
In: Optimization in Polymer Processing ISBN # 978-1-61122-818-2

Editor: A.Gaspar-Cunha, J. A.Covas, pp.1-33©2011 Nova Science Publishers, Inc.

Chapter 4

EXTENDING OPTIMIZATION ALGORITHMS

TO COMPLEX ENGINEERING PROBLEMS

António Gaspar-Cunha*, José Ferreira*,

José António Covas*, Carlos Fonseca**
* Institute for Polymers and Composites/I3N, University of Minho,

Campus de Azurém, 4800-058 Guimarães, Portugal

** Department of Informatics Engineering, University of Coimbra, Pólo II,

Pinhal de Marrocos, 3030-290 Coimbra, Portugal and

CEG-IST, Instituto Superior Técnico, Technical University of Lisbon,

1049-101 Lisboa, Portugal

Key words: Multidisciplinary design optimization, Engineering design,

Multi-Objective Optimization, Evolutionary Algorithms

1 Introduction

Real engineering design and optimization problems are complex,

multidisciplinary and difficult to manage within reasonable timings; in some

cases, they can, at least to some extent, be mathematically described by

sophisticated computational tools, which generally require significant

resources. The momentous advances in some scientific and technological

subjects (e.g., computational fluid dynamics, structural mechanics), coupled to

the development of highly performing computing techniques (e.g., parallel

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

António Gaspar-Cunha et al. 2

and/or grid computing) and computer facilities, make it possible to

progressively tackle more features of complicated problems [1].

Multidisciplinary Design Optimization, MDO, can be described as a

technology, an environment, or a methodology for the design of complex

integrated engineering structures, which combines different disciplines and

takes into account in a synergistic manner the interaction between the various

subsystems [2-4]. Examples of its practical application include the design and

optimization of aircrafts, cars, building structures and manufacturing systems

[1, 5-9].

In principle, a strategy like MDO could also be utilized for the

optimization of polymer processing, as this encompasses several disciplines,

such as fluid mechanics, heat transfer, polymer science, rheology, numerical

methods, mechanical engineering and optimization techniques.

Several MDO strategies have been proposed in the literature [1-9]. A

common characteristic of earlier methods is the utilization of approximation

and decomposition techniques, in order to divide the problem into smaller,

more amenable, blocks [1-3], that are subsequently solved separately, using

simpler models. However, the unified view is lost and, most likely, the total

cost of the design will be actually higher than that of solving the whole

problem at once. More recently, integrated MDO approaches have been

proposed [4-9], but a few seem to overlook the fact that real world problems

contain multiple, often, conflicting objectives, that must be tackled

simultaneously [10].

As seen in previous chapters, Evolutionary Algorithms, EAs, are

particularly adequate to deal with the multi-objective nature of real problems,

as they work with a population (of vectors, or solutions) rather than with a

single solution point. This feature enables the generation of Pareto frontiers

representing the trade-off between the objectives, while simultaneously

providing a link to the decision variables [10-13]. Thus, the result of a Multi-

Objective Evolutionary Algorithm, MOEA, is a set of solutions as near as

possible to the Pareto optimal front [10]. Other multi-objective algorithms may

be preferable for specific situations, such as Ant Colony Optimization, ACO

[13, 14], Stochastic Local Search, SLS [15], among others.

In all cases, it will be necessary to provide information regarding the

relative importance of every problem objective. This is usually accomplished

by introducing in the optimization system the preferences of a Decision

Maker, DM [16]. Depending on the decision making strategy adopted, such

information can be introduced before, during, or after the optimization (see

chapter 3 for more details) [11-13, 16]. Additionally, since in real applications

Extending Optimization Algorithms to Complex Engineering Problems 3

small variations of the design variables, or of environmental parameters, may

frequently occur, the performance of the prospective optimal solution(s)

should be only slightly affected by them, i.e., the solutions must be robust [17-

21]. Even though robustness is clearly an important aspect to consider during

optimization, it is rarely included in traditional algorithms [19, 21].

One of the major difficulties of applying MOEAs to real engineering

problems is the large number of evaluations of objective functions that are

necessary to obtain an acceptable solution - typically, of the order of several

thousands. Furthermore, these evaluations are often time-consuming, as they

use large numerical codes generally based on computationally costly methods,

such as finite-differences or finite-elements. Consequently, reducing the

number of evaluations necessary to reach an acceptable solution is of major

practical importance [22]. However, finding good approximate methods may

be more difficult than anticipated, due to the existence of several objectives

and to the possible interactions between them, different approaches having

been pursued, often involving the hybridization of MOEAs with local search

procedures, known as Memetic algorithms [22-27].

Finally, it is vital to define/control the dimension of the multi-objective

problem to solve. As the number of individual objectives raises, so does the

number of non-dominated solutions. In turn, the problem becomes much more

difficult to solve (at least from the EAs' point of view), since a large quantity

of the common solutions move from one generation to the next, reducing the

selection pressure. Simultaneously, it turns out to be increasingly difficult to

visualize the correlations between the different solutions. Whenever possible,

one should consider ways of reducing the number of objectives, for example

using approaches based on statistical techniques [28, 29].

In conclusion, the application of a multidisciplinary design optimization

methodology to solve multi-objective engineering problems should entail

optimization together with engineering and design tools. The former must

encompass the selection of the relevant algorithm(s), a decision support

system, an analysis of the robustness of the solution(s), the reduction of the

number of evaluations required by the optimization routine (and thus of the

computing times) and the reduction of the number of objectives. The present

chapter presents and discusses a possible approach to solve problems of the

polymer processing type by employing tools that are able to deal with multiple

objectives, decision making and robustness of the solutions, among others.

António Gaspar-Cunha et al. 4

2 The Methodology

2.1 Methodology Structure

Although the methodology proposed here does not possess the breadth of a

complete MDO, it attempts to incorporate the different facets associated to a

MOEA (including, as discussed above, decision making, robustness of the

solutions and reduction of the number of objectives and computation times),

together with the software/calculations required to evaluate specific aspects of

the design and optimization problem (such as, for example, flow and heat

transfer, aerodynamics, or structural mechanics). Also, even though the

concept was developed having mainly in mind polymer processing, it is

sufficiently flexible to be applicable to other engineering problems. As a

matter of fact, the linkage to diverse engineering disciplines is mainly

performed via the tools used to evaluate the solutions (which can vary from

modeling software yielding quantitative data to qualitative aesthetical or

comfort judgments).

As seen in Figure 1, the methodology involves necessarily analysis,

modeling and optimization steps. One should begin with the identification of

the problem characteristics, namely what are the major objectives and

constraints, what are the main process parameters and whether automated

calculation tools are available to provide solutions for subsequent evaluation,

or qualitative and empirical knowledge should also apply.

An optimization step using MOEA will follow, with the aim of obtaining

a good approximation to the Pareto front. The DM defines the relative

importance of the various objectives via weights and, depending on his degree

of confidence (which can be defined in the algorithm), the MOEA will be able

to move towards Pareto frontiers of different sizes [16]. The robustness

analysis may suggest fewer solutions. If the problem has many objectives,

reduction of their number will be attempted [29]. Depending on the time spent

on the evaluation of each objective function, the hybridization of MOEA with

function approximation algorithms can also be adopted [25, 26]. The final

result of this stage will consist of Pareto frontiers expliciting the trade-off

between the different objectives and the decision variables (i.e., the parameters

to be optimized).

The solutions will subsequently be presented to the DM in graphical form.

This is a key step when non-quantifiable objectives exist, or when empirical

knowledge must be also taken into consideration. The DM indentifies search

Extending Optimization Algorithms to Complex Engineering Problems 5

space regions (on the objectives domain) that may satisfy his requirements in

terms of the design (on the decision variables domain) - these are denoted as

DM1 and DM2 in Figure 1.

