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1   Introduction 

Real engineering design and optimization problems are complex, 

multidisciplinary and difficult to manage within reasonable timings; in some 

cases, they can, at least to some extent, be mathematically described by 

sophisticated computational tools, which generally require significant 

resources. The momentous advances in some scientific and technological 

subjects (e.g., computational fluid dynamics, structural mechanics), coupled to 

the development of highly performing computing techniques (e.g., parallel 
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and/or grid computing) and computer facilities, make it possible to 

progressively tackle more features of complicated problems [1]. 

Multidisciplinary Design Optimization, MDO, can be described as a 

technology, an environment, or a methodology for the design of complex 

integrated engineering structures, which combines different disciplines and 

takes into account in a synergistic manner the interaction between the various 

subsystems [2-4]. Examples of its practical application include the design and 

optimization of aircrafts, cars, building structures and manufacturing systems 

[1, 5-9]. 

In principle, a strategy like MDO could also be utilized for the 

optimization of polymer processing, as this encompasses several disciplines, 

such as fluid mechanics, heat transfer, polymer science, rheology, numerical 

methods, mechanical engineering and optimization techniques. 

Several MDO strategies have been proposed in the literature [1-9]. A 

common characteristic of earlier methods is the utilization of approximation 

and decomposition techniques, in order to divide the problem into smaller, 

more amenable, blocks [1-3], that are subsequently solved separately, using 

simpler models. However, the unified view is lost and, most likely, the total 

cost of the design will be actually higher than that of solving the whole 

problem at once. More recently, integrated MDO approaches have been 

proposed [4-9], but a few seem to overlook the fact that real world problems 

contain multiple, often, conflicting objectives, that must be tackled 

simultaneously [10]. 

As seen in previous chapters, Evolutionary Algorithms, EAs, are 

particularly adequate to deal with the multi-objective nature of real problems, 

as they work with a population (of vectors, or solutions) rather than with a 

single solution point. This feature enables the generation of Pareto frontiers 

representing the trade-off between the objectives, while simultaneously 

providing a link to the decision variables [10-13]. Thus, the result of a Multi-

Objective Evolutionary Algorithm, MOEA, is a set of solutions as near as 

possible to the Pareto optimal front [10]. Other multi-objective algorithms may 

be preferable for specific situations, such as Ant Colony Optimization, ACO 

[13, 14], Stochastic Local Search, SLS [15], among others. 

In all cases, it will be necessary to provide information regarding the 

relative importance of every problem objective. This is usually accomplished 

by introducing in the optimization system the preferences of a Decision 

Maker, DM [16]. Depending on the decision making strategy adopted, such 

information can be introduced before, during, or after the optimization (see 

chapter 3 for more details) [11-13, 16]. Additionally, since in real applications 
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small variations of the design variables, or of environmental parameters, may 

frequently occur, the performance of the prospective optimal solution(s) 

should be only slightly affected by them, i.e., the solutions must be robust [17-

21]. Even though robustness is clearly an important aspect to consider during 

optimization, it is rarely included in traditional algorithms [19, 21].  

One of the major difficulties of applying MOEAs to real engineering 

problems is the large number of evaluations of objective functions that are 

necessary to obtain an acceptable solution - typically, of the order of several 

thousands. Furthermore, these evaluations are often time-consuming, as they 

use large numerical codes generally based on computationally costly methods, 

such as finite-differences or finite-elements. Consequently, reducing the 

number of evaluations necessary to reach an acceptable solution is of major 

practical importance [22]. However, finding good approximate methods may 

be more difficult than anticipated, due to the existence of several objectives 

and to the possible interactions between them, different approaches having 

been pursued, often involving the hybridization of MOEAs with local search 

procedures, known as  Memetic algorithms [22-27]. 

Finally, it is vital to define/control the dimension of the multi-objective 

problem to solve. As the number of individual objectives raises, so does the 

number of non-dominated solutions. In turn, the problem becomes much more 

difficult to solve (at least from the EAs' point of view), since a large quantity 

of the common solutions move from one generation to the next, reducing the 

selection pressure. Simultaneously, it turns out to be increasingly difficult to 

visualize the correlations between the different solutions. Whenever possible, 

one should consider ways of reducing the number of objectives, for example 

using approaches based on statistical techniques [28, 29]. 

In conclusion, the application of a multidisciplinary design optimization 

methodology to solve multi-objective engineering problems should entail 

optimization together with engineering and design tools. The former must 

encompass the selection of the relevant algorithm(s), a decision support 

system, an analysis of the robustness of the solution(s), the reduction of the 

number of evaluations required by the optimization routine (and thus of the 

computing times) and the reduction of the number of objectives. The present 

chapter presents and discusses a possible approach to solve problems of the 

polymer processing type by employing tools that are able to deal with multiple 

objectives, decision making and robustness of the solutions, among others. 
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2   The Methodology 
 

2.1        Methodology Structure 

Although the methodology proposed here does not possess the breadth of a 

complete MDO, it attempts to incorporate the different facets associated to a 

MOEA (including, as discussed above, decision making, robustness of the 

solutions and reduction of the number of objectives and computation times), 

together with the software/calculations required to evaluate specific aspects of 

the design and optimization problem (such as, for example, flow and heat 

transfer, aerodynamics, or structural mechanics). Also, even though the 

concept was developed having mainly in mind polymer processing, it is 

sufficiently flexible to be applicable to other engineering problems. As a 

matter of fact, the linkage to diverse engineering disciplines is mainly 

performed via the tools used to evaluate the solutions (which can vary from 

modeling software yielding quantitative data to qualitative aesthetical or 

comfort judgments). 

