
Workload Distribution for Ray Tracing in Multi-Core Systems

Miguel Nunes
Dep. de Informática, Universidade do Minho

Campus de Gualtar, 4710-057 Braga
mdccnunes@gmail.com

Luı́s Paulo Santos
Dep. de Informática, Universidade do Minho

Campus de Gualtar, 4710-057 Braga
psantos@di.uminho.pt

Abstract
One of the features that made interactive ray tracing possible over the last few years was the careful exploitation of
the computational power and parallelism available on modern multicore processors. Multithreaded interactive ray
tracing engines have to share the workload (rays to be processed) among rendering threads. This may be achieved
by storing tasks on a shared FIFO-queue, accessed by all threads. Accessing this shared data structure requires
a data access control mechanism, which ensures that the data structure is not corrupted. This access mechanism
must incur minimal overheads such that performance is not penalized. This paper proposes a lock-free data access
control mechanism to such queue, which avoids all locks by carefully reordering instructions. This technique
is compared with a classical lock-based approach and with a conservative local technique, where each thread
maintains its local queue of tasks and shares nothing with other threads. Although the local approach outperforms
the other two due to very good load balancing conditions, we demonstrate that the lock-free approach outperforms
the lock-based one for large processor counts. Efficient and reliable sharing of data structures within a shared
memory system is becoming a very relevant problem with the advent of many core processors. Lock free approaches
are a promising manner of achieving such goal.

Keywords
Interactive Ray Tracing, Workload Distribution, Parallel Graphics

1. INTRODUCTION

Ray tracing based renderers are able to simulate global il-
lumination and physically based light transport effects, re-
sulting in high fidelity images that can be used in a pre-
dictive manner [Greenberg 99]. Ray tracing is, however, a
very time consuming algorithm, traditionally seen as suit-
able for offline rendering only. Over the last decade many
improvements in the field of ray tracing and in comput-
ing hardware have made it possible to interactively render
many of the global effects, such as specular phenomena,
direct illumination and even indirect diffuse interreflec-
tions [Wald 07b, Debattista 09]. Interactive ray tracing has
been achieved mainly by resorting to multi-level paral-
lelism, by using clever sampling strategies and by carefully
exploiting memory locality and ray coherence [Wald 07a].

Within these interactive rendering systems parallelism is
usually exploited along at least three levels: the vecto-
rial capabilities of modern multiprocessors (SIMD instruc-
tions), symmetric multiprocessing by resorting to mul-
tithreading in multi-core systems and parallel execution
among multiple nodes of distributed memory clusters. An
additional, seldom exploited, level is the simultaneous uti-
lization of GPUs to share the workload with the CPUs.
The exploitation of a multiplicity of computing resources,
with the goal of increasing performance, requires partition-

ing and distributing the workload among these resources,
while simultaneously assuring that overheads are kept to a
minimum. Overheads include communication/synchroni-
sation costs, resources idle times due to sub-optimal load
partitioning (the load balancing problem) and redundant
computations due to work replication.

This paper focuses on the multithreading/multicore level
of parallelism exploitation. Within this level all process-
ing cores see a single shared address space. Workload dis-
tribution is often performed by maintaining some shared
data structure from where individual threads can retrieve
tasks [Bigler 06]. Within an interactive ray tracing context
a task, corresponding to processing a set of rays, can origi-
nate new tasks, which correspond to secondary rays shot at
deeper levels of the ray tree. The typical recursive, depth-
first, ray tracing algorithm is thus substituted by an iter-
ative, breadth-first, approach by storing newly generated
tasks on this data structure, rather than using the execution
stack. Since all rendering threads can read and write on
the shared data structure, a data access control mechanism
is required to ensure that it is not corrupted. These data
access control mechanisms incur additional costs, such as
serialisation of data accesses, which might compromise
performance on a multithreading processing environment.
Careful design and evaluation of these mechanisms is thus
required in order to maintain acceptable efficiency levels.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this paper we discuss and evaluate three different such
mechanisms, which are used to control access to a shared
FIFO-queue holding tasks (sets of rays) to be processed by
the rendering threads. Access control to shared memory is
typically performed by resorting to mutual exclusion, us-
ing locks to guarantee that only one thread executes a crit-
ical section at each time. Lock-free synchronisation tech-
niques can avoid all locks by carefully reordering instruc-
tions, drastically reducing contention and context switch-
ing costs [Herlihy 08]. In this paper we compare one such
lock-free access control mechanism with a traditional lock-
based approach and a conservative local technique, where
each thread maintains a local work queue, thus preventing
any type of work sharing while simultaneously dispensing
with access control.

