
International Journal of Computer Mathematics
Vol. 00, No. 00, Month 2007, 1–23

A filter algorithm: comparison with NLP solvers

CÂNDIDA ELISA P. SILVA*† and M. TERESA T. MONTEIRO‡

†Management and Industrial School, Polytechnic Institute of Oporto, Portugal
‡Production and Systems Department, Engineering School, University of Minho, Portugal

(Received 01 November 2006; revised version received 02 January 2007; accepted 05 January 2007)

The purpose of this work is to present an algorithm to solve nonlinear constrained optimization
problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two
independent phases are performed in each iteration—the feasibility and the optimality phases. The
first one directs the iterative process into the feasible region, i.e. finds one point with less constraints
violation. The optimality phase starts from this point and its goal is to optimize the objective function
into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme
based on the filter method is used in both phases of the algorithm. This method replaces the merit
functions that are based on penalty schemes, avoiding the related difficulties such as the penalty
parameter estimation and the non-differentiability of some of them. The filter method is implemented
in the context of the line search globalization technique. A set of more than two hundred AMPL test
problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.

Keywords: Nonlinear programming; Filter method; Inexact restoration

AMS Subject Classifications: 90C30; 65K99

1. Introduction

Fletcher and Leyffer [1] have proposed the filter method as an alternative to the merit functions.
These authors presented a SQP algorithm with a trust-region technique to solve nonlinear
constrained optimization problems. The motivation given by these authors for the development
of the filter method is to avoid the necessity to determine a suitable value of the penalty para-
meter in the merit function. In constrained optimization, the two competing aims, minimization
of the objective function and the satisfaction of the constraints, are combined into a single
minimization problem, using a merit function. In the filter strategy two separated aims are
considered instead of a combination of both.

The inexact-restoration method introduced by Martínez and Pilotta [2, 3] (see also [4]) and
also used in [5] treats feasibility and optimality as two independent phases. Each iteration
of the method proceeds in two phases. At the first phase, feasibility of the current iterate is

*Corresponding author. Email: candidasilva@eseig.ipp.pt

International Journal of Computer Mathematics
ISSN 0020-7160 print/ISSN 1029-0265 online © 2007 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/00207160701203401

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 C. E. P. Silva and M. T. T. Monteiro

improved (a ‘more feasible’ point is computed with respect to the current point). The second
phase reduces the objective function value (an ‘optimal’point is calculated) in an approximate
feasible set. The point that results from the second phase is compared with the current point
using a merit function that combines feasibility and optimality.

Gonzaga et al. [6] suggests an algorithm to solve nonlinear constrained optimization based
on the inexact restoration (IR) approach with the filter method. In this theoretical algorithm the
methods in IR phases are not specified and its implementation motivates this work – combining
the IR approach with the filter method. In each phase of the IR method a filter scheme with
line search technique is used instead of a merit function.

This paper is organized into four sections. The next section defines the problem to be
solved, presents the concepts of inexact-restoration and the filter method with line search.
Section 3 presents the Filter IR algorithm specifying the feasibility and optimality phases, the
filter update scheme and a graphic example. Finally numerical experiments are performed to
compare the algorithm with LOQO and NPSOL solvers. Some conclusions and suggestions
to future work are reported.

2. Optimization approaches

The general nonlinear constrained optimization problem is defined by
⎧⎪⎨
⎪⎩

min f (x),

s.t. lbx ≤ x ≤ ubx,

lbc ≤ c(x) ≤ ubc,

(NLP)

where f (x) : R
n → R is a nonlinear objective function, x ∈ R

n and lbx , ubx ∈ R
n are the

lower and the upper bounds of the variable x, respectively, and c(x) : R
n → R

m is a set of m

general constraints whose lower and upper bounds are lbc and ubc, respectively. It is possible
to include one-sided constraints by setting the lower bound to −∞ or the upper bound to ∞,
depending on which bound is required.

2.1 Inexact restoration

The point of view of the IR approach is that feasibility is an important feature of the problem
that must be controlled independently of optimality. So, the methods based on IR consider
feasibility and optimality at different phases of a single iteration. A well known drawback of
feasible methods is their inability to follow very curved domains, which can cause very short
steps to be computed far from the solution. IR methodology tries to avoid this inconvenience
using procedures that automatically decrease the tolerance of infeasibility as the solution is
approximated. In this way, large steps on an enlarged feasible region are computed at the
beginning of the process. An essential feature of this methodology is that one is free to choose
different algorithms both for the feasibility and for the optimality phase, so that problem
characteristics can be exploited. In [5] it is shown that the use of the Lagrangian function in
the optimality phase favours practical fast convergence near the solution.

2.2 Line search filter method

In the constrained optimization problem two conflicting criteria are always present, the min-
imization of the objective function, f (x), and the satisfaction of the constraints c(x). All the

A filter algorithm 3

Figure 1. Filter with sufficient decrease.

constraints defined in (NLP) will be handled as c(x) ≤ 0 and the optimization problem is
formulated in its minimization form. A merit function combines these aims into a single
minimization problem. These two competing aims can be written as two minimization
problems

min f (x),

min h(c(x)),
(1)

where

h(c(x)) := ∥∥c+(x)
∥∥

1 :=
m∑

j=1

c+
j (x)

with c+
j (x) = max(0, cj (x)) being the sum of the constraints violation.