As seen in Figure 1, the methodology involves necessarily analysis, 

modeling and optimization steps. One should begin with the identification of 

the problem characteristics, namely what are the major objectives and 

constraints, what are the main process parameters and whether automated 

calculation tools are available to provide solutions for subsequent evaluation, 

or qualitative and empirical knowledge should also apply.  

An optimization step using MOEA will follow, with the aim of obtaining 

a good approximation to the Pareto front. The DM defines the relative 

importance of the various objectives via weights and, depending on his degree 

of confidence (which can be defined in the algorithm), the MOEA will be able 

to move towards Pareto frontiers of different sizes [16]. The robustness 

analysis may suggest fewer solutions.  If the problem has many objectives, 

reduction of their number will be attempted [29]. Depending on the time spent 

on the evaluation of each objective function, the hybridization of MOEA with 

function approximation algorithms can also be adopted [25, 26]. The final 

result of this stage will consist of Pareto frontiers expliciting the trade-off 

between the different objectives and the decision variables (i.e., the parameters 

to be optimized). 

The solutions will subsequently be presented to the DM in graphical form. 

This is a key step when non-quantifiable objectives exist, or when empirical 

knowledge must be also taken into consideration. The DM indentifies search 
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space regions (on the objectives domain) that may satisfy his requirements in 

terms of the design (on the decision variables domain) - these are denoted as 

DM1 and DM2 in Figure 1. 

In the following step, the methodology is used to tackle the inverse 

process, i.e., to determine the set of weights (one per objective) corresponding 

to the search space regions selected by the DM. This information is 

incorporated on the MOEA to generate new improved solutions. The process 

is repeated until the DM is satisfied with the results. 
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Figure 1. Integrated MO-MDO system.  

 

2.2  Multi-Objective Evolutionary Algorithms 

Following the ideas presented in Chapter 3, a MOEA named Reduced Pareto 

Set Genetic Algorithm, RPSGA, has been developed by the authors [12]. Since 

it will be used later in this Chapter, it makes sense to present it here in some 

detail. 

In the RPSGA, the homogeneous distribution of the population along the 

Pareto frontier and the improvement of the solutions along successive 

generations are performed through the use of a clustering technique, which is 
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applied to reduce the number of solutions on the efficient frontier [12]. The 

structure of the scheme is illustrated in Algorithm 1 below. 

 

Algorithm 1: RPSGA  

1 Initialize pe (external population) and Archive to empty set 

2 pi is a randomly generated, initial population (internal) 

3 while (termination condition not satisfied) 

4 Evaluate pi 

5 Evaluate individuals' fitness considering clustering 

6 Copy best individuals to pe 

7 if (external population full) 

8 pe ← Clustering pe 

9 Copy best individuals of pe to pi 

10 endif 

11 Select individuals for reproduction 

12 Apply Inver-over operator to selected pairs of individuals 

13 Add non-dominated solutions to Archive 

14 end while 

15 Filter Archive 

16 Return Archive 

end 

 

Initially, an empty external population, pe, and an empty archive are 

formed (line 1) and an internal population, pi, of N candidate solutions is 

randomly generated (line 2). At each generation, that is, while a termination 

condition is not satisfied, the following operations are performed: 

i) the candidate solutions of pi are evaluated by the simulation routine 

(line 4);  

ii) a clustering technique (Algorithm 2) is applied to reduce the 

number of solutions on the efficient frontier and to compute the 

fitness of each individual of pi (line 5); 
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iii) a fixed number of the best individuals are copied to pe (line 6); 

iv) if pe is full, the clustering technique (Algorithm 2) is applied again 

to sort the individuals of pe (line 8) and a pre-defined number of the 

best individuals from pe are incorporated into pi to replace the 

lowest fitness individuals (line 9); 

v) if pe is not full, individuals of pi are selected (line 11) for the 

application of the inver-over operator (line 12);  

vi) all non-dominated solutions found during the computations are 

copied to the archive (line 13); 

vii) all non-dominated solutions of the archive are returned after 

filtering it. 

 

Algorithm 2 starts with the definition of the number of ranks, NRanks, (line 

1) and the rank of each individual i, Rank[i], is set to 0 (line 2). For each rank, 

r, the population is reduced to NR individuals (i.e., NR is the number of 

individuals of each rank), using the clustering technique (lines 5 and 6). Then, 

rank r is attributed to these NR individuals (line 7) until the number of pre-

defined ranks is reached (line 8). Finally, the fitness of individual i, Fi,, is 

calculated using a linear ranking function (line 9). 