The relevance of these alternative, not so well-known, data
access control mechanisms is becoming fundamental with
the ever increasing processor count in multicore systems.
The major contributions of this paper are the proposal of
a lock-free data access control mechanism for distributing
tasks within a multithreaded interactive ray tracer and a
comparison of the respective performance with more tradi-
tional approaches.

2. RELATED WORK

2.1. Interactive Ray Tracing

At the core of any renderer lies a visibility algorithm that
evaluates whether two points in space are mutually visible,
i.e., if there is any entity occluding the shortest path be-
tween them. The two most well known techniques for vis-
ibility evaluation are rasterization-based approaches and
ray tracing based approaches. The former are supported
very efficiently on special purpose hardware (GPUs), but
are usually limited to process sets of rays sharing a sin-
gle origin. The latter, on the other hand, support arbitrary
visibility queries, thus allegedly more suitable to com-
pute global illumination effects. Ray tracing, however,
has traditionally exhibited larger latencies than rasteriza-
tion, which has precluded its utilization within interactive
contexts. With advances in processing hardware combined
with improvements in algorithms and sampling strategies,
ray tracing has reached a stage where its utilization within
interactive settings is now possible.

Ray tracing performance has been increased by resorting to
multi-level parallelism, by using clever sampling strategies
and by carefully exploiting memory locality and ray coher-
ence [Wald 07a]. Multi-level parallelism includes exploit-
ing modern CPUs vectorial capabilities, the multiplicity of
cores available within a single machine and multiple ma-
chines interconnected by some suitable network. Sampling
was improved by using more effective sampling patterns
[Kollig 02] and by resorting to bidirectional particle-based
algorithms [Keller 97], thus reducing the number of rays
required for the same perceived image quality.

Ray coherence refers to the fact that neighboring rays
tend to traverse the same regions of space and intersect
the same geometric primitives. Packeting these coherent

rays together and processing them in packets allows for
increased memory coherence and enables effective utilisa-
tion of modern CPUs vector processing capabilities. By
combining these techniques with careful code optimiza-
tion – to adapt the algorithms to the properties of the un-
derlying hardware – the ray tracing algorithm runs almost
completely in cache, reducing expensive accesses to main
memory [Wald 07a]. This approach has been thoroughly
exploited over the last years, resulting in many alter-
native packet-based approaches [Wald 02b, Reshetov 05,
Wald 08]

Descriptions of interactive ray tracers’ architectures do
not abound in the specialized literature. Bigler at al.
[Bigler 06] argue that the shift towards multi-core systems
requires that high performance programs address thread-
level and instruction stream (SIMD) parallelism explic-
itly. They present the Manta interactive ray tracer, based
on an multi-threaded scalable engine and a collection of
data structures, based on wide ray packets, for coordinating
these threads’ work. They do not evaluate different data
structures used to share work among the rendering threads.
In [Wald 02a] the authors present a list of requirements an
interactive ray tracer must comply to, together with results
showing that their ray tracer - OpenRT - complies to these
requirements, but they do not discuss lower level imple-
mentations details.

In this paper we present the generic structure of our inter-
active ray tracer - iRT - focusing on the data structure used
to share work among threads.

2.2. Synchronization

Access control to shared data structures is usually per-
formed by resorting to lock-based (or blocking) mecha-
nisms, which ensure mutual exclusion within critical sec-
tions of the code. Access to shared data structures is seri-
alised, resulting in high performance penalties when con-
tention is significant. Since contention increases with the
level of concurrency, typically lock-based approaches per-
form worst as the number of threads increases. Further-
more, locking often requires expensive context switches,
which might be intolerable within interactive applications.

Alternatively, one can use lock-free synchronisation meth-
ods, which rely on atomic conditional primitives to control
access to shared data structures [Debattista 03, Herlihy 08]
(listing 1 presents the functionality of Compare-and-Swap,
a well known atomic operation used throughout this pa-
per). These algorithms may either be non-blocking or wait
free. Non blocking algorithms terminate in finite time, but
are based on retries. Wait-free algorithms are guaranteed
to finish on a finite number of steps, thus being immune
to the priority inversion problem and eliminating deadlock
and starvation.

