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Abstract. The herein presented mutation-based artificial fish swarm (AFS) algorithm includes mutation operators to prevent
the algorithm to falling into local solutions, diversifying the search, and to accelerate convergence to the global optima.
Three mutation strategies are introduced into the AFS algorithm to define the trial points that emerge from random, leaping
and searching behaviors. Computational results show that the new algorithm outperforms other well-known global stochastic
solution methods.
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INTRODUCTION

This paper aims at introducing an artificial fish swarm (AFS) algorithm that relies on mutation operators to describe
the fish behaviors that mostly contribute to diversifying in the search space: random, searching and leaping behaviors.
The AFS algorithm is a recent and easy to implement artificial life computing algorithm that generates a sequence of
approximations to the solution of a global optimization problem, while simulating fish swarm behaviors inside water.
It uses a population of points to identify promising regions looking for a global solution [4, 6, 9]. Fishes desire to stay
close to the swarm, avoiding collisions within the group, protecting themselves from predators and looking for food.
The five fish behaviors inside water are:

i) random behavior - fish swims randomly in water looking for food and other companions;
ii) searching behavior - fish tends directly and quickly to regions with more food, by vision or sense;

iii) swarming behavior - fish naturally assembles in groups which is a living habit in order to guarantee the existence
of the swarm and avoid dangers;

iv) chasing behavior - fish finds the food dangling quickly after a fish, or a group of fishes, in the swarm that
discovered food;

v) leaping behavior - fish leaps to look for food in other regions when it stagnates in a region.

Here, we are specially interested in solving bound constrained problems of the form:

minimizex∈Ω f (x) (1)

where f : Rn → R is a nonlinear function and Ω = {x ∈ R
n : l ≤ x ≤ u} is the feasible region. The objective function

f may be non-smooth and may possess many local minima in the search space Ω, since we do not assume that f is
convex. Many derivative-free algorithms and heuristics have been proposed to solve (1), namely those based on swarm
intelligence. Probably the most well-known are the particle swarm optimization [1], the ant colony [7] and the artificial
bee colony [5] algorithms. The most important global search techniques invoke exploration and exploitation search
procedures aiming at:

i) diversifying the search in all the search space;
ii) intensifying the search in promising areas of the search space.

An efficient AFS algorithm should be capable of exploring the whole search space as well as exploiting around the
neighborhood of a reference point, for example, the best point of the population. Previous experiments have shown
that AFS algorithms may be trapped into local optimum, although the leaping behavior has been helping to jump out
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from local solutions. Furthermore, in a population-based method, it is very important to obtain the optimal solution
in a minimum time period. This paper proposes the introduction of some mutation operators into the AFS algorithm
in order to diversify the search and prevent the algorithm from falling into a local optimum. The remaining paper is
organized as follows. Firstly, the main steps of the AFS algorithm will be described and the proposed mutation-based
AFS algorithm will be introduced. Finally, the numerical results and remarks will be shown.

MUTATION-BASED AFS ALGORITHM FOR BOUND CONSTRAINED PROBLEMS

This is a list of the used notation: the position of an artificial fish in the search space is herein denoted by a point,
xi ∈R

n, the ith point of a population. xbest is the point that has the least objective function value in Ω; xi
j ∈R is the jth

( j = 1, . . . ,n) component of the point xi of the population and psize is the number of points in the population. Hereafter
PI represents the set of indices {1,2, . . . , psize}.

The initial population is generated randomly and should cover the entire search space Ω. Fish/point movements are
defined according to its ‘visual scope’. This is the closed neighborhood centered at xi with radius v > 0 defined by
v = δ max j∈{1,...,n}(u j − l j), where δ is a positive visual parameter. It has been shown that a reduction of δ accelerates
the convergence to the solution [6]. Hence, every iteration, the visual parameter is updated using δ = max{δmin, μδ δ},
where 0< μδ < 1 and δmin > 0. Let Ii be the set of indices of the points inside the ‘visual scope’ of xi (i /∈ Ii and Ii ⊂ PI)
and npi the number of points in the ‘visual scope’. If the condition npi/psize ≤ θ holds, where θ ∈ (0,1] is the crowd
parameter, then the ‘visual scope’ of xi is said to be not crowded. Depending on the relative positions of the points in
the population, three possible situations may occur:

• when npi = 0, the ‘visual scope’ is empty, and the point xi, with no other points in its neighborhood to follow, has
a random behavior moving randomly inside the ‘visual scope’;

• when the ‘visual scope’ is crowded, the point has some difficulty in following any particular point, and has a
searching behavior choosing randomly another point (from the ‘visual scope’) and moving towards it;

• when the ‘visual scope’ is not crowded, the point is able either to swarm moving towards the central point of
the ‘visual scope’ (swarming behavior), or to chase moving towards the best point of the ‘visual scope’ (chasing
behavior). The original AFS algorithm simulates both movements and chooses the best in the sense that a better
objective function value is obtained.