In the following step, the methodology is used to tackle the inverse

process, i.e., to determine the set of weights (one per objective) corresponding

to the search space regions selected by the DM. This information is

incorporated on the MOEA to generate new improved solutions. The process

is repeated until the DM is satisfied with the results.

MOEA

Decision Making

Robustness

Hybridization

MO Problem
Characteristics

Evaluation of solutions

Framework Interface

Selection of the desired solutions

Good

Solution(s)?

Yes No

END

Inverse

Decision Making

Methodology

Objectives reduction

DM1

DM2

Structural mechanics

Design

Fluid dynamics

Aerodynamics

Comfort assessment

�

Numerical/modelling routines

Empirical knowledge

MOEA

Decision Making

Robustness

Hybridization

MO Problem
Characteristics

Evaluation of solutions

Framework Interface

Selection of the desired solutions

Good

Solution(s)?

Yes No

ENDEND

Inverse

Decision Making

Methodology

Objectives reduction

DM1

DM2

Structural mechanics

Design

Fluid dynamics

Aerodynamics

Comfort assessment

�

Numerical/modelling routines

Empirical knowledge

Figure 1. Integrated MO-MDO system.

2.2 Multi-Objective Evolutionary Algorithms

Following the ideas presented in Chapter 3, a MOEA named Reduced Pareto

Set Genetic Algorithm, RPSGA, has been developed by the authors [12]. Since

it will be used later in this Chapter, it makes sense to present it here in some

detail.

In the RPSGA, the homogeneous distribution of the population along the

Pareto frontier and the improvement of the solutions along successive

generations are performed through the use of a clustering technique, which is

António Gaspar-Cunha et al. 6

applied to reduce the number of solutions on the efficient frontier [12]. The

structure of the scheme is illustrated in Algorithm 1 below.

Algorithm 1: RPSGA

1 Initialize pe (external population) and Archive to empty set

2 pi is a randomly generated, initial population (internal)

3 while (termination condition not satisfied)

4 Evaluate pi

5 Evaluate individuals' fitness considering clustering

6 Copy best individuals to pe

7 if (external population full)

8 pe ← Clustering pe

9 Copy best individuals of pe to pi

10 endif

11 Select individuals for reproduction

12 Apply Inver-over operator to selected pairs of individuals

13 Add non-dominated solutions to Archive

14 end while

15 Filter Archive

16 Return Archive

end

Initially, an empty external population, pe, and an empty archive are

formed (line 1) and an internal population, pi, of N candidate solutions is

randomly generated (line 2). At each generation, that is, while a termination

condition is not satisfied, the following operations are performed:

i) the candidate solutions of pi are evaluated by the simulation routine

(line 4);

ii) a clustering technique (Algorithm 2) is applied to reduce the

number of solutions on the efficient frontier and to compute the

fitness of each individual of pi (line 5);

Extending Optimization Algorithms to Complex Engineering Problems 7

iii) a fixed number of the best individuals are copied to pe (line 6);

iv) if pe is full, the clustering technique (Algorithm 2) is applied again

to sort the individuals of pe (line 8) and a pre-defined number of the

best individuals from pe are incorporated into pi to replace the

lowest fitness individuals (line 9);

v) if pe is not full, individuals of pi are selected (line 11) for the

application of the inver-over operator (line 12);

vi) all non-dominated solutions found during the computations are

copied to the archive (line 13);

vii) all non-dominated solutions of the archive are returned after

filtering it.

Algorithm 2 starts with the definition of the number of ranks, NRanks, (line

1) and the rank of each individual i, Rank[i], is set to 0 (line 2). For each rank,

r, the population is reduced to NR individuals (i.e., NR is the number of

individuals of each rank), using the clustering technique (lines 5 and 6). Then,

rank r is attributed to these NR individuals (line 7) until the number of pre-

defined ranks is reached (line 8). Finally, the fitness of individual i, Fi,, is

calculated using a linear ranking function (line 9).

Algorithm 2: Clustering

1 Definition of NRanks

2 Rank[i] = 0

3 r = 1

4 do

5 NR = r (N/NRanks)

6 Reduce the population down to NR individuals

7 r = r + 1

8 while (r < NRanks)

9 Calculate fitness

10 end

António Gaspar-Cunha et al. 8

In the computations below, the parameter settings that have been

recommended in [12] are used. Hence, pi and pe have 100 and 200 individuals,

respectively; a roulette wheel strategy is adopted for selection; the probability

for applying the inver-over operator is 0.8. For more details and other

parameter settings we refer to the original publication [12].

3 Decision Making

3.1 Current Methods

For effective application, the result of a multi-objective optimization process

should consist of a single solution, not the set of solutions belonging to the

Pareto front. In order to come up with this unique answer, at some point during

the optimization the DM must decide what is the relative importance of the

various objectives [10]. Consequently, the final outcome of a multi-objective

optimization problem results not only from optimization (i.e., from the search

process), but also from a decision course of action.

In this respect, existing multi-objective optimization methods [30, 31] are

usually classified as no-preference or preference-based, depending on the

consideration given to the relative importance of the objectives [32]. In the

first case, the problem is solved regardless of that relative importance and the

solution(s) obtained is/are made available to the DM, that accepts or rejects

it/them. In the second case, the preferences of the DM are introduced in the

search procedure and, in principle, the solution that best satisfies his

preferences is selected [30].

There are, at least, three opportunities to introduce the DM preferences

into the optimization scheme (see also Chapter 3): i) The various individual

objectives are aggregated into a single objective, being necessary to decide a

priori how that combination is realized; ii) Decision making and optimization

are intertwined, i.e., after an optimization step, the DM provides preference

information on the set of available solutions, so that the optimization algorithm

can proceed with the search; iii) The set of objectives is optimized

simultaneously to obtain non-dominated vectors, the best solution being

selected by integrating the DM preferences [10].

The open literature presents various methods of combining the search

process with the DM preferences [10, 30], some being described in more detail

in Chapter 3. For example, the decision making strategy proposed by Fonseca

and Fleming [33] is based on pre-defined goals and priorities. If in a problem

Extending Optimization Algorithms to Complex Engineering Problems 9

with n objectives, a preference vector g = [(g1,1, … , g1,n1), … , (gp,1, … ,

gp,np)], where ∑ =
=

p

i i nn
1

, is defined by the DM, then the sub-vectors gi of

the preference vector associate priorities i and goals
ijig , to the corresponding

objective functions
ijif , . In this strategy, the comparison operator is

structured taking into account, in each priority level, the components of the

objective vector that do not meet their goals. Thus, the objective vectors u and

v are compared in terms of their components with the highest priority p,

disregarding those in which the up meets the corresponding goals. When both

vectors meet all goals with this priority, or if they infringe at least some of

them but exactly in the same way, the next priority level (p-1) is considered.

The process continues until priority 1 is reached and satisfied, in which case

the result is decided by comparing the priority 1 components of the two

vectors. The implementation of this method requires the progressive

articulation of preferences with the consequent changes on the environment

(i.e., location of the solutions on the objective space) and a permanent

interaction with the decision maker. Also, it requires the definition of two sets

of parameters, namely the goals and the priorities for each objective, which is

not an easy task.

Other decision methods can be mentioned, including weighted metrics

[30], marginal rate of substitution [30], pseudo-weight vector [10], utility

functions [34], biased sharing [10], guided domination [35], weighted

domination [36] and the reference point base EMO [37]. Several difficulties

may arise when applying these methods to real problems (again, see also

Chapter 3). For example, some of the Pareto optimal solutions proposed by

weighted metrics may not exist, depending on the problem's degree of non-

convexity [30]. The marginal rate of substitution method requires a high

computational effort [10]. The pseudo-weight vector does not perform

satisfactorily for non-convex fronts, especially when a high importance is

attributed to one of the objectives [10]; it is also very complex, as a weight

vector must be calculated for each solution. Generally, in most of these

methods the DM needs to define various algorithm parameters, which requires

a priori a good knowledge of the Pareto front characteristics [30].