 

Algorithm 2: Clustering  

1 Definition of NRanks 

2 Rank[i] = 0 

3 r = 1 

4 do 

5 NR = r (N/NRanks) 

6 Reduce the population down to NR individuals 

7 r = r + 1 

8 while (r < NRanks) 

9 Calculate fitness 

10 end 
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In the computations below, the parameter settings that have been 

recommended in [12] are used. Hence, pi and pe have 100 and 200 individuals, 

respectively; a roulette wheel strategy is adopted for selection; the probability 

for applying the inver-over operator is 0.8. For more details and other 

parameter settings we refer to the original publication [12]. 

 

 

3   Decision Making 
 

3.1   Current Methods 

For effective application, the result of a multi-objective optimization process 

should consist of a single solution, not the set of solutions belonging to the 

Pareto front. In order to come up with this unique answer, at some point during 

the optimization the DM must decide what is the relative importance of the 

various objectives [10]. Consequently, the final outcome of a multi-objective 

optimization problem results not only from optimization (i.e., from the search 

process), but also from a decision course of action. 

In this respect, existing multi-objective optimization methods [30, 31] are 

usually classified as no-preference or preference-based, depending on the 

consideration given to the relative importance of the objectives [32]. In the 

first case, the problem is solved regardless of that relative importance and the 

solution(s) obtained is/are made available to the DM, that accepts or rejects 

it/them. In the second case, the preferences of the DM are introduced in the 

search procedure and, in principle, the solution that best satisfies his 

preferences is selected [30].  

There are, at least, three opportunities to introduce the DM preferences 

into the optimization scheme (see also Chapter 3): i) The various individual 

objectives are aggregated into a single objective, being necessary to decide a 

priori how that combination is realized;  ii) Decision making and optimization 

are intertwined, i.e., after an optimization step, the DM provides preference 

information on the set of available solutions, so that the optimization algorithm 

can proceed with the search; iii)  The set of objectives is optimized 

simultaneously to obtain non-dominated vectors, the best solution being 

selected by integrating the DM preferences [10]. 

The open literature presents various methods of combining the search 

process with the DM preferences [10, 30], some being described in more detail 

in Chapter 3. For example, the decision making strategy proposed by Fonseca 

and Fleming [33] is based on pre-defined goals and priorities. If in a problem 
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with n objectives, a preference vector g = [(g1,1, … , g1,n1), … , (gp,1, … , 

gp,np)], where ∑ =
=

p

i i nn
1

, is defined by the DM, then the sub-vectors gi of 

the preference vector associate priorities i and goals 
ijig ,  to the corresponding 

objective functions 
ijif , . In this strategy, the comparison operator is 

structured taking into account, in each priority level, the components of the 

objective vector that do not meet their goals. Thus, the objective vectors u and 

v are compared in terms of their components with the highest priority p, 

disregarding those in which the up meets the corresponding goals. When both 

vectors meet all goals with this priority, or if they infringe at least some of 

them but exactly in the same way, the next priority level (p-1) is considered. 

The process continues until priority 1 is reached and satisfied, in which case 

the result is decided by comparing the priority 1 components of the two 

vectors. The implementation of this method requires the progressive 

articulation of preferences with the consequent changes on the environment 

(i.e., location of the solutions on the objective space) and a permanent 

interaction with the decision maker. Also, it requires the definition of two sets 

of parameters, namely the goals and the priorities for each objective, which is 

not an easy task.  

Other decision methods can be mentioned, including weighted metrics 

[30], marginal rate of substitution [30], pseudo-weight vector [10], utility 

functions [34], biased sharing [10], guided domination [35], weighted 

domination [36] and the reference point base EMO [37]. Several difficulties 

may arise when applying these methods to real problems (again, see also 

Chapter 3). For example, some of the Pareto optimal solutions proposed by 

weighted metrics may not exist, depending on the problem's degree of non-

convexity [30]. The marginal rate of substitution method requires a high 

computational effort [10]. The pseudo-weight vector does not perform 

satisfactorily for non-convex fronts, especially when a high importance is 

attributed to one of the objectives [10]; it is also very complex, as a weight 

vector must be calculated for each solution. Generally, in most of these 

methods the DM needs to define various algorithm parameters, which requires 

a priori a good knowledge of the Pareto front characteristics [30].  