Details concerning the referred behaviors follow. The swarming behavior is characterized by a movement towards
the central point of the ‘visual scope’ of xi, c = ∑ j∈Ii(x j/npi). However, the swarming behavior is activated only if the

central point has a better objective function value than that of xi. Otherwise, the point xi follows the searching behavior.
In the searching behavior, a point is randomly chosen inside the ‘visual scope’, xrand, and a movement towards it is
carried out if the random point improves over xi. Otherwise, the point has a random behavior. The chasing behavior is
carried out when a point, denoted by xmin, with the minimum objective function value inside the ‘visual scope’ of xi,
satisfies f (xmin)≡ min

{
f (x j) : j ∈ Ii

}
< f (xi). However, if this last condition is not satisfied then the point activates

the searching behavior. Finally, when the best point of the population, xbest, does not change for a certain number of
iterations, the algorithm may have fallen into a local minimum. To be able to overcome this ‘stagnation’ and try to
converge to the global minimum, the leaping behavior is implemented. At every psize iterations, a point is randomly
selected from the population and a random movement is carried inside the set Ω [9].

The modifications that we have introduced in the past into the AFS algorithm to improve convergence to global
solutions are now described. Firstly, each point movement, either towards the central c, the xmin or xrand, defines a
trial point, herein denoted by yi, that is defined componentwise by yi

j = xi
j +ξdi

j, j = 1, . . . ,n, where di represents the
vector with the direction of movement and ξ is a uniformly distributed value in [0,1]. Then any point’s component
outside the bounds, is projected onto Ω. At the end of each iteration, the algorithm implements a selection operation
aiming at accepting the trial point yi only if it improves over the current point xi. After defining the population for
the next iteration and detecting the best point of the population, a local search procedure is used to refine locally the
search around xbest. We propose the well-known Hooke and Jeeves pattern search algorithm [3].

Hooke and Jeeves local search: This is a derivative-free deterministic method that exploits the neighborhood of a
point for a better approximation using two types of moves: the exploratory move and the pattern move. It is a variant
of the well-known coordinate search method (a search along the coordinate axes). It incorporates a pattern move to
accelerate the progress of the algorithm, by exploiting information obtained from the search in previous successful



iterations. At each iteration the exploratory move carries out a coordinate search around the best point, with a step
length Δ. If a new trial point, y, with a better function value than xbest is encountered, the iteration is successful
and Δ is maintained. Otherwise, the iteration is unsuccessful and Δ should be reduced. If the previous iteration was
successful, the vector y− xbest defines a promising direction and a pattern move is then implemented, which means
that the exploratory move is carried out around the trial point y+(y−xbest), rather than the current point y. Then, if the
coordinate search is successful, the returned point is accepted as the new point; otherwise, the pattern move is rejected
and the method reduces to a coordinate search around y. We refer to [3] for details.

When the ‘visual scope’ of a point xi is not crowded, the original AFS algorithm tries the swarming and the chasing
behaviors to check which one is the best. Function values at xmin and c have to be evaluated and compared to each
other, as well as with f (xi). To reduce function evaluations, the priority-based strategy is proposed in [6].

Priority-based strategy: In order to accelerate convergence, a priority-based strategy has been implemented only
when the ‘visual scope’ of a point xi is not crowded [6]. It simulates one behavior at each time instead of trying both
swarming and chasing behaviors at the same time. The chasing behavior is ranked with highest priority, so that the
movement in direction to xmin is carried out first if f (xmin) < f (xi). Otherwise, the swarming behavior will be the
alternative. So, the movement in direction to c is then carried out if f (c)< f (xi). However, if the latter condition does
not hold then the point has a searching behavior [6].

We now introduce the main features of the new mutation-based AFS algorithm. Mutation operators are implemented
ir order to describe the random, searching and leaping behaviors.