For illustrative purposes, the Weighted Sum Method (one of the weighted

metrics approaches cited above) is applied here, as it is one of the simpler

available schemes, transforming a problem with N objectives into a single

objective optimization problem as follows:

António Gaspar-Cunha et al. 10

∑
=

=
N

i

ii xfwxF
1

)()(Maximize

Sx ∈toSubject

(1)

where),,(1 Nwww K
r

= is a weighted vector representing the relative

importance of each objective. The method can be used either a priori or a

posteriori, depending on whether the DM expresses his preferences before or

after the Pareto set approximation has been generated, respectively. In the first

case, the optimization of a single objective is carried out, while in the second

case the DM selects the best solution from the Pareto front obtained by a

multi-objective optimization method. For a two-objectives to be minimized

problem, as shown in Figure 2, the technique consists in shifting vertically

upwards a straight line, having a slope given by the ratio between the weights

attributed to each objective (w1 and w2, respectively), until it becomes tangent

to the Pareto front contour. Each different pair w1,w2 generates a new solution.

It is evident that even if the ratio of w1 to w2 changes extensively, the concave

part of the Pareto front will never be reached.

w2

-w
1

f
1

f
2

w2

-w
1

Pareto

frontier

Objective

space

2

A

w2

-w
1

f
1

f
2

w2

-w
1

Pareto

frontier

Objective

space

2

A

Figure 2. Application of the Weighted Sum Method to a non-convex Pareto-optimal

front.

Extending Optimization Algorithms to Complex Engineering Problems 11

2.2. Weighted Stress Function Method

In an attempt to circumvent the limitations of the methods discussed in the

previous Section, a different scheme is presented and analysed here. The

Weighted Stress Function Method, WSFM [16], integrates the DM preferences

once the search has been concluded (thus, the method is used a posteriori),

which means that search and decision are sequential. WSFM is based on the

assumptions that the best solution that will satisfy the DM preferences must

belong to the Pareto Frontier, i.e., to the set of non-dominated solutions, and

that the selection must take into consideration an ideal objective vector

(denoted as Z*) that maximizes each of the objective functions. The individual

optimization of each objective corresponds to the maximum value of the

global objective. The relative importance attributed to each individual

objective will induce a “stress” to search for solutions that maximize each of

the different objectives, the best solution being the one with zero stress.

The concept is based on the typical stress-strain behavior of thermoplastic

vulcanizate polymer materials, TPV. A typical structure of a TPV consists of a

high volume fraction (0.40<vp<0.9) of cross-linked elastomeric particles

suspended in a continuous thermoplastic matrix [38, 39]. Figure 3-A shows

typical stress-strain curves for volume fractions of the elastomeric particles

(vp) between 0.0 to 1.0 [38]. Three regions with distinct behavior can be

identified: i) at small strains, the stresses increase dramatically; ii) at

intermediate strains, the stresses are relatively stable; iii) at high strains, a

hardening effect develops. These differences decrease with increasing

elastomeric particles volume fraction.

Strain

S
tr
e
ss

V
o
lu
m
e fra

ctio
n
 o
f ela

sto
m
e
r
ic p

a
rtic

les

vp=1.0

vp=0.9

vp=0.8

vp=0.5

vp=0.4

vp=0.2

vp=0.0

wi =0.7

0 1fi

σσσσwi

W
eig

h
t (w

i)

wi =0.9

wi =0.5

wi =0.3

wi =0.1

wi =0.01

B)A)

Strain

S
tr
e
ss

V
o
lu
m
e fra

ctio
n
 o
f ela

sto
m
e
r
ic p

a
rtic

les

vp=1.0

vp=0.9

vp=0.8

vp=0.5

vp=0.4

vp=0.2

vp=0.0

wi =0.7

0 1fi

σσσσwi

W
eig

h
t (w

i)

wi =0.9

wi =0.5

wi =0.3

wi =0.1

wi =0.01

Strain

S
tr
e
ss

V
o
lu
m
e fra

ctio
n
 o
f ela

sto
m
e
r
ic p

a
rtic

les

vp=1.0

vp=0.9

vp=0.8

vp=0.5

vp=0.4

vp=0.2

vp=0.0

Strain

S
tr
e
ss

V
o
lu
m
e fra

ctio
n
 o
f ela

sto
m
e
r
ic p

a
rtic

les

vp=1.0

vp=0.9

vp=0.8

vp=0.5

vp=0.4

vp=0.2

vp=0.0

wi =0.7

0 1fi

σσσσwi

W
eig

h
t (w

i)

wi =0.9

wi =0.5

wi =0.3

wi =0.1

wi =0.01

wi =0.7

0 1fi

σσσσwi

W
eig

h
t (w

i)

wi =0.9

wi =0.5

wi =0.3

wi =0.1

wi =0.01

B)A)

Figure 3. Analogy between TPV elasticity and the weighted stress function method (in

the left plot the strain is normalized between 0 and 1).

António Gaspar-Cunha et al. 12

The method makes an analogy between this stress-strain behavior and a

stress function accounting for the weights defined for each objective. Indeed,

the stress-strain plots for different volume fractions, vp (Figure 3-A) and the

stress function plots for different weights, wi attributed to criterion i (Figure 3-

B) are mirrored. The vp and wi values, ranging in the same interval [0,1], have

the same role, i.e., to increase or decrease the stress, although they vary in

opposite directions.

Figure 4 presents the Pareto frontier of an optimization problem with two

objectives, f1 and f2, both to be maximized. For each solution belonging to this

frontier, two stresses,
1wσ and

2wσ , are defined, each associated with the

corresponding objectives. If
1w and

2w are the weights linked to each

objective, each stress is proportional to the weighted distance between

objective i and the i-th component of the ideal objective vector, z*.

z*

Pareto

frontier

σw1

f1

σw2

f2 z*

Pareto

frontier

σw1

f1

σw2

f2

Figure 4. Stresses associated with an optimal solution, for an optimization problem

with two objectives to be maximized.

Since the two objectives are conflicting, the ideal objective vector is not

the solution to the problem and the stresses associated to the best solution are

not nil. The best possible solution is that where the differences between the

stresses associated with each objective are minimal. This implies that the value

of
1wσ is insufficient to search for the solutions with the best values of f1, since

Extending Optimization Algorithms to Complex Engineering Problems 13

an increase in the value of f1 entails a decrease in f2 and, consequently, an

increase in
2wσ . In turn, the increase of

2wσ redirects the search for solutions

with the best values for f2, in detriment of the losses on f1. Taking these

considerations into account, a weighted stress function was mathematically

defined in order to describe the shape of the stress versus fi illustrated in

Figure 3 right. This stress function is associated with weight wi and is defined

as [16]:

>+

−−

−

−

≤+

−−

=

iiiii

i

i

i

i

iiiii

i

i

iw

wfwwf
w

w
w

w

wfwwf
w

w

fσ
i

,)()(
)(

tan

)1(
)(

tan

)(

,)()(
)(

tan
2

)(

ξ
ϕ

π

ϕ
π

ξ

ξ
ψ

π

(2)

where:

1
2)1(2)1(

4

3
)(δϕ +−+−= iii www (3)

24)()(−+= iii www ϕψ (4)

1
2

1

1
tan

22
tan

1
)(

2

2

+

 −
+

+
−

−= ii ww
δ

π

δ
π

ξ

(5)

008.0002.0 21 == δδ (6)

This description considers that the objectives are normalized, i.e., fi ∈ [0,

1] and that the ideal vector is ()1,,1*
K=z . For a set of weights

()Nwww ,,1 K
r

= , the resolution of a multi-objective optimization problem

with N objectives consists in solving the following single objective problem:

())(max)(Minimize XfXT iw
i i

σ=

SX ∈toSubject
(7)

In most optimization problems, only small regions of the Pareto frontier

have practical interest [33, 40]; they are defined by the incorporation of the

António Gaspar-Cunha et al. 14

DM's preferences. The definition of an ability function, combining the non-

dominance concept with the relative importance of each objective, allows the

selection of the solutions satisfying both aspects. Therefore, a different fitness

function, DF, is defined, to account for the ranking of the solutions, as defined

by the concept of non-dominance – Rank (X), and for the preferences of the

DM, as quantified by equation 7 - T(X):

1)(

)(
)(Rank)(

+
+=

XT

XT
XXDF (8)

This technique can be applied to any multi-objective algorithm. For

example, the authors modified their Reduced Pareto Set Genetic Algorithm,

RPSGA [13]. Initially, the RPSGA runs without modifications (i.e., without

introducing the DM preferences) during N1 generations (search generations),

with the aim of obtaining a first approximation to the Pareto frontier. Then, the

modified algorithm will run during N2 generations (decision generations)

applying equation 7, in order to take into account the DM preferences.

Simultaneously, a dispersion parameter, ε, ranging in the interval]0,1[, is used

to control the extent of the Pareto sub-set; the higher its value, the wider the

region. More details can be found elsewhere [16].

3 Robustness

Ideally, the performance of an optimal solution should be insensitive to the

unavoidable changes that may occur in the design variables or in the

environmental parameters. In other words, the solutions should not only be

optimal, but also robust [41, 42]. In practice, different robustness-related types

of problems can arise [41-46]: i) those where the performance is affected by

the noise originated by sources such as sensor measurements and/or

environmental parameters; ii) those where the design variables change after

the optimal solution has been found; iii) those where the process performance

is estimated by an approximation to the real value; iv) and those where the

performance changes with time, which implies that the optimization algorithm

must be updated continuously or periodically. Here, we are exclusively

concerned with problems of the second category.

Given the above, the optimization algorithm should simultaneously

determine the solution (or the set of solutions, in the case of multi-objective

optimization) that maximize performance and that guarantee satisfactory

Extending Optimization Algorithms to Complex Engineering Problems 15

robustness. Thus, not only a robustness analysis should be introduced as the

search proceeds and not after, but also, as robustness and performance can be

conflicting, it is important to know their interdependency for each

optimization problem. Robustness analyses for single objective optimization

have been applied to various engineering fields and using different

optimization methodologies [45-50]. Conversely, only recently these studies

have been extended to Multi-Objective Optimization [19, 21, 51-60].

Depending on the type of Pareto frontier, the aim of the analyses is either to

locate the optimal Pareto front’s most robust section [19, 57] or, in the case of

a multimodal problem, to find instead the most robust Pareto frontier [56, 57].

The concept of robustness in a single objective problem can be introduced

using Figure 5a, which shows the evolution of the objective function f(x1) (to

be maximized) against the design parameter x1. The most robust solution is the

one for which the objective function f is less sensitive to variations of xl.

Clearly, solution S2 is less sensitive than S1 to variations of x1 as the changes

in f(x1) are less important (∆f2 and ∆f1 for S2 and S1, respectively) and,

consequently, it can be considered as the most robust solution. Since S1 is the

most performing and S2 the most robust, a balance between performance (or

fitness) and robustness has to be made [19, 54, 56-58].

x1

f(x1)

∆f1 ∆f2

S1
S2

∆x1

∆x1

f2(x1)
Criteria space

S1

S2

f1(x1)

∆x1

(a) (b)

x1

f(x1)

∆f1 ∆f2

S1
S2

∆x1

∆x1

x1

f(x1)

∆f1 ∆f2

S1
S2

∆x1

∆x1

f2(x1)
Criteria space

S1

S2

f1(x1)

∆x1

f2(x1)
Criteria space

S1

S2

f1(x1)

∆x1

(a) (b)

Figure 5. Concept of robustness for: a) single objective optimization; b) multi-

objective optimization.

Two kinds of robustness measures have been proposed to deal with

robustness [19, 21, 41, 54, 57]:

- Expectation measure: where the original objective function is replaced

by a measure of both its performance and expectation in the vicinity of the

António Gaspar-Cunha et al. 16

solution considered. Various types of expectation measures have been

proposed [19, 21, 43-45, 54, 57]. For example, if P(δ) is defined as the

probability distribution of the disturbances δ in the neighborhood of the design

point xi, the expectation value, F(xi), of the objective function, f(xi), can be

estimated from [43-45]:

∫
+∞

∞−

= δδδ dPxfxF ii)(),()((9)

- Variance measure: this consists in adding an additional objective to the

objective function, to measure the deviation of the latter around the vicinity of

the design point. Variance measures take only into account function

deviations, ignoring the associated performance. Thus, in the case of a single

objective function, the optimization algorithm must perform a two-objective

optimization, one concerning performance and the other robustness [19, 21,

54, 57]. For example, Jin and Sendhoff [21] optimized simultaneously the

original fitness function and the following robustness measure:

∑
=

=
N

i x

fR

i
N

f
1

1

σ

σ
 (10)

where σf and σx are the standard deviation of f and x, respectively. The smaller

the f
R
, the more robust the solution is.

These measures were classified by Deb and Gupta [57] as type I and II,

respectively. Gaspar-Cunha and Covas [19] evaluated the performance of

selected expectation and variance measures in terms of their capacity to detect

robust peaks, by taking into account the following characteristics: i) easy

application to problems where the shape of the objective function is unknown

a priori, ii) capacity to define robustness regardless of that shape, iii)

independence of the algorithm parameters, iv) clear definition of the function

maxima in the Fitness versus Robustness Pareto representation and v)

efficiency. The following variance measure exhibited the best overall

performance:

max,

0

,
)(

~
)(

~

´

1
dd

xx

xfxf

N
f ji

N

j ij

ijR
i <

−

−
= ∑

=

. (11)

In this equation, the robustness of individual i is defined as the average

value of the ratio between the difference of the normalized fitness of

individual i,)x(f
~

i
, to that of its neighbors (j), and the distance separating

Extending Optimization Algorithms to Complex Engineering Problems 17

them, ()
minmax

min)(
~

ff

fxf
xf i

j −

−
= for maximization and ()

minmax

min1)(
~

ff

fxf
xf i

j −

−
−= for

minimization of the objective function f(xi), with fmax and fmin representing the

limits of its range of variation. N´ is the number of population individuals

whose Euclidian distance between points i and j (di,j) is lower than dmax (i.e.,

di,j < dmax):

()
2

1

,,, ∑
=

−=
M

m

imjmji xxd
(12)

and M is the number of objectives. As before, the smaller the fi
R
, the more

robust the solution is.

Similarly to a single objective solution, a multi-objective robust solution

must be little sensitive to variations of the design parameters. The concept is

illustrated in Figure 5b: the same local perturbation on the parameter space, x1,

causes different consequences to the solutions located in diverse regions of the

search space (S1 and S2). Those solutions that suffer smaller changes for the

same perturbations on the parameters space are the most robust, i.e., S1 is more

robust than S2 [19, 20]. In general, each of the Pareto optimal solutions must

be analyzed in what concerns robustness. Consequently, the combined effect

of the changes in all the objectives must be estimated and used as a robustness

measure, the aim being to obtain a set of Pareto solutions that are concurrently

multi-objectively robust and Pareto optimal. When dealing with multi-

objective optimization different situations may arise, as illustrated in Figure 6

[56, 57]: i) every solution on the Pareto-optimal frontier is robust (Figure 6-

A); ii) only some of the solutions belonging to the Pareto-optimal frontier are

robust (Figure 6-B); iii) the solutions belonging to the Pareto-optimal frontier

are not robust, but a robust Pareto frontier exists (Figure 6-C); iv) some of the

robust solutions belong to the Pareto-optimal frontier, whereas others do not

(Figure 6-D). Although a complete robustness analysis should be taken into

consideration in all of the above situations, for simplicity reasons only

situations i) and ii) will be discussed in the present chapter.