Wait-free and lock-free access control mechanisms are sel-
dom used within the graphics community, in spite of their
increasing relevance due to the ever increasing number of
cores on modern processors. In [Dubla 09] the authors
present a wait free mechanism to share the irradiance cache



1 atomic CAS(addr location, val cmpVal, val newVal)
2 {
3 if (∗location == cmpVal)
4 {
5 ∗location = newVal;
6 return true;
7 }
8 else return false;
9 }

Listing 1. Compare and swap

among multiple cores. They compare the achieved perfor-
mance with those achieved with a lock-based approach and
a local approach, where threads do not share locally com-
puted irradiance values.

In this paper we present and evaluate a lock-free approach
to access a shared queue holding tasks for the rendering
threads, and compare its performance with those achieved
with a lock-based approach and a local approach, where
threads do not share locally generated tasks.

3. iRT ARCHITECTURE

Figure 1. iRT organization

Our interactive ray tracing engine - iRT - runs a set of
symmetric rendering threads, which get their tasks from
a global, shared work queue (see figure 1). The threads are
symmetric in the sense that they all execute the same algo-
rithm, which consists on retrieving tasks from the global
queue and, for each ray in the task, traverse the 3D space
(using a Bounding Volume Hierarchy), intersect the ray
with candidate triangles and then shade the intersection
point. Shading may result in shooting additional rays,
which is achieved by adding new tasks to the work queue.
Shading, specially in the case of shadow rays, may result
in contributions to the frame buffer, which are concurrently
added by each thread. Transforming the traditional recur-
sive ray tracing algorithm into this iterative one, requires
that each ray carries with it information about which pixel
it contributes to (this is equivalent to the ID of the par-
ent primary ray) and also a weight factor that is equal to

the product of the cosines and BRDFs at all intersection
points along the current path. When the queue is empty
this means that the current frame has been rendered; each
thread will then join a barrier and wait for further work or
a terminate tag that closes the rendering engine (see listing
2).

1 thread RenderLoop(WorkQueue wl) {
2 while (!END) {
3 barrier(); // wait for a new frame to start
4 while (wl.getRays (&task) != EMPTY) {
5 for each ray in task {
6 TraverseBVH ();
7 Intersect ();
8 Shade (); // may add new rays to queue
9 FrameBuffer.Update ();

10 }
11 }
12 barrier(); // wait for all threads to finish
13 }
14 }

Listing 2. iRT - rendering threads main loop

iRT has to be linked with an application program that im-
plements the application logic. Besides supporting all the
application functionality, this application program is re-
sponsible for initializing iRT, loading initial tasks (even-
tually corresponding to primary rays) into the work queue
and then release the iRT rendering threads. This last step is
achieved by joining the barrier where the rendering threads
are waiting (line 3 of listing 2 and line 7 of listing 3).
The application program must then wait for the rendering
threads to finish, which is achieved by joining the second
barrier (line 12 and 9 of listings 2 and 3, respectively). This
main loop is repeated until the application is terminated, in
which case the END flag is raised, causing the rendering
threads to finish.

1 main() {
2 iRT init();
3 application init ();
4 while (!finished) {
5 application logic1 ();
6 Generate PrimRays (); //write into the work queue
7 barrier (); // release render threads
8 application logic2 ();
9 barrier (); // wait for frame to finish

10 FrameBuffer.Output ();
11 }
12 set END flag to finish threads
13 barrier(); // release threads and finish
14 }

Listing 3. iRT - application loop

Using this architecture rendering, or ray tracing, is decou-
pled from the application logic. Although the ray tracing
engine was developed essentially for image rendering, it
can easily be used for different goals, such as collision de-
tection. It is the application who decides which rays are
shot and how are the respective results used. The manner
how each ray’s contribution is evaluated depends on the
particular shader being used (line 8 of listing 2); different



iRT engines can be built using different shading functions.
The shader could actually be a dynamically loadable com-
ponent - dispensing with building different engines for dif-
ferent shaders - but we decided to keep it statically linked
in order not to hurt performance. Also note that the particu-
lar implementation of the WorkQueue is hidden behind the
respective class interface. We will be using different work
queues without changing the thread RenderLoop code.