A filter is defined as a set of pairs (f (xk), h(xk)) so that no pair dominates any
other. The dominance concept comes from multi-objective optimization and establishes that
(f (xk), h(xk)) dominates (f (xl), h(xl)) if and only if both f (xk) ≤ f (xl) and h(xk) ≤ h(xl)

are verified, where (f (xl), h(xl)) represents all the filter pairs. The filter, in figure 1, can be
represented in R

2 as a set of pairs (f, h), defining the forbidden and allowed regions as well
as the envelope that defines the sufficient reduction imposed in the filter acceptance. When
a point xk is accepted by the filter, which means that it belongs to the allowed region, the
corresponding pair (f (xk), h(xk)) is introduced in the filter. All the pairs dominated by it will
be removed from the filter.

Fletcher and Leyffer [1] introduced the concept of a filter in an SQP algorithm with
the trust-region technique. The filter SQP algorithm starts with an initial point, the solu-
tion of the current QP subproblem, produces a trial step, and with it the new trial point
is determined. If it is accepted by the filter, this will be the new point, otherwise the
step will be rejected, the trust-region radius is reduced and a new QP subproblem must
be solved again. With this algorithm the usual criterion of descent in the penalty func-
tion is replaced by the requirement that the new point is accepted by the filter. A more
feasible and/or optimal point is achieved by the adjustment of the trust-region in the iter-
ations of the algorithm. The idea is to use the filter as a criterion for accepting or rejecting
a step.

Antunes and Monteiro [7] presented a SQP algorithm based on Fletcher and Leyffer’s idea
where the trust-region is replaced by the line search technique (see also [8–12] for other line
search approaches). The main difference is that instead of using the trust-region to determine a
trial point, they use the line search method. The combination of the line search technique with
the filter method determines the step length acceptance. First the search direction is computed
from a given initial point, solution of the current QP subproblem and with it a trial point xk+1 is
computed. After this the point will be checked by the filter and if it is accepted, it is introduced

4 C. E. P. Silva and M. T. T. Monteiro

into the filter. Otherwise, α is divided by two and the trial point xk+1 is updated and checked
again by the filter, without solving another QP subproblem.

3. Filter IR algorithm

The advantage of IR philosophy is the freedom of choosing the internal algorithm for each
phase. In the feasibility phase a new optimization problem is solved in order to enforce
the iterative procedure towards the feasible region. The problem aims to minimize the con-
straints violation, in the set of satisfied constraints, to obtain a ‘more feasible’ intermediate
point. The optimality phase solves the initial optimization problem from the intermediate
point.

3.1 Feasibility phase

The iteration k starts with the evaluation of the xk feasibility – if xk is already feasible the
feasibility phase is not performed. From xk , the constraints of the original problem are evalu-
ated in order to identify the subsets of the violated and satisfied constraints. These subsets are
linearized in xk to formulate the feasibility phase optimization problem as follows:

c(xk + d) ≈ c(xk) + ∇c(xk)T d.

The new problem has as objective function the sum of all the linearized violated constraints,
subject to the linearized satisfied constraints set. From the point xk the aim is to reach a more
feasible point zk . This point is obtained solving the following LP subproblem:

min
d∈Rn

∑
i∈J

Ak
i d,

s.t. Ak
i d + ck

i ≤ 0, i ∈ J⊥,

(LP)

where Ak = ∇c(xk)T is the Jacobian matrix of the constraints and, J and J⊥ are the sets of
violated and satisfied constraints, respectively. The solution of this LP subproblem, which is
also an iterative procedure, is the search direction dk

fea (denoted by d in (LP)). The inter-
mediate point zk = xk + α dk

fea is obtained by the line search technique using the filter,
where α ∈ R is the step length. Note that both objective and constraints functions are linear
functions in dfea.

The management of this Filter IR is quite different from the one used by Fletcher and
Leyffer in [1] and Antunes and Monteiro in [7]. In Filter IR a temporary pair (f (xk), h(xk))

corresponding to xk is used to evaluate the next trial point xk+1.
The intermediate point zk is accepted by the filter if the corresponding pair (f (zk), h(zk)) is

not dominated by any other pair in the filter. The sufficient decrease condition for acceptance
by the filter is

h < βh(xl) or f < f (xl) − γ h (2)

for all pairs (f (xl), h(xl)) in the filter, where β and γ are parameters such that 0 < γ < β < 1,
with β close to one and γ close to zero. Then it is also verified if this pair causes a sufficient

A filter algorithm 5

decrease in h when compared to the temporary pair (f (xk), h(xk)):

h(zk) ≤ (1 − γ)h(xk). (3)

If conditions (2) and (3) are not satisfied then the intermediate point zk is rejected and α is
divided by two until the point is accepted or α is smaller than a tolerance. If the intermediate
point zk is a Kuhn–Tucker point and there is no constraints violation at zk then the algorithm
terminates with success, otherwise the next phase will be performed.

3.2 Optimality phase

The goal of the optimality phase is to reduce the objective function from the zk point. The
corresponding QP subproblem is an approximation to the original problem (NLP):

min
d∈Rn

1

2
dT Wkd + dT gk

s.t. Akd + ck ≤ 0

(QP)

where gk = ∇f (xk) is the gradient of the objective function, Ak = ∇c(xk)T is the Jacobian
matrix of general constraints c(xk) and Wk = ∇2L(xk, λk) is the Hessian matrix of the
Lagrangian function. The solution of this QP subproblem is the search direction dk

opt (denoted
by d in (QP)). With this direction the next trial point xk+1 = zk + αdk

opt is obtained. Then this
point is tested by the filter, which is a similar procedure to the one described in the previous
phase and it is compared to the intermediate point zk:

f (xk+1) ≤ (1 − γ)f (zk). (4)

If this condition is verified and the point is accepted by the filter then xk+1 is the next point.