António Gaspar-Cunha et al. 18

f1

f2

Optimal Pareto frontier

A) f1

f2

Optimal Pareto frontier

Robust Pareto frontier

B)

f1

f2

Optimal Pareto frontier

Robust Pareto frontier

C)
f1

f2

Optimal Pareto frontier

Robust Pareto frontier

D)

f1

f2

Optimal Pareto frontier

A)
f1

f2

Optimal Pareto frontier

A) f1

f2

Optimal Pareto frontier

Robust Pareto frontier

B) f1

f2

Optimal Pareto frontier

Robust Pareto frontier

B)

f1

f2

Optimal Pareto frontier

Robust Pareto frontier

C)
f1

f2

Optimal Pareto frontier

Robust Pareto frontier

C)
f1

f2

Optimal Pareto frontier

Robust Pareto frontier

D)
f1

f2

Optimal Pareto frontier

Robust Pareto frontier

D)

Figure 6. Different possible correlations between the Optimal Pareto frontier and the

robust Pareto frontier (both objective functions f1 and f2 are to be minimized).

In order to implement a methodology to determine the set of Pareto

solutions that are at once robust and optimal, Gaspar-Cunha and Covas [11]

added three new steps to the RPSGA:

i) the computation of robustness measures by taking into account a

dispersion parameter, ε’, that quantifies the extension of the robustness zone.

Its value is defined by the DM and ranges between 0 (when a single solution is

Extending Optimization Algorithms to Complex Engineering Problems 19

to be obtained) and 1 (when the entire optimal Pareto frontier is to be

obtained);

ii) the calculation of the niche count and the determination of the global

fitness. The latter is considered using a sharing function [61]:

() ()∑
=

=
N

j
jidshim

1

(13)

where sh(dij) is related to individual i and takes into account its distance to all

its neighbors j (dij);

iii) Finally, the global fitness is calculated using the following equation:

() () () ()
()

()
() 1

'
1

'1
~

+
+

+
−+=

im

im

iR

iR
iRankiF εε (14)

The details of this implementation are given elsewhere [19, 20]. Anyway,

this methodology can be adapted to be coupled to different MO methods, such

as those described in Chapter 3.

4 Memetic Algorithms

4.1 General concepts

One of the major complications in applying MOEAs to real problems is the

large number of objective function evaluations that are necessary to obtain an

acceptable solution - typically of the order of several thousands. Moreover,

each of these evaluations is often time-consuming, as it involves the use of

expensive numerical codes. The possibility of reducing the number of

evaluations needed to reach an acceptable solution is thus of major practical

importance. Finding good approximate methods is particularly hard for multi-

objective problems, due to the eventual high number of individual objectives

and to the possible interactions between them. Nevertheless, different

approaches have been pursued [22-25, 62-66], which can be grouped in terms

of the MOEA stage where they are applied:

a) During evaluation: some solutions can be evaluated using an

approximate function, such as statistical methods, Fitness Inheritance,

Artificial Neural Networks, etc, which reduces the required number of exact

evaluations;

b) During local search after recombination: a number of new individuals

is generated by local search algorithms;

António Gaspar-Cunha et al. 20

c) During recombination: a few individuals can be generated using more

efficient methods.

The last two approaches generate a faster approximation to the optimal

Pareto frontier and, consequently, the number of evaluations is reduced.

An example of the application of the first approach was proposed by Nain

and Deb [63], whereby an iterative procedure, where a neural network is

trained with a set of exact evaluations of the fitness function, is used.

Subsequently, the genetic algorithm uses the neural network to estimate the

objective function for a fixed number of generations. The process is repeated

until an adequate solution is attained. Recently, this hybrid approach has been

extended to MOEAs [62].

Alternatively, EAs could be coupled to local search methods, giving rise

to Memetic Algorithms [67]. The main idea consists in obtaining, at each

MOEA generation, some (good) solutions through the use of an efficient local

search algorithm, or improve the search speed by introducing some selection

pressure [25, 66]. At each MOEA generation, new solutions are determined

using not only the recombination operators, but also an inverse mapping of the

objectives into the decision variables. For this purpose, an Artificial Neural

Network, ANN, was coupled to a MOEA. A few modifications to the method

have been suggested [68-70]. For example, MOEAs could be coupled to an

Inverse Artificial Neural Network, IANN, and the new improved solutions

incorporated into the current MOEA's population. This requires an additional

RPSGA step, following the selection phase. A few solutions belonging to the

non-dominated front are selected, a local search procedure being initiated from

each, so that new better solutions are generated and incorporated into the main

population.

4.2 Coupling MOEAs to a local search method

Artificial Neural Networks, ANN, implemented by a Multilayer Perceptron,

are flexible schemes capable to approximate an arbitrary complex function, if

assured that enough training data is offered [71, 72]. Basically, an ANN builds

a map between a set of inputs and their related outputs, and is particularly well

suited to non-linear regression analyses of noisy signals and of incomplete

data. An ANN consists of a set of input nodes connected to a set of output

nodes, using one or more intermediate nodes. A weight is attributed to each

connection, initially randomly, but later it is adjusted during the training

process. For a specific layer, the output in each node is given as a function of

Extending Optimization Algorithms to Complex Engineering Problems 21

the sum of the weights coming from previous layers. The training process

consists basically on an iterative scheme where a set of examples are presented

to the ANN, which is interrupted when the error produced by the ANN is

lower than a pre-defined value, or when the number of iterations reaches a

certain limit. The definition of the best ANN to be used on a specific problem

depends on the number of input and output nodes, on the number of

intermediate layers and nodes and on the training method applied. A more

thorough explanation is available [62, 71, 72].

Combining ANN with EAs is a powerful approach to address the

exploitation/exploration dilemma. Neural Networks can be trained to build a

smooth map of the fitness landscape and, for that reason, are adequate to

perform a local search exploiting specific regions for possible candidate

solutions. EAs are adequate for a global search, since they are efficient in

exploring huge search spaces of multivariate functions with many local

minima. The goal is to implement an approximation to the fitness functions of

multi-objective optimization, which is independent of the objectives to be

optimized and of the EA parameters. The training data is composed of

previous exact function evaluations, performed by the evolutionary algorithm.

Considering the preceding discussion, the use of an Inverse ANN, IANN,

is suggested [25, 66]. The use of an ANN with a single hidden layer of

variable size that is adjustable to the complexity of the problem is

advantageous. The idea is to train the neural network in an inverse way, that is,

the inputs fed to the network are the objectives, while the outputs are the

independent variables. Tentative individuals are generated by the IANN before

being presented to the MOEA. The network is used to perform a local search

near to the non-dominated solutions from the previous generation, in order to

directly discover new tentative solutions with higher fitness in their vicinity.

This stratagem guides locally the MOEA, thus avoiding extrapolations to

regions not covered by the training data. As explained above, the training

process is made using the solutions available from exact function evaluations

of previous generations.