The above described software architecture implies that two
data structures are shared among the application and all
rendering threads: the work queue and the frame buffer.
Accessing the former is discussed in the following sec-
tions. The latter, which is where the rendering results
are accumulated by the renderers and read back by the
application thread, is protected by a user space spin-
lock [Herlihy 08], thus reducing context switches among
threads. Since the results in the frame buffer are a lin-
ear combination of several rays’ contributions, access to
it could be wait-free among the rendering threads by re-
sorting to hardware-supplied atomic floating-point add in-
structions.

iRT is a preliminary prototype and most of the develop-
ment effort focused on the mechanisms used to share tasks
among threads, whose results are reported in this paper.
Some other very important issues (performance-wise) have
been handled in a much straight forward manner, which
results in some performance penalties. These issues in-
clude vectorisation, coherent rays packeting and locality of
memory accesses [Reshetov 05, Wald 07b]. All these three
are intimately related and are determinant with respect to
the ray tracer final performance; these will be addressed in
the near future.

4. ALGORITHMS

In this section the three different data access control mech-
anisms are presented. The lock-based one is referred to
as LOCK, the local one as LOCAL and the lock-free
as LFREE. In order to reduce workload distribution time
overhead each element of these queues consists on a set
of 20 rays, rather than a single one, thus increasing task
granularity.

4.1. Lock-Based Queue

The traditional LOCK implementation uses a single lock
to protect all accesses to the shared queue. This results
in serialising all calls to getRays() and addRays(), that is,
reads and writes do interfere among them. However, reads
and writes operate on different ends of the queue, so they
must be able to proceed without interference if the queue
is neither full nor empty. We use the Unbounded Total
queue algorithm described in [Herlihy 08]: the queue is a
linked list of tasks and different locks are used for reads
and writes, thus reducing contention. A sentinel node,
whose next field is NULL, is initially inserted. Readers
always check whether this is the head node of the queue; if
it is, then the queue is empty (see listing 4).

1 addRays (RayType ∗ray) {
2 addlock.lock();

3 QueueNode ∗node = new QueueNode (ray);
4 tail−>next = node;
5 tail = node;
6 addlock.unlock();
7 }
8

9 getRays (rayType ∗∗ray) {
10 getlock.lock();
11 if (head−>next==NULL) {
12 getlock.unlock();
13 return EMPTY;
14 }
15 QueueNode ∗actual = head;
16 head = head−>next;
17 getlock.unlock();
18 ∗ray = actual−>value;
19 delete actual;
20 return OK;
21 }

Listing 4. Lock-based queue

4.2. Local Queue

The reasoning behind the LOCAL approach is that each
thread maintains its own work queue. The application pro-
gram rather than writing all primary rays to a single queue,
statically distributes the tasks among all work queues in a
round-robin fashion to ensure better load balancing. Each
rendering thread then processes its initially assigned rays
and adds secondary rays to its own queue. This approach
has no sharing, thus it requires no data access control
mechanism; the work queues implementation is similar
to that shown in listing 4, but without the locks. Since
there is no contention or serialisation of accesses this ap-
proach has the potential to outperform the other two if a
balanced load distribution is guaranteed. Note that load
distribution is statically done by the application program;
the round robin distribution of work and the fine granular-
ity of tasks (i.e., the number of rays associated with each
of the queue’s node) assure a reasonable load distribution
for many images and for shallow ray trees, such as those
typically found in interactive ray tracing contexts.

4.3. Lock-Free Queue

The lock-free algorithm [Herlihy 08, Michael 96] does not
rely on locks to guarantee mutual exclusion. It relies on
the Compare-and-Swap atomic synchronisation primitive
described in listing 1 and on retries, i.e., it contains a loop
(this is the reason why it is not a wait-free method: it is not
guaranteed to finish in a finite number of steps). Addition-
ally, the addRays() method is lazy, meaning that insertion
of new nodes happens in two different steps; in particular,
threads may need to help one another in order to advance
tail (see listing 5).