Mutation operators: Differential evolution (DE) is an evolutionary algorithm proposed in [8] for bound constrained
global optimization. It generates new trial points by combining a current point and several other points of the same
population. DE follows three operations to generate the population for the next iteration. One is the mutation and
it aims to create the therein called mutant points vi, i = 1, . . . , psize, relative to the current points xi. The most used
mutation strategy is referred as DE/rand/1, but there are others available in the literature:

DE/rand/1 vi = xr1 +F1 (xr2 − xr3) DE/target-to-rand/1 vi = xi +F2 (xr1 − xi)+F1(xr2 − xr3)
DE/best/1 vi = xbest +F1 (xr1 − xr2) DE/target-to-best/1 vi = xi +F1 (xbest − xi + xr1 − xr2)

(2)

where indices r j are randomly chosen from the set PI, mutually different and different from the running index i. F1
and F2 are real and constant parameters from [0,2] and [0,1] respectively. The mutation operation plays a vital role
in the DE algorithm in order to explore the entire search space and, at the same time, to expedite convergence. For
example, DE/rand/1 mutation strategy explores the entire search space but desaccelerates convergence. On the other
hand, DE/best/1 strategy exploits around the best point found so far and accelerates convergence. With this mutation a
local solution may be obtained before the global solution can be reached. Hence, it is very important to balance both
random movements. Motivated by the success of mutation operators in DE, we select three strategies to define the trial
points, yi, that emerge from random, leaping and searching behaviors, as follows:

for the random behavior: yi = xi +F2 (xr1 − xi)+F1(xr2 − xr3)
for the leaping behavior: yi = xr1 +F1 (xr2 − xr3)

for the searching behavior: yi = xi +F1 (xbest − xi + xr1 − xr2)
(3)

where r j, j = 1,2,3 are defined as previously described.

NUMERICAL RESULTS AND REMARKS

For a practical assessment of the proposed modifications, numerical experiments are carried out involving nine
standard benchmark test problems. The algorithms are coded in C and the results were obtained in a PC with a
3GHz Pentium IV microprocessor and 1Gb of memory. Each problem was solved 30 times and a population of
psize = min{100,10n} points is used. Other parameters are set as follows: initial δ is 1, δmin = 0.1, μδ = 0.9, θ = 0.8,
V = psize, r = n, F1 = 0.5, F2 = 1. First, we compare the results of a previous AFS algorithm [6], ‘AFS’, of the herein
proposed mutation-based AFS algorithm, ‘m-AFS’, with the electromagnetism-like mechanism, ‘EM’, of [2], using
the following condition to judge the success of the run

∣
∣ f (xbest)− fopt

∣
∣≤ 0.0001

∣
∣ fopt

∣
∣ OR n feval > 20000, (4)



where f (xbest) is the best solution found so far, fopt is the known optimal solution, and n feval is the number of function
evaluations required to obtain a solution with the specified accuracy. For each method, Table 1 contains the registered
average number of function evaluations obtained in the 30 runs. In the table, ‘Prob.’ lists the acronym of the tested
problems.

To compare the performance of our AFS algorithms with that of improved particle swarm optimization (PSO)
algorithms - variants ‘PSO-RPB’ and ‘PSO-HS’ - proposed in [1], as well as with the natural competitor, the
differential evolution ‘DE’ (presented in [1]), we solved again the problems using the stopping condition therein
selected [1]: ∣

∣ f (xbest)− fopt
∣
∣≤ 0.001 OR n feval > 20000. (5)

The last five columns of Table 1 show the average number of function evaluations reached by AFS, m-AFS, PSO-
RPB, PSO-HS and DE. From the comparison we may conclude that the mutation-based AFS algorithm is better than
the previous AFS algorithm in terms of efficiency (average number of function evaluations). Further, mutation-based
AFS algorithm is considered rather competitive when compared with the EM algorithm. When we consider the second
set of experiments using condition (5), we observe that both AFS and m-AFS improve over both variants of PSO in
comparison and DE.

TABLE 1. Results of average number of function evaluations.

Prob. fopt stopping condition in (4) stopping condition in (5)
AFS m-AFS EM AFS m-AFS PSO-RPB PSO-HS DE

BR 0.39789 550 475 315 651 438 2652 2018 1305
CB6 -1.0316 331 247 233 246 245 2561 2390 1127
GP 3.00000 676 417 420 562 485 2817 1698 884
H3 -3.86278 2930 1891 1114 1573 1142 3564 2948 1238
H6 -3.32237 7091 2580 2341 7861 2845 8420 8675 7053
S5 -10.1532 3928 1183 3368 3773 1150 6641 6030 5824
S7 -10.4029 4033 1103 1782 2761 1240 6860 6078 5346
S10 -10.5364 2069 1586 5620 2721 1190 6747 5602 4822
SBT -186.731 472 523 358 659 516 4206 6216 2430

The goal of this research is to improve the performance of the AFS algorithm, preventing convergence to local
solutions and accelerating convergence to a global solution. The results that come out from the introduction of various
mutation operators, as presented in DE-type methods, to translate AFS behaviors, like searching, random and leaping,
show the goodness of the proposal. Future developments will focus on an adaptive strategy to define parameters F1
and F2.
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