All inputs and outputs can be normalized between 0 and 1. An additional

step is introduced after the selection phase (i.e., between lines 11 and 12 of

Algorithm 1) and all solutions are evaluated using an exact function

evaluation. The IANN is only used to obtain new solutions on the decision

variables domain. Figure 7 illustrates the local search operator for a problem

with two objectives to be minimized. First, the best individuals of the present

generation are selected (individuals 1 to 4, e1 and e2 in Figure 7). For the

farthest solutions e1 (minimum found so far for objective 1) and e2 (minimum

António Gaspar-Cunha et al. 22

found for objective 2), three new individuals are generated. For instance, for

e1 the new coordinates of the solutions a, b and c are generated as follows:

),(: solution

),(: solution

),(: solution

211

221

2211

CCCCc

CCCCb

CCCCCa

new

new

new

∆−=

∆+=

∆+∆+=

r

r

r

 (15)

where ∆Cj is the displacement applied to each objective (a parameter to be

empirically defined). For solutions 1 to 4, new tentative ones are obtained

according to [66]:

),(2211 CCCCC new ∆+∆+=
r

 (16)

For each new point generated, the use of IANN identifies the

corresponding individual in the input decision variables space. Only a

percentage of these new individuals is later used to form a new population that

is fed to the MOEA.

f1

f 2

∆C1

∆C2

e2

e1

4

3

2
1

a

c
b

a

b

c

f1

f 2

∆C1

∆C2

e2

e1

4

3

2
1

a

c
b

a

b

c

Figure 7. Scheme used for the Inverse ANN (IANN) local approximation.

A different local search procedure, based on the use of a Pattern Search

Filter Method and exhibiting promising results, has also been proposed [73].

Extending Optimization Algorithms to Complex Engineering Problems 23

The Filter Method was introduced by Fletcher and Leyffer [74, 75] as an

alternative to merit functions, to guarantee global convergence in different

iterative methods for nonlinear programming problems. The procedure

consists in performing a local search in the neighborhood of some non-

dominated solutions selected from the Pareto frontier. The concept of non-

dominance is incorporated to build a filter that is able to accept good trial

iterates and enforce global convergence from arbitrary starting points.

5 Application Examples

For illustrative purposes, the methods presented and discussed along this

chapter are applied separately here to 3 Test Problems, TP, each of a different

type and with distinctive Pareto frontier characteristics. In chapter 5, the

Decision Making and the Robustness strategies will be used in problems

involving single and twin-screw extrusion.

TP1 is a simple one parameter problem (L=1) with two objectives (M=2);

TP2 has 30 parameters (L=30) and two objectives (M=2), while TP3 has 2

parameters (L=2) and 3 objectives (M=3):

- TP1: x ∈[-2;6]; minimize; L=1; M=2.

() 17,2)2cos(56)(

)(

5

2

2
1

+−+=

=
−

xxexf

xxf

x

(17)

- TP2 (ZDT1): xi ∈[0;1]; minimize; L=30; M=2 [11].

()

()

()
1

91with,

)(
)(

1)(,,

2

11
22

111

−
+=

−×=

=

∑ =

L

x
xg

xg
xf

xgxxf

xxf

L

l l

LL

(18)

- TP3: x1 ∈[0;2π], x2 ∈[0;5]; minimize; L=2; M=3.

)().sin()(11 xgxxf =

)().cos()(12 xgxxf =

2

23)(xxf =

() 17,2)2sin(56)(22
)5(22 −−−= −

xxexg
xx

(19)

António Gaspar-Cunha et al. 24

The RPSGA parameters are the following:

- Nranks = 20;

- dmax = 0.008;

- indifference limits equal to 0.1 for all objectives;

- SBX real crossover operator with an index of 10;

- real polynomial mutation operator with an index of 20.

Decision Making

Figures 8 and 9 show the results obtained from the application of the DM

strategy described in section 2 to TP1 and TP2, and TP3, respectively. A

dispersion parameter, ε = 0.1 was used. It is clear that the method is sensitive

to changes in the relative importance of the objectives. For example, in the

case of the bi-objective problems (Figure 8) when the relative importance of f1

decreases (moving from (a) to (c)), the algorithm converges to higher values of

this objective (remember that the objectives are to be minimized). This

performance is also evident for the three objectives problem (Figure 9), with

the solutions converging to the best location that corresponds to the weights

chosen. Moreover, the topography of the surface generated for each set of

weights changes due to the non-uniformity of that of the optimal Pareto front.

Finally, the method takes into account the magnitude of the dispersion

parameter, as only a small portion of the Pareto curve is obtained. A more

complete set of results has been reported elsewhere [16].

(c)

(a)

(b)

Pareto frontier

(c)

(a)

(b)

Pareto frontierPareto frontier

(c)

(a)

(b)

Pareto frontier

(c)

(a)

(b)

Pareto frontierPareto frontier

TP1 TP2

(c)

(a)

(b)

Pareto frontier

(c)

(a)

(b)

Pareto frontierPareto frontier

(c)

(a)

(b)

Pareto frontier

(c)

(a)

(b)

Pareto frontierPareto frontier

(c)

(a)

(b)

Pareto frontier

(c)

(a)

(b)

Pareto frontierPareto frontier

(c)

(a)

(b)

Pareto frontier

(c)

(a)

(b)

Pareto frontierPareto frontier

TP1 TP2

Figure 8. DM results for TP1 and TP2 and different weight vectors: (a) (0.8,0.2), (b)

(0.5,0.5) and (c) (0.2,0.8). The continuous line shows the optimal Pareto frontier.

Extending Optimization Algorithms to Complex Engineering Problems 25

(c)

(a)

(b)

(c)

(a)

(b)

Figure 9. DM results for test problem TP3 with different weight vectors: (a)

(0.5,0.5,0.0), (b) (0.0,0.5,0.5) and (c) (0.5,0.0,0.5). The grey surface shows the 3-

dimensional optimal Pareto frontier.

Robustness

The influence of the dispersion parameter ε on the robustness testing is shown

in Figure 10 for TP1. When ε = 0.2, the algorithm converges to a relatively

narrow robust region, where f1 is approximately 5. As ε increases, so does the

size of the region selected. Figure 11 presents the most robust regions for TP2

and TP3, when ε = to 0.1 (again, more comprehensive data can be analyzed

elsewhere [20]).

Memetic Algorithm

In a recent study, both hybrid techniques referred above, i.e., RPSGA coupled

with IANN and PSFM, were applied to a few benchmark problems [73]. The

first step of this study was to set the best values of the Memetic algorithm

parameters. For example, Figure 12 shows the results obtained when the

RPSGA algorithm is applied by itself (RPSGA), and coupled to the inverse

neural network (IANN) to TP2. Figure 12a shows the influence of the number

of solutions selected to which the IANN is applied (Nsol), while Figure 12b

shows the influence of the displacement applied (the same for the two

objectives) as defined in equation 14. In this case, the best values are Nsol equal

António Gaspar-Cunha et al. 26

to 30 and ∆C equal to 0.5, which are used in the remaining test problems

studied.

Figure 10. Effect of ε on robustness for TP1.

TP2 TP3TP2 TP3

Figure 11. Robustness for TP2 and TP3 for ε = 0.1.

Then, a comparative study with different algorithms was performed.

Figure 12 compares the performance of different Memetic algorithms applied

to TP2. Included are RPSGA, NSGA-II [77], RPSGA coupled with IANN and

PSFM [73]. Since the hypervolume metric can be taken as a measure of the

Extending Optimization Algorithms to Complex Engineering Problems 27

quality of the Pareto frontiers [76], the figure shows its evolution with the

number objective functions evaluations required by each algorithm. The

RPSGA-IANN performance is much higher, similar results having been

obtained with other test problems [66, 73].