For illustrative purposes, the Weighted Sum Method (one of the weighted 

metrics approaches cited above) is applied here, as it is one of the simpler 

available schemes, transforming a problem with N objectives into a single 

objective optimization problem as follows:  
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∑
=

=
N

i

ii xfwxF
1

)()(Maximize  

Sx ∈toSubject  

(1) 

where ),,( 1 Nwww K
r

= is a weighted vector representing the relative 

importance of each objective.  The method can be used either a priori or a 

posteriori, depending on whether the DM expresses his preferences before or 

after the Pareto set approximation has been generated, respectively. In the first 

case, the optimization of a single objective is carried out, while in the second 

case the DM selects the best solution from the Pareto front obtained by a 

multi-objective optimization method. For a two-objectives to be minimized 

problem, as shown in Figure 2, the technique consists in shifting vertically 

upwards a straight line, having a slope given by the ratio between the weights 

attributed to each objective (w1 and w2, respectively), until it becomes tangent 

to the Pareto front contour. Each different pair w1,w2 generates a new solution. 

It is evident that even if the ratio of w1 to w2 changes extensively, the concave 

part of the Pareto front will never be reached.  
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Figure 2. Application of the Weighted Sum Method to a non-convex Pareto-optimal 

front. 
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2.2. Weighted Stress Function Method 

In an attempt to circumvent the limitations of the methods discussed in the 

previous Section, a different scheme is presented and analysed here. The 

Weighted Stress Function Method, WSFM [16], integrates the DM preferences 

once the search has been concluded (thus, the method is used a posteriori), 

which means that search and decision are sequential. WSFM is based on the 

assumptions that the best solution that will satisfy the DM preferences must 

belong to the Pareto Frontier, i.e., to the set of non-dominated solutions, and 

that the selection must take into consideration an ideal objective vector 

(denoted as Z*) that maximizes each of the objective functions. The individual 

optimization of each objective corresponds to the maximum value of the 

global objective. The relative importance attributed to each individual 

objective will induce a “stress” to search for solutions that maximize each of 

the different objectives, the best solution being the one with zero stress. 

The concept is based on the typical stress-strain behavior of thermoplastic 

vulcanizate polymer materials, TPV. A typical structure of a TPV consists of a 

high volume fraction (0.40<vp<0.9) of cross-linked elastomeric particles 

suspended in a continuous thermoplastic matrix [38, 39]. Figure 3-A shows 

typical stress-strain curves for volume fractions of the elastomeric particles 

(vp) between 0.0 to 1.0 [38]. Three regions with distinct behavior can be 

identified: i) at small strains, the stresses increase dramatically; ii) at 

intermediate strains, the stresses are relatively stable; iii) at high strains, a 

hardening effect develops. These differences decrease with increasing 

elastomeric particles volume fraction.  
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Figure 3. Analogy between TPV elasticity and the weighted stress function method (in 

the left plot the strain is normalized between 0 and 1). 
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The method makes an analogy between this stress-strain behavior and a 

stress function accounting for the weights defined for each objective. Indeed, 

the stress-strain plots for different volume fractions, vp (Figure 3-A) and the 

stress function plots for different weights, wi attributed to criterion i (Figure 3-

B) are mirrored. The vp and wi values, ranging in the same interval [0,1], have 

the same role, i.e., to increase or decrease the stress, although they vary in 

opposite directions.  

Figure 4 presents the Pareto frontier of an optimization problem with two 

objectives, f1 and f2, both to be maximized. For each solution belonging to this 

frontier, two stresses,
1wσ  and

2wσ , are defined, each associated with the 

corresponding objectives. If 
1w  and 

2w  are the weights linked to each 

objective, each stress is proportional to the weighted distance between 

objective i and the i-th component of the ideal objective vector, z*. 

z*

Pareto
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σw1
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σw2

f2 z*
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σw1
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Figure 4. Stresses associated with an optimal solution, for an optimization problem 

with two objectives to be maximized. 

Since the two objectives are conflicting, the ideal objective vector is not 

the solution to the problem and the stresses associated to the best solution are 

not nil. The best possible solution is that where the differences between the 

stresses associated with each objective are minimal. This implies that the value 

of 
1wσ is insufficient to search for the solutions with the best values of f1, since 
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an increase in the value of f1 entails a decrease in f2 and, consequently, an 

increase in 
2wσ . In turn, the increase of 

2wσ redirects the search for solutions 

with the best values for f2, in detriment of the losses on f1. Taking these 

considerations into account, a weighted stress function was mathematically 

defined in order to describe the shape of the stress versus fi illustrated in 

Figure 3 right. This stress function is associated with weight wi and is defined 

as [16]:  
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This description considers that the objectives are normalized, i.e., fi ∈ [0, 

1] and that the ideal vector is ( )1,,1*
K=z . For a set of weights 

( )Nwww ,,1 K
r

= , the resolution of a multi-objective optimization problem 

with N objectives consists in solving the following single objective problem: 

( ))(max)(Minimize XfXT iw
i i

σ=  

SX ∈toSubject  
(7) 

In most optimization problems, only small regions of the Pareto frontier 

have practical interest [33, 40]; they are defined by the incorporation of the 
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DM's preferences. The definition of an ability function, combining the non-

dominance concept with the relative importance of each objective, allows the 

selection of the solutions satisfying both aspects. Therefore, a different fitness 

function, DF, is defined, to account for the ranking of the solutions, as defined 

by the concept of non-dominance – Rank (X), and for the preferences of the 

DM, as quantified by equation 7 - T(X):  

1)(

)(
)(Rank)(

+
+=

XT

XT
XXDF  (8) 

This technique can be applied to any multi-objective algorithm. For 

example, the authors modified their Reduced Pareto Set Genetic Algorithm, 

RPSGA [13]. Initially, the RPSGA runs without modifications (i.e., without 

introducing the DM preferences) during N1 generations (search generations), 

with the aim of obtaining a first approximation to the Pareto frontier. Then, the 

modified algorithm will run during N2 generations (decision generations) 

applying equation 7, in order to take into account the DM preferences. 