1 addRays (RayType ∗ray) {
2 QueueNode ∗node = new QueueNode (ray);
3 while (true) {
4 QueueNode ∗last = tail;
5 QueueNode ∗next = last−>next;
6 if (last==tail) {



7 if (next==NULL) {
8 if (CAS(last−>next, next, node)) {
9 CAS (tail, last, node);

10 return ;
11 }
12 } else {
13 CAS (tail, last, next);
14 }
15 }
16 }
17 }
18

19 getRays (rayType ∗∗ray) {
20 while (true) {
21 QueueNode ∗first = head;
22 QueueNode ∗last = tail;
23 QueueNode ∗next = first−>next;
24 if (first==head) {
25 if (first==last) {
26 if (next==NULL) {
27 return EMPTY;
28 }
29 CAS (tail, last, next);
30 } else {
31 ∗ray = next−>value;
32 if (CAS (head, first, next)) {
33 delete first;
34 return OK;
35 }
36 }
37 }
38 }
39 }

Listing 5. Lock-free queue

The addRays() method creates a new node (line 2), reads
tail and finds the node that appears to be last (lines 4 and
5). It then checks whether that node is still last (line 6) and
whether the node has a successor (line 7). If the node does
have a successor then it was inserted by other thread; this
thread will help the others by trying to advance tail to the
next node, but only if tail is still equal to last (line 13) -
it will then try again to insert the new node. If, however,
the node still does not have a successor (lines 7 – 12), then
it performs a trial to append it to the queue (line 8). If it
succeeds, it tries to update tail to the new node (line 9);
this CAS operation may fail, but this does not represent
a problem, since it will only fail if tail has already been
advanced by other thread. If, however, appending the node
to the queue failed (line 8), then the thread will try again
(this CAS operation may fail because some other thread
might have appended other node).

The getRays() method is very similar to its lock-based
homonym. It will check if the queue is empty by verifying
if the successor of head is NULL (line 26); if the queue is
non empty, then it will try to advance head to its successor
and return the previous head node (lines 31 – 35). There
is however a subtlety in this lock-free algorithm: before
advancing head the algorithm has to make sure that tail is
not left referring to the sentinel node that is about to be

removed from the queue (this may happen because some
thread added a node to the queue but was not able to up-
date tail). Thus if head equals tail (line 25) but the head
successor is not NULL (line 26), then the queue can not be
empty; the thread will try to advance tail to the sentinel’s
node successor (line 29) and will iterate again.

5. RESULTS

5.1. Experimental Setup

In order to assess the effectiveness of the three different
data access control strategies (LOCK, LFREE and LO-
CAL) experiments were performed with three different
scenes: the conference room (190951 triangles), the of-
fice scene (20769 triangles) and the Stanford bunny (69463
triangles) (see figure 2). All scenes include 4 point light
sources. The illumination model used shoots one shadow
ray per light source and one specular reflection ray per in-
tersection point (if the material has a specular reflection
coefficient larger than 0). Images were rendered at a res-
olution of 300x300 pixels, with one primary ray per pixel.
All images were rendered with the above described pro-
totype of iRT, which does not use nor vectorial (SIMD)
instructions, neither ray packeting.

Experiments were run in three different multicore systems,
in order to assess the proposed techniques efficiency and
scalability under different conditions:

∙ an 8-core server based on two quad-core Intel Xeon
5420 processors, running at 2.50 GHz, with 8 GB
RAM;

∙ an 8-core server based on two quad-core Intel Xeon
5520 processors (Nehalem architecture), running at
2.26 GHz, with 12 GB RAM; these include support
for HyperThreading, thus reporting 16 processors to
the operating system;

∙ a 24-core server based on four hexa-core Intel Xeon
7450 processors (Dunnington architecture), running
at 2.40 GHz, with 64 GB RAM.

All results are the average over all frames of three execu-
tions of the ray tracer, where each execution renders 200
frames. The goal is to eliminate interferences from other
processes activity (such as the operating system) and cache
warm-up.

5.2. Analysis

Figures 3, 4 and 5 present all the results in graphical form.
The left axis of each figure depicts frames per second and
is associated with the line graphs. The right axis depicts
speed-up, computed relatively to the sequential version,
and is associated with the bar graphs. The horizontal axis
represents the number of threads for the corresponding
data.

All graphs show that the LOCAL version outperforms the
other two. It presents a larger frame rate under all evaluated
settings and scales better with the number of cores, thus



(a) The conference room (b) The office scene (c) The Stanford bunny

Figure 2. The scenes used for the experiments

(a) Conference (b) Office (c) Bunny

Figure 3. Results for the 8-core Xeon 5400 server. Axis: left- fps, right- speed-up, horizontal- number of threads.

(a) Conference (b) Office (c) Bunny

Figure 4. Results for the 8-core (plus HT) Xeon 5500 server. Axis: left- fps, right- speed-up, horizontal- number
of threads.