0

0.2

0.4

0.6

0.8

1

H
y
p

e
rv

o
lu

m
e

RPSGA

RPSGA/IANN, Nsol = 10

RPSGA/IANN, Nsol = 30

RPSGA/IANN, Nsol = 80

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000
N. of evaluations

H
y
p

e
rv

o
lu

m
e

RPSGA

RPSGA/IANN, ∆C = 0.1

RPSGA/IANN, ∆C = 0.5

RPSGA/IANN, ∆C = 1.0

a)

b)

0

0.2

0.4

0.6

0.8

1

H
y
p

e
rv

o
lu

m
e

RPSGA

RPSGA/IANN, Nsol = 10

RPSGA/IANN, Nsol = 30

RPSGA/IANN, Nsol = 80

0

0.2

0.4

0.6

0.8

1

H
y
p

e
rv

o
lu

m
e

RPSGA

RPSGA/IANN, Nsol = 10

RPSGA/IANN, Nsol = 30

RPSGA/IANN, Nsol = 80

RPSGA

RPSGA/IANN, Nsol = 10

RPSGA/IANN, Nsol = 30

RPSGA/IANN, Nsol = 80

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000
N. of evaluations

H
y
p

e
rv

o
lu

m
e

RPSGA

RPSGA/IANN, ∆C = 0.1

RPSGA/IANN, ∆C = 0.5

RPSGA/IANN, ∆C = 1.0

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000
N. of evaluations

H
y
p

e
rv

o
lu

m
e

RPSGA

RPSGA/IANN, ∆C = 0.1

RPSGA/IANN, ∆C = 0.5

RPSGA/IANN, ∆C = 1.0

RPSGA

RPSGA/IANN, ∆C = 0.1

RPSGA/IANN, ∆C = 0.5

RPSGA/IANN, ∆C = 1.0

a)

b)

Figure 12. Evolution of the hypervolume metric as a function of the number of

evaluations: a) influence of the number of solutions selected for applying the IANN

approach (Nsol) and b) influence of the displacement applied (the same for the two

objectives) as defined in equation (14).

António Gaspar-Cunha et al. 28

6 Conclusion

A Multi-Objective Multidisciplinary Design Optimization (MO-MDO)

approach was proposed to deal with the practical complexities of large multi-

objective problems. The methodology links a MOEA to decision making and

robustness strategies that are able to assist the decision maker in selecting the

best solutions that satisfy his preferences and/or are sufficiently robust against

changes of the values of the decision variables, respectively. Also, with the

aim of reducing the computation time often required by the evaluation routines

(by decreasing the number of required real function evaluations) two different

Memetic algorithms were suggested. Application of the methods to a few test

problems demonstrated their effectiveness.

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000

N. of evaluations

H
y
p
e
rv
o
lu
m
e

RPSGA

NSGA-II

PSFM

IANN

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000

N. of evaluations

H
y
p
e
rv
o
lu
m
e

RPSGA

NSGA-II

PSFM

IANN

RPSGA

NSGA-II

PSFM

IANN

Figure 13. Performance of different Memetic algorithms applied to TP2.

References

[1] Bentley, P.J. Evolutionary Design by Computers, Morgan Kaufmann:

San Francisco, CA, 1999.

[2] Avriel, M.; Rijckaert, M.J.; Wilde, D.J. (eds.), Optimization and Design,

Prentice-Hall: Englewood Cliffs, NJ, 1973.

Extending Optimization Algorithms to Complex Engineering Problems 29

[3] Avriel, M.; Dembo, R.S. (eds.), Mathematical Programming Studies on

Engineering Optimization, North-Holland: New York, NY, 1979.

[4] Siddall, J.N., Optimal Engineering Design, CRC: London, 1982.

[5] Mack, Y.; Goel, T.; Shyy, W.; Haftka, R. In Evolutionary Computation

in Dynamic and Uncertain Environments; Yang, S.; Ong, Y-S.; Jin, Y.;

Ed.; Studies in Computational Intelligence, Springer, 2007; Vol. 51, pp.

323–342.

[6] Oztemela, E.; Tekezb, E.K. Engineering Applications of Artificial

Intelligence. 2009, 22, 855-864.

[7] Luo, Z.; Chen, L.; Yang, J.; Zhang, Y.; Abdel-Malek, K. Struct

Multidisc Optim. 2005, 30: 142–154.

[8] Grujicic, M.; Arakere, G.; Sellappan, V.; Ziegert, J.C.; Koçer, F.Y.;

Schmueser, D. Multidiscipline Modeling in Materials and Structures.

2009, 5, pp. 1-28.

[9] Dulikravich,G.S.; Dennis,B.H.; Martin,T.J.; Egorov,I.N. In Evolution

Methods for Design, Optimization and Control; Giannakoglou, K.;

Tsahalis, D.; Periaux, J.; Papailiou, K.; Fogarty, T.; Ed.; CIMNE,

Barcelona, 2001.

[10] Deb, K. Multi-Objective Optimization using Evolutionary Algorithms,

Wiley: Chichester, UK, 2001.

[11] Multiobjective Optimization: Interactive and Evolutionary Approaches.

Branke, J.; Deb, K.; Miettinen, K.; Slowinski, R.; Ed.; Lecture Notes in

Computer Science, Springer-Verlag, Berlin, Heidelberg, 2008.

[12] Gaspar-Cunha, A.; Covas, J.A. In Metaheuristics for Multiobjective

Optimisation. Gandibleux, X.; Sevaux, M.; Sörensen, K.; T'kindt, V.;

Ed.; Springer: Berlin, Germany, 2004; pp.221-249.

[13] García-Martínez, C.; Cordón, O.; Herrera, F. European J. of

Operational Research, 180,116-148, 2007.

[14] Stützle, T.; Hoos, H. In Proceedings of Artificial Neural Nets and

Genetic Algorithms. Smith, G.D.; Steele, N.C.; Albrecht,R.F.; Ed.;

Springer Verlag Wien, 1998; pp.245-249.

António Gaspar-Cunha et al. 30

[15] Paquete, L.; Stützle, T. In Handbook of Approximation Algorithms and

Metaheuristics. Gonzalez, T. F.; Ed.; Computer and Information

Science Series, Chapman & Hall, Boca Raton, FL, USA, 2007.

[16] Ferreira, J.C.; Fonseca, C.M.; Gaspar-Cunha, A. In Evolutionary

Methods For Design, Optimization and Control. Neittaanmäki, P.;

Périaux, J.; Tuovinen, T.; Ed.; CIMNE, Barcelona, 2008, pp. 197-202.

[17] Ray, T. In Proceedings of the 2002 Congress on Evolutionary

Computation, Honolulu, 2002, pp. 419-424.

[18] Jin, Y.; Branke, J. IEEE Transactions on Evolutionary Computation,

2005, 9, 303-317.

[19] Gaspar-Cunha, A.; Covas, J. Computational Optimization and

Applications, 2008, 39, 75-96.

[20] Ferreira, J.; Fonseca, C.; Covas, J.A.; Gaspar-Cunha, A. In Advances in

Evolutionary Algorithms, Kosińsk, W.; Ed.; I-Tech Education and

Publishing, Vienna, Austria, 2008, pp. 261-278.

[21] Jin, Y.; Sendhoff, B. In Proceedings of the Second Int. Conf. on Evol.

Multi-Objective Optimization -EMO’2003, Faro, Portugal, 2003, pp.

237-251.

[22] Jin, Y.; Olhofer, M.; Sendhof, B. IEEE Trans. on Evolutionary

Computation. 2002, 6, 481-494.

[23] Poloni, C.; Giurgevich, A.; Onesti, L.; Pedirola, V. Computer Methods

in Applied Mechanics and Engineering. 2000, 186, 403-420.

[24] Talukder, A.K.A.; Kirley, M.; Buyya, R. In GECCO ’08: Proceedings

of the 10th annual conference on Genetic and evolutionary cconference.

New York, NY, USA: ACM, 2008, pp. 721–728.

[25] Gaspar-Cunha, A.; Vieira, A. In European Conference on Applications

of Genetic Algorithms EUROGEN 2003, Barcelona, 2003, pp. 157-165.

[26] Gaspar-Cunha, A.; Vieira, A. In Hybrid Metaheuristics (HM 2004)

Workshop at ECAI 2004. Valencia, Spain, 2004, pp. 25-30.