Simultaneously, a dispersion parameter, ε, ranging in the interval ]0,1[, is used 

to control the extent of the Pareto sub-set; the higher its value, the wider the 

region. More details can be found elsewhere [16]. 

 

 

3   Robustness 

Ideally, the performance of an optimal solution should be insensitive to the 

unavoidable changes that may occur in the design variables or in the 

environmental parameters. In other words, the solutions should not only be 

optimal, but also robust [41, 42]. In practice, different robustness-related types 

of problems can arise [41-46]: i) those where the performance is affected by 

the noise originated by sources such as sensor measurements and/or 

environmental parameters; ii) those where the design variables change after 

the optimal solution has been found; iii) those where the process performance 

is estimated by an approximation to the real value; iv) and those where the 

performance changes with time, which implies that the optimization algorithm 

must be updated continuously or periodically. Here, we are exclusively 

concerned with problems of the second category. 

Given the above, the optimization algorithm should simultaneously 

determine the solution (or the set of solutions, in the case of multi-objective 

optimization) that maximize performance and that guarantee satisfactory 
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robustness. Thus, not only a robustness analysis should be introduced as the 

search proceeds and not after, but also, as robustness and performance can be 

conflicting, it is important to know their interdependency for each 

optimization problem. Robustness analyses for single objective optimization 

have been applied to various engineering fields and using different 

optimization methodologies [45-50]. Conversely, only recently these studies 

have been extended to Multi-Objective Optimization [19, 21, 51-60]. 

Depending on the type of Pareto frontier, the aim of the analyses is either to 

locate the optimal Pareto front’s most robust section [19, 57] or, in the case of 

a multimodal problem, to find instead the most robust Pareto frontier [56, 57]. 

The concept of robustness in a single objective problem can be introduced 

using Figure 5a, which shows the evolution of the objective function f(x1) (to 

be maximized) against the design parameter x1. The most robust solution is the 

one for which the objective function f is less sensitive to variations of xl. 

Clearly, solution S2 is less sensitive than S1 to variations of x1 as the changes 

in f(x1) are less important (∆f2 and ∆f1 for S2 and S1, respectively) and, 

consequently, it can be considered as the most robust solution. Since S1 is the 

most performing and S2 the most robust, a balance between performance (or 

fitness) and robustness has to be made [19, 54, 56-58].  
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Figure 5. Concept of robustness for: a) single objective optimization; b) multi-

objective optimization. 

Two kinds of robustness measures have been proposed to deal with 

robustness [19, 21, 41, 54, 57]: 

- Expectation measure: where the original objective function is replaced 

by a measure of both its performance and expectation in the vicinity of the 
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solution considered. Various types of expectation measures have been 

proposed [19, 21, 43-45, 54, 57]. For example, if P(δ) is defined as the 

probability distribution of the disturbances δ in the neighborhood of the design 

point xi, the expectation value, F(xi), of the objective function, f(xi), can be 

estimated from [43-45]: 

∫
+∞

∞−

= δδδ dPxfxF ii )(),()(  (9) 

- Variance measure: this consists in adding an additional objective to the 

objective function, to measure the deviation of the latter around the vicinity of 

the design point. Variance measures take only into account function 

deviations, ignoring the associated performance. Thus, in the case of a single 

objective function, the optimization algorithm must perform a two-objective 

optimization, one concerning performance and the other robustness [19, 21, 

54, 57]. For example, Jin and Sendhoff [21] optimized simultaneously the 

original fitness function and the following robustness measure: 

∑
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where σf and σx are the standard deviation of f and x, respectively. The smaller 

the f
R
, the more robust the solution is. 

These measures were classified by Deb and Gupta [57] as type I and II, 

respectively. Gaspar-Cunha and Covas [19] evaluated the performance of 

selected expectation and variance measures in terms of their capacity to detect 

robust peaks, by taking into account the following characteristics: i) easy 

application to problems where the shape of the objective function is unknown 

a priori, ii) capacity to define robustness regardless of that shape, iii) 

independence of the algorithm parameters, iv) clear definition of the function 

maxima in the Fitness versus Robustness Pareto representation and v) 

efficiency. The following variance measure exhibited the best overall 

performance:  
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In this equation, the robustness of individual i is defined as the average 

value of the ratio between the difference of the normalized fitness of 

individual i, )x(f
~

i
, to that of its neighbors (j), and the distance separating 
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minimization of the objective function f(xi), with fmax and fmin representing the 

limits of its range of variation. N´ is the number of population individuals 

whose Euclidian distance between points i and j (di,j) is lower than dmax (i.e., 

di,j < dmax): 
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and M is the number of objectives. As before, the smaller the fi
R
, the more 

robust the solution is. 

