. 

The concrete force components and their lines of action, shown in Fig. 5, are obtained from the area and the centroid of 

the stress block in each zone. The force components for the steel and FRP bars are obtained from the cross sectional area 

and the stress in these bars.  

At each stage of applied normalized concrete tensile strain at the bottom fiber, �, the net force is obtained as the difference 

between the tensile and compressive forces equated to zero for internal equilibrium and solved to obtain the neutral axis 

depth ratio I. The equations for the evaluation of the k values for the considered stages are presented in Table 2. After 

achieving the correct value of I for the corresponding stage, internal moment is obtained by operating on the force 
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components and their distance from the neutral axis. The corresponding curvature is determined as the ratio between the 

concrete compressive strain at top fiber and the depth of the neutral axis. 

At the generic loading stage i, the moment and curvature �JK  , MK � are obtained from the following equations: 

JK � JK′  J�
                                                                                          (26) 

MK � MK′  M�
                                                                                          (27) 

where the JK′  and MK′  the normalized moment and normalized curvature at stage i, respectively, obtained from the 

equations included in Table 3. In equations (26) and (27) J�
  and M�
  are the cracking moment and cracking curvature, 

respectively, which for a rectangular cross section are obtained from:  

J�
 � 3N 89O�	��
�                                                                                (28) 

M�
 � O$%&P                                                                                               (29) 

The derivation of the expressions in Tables 2 and 3 can be found elsewhere [22]. 

 

4. ALGORITHM TO PREDICT THE MOMENT-CURVATURE RESPONSE OF FRC HYBRID REINFORCED 

CROSS SECTION 

To calculate the moment-curvature relationship of a rectangular FRC hybrid reinforced cross section, an algorithm was 

implemented in a computer program. In this algorithm the following materials parameters are input data and they should 

be obtained by experimental tests or from bibliographical sources:  �, ��� , �, 	, ��
 , (, ��� , � for the concrete; >, <�� ,
�� for the steel bars; C:� , �:  for the FRP bars. According to this algorithm, the normalized ultimate FRC tensile 

strain ����� is divided in normalized strain increment: 

∆� � "!,Q                                                                                          (30) 

where N is the number of increments. The normalized concrete tensile strain at the bottom fiber ��� is increased from zero 

to ��� in increments of G�. For each � the corresponding moment and its curvature are determined from the calculation 

process represented in the flowchart of Fig. 6. During this process, if the ultimate strain of the intervening materials is 

attained, the analysis is ended, and the corresponding failure mode is reported: concrete crushing when ��=���; concrete 

tensile failure when ��=���; steel tensile failure when ��=���; FRP tensile failure when �:=�:�. 
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5. MODEL APPRAISAL 

To evaluate the accuracy of the proposed formulation, the results obtained from the implemented algorithm are compared 

with those determined from the DOCROS software [23]. According to the model implemented in DOCROS, a cross 

section is discretized in layers that can have distinct constitutive laws for the characterization of the behavior of the 

materials that constitute these layers. A cross section can be composed of plain concrete and FRC layers, and can include 

steel and FRP bars. The cross section can be subjected to axial load and increasing curvature. A detailed description of 

DOCROS can be found elsewhere [23]. 

In Table 4 are indicated the values of the geometrical and material parameters for the examples adopted for the assessment 

of the predictive performance of the developed formulation. 

Two types of analysis were performed in order to show the relevance of adopting a strain softening (SS) or a strain 

hardening (SH) FRC. The moment-curvature relationships obtained from the present formulation and from DOCROS, for 

the case of using a SS-FRC and a SH-FRC, are compared in Figs. 7 and 8, respectively, from which it can be concluded 

that the proposed formulation predicts the M-χ with high accuracy. In both analyses the calculation process ended due to 

the failing of FRP bars (the ultimate tensile strain was attained). Comparing the diagrams of these both figures it is 

verified that an increase of � from 0.33 to 1.00 has provided an increase of 60% in the maximum moment. 