3.3 Filter update and stop criterium

Finally, if the following condition

f (xk+1) ≥ f (xk) − min(h(xk)2, ω) (5)

is verified then the temporary pair (f (xk), h(xk)) is inserted into the filter and the dominated
pairs are removed (ω in (5) is a small positive constant).

The first condition of the stop criterium is concerned with stationarity (normalized
residuum r) and the second with feasibility analysis:

r(x∗) = ‖g∗ + ν∗ + A∗λ∗‖2

max {μmax, 1.0} ≤ ε and h(x∗) ≤ ξ

where g∗ = ∇f (x∗), A∗ = ∇c(x∗), ν and λ are the Lagrange multiplier vectors of the simple
bounds constraints and of the general constraints, respectively, ε is a small positive constant,
ξ represents the zero and μmax = maxi

{‖g∗‖2 , |νi | ,
∥∥a∗

i

∥∥
2

∣∣λ∗
i

∣∣}.
The next subsection presents the Filter IR algorithm.

6 C. E. P. Silva and M. T. T. Monteiro

3.4 The algorithm

FILTER IR ALGORITHM:

x0, λ0, F0 initial filter, (f (x0), h(x0)) temporary pair, k = 0;
REPEAT

Feasibility phase:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find zk :
Solve subproblem (LP) at xk to find dfea

k ;
α = 1;
REPEAT

zk = xk + α dfea
k;

If (f (zk), h(zk)) is accepted by the filter And h(zk) ≤ (1 − δ)h(xk) Then
Accept zk ;

Else
Reject zk ;

α = α

2
;

UNTIL Accept zk or α ≤ T olAlpha;

If zk satisfies the stop criterium Then Stop with success.
Else

Optimality phase:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find xk+1:
Solve subproblem (QP) at zk to find dopt

k ;
α = 1;
REPEAT

xk+1 = zk + α dopt
k;

If (f (xk+1), h(xk+1)) is accepted by the filter
And f (xk+1) ≤ (1 − δ)f (zk) Then

Accept xk+1;
Else

Reject xk+1;

α = α

2
;

UNTIL Accept xk+1 or α ≤ T olAlpha;
Filter update:⎧⎪⎪⎨
⎪⎪⎩

If f (xk+1) ≥ f (xk) − min(h(xk)2, ω) Then
If (f (xk), h(xk)) is accepted by the filter Then

Insert the temporary pair (f (xk), h(xk)) in the filter
Remove all pairs dominated by (f (xk), h(xk)) from the filter.

k = k + 1
xk = xk+1

UNTIL xk verify stop criterium.

3.5 Convergence assumptions

The global convergence was studied by Gonzaga [6], where it is proved that this method is
independent of internal algorithms used in each iteration, since these algorithms satisfy some
requirements in their efficiency. It is shown that, under some assumptions, for a filter with
a minimal size, the algorithm generates a stationary accumulation point and that for bigger
filters, all the accumulation points are stationary.

The general hypotheses are:

H1: The iterates xk and zk remain in a convex compact domain X ⊂ R
n.

H2: The objective and constraints functions (f (x) and c(x)) are Lipschitz continuously
differentiable in an open set containing X.

A filter algorithm 7

H3: All feasible accumulation points x ∈ X of xk satisfy the Mangasarian–Fromovitz (M-F)
qualification condition, namely, the gradients of equality constraints are linearly indepen-
dent, and there exists a direction d ∈ R

n such that AE(x)d = 0 and AI (x)d < 0, where
I = {i ∈ I |ci(x) = 0} (AE(.) and AI (.) are the Jacobian matrix of equality constraints
and active inequality constraints, respectively).

There are two more assumptions related to the internal algorithms. The first one (H4) with the
feasibility phase algorithm and the other (H5) with the optimality phase algorithm:

H4: At all iterations k ∈ N, the feasibility step must satisfy h(zk) < (1 − α)h(xk) and zk

cannot belong to the forbidden region.
H5: Given a feasible non-stationary point x ∈ X, there exists a neighbourhood V of x such

that for any iterate xk ∈ V , f0(x
k+1) ≤ f0(z

k) and xk+1 cannot belong to the forbidden
region.

3.6 A graphic example

In order to illustrate the algorithm behaviour, a graphic example has been developed. Consider
figure 2 with some pairs representing a filter, defining the allowed and the forbidden region.
The blue point is the initial temporary point. This point is in the allowed region of the filter,

Figure 2. Initial temporary point xk .

Figure 3. Feasibility—intermediate point zk .

Figure 4. Optimality—new trial point xk+1.

8 C. E. P. Silva and M. T. T. Monteiro

Figure 5. Analysis of filter update with temporary point xk .

Figure 6. Filter update with the temporary point xk .

Figure 7. Dominated points removal.

but it does not satisfy all the constraints, so, the feasibility phase will be performed. From the
feasibility phase results the intermediate point zk , shown in figure 3. zk is not a KKT point,
so, the optimality phase will be performed, and the point xk+1 is reached from zk , in figure 4.

Finally, it will be analysed if the temporary point xk will be inserted in the filter or not.
From figure 5, it can be stated that point xk is in the filter allowed region, and that the point
xk+1, in green, has a worse value of f than xk , in blue. Then, the temporary point xk must be
inserted in the filter (figure 6). This update leads to the filter dominance analysis.