Similarly to a single objective solution, a multi-objective robust solution 

must be little sensitive to variations of the design parameters. The concept is 

illustrated in Figure 5b: the same local perturbation on the parameter space, x1, 

causes different consequences to the solutions located in diverse regions of the 

search space (S1 and S2). Those solutions that suffer smaller changes for the 

same perturbations on the parameters space are the most robust, i.e., S1 is more 

robust than S2 [19, 20]. In general, each of the Pareto optimal solutions must 

be analyzed in what concerns robustness. Consequently, the combined effect 

of the changes in all the objectives must be estimated and used as a robustness 

measure, the aim being to obtain a set of Pareto solutions that are concurrently 

multi-objectively robust and Pareto optimal. When dealing with multi-

objective optimization different situations may arise, as illustrated in Figure 6 

[56, 57]: i) every solution on the Pareto-optimal frontier is robust (Figure 6-

A); ii) only some of the solutions belonging to the Pareto-optimal frontier are 

robust (Figure 6-B); iii) the solutions belonging to the Pareto-optimal frontier 

are not robust, but a robust Pareto frontier exists (Figure 6-C); iv) some of the 

robust solutions belong to the Pareto-optimal frontier, whereas others do not 

(Figure 6-D). Although a complete robustness analysis should be taken into 

consideration in all of the above situations, for simplicity reasons only 

situations i) and ii) will be discussed in the present chapter. 
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Figure 6. Different possible correlations between the Optimal Pareto frontier and the 

robust Pareto frontier (both objective functions f1 and f2 are to be minimized). 

In order to implement a methodology to determine the set of Pareto 

solutions that are at once robust and optimal, Gaspar-Cunha and Covas [11] 

added three new steps to the RPSGA:  

i) the computation of robustness measures by taking into account a 

dispersion parameter, ε’, that quantifies the extension of the robustness zone. 

Its value is defined by the DM and ranges between 0 (when a single solution is 
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to be obtained) and 1 (when the entire optimal Pareto frontier is to be 

obtained); 

ii) the calculation of the niche count and the determination of the global 

fitness. The latter is considered using a sharing function [61]: 
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where sh(dij) is related to individual i and takes into account its distance to all 

its neighbors j (dij);  

iii) Finally, the global fitness is calculated using the following equation: 

( ) ( ) ( ) ( )
( )

( )
( ) 1

'
1

'1
~

+
+

+
−+=

im

im

iR

iR
iRankiF εε  (14) 

The details of this implementation are given elsewhere [19, 20]. Anyway, 

this methodology can be adapted to be coupled to different MO methods, such 

as those described in Chapter 3. 

 

 

4   Memetic Algorithms 
 

4.1 General concepts 

One of the major complications in applying MOEAs to real problems is the 

large number of objective function evaluations that are necessary to obtain an 

acceptable solution - typically of the order of several thousands. Moreover, 

each of these evaluations is often time-consuming, as it involves the use of 

expensive numerical codes. The possibility of reducing the number of 

evaluations needed to reach an acceptable solution is thus of major practical 

importance. Finding good approximate methods is particularly hard for multi-

objective problems, due to the eventual high number of individual objectives 

and to the possible interactions between them. Nevertheless, different 

approaches have been pursued [22-25, 62-66], which can be grouped in terms 

of the MOEA stage where they are applied:  

a) During evaluation: some solutions can be evaluated using an 

approximate function, such as statistical methods, Fitness Inheritance, 

Artificial Neural Networks, etc, which reduces the required number of exact 

evaluations; 

b) During local search after recombination: a number of new individuals 

is generated by local search algorithms; 
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c) During recombination: a few individuals can be generated using more 

efficient methods. 

The last two approaches generate a faster approximation to the optimal 

Pareto frontier and, consequently, the number of evaluations is reduced.  

An example of the application of the first approach was proposed by Nain 

and Deb [63], whereby an iterative procedure, where a neural network is 

trained with a set of exact evaluations of the fitness function, is used. 

Subsequently, the genetic algorithm uses the neural network to estimate the 

objective function for a fixed number of generations. The process is repeated 

until an adequate solution is attained. Recently, this hybrid approach has been 

extended to MOEAs [62].  