To appraise the capability of the proposed formulation for the case of structural repairing and strengthening applications, 

the results of model are compared with those registered in a previous experimental investigation about the use of CFRP 

laminate strips applied according to the NSM technique for the flexural strengthening of RC beams [19]. Four series of 

beams reinforced with different percentages of tensile longitudinal steel bars with the mean concrete cover of 25 mm, and 

also flexurally strengthened with variable number of CFRP strips were tested in a four point loading configuration, see 

Fig. 9. This figure also represents the geometry of the beams, the reinforcement arrangement and the number and position 

of the CFRP laminates, as well as the loading and the support conditions. The failure mode of the strengthened beams was 

characterized by the detachment of a concrete cover that includes the CFRP laminates. Up to near the failure of the beams, 

sliding of CFRP was marginal. To simulate the flexural capacity of these beams using the developed model, the CFRP 

strips were assumed perfectly bonded to surrounding concrete, and were replaced by equivalent CFRP bars in tensile face 

of the section, with a concrete cover of 6.0 mm. Based on available information, the mechanical properties adopted in the 

numerical simulations for the intervening materials are indicated in Table 5. Note that an almost null value was assumed 

for the normalized post-cracking residual strength (�) to neglect the residual strength of plain concrete in tension after the 

linear softening branch (for strain levels above ��
�). Small differences exist between the values for the properties of the 
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intervening materials since each series was casted in distinct periods and steel bars of different diameters had distinct 

properties. 

Utilizing the moment-curvature relationships obtained from the proposed model, the force-deflection response of beams 

failing in bending can be determined using the algorithm described in Fig. 10 [24]. Comparison between experimental and 

numerical load-middle span deflection relationships are depicted in figures 11 to 14. The points corresponding to CFRP 

sliding in the experimental tests are also indicated. As it is observed, the developed numerical strategy is capable of fitting 

with enough accuracy the recorded experimental load–middle span deflection curves of each tested beam up to the CFRP 

sliding point. After this deflection level, the developed model is no more capable of fitting the experimental response, 

since a localized failure mode (rip-off) was formed in the experimentally tested beams, consisting of the detachment of the 

concrete cover layer that includes the CFRP laminates [19]. In fact, the numerical curve increases almost linearly, while 

the experimental curve shows a gradual decrease of the stiffness of the beam up to its collapse. The deviation of the 

numerical curve from the experimental one in its last part (when sliding comes to be significant and rip-off failure mode 

starts its formation) increases with the percentage of longitudinal steel and FRP elements, as it would be expected based 

on the conclusions already pointed out elsewhere [25]. The maximum strains experimentally registered in the laminates 

for the V1R1, V2R2, V3R2 and V4R3 beams at ultimate load were 0.016, 0.013, 0.013 and 0.011, respectively, while the 

model predicted the following values: 0.017, 0.015, 0.014, and 0.011, which proves the validity of the FRP-concrete 

perfect bond assumption for this type of applications. 

 

 

6. CONCLUSIONS 

The simultaneous use of steel and FRP longitudinal bars for the flexural reinforcement of pre-fabricated fiber reinforced 

concrete (FRC) beams is a hybrid reinforcement concept that can contribute to the development of new generation of more 

durable concrete structures. The steel and FRP bars are positioned in order to optimize their reinforcing potentialities, to 

assure the necessary bond conditions for the FRP bars, and to provide extra protection against corrosion to the steel bars. 

Steel stirrups are replaced by discrete fibers, applying a FRC with a post-cracking residual strength that can provide the 

required shear resistance. To analyze the flexural potentialities of this concept, an analytical model was developed, and the 

equations for the determination of the moment-curvature relationship for a rectangular cross section reinforced according 

to this concept are presented in this work. The good predictive performance of the developed model was appraised using a 

computer program based on the cross section layer model. The proposed formulation was also utilized in order to simulate 

the load-middle deflection response of plain concrete beams reinforced with steel bars and flexurally strengthened with 
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carbon fiber reinforced polymer laminate strips according to the Near Surface Mounted technique. The moment-curvature 

relationship was used as the entity capable of supplying the tangential or the secant flexural stiffness of small elements 

that discretize a statically determinate beam, in order to predict its force-deflection response. This numerical strategy was 

capable of simulating with high accuracy the force-deflection response of this hybrid reinforced beams. This model can 

also be used to perform parametric studies for the optimization of the reinforcing systems for given types of beams.  
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Notation 

8  = cross section width 9  = cross section depth 	  = tensile modulus of elasticity of FRC 

Ec = compressive modulus of elasticity of FRC 

Es 

Ef 

= 

= 

modulus of elasticity of steel bars 

modulus of elasticity of FRP bars 

k = the neutral axis depth ratio JK′   = normalized bending moment (M/Mcr) in stage i 

J�
   = bending moment at FRC crack initiation 

α  = normalized transition strain �  = normalized tensile strain at bottom fiber ���  = normalized ultimate tensile strain �  = normalized compressive modulus of elasticity  of FRC ��    �: 

= 

= 

normalized modulus of elasticity of steel bars 

normalized modulus of elasticity of FRP bars ���  = compressive yield strain of FRC 