As can be seen in figure 7, the point inserted dominates two of the filter points, so these
will be removed from the filter. After the dominated points removal, the filter will be like in
figure 8. The new trial point xk+1, shown in figure 9, will be the next temporary point tested
in the next iteration.

Figure 8. Final filter.

A filter algorithm 9

Figure 9. Final filter and next temporary trial xk .

4. Numerical tests

This section presents the numerical experiences performed to test the algorithm. The com-
putational experiences were made on a centrino with 504 MB of RAM. The algorithm was
implemented in C language for theWindows operating system. The (LP) and (QP) subproblems
are solved by the LSSOL subroutine [13] from the NPSOL solver [14].

The 235 test problems (www.sor.princeton.edu/˜rvdb/ampl/nlmodels) are in AMPL lan-
guage [15]. Some of these problems are from the CUTE database codified in the AMPL
language. The program was interfaced with the AMPL modelling language [16] to read the
problems automatically, as figure 10 shows. The file written in AMPL language is converted
into an intermediate file and then this file is automatically loaded into the algorithm structures.

The first numeric results of this algorithm were presented in [17], where the algorithm
robustness and the relevance of the feasibility phase was evaluated, by testing two versions of
the algorithm—the first one with feasibility phase and the second with optimality phase only.
The results show that Filter IR with feasibility phase reaches an optimal point faster. In this
paper, the filter management is analysed and a comparison with LOQO and NPSOL solvers
is presented.

Filter management analysis refers to the number of filter updates during the algorithm
process and its final size. The following graphics show, for problems that converge, that the
number of filter updates and the number of elements in the end is very small, less than five in
more than 90% of cases (figures 11 and 12).

For problems that do not converge, 52 out of 235 problems, the number of filter updates
increases considerably (figure 13). In 60% of the problems, the number of filter updates is
between 400 and 800, and in 25% it is greater than 800. Nevertheless, the final filter size
is small—less than 40 in 73% of problems (figure 14).

AMPL

.mod
File Filter IR

Problem
Solution

.nl
File

LSSOL

AMPL

.mod
File Filter IR

Problem
Solution

.nl
File

LSSOL

Figure 10. AMPL interface with Filter IR.

10 C. E. P. Silva and M. T. T. Monteiro

1,6%6,0%

92,3%

Filter Update <5

5<Filter Update<20

Filter Update >=20

Figure 11. Filter update.

92,3%

7,1% 0,5%

Filter Size <5

5<Filter Size<20

Filter Size >=20

Figure 12. Elements in final filter.

4.1 Comparison with LOQO and NPSOL solvers

The computational experience uses the IR algorithm to test all the problems in order to
evaluate the algorithm robustness. 235 inequality constrained optimization problems are
tested. These results are reported in table 1. The table shows the results of the three codes:
Filter IR, LOQO [18] (an interior point method) and NPSOL [14] (an SQP method). The
table shows the problem name (Problem), its dimension (n) and the number of constraints

17,3%

57,7%

25,0%

Filter Update <400
400<Filter Update<800
Filter Update >=800

Figure 13. Filter update.

73,1%

9,6%

17,3%

Filter Size <40
40<Filter Size<80
Filter Size >=80

Figure 14. Elements in final filter.

A
filter

algorithm
11

Table 1. Filter IR versus LOQO and NPSOL.

Filter IR LOQO NPSOL

Problem n m #it #f f #it #f f SS #it #f f SS Note

alsotame 2 1 3 31 0.08 12 23 9.81 N 4 6 9.81 N d)

biggsc4 4 7 2 4 −24.38 18 35 −24.5 N 2 3 −24.38 S
bqp1var 1 0 1 1 0 10 19 6.27 S 1 2 0 S
camel6 2 0 8 9 −0.22 12 23 −0.22 N 8 15 −0.22 S
cantilvr 5 1 103 19962 1.34 16 31 1.34 S 19 22 1.34 S b)

cb2 3 3 103 19981 1.95 11 21 1.95 S 10 13 1.95 S b)

cb3 3 3 103 19981 2 11 21 2 S 6 7 2 S b)

chaconn1 3 3 103 19962 1.95 11 21 1.95 S 8 11 1.95 S b)

chaconn2 3 3 103 19962 2 11 21 2 S 5 6 2 S b)

congigmz 3 5 16 243 28 33 65 28 S 4 5 28 S
dembo7 16 20 103 20013 174.79 103 2016 210.12 N 18 23 174.79 S
dipigri 7 4 103 19941 680.63 11 22 680.63 S 14 29 680.63 S b)

dixmaana 15 1 1 1 2975324.9 79 278 1 N 24 33 1 N
dixmaanc 15 1 1 5 168.12 20 40 1 N 16 22 1 N
dixmaane 15 1 1 5 101.35 19 37 1 N 22 24 1 N
dixmaanf 15 1 1 5 92.2 20 40 1 N 22 24 1 N
dixmaang 15 1 1 5 147.83 23 52 1 N 23 25 1 N
dixmaanh 15 1 1 5 266.59 103 2011 1.0 N 27 31 1 N
dixmaani 15 1 1 5 91.32 19 39 1 N 39 42 1 N
dixmaanj 15 1 1 6 77.88 18 43 0.0 N 29 52 −0.32 N a)

dixmaank 15 1 1 6 132.75 18 38 0.0 N 22 27 0 N
dixmaanl 15 1 1 5 265.26 18 41 0.0 N 19 25 0 N
engval1 2 1 15 15 0 20 39 0.0 S 26 32 0 N

(continued)

12
C

.E
.P.Silva

and
M

.T.T.M
onteiro

Table 1. Continued.