(a) Conference (b) Office (c) Bunny

Figure 5. Results for the 24-core Xeon 7400 server. Axis: left- fps, right- speed-up, horizontal- number of threads.



presenting the larger speedup. This version incurs no data
access control overheads, but may suffer from load bal-
ancing problems: image plane blocks are assigned to each
thread in a round-robin fashion, and each thread must pro-
cess all rays (primary and secondary) associated with those
blocks. However, due to the fine granularity of the image
blocks (20 pixels per block) and since these are distributed
cyclically among threads, in practice the load imbalance is
negligible, and LOCAL achieves the best results. Figure 6
presents the average time, in seconds, spent idle per thread
and per frame waiting for other threads to finish their as-
signed image space blocks (results for 24 threads on the
24-core server). Although the time spent waiting for other
threads due to load imbalances is larger for the LOCAL
approach, this difference is small and can not be respon-
sible for the corresponding differences in frame rate. In
fact, figure 7 shows that, for 24 threads, the time spent ac-
cessing data in the work queues is completely negligible
for the LOCAL approach, when compared with LFREE
and specially with LOCK. Load balance can however be
compromised, for the LOCAL approach, if the image is
very heterogeneous with respect to the ray tree depth per
pixel. In this case some threads might be busy finishing
their workload while other threads have already finished.

Figure 6. Average idle times, in seconds, per
frame for 24 threads on the 24-core Xeon
7400 server. (Conference scene values are divided by
10)

A direct comparison between the LOCK and LFREE ap-
proaches shows that their behaviour is very similar up
to 8 threads, with LOCK outperforming LFREE in some
cases. However, when the number of cores, and associated
threads, increases above 8, such as with the 24-core server,
then LFREE starts showing its true potential. With 24
cores LFREE clearly outperforms LOCK, and its deriva-
tive is larger than that of LOCK for all three scenes, sug-
gesting that LFREE still has margin to keep scaling if the
number of cores increases (this is clearly not the case of
LOCAL for the bunny scene, where the inflection point
seems to have been reached - see figure 5(c)). Figure 7
shows aggregate data access times for the three scenes on
the 24 core server; aggregate data access time is the aver-
age time spent waiting for data access in the work queue(s)
summed over all threads. These are constant for LOCAL,
scale sublinearly for LFREE, but grow exponentially for

LOCK. This result clearly shows that LOCK performance
degrades as the number of threads increases, while the
other two approaches are still quite far from their inflection
point. LFREE and LOCAL have thus the potential to scale
to larger numbers of cores/threads, which is an important
result given the actual trend to increase the core count in
modern processors.

With respect to absolute results it is clear that iRT is not
scaling well for a large number of cores. This specially
true for the 24 core server, with efficiency values under
50%. Given that ray tracing is an embarrassingly paral-
lel algorithm this suggests some major inefficiencies in the
ray tracing engine. Figure 7 shows these inefficiencies do
not reside in accessing the work queue. On the other hand,
idle times due to load balancing are quite significant for all
approaches as shown in figure 6. Additionally, interactive
ray tracing is known for being memory bandwidth limited;
the poor speedups reported might be due to a memory wall
accessing scene data, such as the acceleration data struc-
ture and geometric primitives for intersection. iRT is still
a preliminary prototype; these issues will be dealt with in
the near future.

6. CONCLUSIONS

This paper compares three different data access control
mechanisms, used to share access to a FIFO-queue hold-
ing tasks (sets of rays) for a multithreaded interactive ray
tracer. One approach is based on using locks to provide
mutual exclusion to critical regions. This approach, which
uses different locks for reading and writing thus reduc-
ing contention and serialisation, is referred to as LOCK.
The lock-free synchronisation approach (LFREE) avoids
all locks by carefully reordering instructions. Finally,
within the local approach each thread maintains a local
work queue, preventing work sharing but also dispensing
with access control mechanisms. These approaches were
evaluated on three different multicore systems: two differ-
ent 8-core servers based on the Intel Xeon 5400 and on the
Intel Xeon 5500 (supporting HyperThreading) and a 24-
core system based on the Intel Xeon 7400.

Results have shown that the LOCAL approach outperforms
the other two both in raw performance and scalability. This
result is explained by the fact that this approach incurs no
data access control overheads. Overheads due to load im-
balance do not occur due to both the fine granularity of the
tasks and to the homogeneity and shallowness of the per
pixel ray trees depths.