[27] Norman, M.G.; Moscato, P. In Technical Report Caltech Concurrent

Computation Program, Report 790, California Institute of Technology,

Pasadena, California, USA, 1989.

[28] Deb, K.; Saxena, D. In IEEE Congress on Evolutionary Computation.

IEEE Computer Society Press, Los Alamitos, 2006, pp. 3353-3360.

Extending Optimization Algorithms to Complex Engineering Problems 31

[29] Costa, L.; Oliveira, P. PAMM, Vol. 7, pp. 2060047 – 2060048, Wiley,

2007.

[30] Miettinen, K. Nonlinear Multiobjective Optimization, Kluwer: Boston,

1999.

[31] Kaliszewski, I. Soft Computing for Complex Multiple Criteria Decision

Making, Springer: Berlin, 2006.

[32] Hwang, C.L.; Masud, A.M. In Lecture Notes in Economics and

Mathematical Systems, vol.164, 1979.

[33] Fonseca, C.M.; Fleming, P.J. IEEE Transactions on Systems, Man and

Cybernetics, 28, pp.26-37, 1998.

[34] Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives:

Preferences and Value Tradeoffs, Wiley: New York, 1976.

[35] Branke, J.; Deb,K. In Knowledge Incorporation in Evolutionary

Computation, 2004, pp.461-477.

[36] Parmee, I.C.; Cevtkovic, D.; Watson,A.W.; Bonham, C.R. Evolutionary

Computation, 2000, 8, 197-222.

[37] Deb, K.; Sundar, J.; Bhaskara, U.; Chaudhuri, S. ISSN International

Journal of Computational Intelligence Research, 2, 2006, 273-286.

[38] Boyce, M.C.; Kear, K.; Socrate, S.; Shaw, K. Journal of the Mechanics

and Physics of Solids, 2001, 49, 1073-1098.

[39] Coran, A.Y.; Patel, R. Rubber Chemistry and Technology, 1980,

53,141-150.

[40] Fonseca, C.M.; Fleming, P.J. In Proceedings of the Fifth International

Conference on Genetic Algorithms, San Mateo, CA, 1993, pp.141-153.

[41] Ray, T. In Proceedings of the 2002 Congress on Evolutionary

Computation, 2002, pp. 419-424, Honolulu.

[42] Jin, Y.; Branke, J. IEEE Transactions on Evolutionary Computation, 9,

2005, 303-317.

[43] Wiesmann, D.; Hammel, U.; Bäck, T. IEEE Transactions on

Evolutionary Computation, 1998, 2, 162-167.

[44] Das, I. Nonlinear Multicriteria Optimization and Robust Optimality,

Rice University, PhD Thesis, Houston, 1997.

António Gaspar-Cunha et al. 32

[45] Tsutsui, S.; Ghosh, A. IEEE Transactions on Evolutionary

Computation, 1997, 1, 201-208.

[46] Chen, W.; Sahai, A.; Messac, A.; Sundararaj, G. In Structural Dynamics

and Materials Conference, St. Louis, USA, 1999.

[47] Ribeiro, J.L.; Elsayed, E.A. Int J Prod Res, 1995, 33, 3233-3248.

[48] Du, X.; Chen, W. In Engineering Design, Proceedings of DETC 99, Las

Vegas, USA, 1999.

[49] Arrold, D.V.; Beyer, H.-G. Computational Optimization and

Applications, 2003, 24, 135-159.

[50] Sörensen, K. J. of Mathematical Modelling and Algorithms, 2004, 3, 89-

103.

[51] Kouvelis, P.; Sayin, S. Annals of Operational Research, 2006, 147, 71–

85.

[52] Bagchi, T.P. Materials and Manufacturing Processes, 2003, 18, 341-

354.

[53] Kazancioglu, E.; Wu, G.; Ko, J.; Bohac, S.; Filipi, Z.; Hu, S.; Assanis,

D.; Saitou, K. In Proceedings of DETC’03, pp. 1-12, Chicago, USA,

2003.

[54] Gaspar-Cunha, A.; Covas, J. In Proceedings of 10th Online World

Conference in Soft Computing in Industrial Applications, pp. 189-193,

2005, Springer, Berlin.

[55] Olvander, J. J. of Engineering Design, 2005, 16, 511-523.

[56] Guanawan, S.; Azarm, S. Struct. Multidisciplinar Optimization, 2005,

29, 50-60.

[57] Deb, K.; Gupta, H. Evolutionary Computation, 2006, 14,463-494.

[58] Paenk I., Branke, J.; Jin, Y. IEEE Transations on Evolutionary

Computation, 2006, 10, 405-420.

[59] Barrico, C.; Antunes, C.H. In Proceedings of the IEEE Congress on

Evolutionary Computation, pp. 6778-6783, Vancouver, Canada, 2006.

[60] Moshaiov, A.; Avigrad, G. In Proceedings of the IEEE Congress on

Evolutionary Computation, pp. 6785-6791, Vancouver, Canada, 2006.

Extending Optimization Algorithms to Complex Engineering Problems 33

[61] Goldberg, D.; Richardson, J. In Proceedings of Second Int. Conf. on

Genetic Algorithms, pp. 41-49, 0-8058-0158-8, Cambridge, 1985.

[62] Gaspar-Cunha, A.; Vieira, A., International Journal of Computers,

Systems, and Signals, 2005, 6, 18-36.

[63] Nain, P.K.S.; Deb, K. (2002) Kangal Report No. 2002005,

http://www.iitk.ac.in/kangal/deb.htm.

[64] Poloni, C., Giurgevich, A., Onesti, L., Pedirola, V. Computer Methods

in Applied Mechanics and Engineering, 2000, 186, 403-420.

[65] Talukder, A. K. A., Kirley, M., Buyya, R. In Proceedings of the 10th

annual conference on Genetic and evolutionary, 2008, pp. 721-728.

[66] Gaspar-Cunha, A.; Vieira, A.S.; Fonseca, C.M. In Workshop on Design

and Evaluation of Advanced Hybrid Meta-Heuristics, November,

Nottingham, UK, 2004.

[67] Krasnogor, N., Smith, J.E. IEEE Transactions on Evolutionary

Computation, 2005 9, 474-488.

[68] Adra, S.F., Griffin, I., Fleming, P.J. Multiobjective Memetic

Algorithms, 2009, 183-208.

[69] Adra, S.F., Griffin, I., Fleming, P.J. In Proceedings of the Genetic and

Evolutionary Computation Conference, 2005, pp. 1009-1010.

[70] Soh, H., Ong, Y. S., Salahuddin, M., Hung, T., Lee, B. S. In IEEE

Symposium on Computational Intelligence in Multi-Criteria Decision-

Making, 2007, pp. 325-332.

[71] Bishop, C.; Ed.; Neural Networks for Pattern Recognition, Oxford

University Press. 1997.

[72] Bull, L. Soft Comput. Fusion Found. Methodol. Appl., 1999, 3, 76-82.

[73] Gaspar-Cunha, A.; Mendes, F.; Costa, M.F.P. International Transactions

in Operational Research, In press, 2010.

[74] Fletcher, R.; Leyffer, S. Filter-type Algorithms for Solving Systems of

Algebraic Equations and Inequalities. Dundee Numerical Analysis

Report NA/204, 2001.

[75] Fletcher, R., Leyffer, S. Mathematical Programming, 2002, 91, 239-

269.

António Gaspar-Cunha et al. 34

[76] Zitzler, E.; Deb K.; Thiele, L. Evolutionary Computation, 2000, 8, 173-

195.

[77] Deb, K.; Pratap, A.; Agrawal, S.; Meyarivan, T. IEEE Transactions on

Evolutionary Computation, 2002, 6, 182-197.