Filter IR LOQO NPSOL

Problem n m #it #f f #it #f f SS #it #f f SS Note

engval4 5 1 9 47 3.63 18 37 3.63 S 19 34 3.63 S c)

explin 120 1 20 58 27.62 103 315 0.0 N 10 11 0.0 N
expquad 120 1 1 1 0 10 19 0.00 N 2 3 0.00 N
fletcher 4 4 103 39980 64 14 27 19.53 N 1 1 4 N a)

gigomez2 3 3 103 19981 1.95 11 21 1.95 S 9 12 1.95 S b)

gigomez3 3 3 103 19981 2 10 19 2 S 7 9 2 S b)

goffin 51 50 3 41 0 12 23 0.0 N 1 1 0.0 N d)

harkerp2 100 1 18 18 0.002 38 75 0.0 N 17 90 39622216.5 N
hatfldb 4 0 11 128 0.006 12 23 0.006 S 13 16 0.006 S
hatfldc 4 0 12 13 0 26 51 0 S 22 30 0 S c)

hatfldh 4 7 8 256 −24.38 20 39 −24.5 N 2 4 −24.375 S
himmelp1 2 0 6 26 −62.05 15 29 −62.05 S 6 12 −23.9 N
himmelp2 2 1 6 7 −62.05 19 38 −62.05 S 30 31 −62.05 S c)

himmelp3 2 2 4 4 −59.01 16 31 −59.01 S 3 4 −59.01 S
himmelp4 2 3 3 22 −59.01 16 32 −59.01 S 10 12 −59.01 S c)

himmelp5 2 3 3 3 −59.01 36 76 −59.01 S 10 17 −59.01 S c)

himmelp6 2 4 4 5 −59.01 25 51 −59.01 S 9 11 −59.01 S c)

hs3mod 2 0 1 1 0 12 23 0.0 S 4 8 0 S c)

hs21mod 7 2 8 10 −95.96 30 60 −95.96 S 16 19 −95.96 S c)

hs35mod 2 1 1 1 0.25 16 31 0.25 S 3 4 0.25 S c)

hs44new 4 5 3 4 −13 18 35 −13 S 4 6 −15 N
hs100mod 7 4 103 19951 678.76 15 29 678.76 S 14 28 678.76 S b)

hs268 5 5 1 1 9994.42 18 35 9994.42 S 15 22 9994.42 S c)

A
filter

algorithm
13

hubfit 2 1 1 1 0.017 12 23 0.017 S 6 7 0.017 S c)

humps 2 1 1 1 13669.4 271 595 0.0 N 194 338 0 N
liarwhd 36 1 19 19 0.0 27 55 0.0 S 26 27 0.0 S
liswet2 103 100 1 1 −34.97 19 37 −34.97 S 2 3 −34.97 S c)

liswet3 103 100 1 1 −21.38 19 37 −21.38 S 2 3 −21.38 S c)

liswet4 103 100 1 1 −15.55 23 45 −15.55 S 2 3 −15.55 S c)

liswet5 103 100 1 1 −331.06 16 31 −331.06 S 2 4 −331.06 S c)

liswet6 103 100 1 1 −45.19 19 37 −45.19 S 2 3 −45.19 S c)

liswet7 103 100 1 1 −51.24 28 55 −51.24 S 2 3 −51.24 S c)

liswet8 103 100 1 1 −51.25 21 41 −51.25 S 2 3 −51.25 S c)

liswet9 103 100 1 1 −29.97 77 153 −29.97 S 2 3 −29.97 S c)

liswet10 103 100 1 1 −52.24 19 37 −52.24 S 2 3 −52.24 S c)

liswet11 103 100 1 1 −51.24 52 103 −51.24 S 2 3 −51.24 S c)

liswet12 103 100 1 1 −32.11 75 149 −32.11 S 2 3 −32.11 S c)

logros 2 1 2 6 0.67 79 227 0 N 77 109 0.00 N
lootsma 3 2 10 145 1.41 103 11363 18.88 N 1 1 0 N a)

lsqfit 2 1 1 1 0.03 12 23 0.03 S 5 6 0.03 S c)

madsen 3 6 103 19924 0.62 24 48 0.62 S 13 17 0.62 S b)

makela1 3 2 103 1 0 14 28 −1.41 N 9 13 −1.41 N
makela3 21 20 23 384 0 16 31 0.0 N 28 31 0.0 N
makela4 21 40 2 21 0 12 23 0.0 S 20 56 0.0 S c)

matrix2 6 2 14 38 0 26 51 0.0 N 21 24 0.0 N
mifflin1 3 2 103 17966 −1.088 9 17 −1 N 8 10 −1 N

(continued)

14
C

.E
.P.Silva

and
M

.T.T.M
onteiro

Table 1. Continued.