���  = ultimate compressive strain of FRC ���  = tensile yield strain of steel bars 

���  �:�  
= 

= 

ultimate tensile strain of steel bars 

ultimate tensile strain of FRP bars ��
  = tensile strain at crack initiation of FRC ��
�  = tensile strain at transition point of FRC ���  = ultimate tensile strain of FRC >  = normalized transition tensile strain of steel bars 

η  = normalized post-crack modulus of FRC �  = normalized compressive strain at the FRC top fiber ���  = normalized ultimate compressive strain of FRC 

µ  = Normalized post-crack residual strength of FRC 

ρ�  = reinforcement ratio of longitudinal steel bars 

ρ: = reinforcement ratio of longitudinal FRP bars 

��  = compressive stress of FRC 



15 

 

��  = tensile stress of FRC ��    �: 

= 

= 

tensile stress of the steel bars 

tensile stress of the FRP bars ����  = residual tensile stress of FRC M�
  = curvature at crack initiation of FRC 

MK′   = normalized curvature M/M�
 

<  = normalized tensile strain of steel bars <��  = normalized ultimate steel tensile strain of steel bars �  = normalized compressive yield strain of FRC 

∆@  = normalized cover thickness of steel bars 

∆R  = normalized cover thickness of FRP bars    ν  = normalized tensile strain of FRP bars    ν:�  = normalized ultimate tensile strain of FRP bars 
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Table 1: Variations of normalized strain parameters of the intervening materials in the possible 

stages. 

Stage 
Concrete 

Steel FRP 

Tension Compression 

1 0 � � � 1 0 � � � � 0 � < � > 0 � C � C:�  

2.1.1.1 1 H � � ( 0 � � � � 0 � < � > 0 � C � C:�  

2.1.2.1 1 H � � ( 0 � � � � > H < � <�� 0 � C � C:�  

2.2.1.1 1 H � � ( � H � � ��� 0 � < � > 0 � C � C:�  

2.2.2.1 1 H � � ( � H � � ��� > H < � <�� 0 � C � C:�  

3.1.1.1 � � ( 0 � � � � 0 � < � > 0 � C � C:�  

3.1.2.1 � � ( 0 � � � � > H < � <��  0 � C � C:�  

3.2.1.1 � � ( � H � � ��� 0 � < � > 0 � C � C:�  

3.2.2.1 � � ( � H � � ��� > H < � <�� 0 � C � C:�  
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Table 2: Equations for the evaluation of the depth of the neutral axis parameter, k, for each stage [22]. 

Stage k 

1 
I3 � TOγ?ρ?�34∆?�UOγFρF�34∆F�U3OVWX YZ[ � � 1

4\3Uρ?γ?UγFρF]UVWX�γ43� YZ[ � H 1 Z[ � � 1�  
3̂ � 2γ@ρ@\0.5ρ@γ@ � γRρR � γ� γ∆@ � ∆@] � γ� 2γRρR\0.5ρRγR � γ� γ∆R � ∆R]  

2.1.1.1 IO333= 
abXXXUγ?"bρ?UγF"bρF4cd�WbXXXUγ?βbρ?UγFβbρF�b4\WbXXX4βbγ]�WbXXXUOγ?βbρ?4Oγ?βbρ?∆?UOγFβbρF4OγFβbρF∆F�eabXXX4"bf  

Ô333 � ���O � 2� � 1� � 2� � 1  

2.1.2.1 IO3O3= 
abXbXUgγ?βρ?UγFβbρF4cd�WbXbXUgγ?βρ?UγFβbρF�b4\WbXbX4βbγ]�WbXbXUOgγ?βρ?UOγFβbρF4OγFβbρF∆F�eabXbX4"bf  

Ô3O � ���O � 2� � 1� � 2� � 1  

2.2.1.1 IOO33= 
abbXXUhf"Uf.βbρ?UγFβbρF4cd�WbbXXUhf"Uf.βbρ?"UγFβbρF�b4�WbbXXUOωγβ��WbbXXUOf.βbρ?4Of.βbρ?∆?UOγFβbρF4OγFβbρF∆F�eabbXXUOhf"  

ÔO33 � ���O � 2� � 1� � 2� � 1 +�O� 

2.2.2.1 IOOO3 � abbbXU"gf.j.UγFβbρFUhf"4cd�WbbbXUhf"Uf."gρ?UγFβbρF�b4�WbbbXUOωγβ��WbbbXUOf."gρ?UOγFβbρF4OγFβbρF∆F�eabbbXUOhf"   