Alternatively, EAs could be coupled to local search methods, giving rise 

to Memetic Algorithms [67]. The main idea consists in obtaining, at each 

MOEA generation, some (good) solutions through the use of an efficient local 

search algorithm, or improve the search speed by introducing some selection 

pressure [25, 66]. At each MOEA generation, new solutions are determined 

using not only the recombination operators, but also an inverse mapping of the 

objectives into the decision variables. For this purpose, an Artificial Neural 

Network, ANN, was coupled to a MOEA. A few modifications to the method 

have been suggested [68-70]. For example, MOEAs could be coupled to an 

Inverse Artificial Neural Network, IANN, and the new improved solutions 

incorporated into the current MOEA's population. This requires an additional 

RPSGA step, following the selection phase. A few solutions belonging to the 

non-dominated front are selected, a local search procedure being initiated from 

each, so that new better solutions are generated and incorporated into the main 

population. 

 

 

4.2   Coupling MOEAs to a local search method 

Artificial Neural Networks, ANN, implemented by a Multilayer Perceptron, 

are flexible schemes capable to approximate an arbitrary complex function, if 

assured that enough training data is offered [71, 72]. Basically, an ANN builds 

a map between a set of inputs and their related outputs, and is particularly well 

suited to non-linear regression analyses of noisy signals and of incomplete 

data. An ANN consists of a set of input nodes connected to a set of output 

nodes, using one or more intermediate nodes. A weight is attributed to each 

connection, initially randomly, but later it is adjusted during the training 

process. For a specific layer, the output in each node is given as a function of 
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the sum of the weights coming from previous layers. The training process 

consists basically on an iterative scheme where a set of examples are presented 

to the ANN, which is interrupted when the error produced by the ANN is 

lower than a pre-defined value, or when the number of iterations reaches a 

certain limit. The definition of the best ANN to be used on a specific problem 

depends on the number of input and output nodes, on the number of 

intermediate layers and nodes and on the training method applied. A more 

thorough explanation is available [62, 71, 72]. 

Combining ANN with EAs is a powerful approach to address the 

exploitation/exploration dilemma. Neural Networks can be trained to build a 

smooth map of the fitness landscape and, for that reason, are adequate to 

perform a local search exploiting specific regions for possible candidate 

solutions. EAs are adequate for a global search, since they are efficient in 

exploring huge search spaces of multivariate functions with many local 

minima.  The goal is to implement an approximation to the fitness functions of 

multi-objective optimization, which is independent of the objectives to be 

optimized and of the EA parameters.  The training data is composed of 

previous exact function evaluations, performed by the evolutionary algorithm. 

Considering the preceding discussion, the use of an Inverse ANN, IANN, 

is suggested [25, 66]. The use of an ANN with a single hidden layer of 

variable size that is adjustable to the complexity of the problem is 

advantageous. The idea is to train the neural network in an inverse way, that is, 

the inputs fed to the network are the objectives, while the outputs are the 

independent variables. Tentative individuals are generated by the IANN before 

being presented to the MOEA. The network is used to perform a local search 

near to the non-dominated solutions from the previous generation, in order to 

directly discover new tentative solutions with higher fitness in their vicinity. 

This stratagem guides locally the MOEA, thus avoiding extrapolations to 

regions not covered by the training data. As explained above, the training 

process is made using the solutions available from exact function evaluations 

of previous generations.  

All inputs and outputs can be normalized between 0 and 1. An additional 

step is introduced after the selection phase (i.e., between lines 11 and 12 of 

Algorithm 1) and all solutions are evaluated using an exact function 

evaluation. The IANN is only used to obtain new solutions on the decision 

variables domain. Figure 7 illustrates the local search operator for a problem 

with two objectives to be minimized. First, the best individuals of the present 

generation are selected (individuals 1 to 4, e1 and e2 in Figure 7). For the 

farthest solutions e1 (minimum found so far for objective 1) and e2 (minimum 
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found for objective 2), three new individuals are generated. For instance, for 

e1 the new coordinates of the solutions a, b and c are generated as follows: 
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where ∆Cj is the displacement applied to each objective (a parameter to be 

empirically defined). For solutions 1 to 4, new tentative ones are obtained 

according to [66]: 

),( 2211 CCCCC new ∆+∆+=
r

 (16) 

For each new point generated, the use of IANN identifies the 

corresponding individual in the input decision variables space. Only a 

percentage of these new individuals is later used to form a new population that 

is fed to the MOEA. 
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Figure 7. Scheme used for the Inverse ANN (IANN) local approximation. 

A different local search procedure, based on the use of a Pattern Search 

Filter Method and exhibiting promising results, has also been proposed [73]. 
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The Filter Method was introduced by Fletcher and Leyffer [74, 75] as an 

alternative to merit functions, to guarantee global convergence in different 

iterative methods for nonlinear programming problems.  The procedure 

consists in performing a local search in the neighborhood of some non-

dominated solutions selected from the Pareto frontier. The concept of non-

dominance is incorporated to build a filter that is able to accept good trial 

iterates and enforce global convergence from arbitrary starting points. 

 

 

5   Application Examples 

For illustrative purposes, the methods presented and discussed along this 

chapter are applied separately here to 3 Test Problems, TP, each of a different 

type and with distinctive Pareto frontier characteristics. In chapter 5, the 

Decision Making and the Robustness strategies will be used in problems 

involving single and twin-screw extrusion. 