Filter IR LOQO NPSOL

Problem n m #it #f f #it #f f SS #it #f f SS Note

mifflin2 3 2 3 22 −2.98 13 25 −1 N 9 12 −1 N d)

minmaxrb 3 4 2 21 0 13 25 0 S 4 5 0 S c)

nondquad 100 1 18 18 0 23 45 0.002 N 103 1007 0.006 N
oslbqp 8 0 1 21 6.25 40 80 6.25 S 1 2 6.25 S
pfit1 3 1 1 1 372.12 337 809 1.26 N 389 578 1.27 N
pfit1ls 3 1 1 1 372.12 337 809 1.26 N 390 578 1.27 N
pfit2 3 1 1 1 3660.08 339 802 35.99 N 557 807 35.97 N
pfit2ls 3 1 1 1 3660.08 339 802 35.99 N 558 807 35.97 N
pfit3 3 1 1 1 15280.62 345 840 253.87 N 433 612 253.97 N
pfit3ls 3 1 1 1 15280.62 345 840 253.87 N 434 612 253.97 N
pfit4 3 1 1 1 43522.45 334 816 943.33 N 503 736 943.3 N
pfit4ls 3 1 1 1 43522.45 334 816 943.33 N 504 736 944.3 N
polak1 3 2 10 104 2.72 14 27 2.72 S 13 15 2.72 S
polak3 12 10 103 19905 5.88 24 47 5.88 S 23 29 5.88 S b)

powell20 10 10 1 2 57.81 12 23 57.81 S 1 2 57.81 S
power 10 1 15 15 0 21 41 0.0 N 37 43 0 S
pspdoc 4 0 5 27 2.41 11 21 2.41 S 12 13 2.41 S c)

qrtquad 12 1 15 41 0.0 29 83 0.0 N 1 2 0 N
qudlin 12 1 3 42 0.75 17 36 −0.0 N 4 5 0 N
rosenmmx 5 4 103 17974 −48.27 15 29 −44 N 18 33 −44 N
s365mod 7 4 103 61 0.25 28 66 52.14 N 26 39 52.14 N
simbqp 2 0 1 1 0 13 25 0.0 S 4 6 0 S c)

simpllpa 2 2 2 20 1 12 23 1 S 0 1 1 S

A
filter

algorithm
15

simpllpb 2 3 2 20 1.1 13 25 1.1 S 2 4 1.1 S
sineval 2 1 13 25 1.34 48 107 0.0 N 81 119 0 N
sisser 2 1 1 7 2.79 19 38 0.0 N 40 42 0 N
snake 2 2 1 1 0 103 11367 −16.91 N 272 564 0 N
stancim 3 3 103 19981 5 41 81 5 S 2 11 7.46 N a) & b)

tf12 3 100 103 204 0.65 15 29 0.65 S 20 32 0.65 S b)

vardim 10 1 25 25 0 39 82 0.0 S 27 28 0 S
womflet 3 3 1 1 0 11 21 6.05 N 182 519 0 N
zecevic2 2 2 1 1 −4.13 11 21 −4.13 S 2 4 −4.13 S c)

zecevic3 2 2 103 2500 97.31 12 23 97.31 S 8 11 97.31 S b)

zecevic4 2 2 3 4 7.56 12 24 7.56 S 6 7 7.56 S c)

zy2 3 1 5 8 2 14 27 2 S 6 16 2 S
branin 2 0 5 26 0.4 15 29 0.4 S 7 10 0.4 S
chi 2 0 5 8 −19.25 16 40 498.36 N 9 15 −34.28 N d)

hs5 2 0 3 23 1.23 10 19 1.23 S 7 9 1.23 S c)

hs15 2 2 3 21 306.5 16 31 306.5 S 5 6 306.5 S c)

hs23 2 5 13 51 2 12 23 9.47 N 4 7 9.47 N d)

hs35 3 1 1 1 0.11 11 21 0.11 S 7 8 0.11 S c)

hs44 4 6 6 9 −15 12 23 −13 N 2 3 −13 N d)

hs64 3 1 103 19810 6299.8 27 53 6299.8 S 29 39 6299.8 S b)

kowalik 4 0 11 33 0.0 12 23 0.0 S 20 25 0.0 S
levy3 2 0 4 10 −23.24 17 35 −28.48 N 5 9 −43.03 N
osborne1 5 0 17 78 0.03 515 1444 0.03 N 148 214 0.0 N

(continued)

16
C

.E
.P.Silva

and
M

.T.T.M
onteiro

Table 1. Continued.

Filter IR LOQO NPSOL

Problem n m #it #f f #it #f f SS #it #f f SS Note

powell 4 0 16 19 0 22 43 0.0 S 59 67 0 N
price 2 0 6 13 0 70 139 0 N 25 32 0 N
s324 2 2 103 19962 5 15 29 4.99 S 13 23 5 S b)

schwefel 5 0 9 10 0 9 17 0 N 34 36 0 N
shekel 4 0 13 57 −2.63 19 37 −2.68 N 24 57 −10.15 N
tre 2 0 4 5 0 14 27 0 S 7 11 0 N
weapon 100 12 11 12 −1735.57 23 45 −1735.57 N 54 64 −1735.57 N
fir−convex 11 243 103 203 1.05 40 79 1.05 N 4 6 1.05 S b)

fir−exp 12 244 1 2 1374.3 43 85 1.05 N 5 6 1.05 N
fir−linear 11 243 1 2 0.05 18 35 0.05 S 1 2 0.05 S
fir−socp 12 244 4 26 10.38 56 111 1.05 N 4 5 1.05 N
fermat−socp−eps 5 3 103 204 7.5 11 21 7.5 S 9 10 7.5 S b)

steiner−nonconvex 33 17 103 19728 0 103 16718 25.4 N 53 200 0 N
steiner−socp−eps 33 17 103 204 25.4 27 53 25.4 S 55 107 25.4 S b)

steiner−socp−vareps 33 17 103 204 25.4 64 359 25.4 N 82 190 25.4 S b)

hs001 2 0 24 33 0 32 63 0 S 17 20 0 S
hs002 2 0 103 19887 4.94 21 41 4.94 S 9 14 0.05 N b)

hs003 2 0 1 1 0 11 21 0.0 S 3 8 0 S c)

hs004 2 0 2 1 2.67 8 15 2.67 S 1 2 2.67 S
hs005 2 0 4 25 1.23 13 25 −1.91 N 7 13 1.23 S
hs011 2 1 103 16256 −24.96 13 25 −8.5 N 8 12 −8.5 N
hs012 2 1 103 17966 −34.78 10 19 −30 S 8 9 −30 N
hs015 2 2 1 1 306.5 31 61 306.5 S 3 5 306.5 S