ÔOO3 � ���O � 2� � 1� � 2� � 1 +�O� 

3.1.1.1 Ik333= 
alXXXUf.βbρ?UγFβbρF4cd�WlXXXUf.βbρ?UγFβbρF�b4\WlXXX4βbγ]�WlXXXUOf.βbρ?4Of.βbρ?∆?UOγFβbρF4OγFβbρF∆F�ealXXX4"bf  

k̂33 � ��(O � 2( � 1� � 2( � 1 +2�� � 2�( 

3.1.2.1 Ik3O3= 
alXbXUgγ?βρ?UγFβbρF4cd�WlXbXUgγ?βρ?UγFβbρF�b4\WlXbX4βbγ]�WlXbXUOgγ?βρ?UOγFβbρF4OγFβbρF∆F�ealXbX4"bf  

k̂3O3 � ��(O � 2( � 1� � 2( � 1 +2�� � 2�( 

3.2.1.1 IkO33= 
albXXUhf"Uf.βbρ?UγFβbρF4cd�WlbXXUhf"Uf.βbρ?UγFβbρF�b4�WlbXXUOωγβ��WlbXXUOf.βbρ?4Of.βbρ?∆?UOγFβbρF4OγFβbρF∆F�ealbXXUOhf"  

k̂O33 � ��(O � 2( � 1� � 2( � 1 � �O� +2�� � 2�( 

3.2.2.1 IkOO3 � albbXU"gf.j.UγFβbρFUhf"4cd�WlbbXUgγ?βρ?UγFβbρFUhf"�b4�WlbbXUOωγβ��WlbbXUOgγ?βρ?UOγFβbρF4OγFβbρF∆F�ealbbXUOhf"   

k̂O3 � ��(O � 2( � 1� � 2( � 1 � �O� +2�� � 2�( 
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Table 3: Equations for the evaluation of the normalized moment, J´ , and normalized curvature, M´ , for each stage [22]. 

Stage M´ 
M´ 

1 J3´ � O"d�f43�nXlU\kf.j.UkfAjAUk]nXbU\Nf.j.�∆?43�UNfAjA�∆F43�4k]nXUkf.j.�∆?43�bUkfAjA�∆F43�bU3e�34nX�   
M3´ �"O�34nX�  

2.1.1.1 
JO333´ � �O"fUobXXX�nbXXXl U\Nf."j.UNfA"jA4kobXXX]nbXXXb U�kobXXXU3Of."j.�∆?43�U3OfA"jA�∆F43��nbXXXUNf."j.�∆?43�bUNfA"jA�∆F43�b4obXXX�34nbXXX�   

;O33 � 4Op"lUkp"b4k"b4pU3"b   

MO333´ �"O�34nbXXX�  

2.1.2.1 
JO3O3´ � �O"fUobXbX�nbXbXl Uk\Of.gj.UOfA"jA4obXbX]nbXbXb Uk�obXbXUOf.gj.�∆?4O�UqfA"jA�∆F43��nbXbXUNf.gj.�34∆?�UNfA"jA�∆F43�b4obXbX�34nbXbX�   

;O3O3 � 4Op"lUkp"b4k"b4pU3"b   

MO3O3´ �"O�34nbXbX�  

2.2.1.1 

JOO33´ � 4�khfUobbXX�nbbXXl Uk\hfUobbXXUOf."j.UOfA"jA]nbbXXb Uk�qf."j.�∆?43�UqfA"jA�∆F43�4obbXX�nbbXXUNf."j.�∆?43�bUNfA"jA�∆F43�bUobbXX�34nbbXX�   

;OO33 � Op"l4kp"bUk"b4hlfUp43"b   

MOO33´ �"O�34nbbXX�  

2.2.2.1 

JOOO3´ �4�khfUobbbX�nbbbXl U\khfUOobbbXUNf.gj.UNfA"jA]nbbbXb 4rN�f.gj.4f.gj.∆?Uf.gj.�UkobbbX43OfA"jA�∆F43�snbbbXUNf.gj.4Nf.gj.∆?UNfA"jA�∆F43�bUobbbX�34nbbbX�   

;OOO3 � Op"l4kp"bUk"b4hlfUp43"b   

MOOO3´ �"O�34nbbbX�  

3.1.1.1 

Jk333´ � �olXXX4O"f�nlXXXl 4k\Of."j.UOfA"jAUolXXX]nlXXXb Uk�olXXX4qf."j.�∆?43�4qfA"jA�∆F43��nlXXX4�Nf."j.�∆?43�bUNfA"jA�∆F43�bUolXXX��nlXXX43�   