LOCK and LFREE perform similarly for a moderate num-
ber of cores. However, as the core count increases, the time
spent waiting to enter critical sections with locks starts to
grow exponentially. With the lock free approach this over-
head increases sublinearly, having a significant impact on
the achieved frame rates. This result is specially relevant
due to the ever increasing core count in modern proces-
sors. The performance of future shared memory manycore
systems will be, with high probability, dependent on the
ability to efficiently and robustly share data structures.



(a) Conference (b) Office (c) Bunny

Figure 7. Average aggregate time spent accessing data, in seconds, per frame on the 24-core Xeon
7400 server (time summed across threads).

iRT, the prototype interactive ray tracer engine used to
produce these results, is still in a preliminary develop-
ment stage. Important features have not been properly
addressed, such as resorting to explicit vectorial program-
ming, packeting of coherent rays and maximising local-
ity of memory references. These issues, fundamental to
achieve interactive frame rates within a global illumination
context, which requires the shooting of several additional
rays, will be addressed in the near future.

7. Acknowledgements

This work was partially supported by research project
IGIDE – FCT grant PTDC/EIA/65965/2006.

References

[Bigler 06] J. Bigler, A. Stephens, and S. Parker. De-
sign for Parallel Interactive Ray Tracing
Systems. In IEEE Symp. on Interactive
Ray Tracing, 2006.

[Debattista 03] K. Debattista, K. Vella, and J. Cordina.
Wait-free cache affinity thread scheduling.
In IEE Proc. on Software, volume 150,
pages 137–146, 2003.

[Debattista 09] K. Debattista, P. Dubla, F. Banterle,
L. Santos, and A. Chalmers. Instant
Caching for Interactive Global Illumina-
tion. Computer Graphics Forum, 2009. (to
appear).

[Dubla 09] P. Dubla, K. Debattista, L. Santos, and
A. Chalmers. Wait-Free Shared-Memory
Irradiance Cache. In EG Symp. on Paral-
lel Graphics and Visualization, 2009.

[Greenberg 99] D. Greenberg. A Framework for Realistic
Image Synthesis. Communications of the
ACM, 42(8):44–53, August 1999.

[Herlihy 08] M. Herlihy and N. Shavit. The Art of Mul-
tiProcessor Programming. 2008.

[Keller 97] A. Keller. Instant Radiosity. In SIG-
GRAPH ’97: Proc. of Conf. on Computer

graphics and interactive techniques, pages
49–56, 1997.

[Kollig 02] T. Kollig and A. Keller. Efficient Multidi-
mensional Sampling. Computer Graphics
Forum, 21(3), 2002.

[Michael 96] M. Michael and M. Scott. Simple, fast and
practical non-blocking and blocking con-
current queue algorithms. In Proc. of ACM
Symp. on Principles of Distributed Com-
puting, pages 267–275. ACM Press, 1996.

[Reshetov 05] A. Reshetov, A. Soupikov, and J. Hur-
ley. Multi-Level Ray Tracing Algo-
rithm. ACM Transaction on Graphics,
24(3):1176–1185, 2005.

[Wald 02a] I. Wald, C. Benthin, and P. Slusallek. A
Flexible and Scalable Rendering Engine
for Interactive 3D Graphics. Technical Re-
port TR-2002-01, Saarland Univ., 2002.

[Wald 02b] I. Wald, C. Benthin, and P. Slusallek.
OpenRT - A Flexible and Scalable Ren-
dering Engine for Interactive 3D Graphics.
Technical report, Saarland Univ., 2002.

[Wald 07a] I. Wald, C. Gribble, S. Boulos, and
A. Kensler. SIMD Ray Stream Tracing
- SIMD Ray Traversal and Generalized
Ray packets and on-the-fly Reordering.
Technical Report UUSCI-2007-012, SCI -
Univ. of Utah, August 2007.

[Wald 07b] I. Wald, W. Mark, J. Gunther, S. Boulos,
T. Ize, W. Hunt, S. Perker, and P. Shirley.
State of the Art in Ray Tracing Animated
Scenes. In Eurographics Conf. - State of
the Art Reports, 2007.

[Wald 08] I. Wald, C. Benthin, and S. Bou-
los. Getting Rid of Packets - Efficient
SIMD Single-Ray Traversal using Multi-
branching BVHs. In IEEE Symp. on Inter-
active Ray Tracing, 2008.