TP1 is a simple one parameter problem (L=1) with two objectives (M=2); 

TP2 has 30 parameters (L=30) and two objectives (M=2), while TP3 has 2 

parameters (L=2) and 3 objectives (M=3):  

 

- TP1: x ∈[-2;6]; minimize; L=1; M=2. 
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- TP2 (ZDT1): xi ∈[0;1]; minimize; L=30; M=2 [11]. 
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- TP3: x1 ∈[0;2π], x2 ∈[0;5]; minimize; L=2; M=3. 
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The RPSGA parameters are the following:  

- Nranks = 20; 

- dmax = 0.008; 

- indifference limits equal to 0.1 for all objectives;  

- SBX real crossover operator with an index of 10; 

- real polynomial mutation operator with an index of 20. 

 

Decision Making 

Figures 8 and 9 show the results obtained from the application of the DM 

strategy described in section 2 to TP1 and TP2, and TP3, respectively. A 

dispersion parameter, ε = 0.1 was used. It is clear that the method is sensitive 

to changes in the relative importance of the objectives. For example, in the 

case of the bi-objective problems (Figure 8) when the relative importance of f1 

decreases (moving from (a) to (c)), the algorithm converges to higher values of 

this objective (remember that the objectives are to be minimized). This 

performance is also evident for the three objectives problem (Figure 9), with 

the solutions converging to the best location that corresponds to the weights 

chosen. Moreover, the topography of the surface generated for each set of 

weights changes due to the non-uniformity of that of the optimal Pareto front. 

Finally, the method takes into account the magnitude of the dispersion 

parameter, as only a small portion of the Pareto curve is obtained. A more 

complete set of results has been reported elsewhere [16]. 
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Figure 8. DM results for TP1 and TP2 and different weight vectors: (a) (0.8,0.2), (b) 

(0.5,0.5) and (c) (0.2,0.8). The continuous line shows the optimal Pareto frontier. 
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Figure 9. DM results for test problem TP3 with different weight vectors: (a) 

(0.5,0.5,0.0), (b) (0.0,0.5,0.5) and (c) (0.5,0.0,0.5). The grey surface shows the 3-

dimensional optimal Pareto frontier. 

 

Robustness 

The influence of the dispersion parameter ε on the robustness testing is shown 

in Figure 10 for TP1. When ε = 0.2, the algorithm converges to a relatively 

narrow robust region, where f1 is approximately 5. As ε increases, so does the 

size of the region selected. Figure 11 presents the most robust regions for TP2 

and TP3, when ε = to 0.1 (again, more comprehensive data can be analyzed 

elsewhere [20]). 

 

Memetic Algorithm 

In a recent study, both hybrid techniques referred above, i.e., RPSGA coupled 

with IANN and PSFM, were applied to a few benchmark problems [73]. The 

first step of this study was to set the best values of the Memetic algorithm 

parameters. For example, Figure 12 shows the results obtained when the 

RPSGA algorithm is applied by itself (RPSGA), and coupled to the inverse 

neural network (IANN) to TP2. Figure 12a shows the influence of the number 

of solutions selected to which the IANN is applied (Nsol), while Figure 12b 

shows the influence of the displacement applied (the same for the two 

objectives) as defined in equation 14. In this case, the best values are Nsol equal 
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to 30 and ∆C equal to 0.5, which are used in the remaining test problems 

studied. 

 

 

Figure 10. Effect of ε  on robustness for TP1.  

TP2 TP3TP2 TP3

 

Figure 11. Robustness for TP2 and TP3 for ε = 0.1. 

Then, a comparative study with different algorithms was performed. 

Figure 12 compares the performance of different Memetic algorithms applied 

to TP2. Included are RPSGA, NSGA-II [77], RPSGA coupled with IANN and 

PSFM [73]. Since the hypervolume metric can be taken as a measure of the 
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quality of the Pareto frontiers [76], the figure shows its evolution with the 

number objective functions evaluations required by each algorithm. The 

RPSGA-IANN performance is much higher, similar results having been 

obtained with other test problems [66, 73]. 
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Figure 12. Evolution of the hypervolume metric as a function of the number of 

evaluations: a) influence of the number of solutions selected for applying the IANN 

approach (Nsol) and b) influence of the displacement applied (the same for the two 

objectives) as defined in equation (14). 
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6   Conclusion 

A Multi-Objective Multidisciplinary Design Optimization (MO-MDO) 

approach was proposed to deal with the practical complexities of large multi-

objective problems. The methodology links a MOEA to decision making and 

robustness strategies that are able to assist the decision maker in selecting the 

best solutions that satisfy his preferences and/or are sufficiently robust against 

changes of the values of the decision variables, respectively. Also, with the 

aim of reducing the computation time often required by the evaluation routines 

(by decreasing the number of required real function evaluations) two different 

Memetic algorithms were suggested. Application of the methods to a few test 

problems demonstrated their effectiveness.  
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Figure 13. Performance of different Memetic algorithms applied to TP2. 
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