A
filter

algorithm
17

hs016 2 2 4 5 23.15 18 35 0.25 N 4 5 23.15 S
hs017 2 2 20 29 1.0 29 58 1 S 12 15 1 S
hs018 2 2 15 15 5 15 29 5 S 13 23 5 S
hs019 2 2 2 17 −7972.99 17 33 −6961.81 N 6 8 −6961.81 N d)

hs020 2 3 5 6 40.2 16 31 40.2 S 4 5 40.2 S
hs021 2 1 1 12 −99.96 12 23 −99.96 S 2 4 −99.96 S c)

hs022 2 2 9 9 1 9 17 1 S 5 7 1 S
hs023 2 5 13 51 2 13 26 9.472 N 7 16 9.472 N d)

hs024 2 2 3 4 −1 23 45 −1 S 1 4 −1 S
hs025 3 0 25 45 0 15 30 0 S 0 1 32.835 S
hs029 3 1 103 10 −3.973 10 19 −22.627 N 12 15 −22.627 N
hs030 3 1 2 9 1 9 17 1 S 2 4 1 S
hs031 3 1 7 17 6 17 33 6 S 8 12 6 S
hs033 3 2 7 8 −4.586 20 39 2 N 7 8 −4.586 S d)

hs034 3 2 103 14 −2.003 14 27 −0.834 N 7 8 −0.834 N
hs035 3 1 1 10 0.111 10 19 0.111 S 5 7 0.111 S c)

hs036 3 1 2 16 −3300 16 35 −3300 S 1 2 −3300 S
hs037 3 1 103 11 −3455.9 11 21 −3455.9 S 6 9 −3456 S b)

hs038 4 0 23 27 0 25 50 0 S 26 35 0 S
hs043 4 3 103 11 −48.126 11 21 −44 N 11 17 −44 N
hs044 4 6 6 16 −15 16 31 −15 S 4 6 −15 S
hs045 5 0 3 23 1 23 45 1 S 0 1 2 N
hs059 2 3 7 22 −6.75 22 47 −7.803 N 13 17 −6.75 S

(continued)

18
C

.E
.P.Silva

and
M

.T.T.M
onteiro

Table 1. Continued.

Filter IR LOQO NPSOL

Problem n m #it #f f #it #f f SS #it #f f SS Note

hs064 3 1 103 27 6299.84 27 53 6299.84 S 29 39 6299.84 S b)

hs066 3 2 103 15 0.518 15 29 0.518 S 7 8 0.518 S b)

hs072 4 3 1 23 −4.681 23 45 727.679 N 28 34 727.679 N d)

hs076 4 3 1 11 −4.681 11 21 −4.681 S 7 8 −4.681 S c)

hs083 5 3 4 13 −30665.5 13 25 −30665.5 N 5 7 −30665.5 S
hs084 5 3 3 4 −5280335 20 39 −5280340 S 2 3 −5280335 S
hs086 5 6 3 4 −32.35 15 29 −32.35 S 5 7 −32.35 S
hs089 3 1 103 28 1.363 28 58 1.363 N 48 89 1.363 S b)

hs095 6 4 2 16 9.745 16 32 0.016 N 1 2 0.016 N
hs096 6 4 4 45 0.462 47 98 0.016 N 1 2 0.016 N
hs097 6 3 9 18 4.616 18 36 4.071 N 3 6 3.136 N
hs098 6 3 3 45 9.081 45 137 3.136 N 3 6 3.136 N
hs100 7 4 103 11 680.63 11 22 680.63 S 14 29 680.63 S b)

hs102 7 6 25 55 2736.71 55 208 911.88 N 119 445 911.88 N
hs103 7 6 17 129 2185.87 48 136 543.67 N 75 285 543.67 N
hs104 8 6 103 14 3.95 14 27 3.95 S 18 20 3.95 N b)

hs106 8 6 630 11220 20589.2 46 97 7049.3 N 17 21 7049.2 N
hs116 9 13 103 38335 50 74 194 97.6 N 10 20 97.6 N
hs117 15 5 11 11 32.35 34 67 32.35 N 56 65 32.35 N
hs118 15 17 1 2 664.82 22 43 664.82 S 14 28 664.82 S c)

s215 2 1 3 25 0 25 49 0 S 6 8 0 N
s218 2 1 14 14 0 11 21 2.38 N 26 29 0 S d)

s221 2 1 19 261 −1.0 261 531 −1.0 N 28 31 −1.0 S

A
filter

algorithm
19

s222 2 1 61 10 −1.5 10 19 −1.5 S 4 6 −1.5 S
s223 2 2 6 12 0 12 23 −0.83 N 8 9 −0.83 N
s224 2 2 2 79 −304 12 23 −304 S 2 3 −304 S
s225 2 5 8 17 2 17 33 2 S 6 7 2 S
s226 2 2 2 9 0 9 17 −0.5 N 8 10 −0.5 N
s227 2 2 7 101 1 9 17 1 S 6 8 1 S
s229 2 0 19 28 0 27 56 0 S 32 41 0 S
s230 2 2 103 9 0.375 9 17 0.375 S 5 7 0.375 S b)