Ck333 � k\µβb4µαb4ηαbUαb]UOηαlUη43
β
b   

Mk333´ �"O�34nlXXX�  

3.1.2.1 

Jk3O3´ � �olXbX4O"f�nlXbXl 4k\Of.gj.UOfA"jAUolXbX]nlXbXb Uk�olXbXUOf.gj.�O4∆?�4qfA"jA�∆F43��nlXbXUNf.gj.�∆?43�4NfA"jA�∆F43�b4olXbX�nlXbX43�   

Ck3O3 � k\µβb4µαb4ηαbUαb]UOηαlUη43
β
b   

Mk3O3´ �"O�34nlXbX�  

3.2.1.1 

JkO33´ � 4�khfUolbXX�nlbXXl Uk\hfUolbXXUOf."j.UOfA"jA]nlbXXb Uk�qf."j.�∆?43�UqfA"jA�∆F43�4olbXX�nlbXXUNf."j.�∆?43�bUNfA"jA�∆F43�bUolbXX�34nlbXX�   

CkO33 � k\µβb4µαb4ηαbUαb]UOηαl4hlfUη43
β
b   

MkO33´ �"O�34nlbXX�  

3.2.2.1 

JkOO3´ � 4�khfUolbbX�nlbbXl U\khfUkolbbXUNf.gj.UNfA"jA]nlbbXb 4k�Of.gj.UOf.gj.�34∆.�4qfA"jA�∆F43�UolbbX�nlbbXUNf.gj.�34∆.�UNfA"jA�∆F43�bUolbbX�34nlbbX�   

CkOO � k\µβb4µαb4ηαbUαb]UOηαl4hlfUη43
β
b   

MkOO3´ �"O�34nlbbX�  
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Table 4: Data for the model parameters used in the examples for the assessment of the predictive performance of the 
developed model. 

Geometric 
parameter 

(mm) 

Mechanical parameters 

Concrete (tension) 
Concrete 

(compression) 
Steel (tension) 

FRP 
(tension) 

b 
 

d 

250 
 

500 
��
 
(%) 

	 
(GPa) 

( ��� �* �** �* �** � � ��� > �� <�� C:� �: 

Cs 
 

Cf 

80 
 

50 
1e-4 30 10 150 1.00 0.33 -0.074 0.0 10 1 40 12 10 120 120 1 

* For strain softening FRC         ** For strain hardening FRC 
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Table 5: Components properties used in numerical simulation.   

Beam 
series 

Tensile concrete 
Compressive 

concrete 
Longitudinal steel bars CFRP laminates ��
 

(%) 
	 

(GPa) 
( � ��� � � ��� 

5� 
(%) 

> �� <�� 
5: 

(%) 
C:� �: 

V1R1 0.01 33.35 30 1e-9 320 175 1.00 350 0.33 38.25 6.00 450 0.084 180 4.76 

V2R2 0.01 36.50 25 1e-9 300 175 1.00 350 0.48 40.25 5.48 450 0.160 170 3.70 

V3R2 0.01 34.89 30 1e-9 340 175 1.00 350 0.61 34.00 5.73 800 0.160 170 4.55 

V3R4 0.01 35.86 15 1e-9 320 175 1.00 350 0.84 31.00 5.48 1500 0.240 170 3.20 
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                                                  (a) 

 

                                            (b) 

Fig. 1: Stress-strain diagrams for modeling the: a) compressive and b) tensile behavior of fiber reinforced concrete with 

softening or hardening character [20]. 
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Fig. 2: Tensile stress-strain relationship for steel bars. 
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Fig. 3: Tensile stress-strain relationship for FRP bars. 
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Fig. 4: Cross section reinforced with steel and FRP bars: variables involved in the analytical model. 
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Fig. 5: Stress-strain diagram at different stages of normalized tensile strain at the bottom fiber (�). 
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Fig. 6: Flow-chart of the iterative procedure for calculation the moment-curvature response 
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Fig. 7: Moment-curvature response of strain softening behavior of FRC. 
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Fig. 8: Moment-curvature response of strain hardening behavior of FRC. 
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Fig. 9: Series of experimentally tested beams [19] 
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Fig. 10: Numerical approach to simulate the deformational behaviour of structural elements failing in bending [24]. 
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Fig. 11: Experimental versus numerical load-middle span deflection curve of beam V1R1.  
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Fig. 12: Experimental versus numerical load-middle span deflection curve of Beam V2R2.  
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Fig. 13: Experimental versus numerical load-middle span deflection curve of Beam V3R2.  
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Fig. 14: Experimental versus numerical load-middle span deflection curve of Beam V4R3. 

 