s231 2 2 21 32 0 32 63 0 S 14 19 0 S
s232 2 2 2 12 −1 12 23 −1 S 2 5 −1 S
s233 2 1 7 13 0 13 25 0 S 26 47 2.1 N
s234 2 1 13 18 −0.8 18 35 −0.8 S 0 1 −0.8 S
s236 2 2 2 17 −58.9 17 33 −58.9 S 7 10 −58.9 S c)

s237 2 3 2 46 −58.9 46 99 −57.9 S 13 22 −58.9 S c)

s238 2 3 6 103 −58.9 103 11635 −818.8 N 8 11 −58.9 S
s239 2 1 2 15 −58.9 15 30 −58.9 S 16 24 −8.2 N
s242 3 0 2 25 0 25 51 0.0 N 10 13 0 N
s244 3 0 9 31 0 22 43 0.0 S 11 22 0 S
s249 3 0 8 10 0 10 19 1 N 19 20 1 N
s250 3 1 2 16 −3300 16 35 −3300 S 1 2 −3300 S
s251 3 1 103 11 −3456 11 21 −3456 N 6 9 −3456 S b)

s253 3 1 3 15 69.3 15 29 69.3 S 7 8 69.3 S c)

s257 4 0 10 11 0 26 51 0 S 25 36 0 S c)

s259 4 0 9 16 −8.5 12 23 −8.5 S 21 37 3.9 N
s268 5 5 1 27 0 27 53 0.0 S 11 15 0 S c)

s270 5 1 12 14 −1 17 33 0.0 N 5 8 −1 S d)

(continued)

20
C

.E
.P.Silva

and
M

.T.T.M
onteiro

Table 1. Continued.

Filter IR LOQO NPSOL

Problem n m #it #f f #it #f f SS #it #f f SS Note

s277 4 4 103 13 5.1 13 25 5.1 S 5 12 5.1 S b)

s278 6 6 103 13 7.8 13 25 7.8 S 10 26 7.8 N a)

s279 8 8 103 14 10.6 14 27 10.6 S 14 30 10.6 S a) & b)

s280 10 10 103 16 13.4 16 31 13.4 N 12 25 13.4 N a)

s307 2 0 10 14 124.4 14 27 124.4 S 15 28 124.4 S b)

s315 2 3 103 14 −0.2 14 27 −0.8 N 18 22 −0.8 N
s326 2 2 412 12 −79.8 12 23 −79.8 S 6 9 −79.8 S
s328 2 0 5 22 1.74 22 43 1.7 S 10 15 1.7 S c)

s329 2 3 120 3452 −6961.8 18 37 −6961.8 S 8 11 −6961.8 S
s331 2 1 24 44 4.3 9 20 4.3 S E
s332 2 1 103 6643 34.8 103 2152 29.4 N 15 105 29.4 N
s337 3 1 6 11 6 11 21 6 S 7 10 6 S
s341 3 1 2 11 0 11 21 −22.6 N 12 15 −22.6 N
s342 3 1 3 23 0 23 45 −22.6 N 112 213 −22.6 N
s343 3 2 1 27 −0.0 27 53 −5.7 N 5 9 −5.7 N
s346 3 2 1 27 −0.000000 27 53 −5.68478 N 5 9 −5.7 N
s354 4 1 103 16 0.11 16 32 0.11 S 17 25 0.11 S b)

s357 4 35 6 8 0.4 21 42 0.4 S 21 22 0.4 S c)

s358 5 0 781 9281 0.0 141 281 73783200 N 42 62 0.0 S d)

s359 5 14 1 17 −5504451 17 33 −5504450 S 1 2 −5504451 S
s360 5 2 103 28 −5273583 28 92 −5280340 S 2 3 −5280335 S b)

s361 5 6 2 27 −15260.2 27 66 −15260.2 S 3 4 −15260.2 S
s366 7 14 103 47 1226.972633 47 95 1226.97 S 9 11 1226.97 S b)

s368 8 0 2 22 0 20 41 −0.9375 N 1 1 0 N
s372 9 12 103 32 13390.1 32 65 13390.1 S 336 942 23273.3 N b)

A filter algorithm 21

(m). For each code are reported the iterations count (#it), the function evaluations count (#f)
and the objective function (f). The SS column checks if both codes have the same solution
and the Note is dedicated to remarks.

Problems noted by a) identifies the cases of NPSOL solver that were locked in the iterative
process.

The comparison with NPSOL and LOQO shows that the problems that do not converge
have the same optimal solution as both solvers or at least one of them. These problems are
denoted by b). Note that most of these cases were identified in [17] as problems suffering
from Marato’s effect.

Another interesting remark, denoted by c), is related to the problems with the same solution
for the three solvers, but the Filter IR reached the solution in less than half the iterations and
in most of these cases the difference between the number of iterations is greater than double.

Comparatively, numeric results approach the ones obtained by NPSOL and 34% of cases
have the same solution with less or the same number of iterations. Filter IR performance
increases when compared with LOQO, 41% of problems have the same solution, but Filter IR
has less iterations.

Finally, it was noted, by d), the problems where Filter IR has a better solution in terms of
f than both solvers.

Dolan and Moré in [19] present a tool for the evaluation and performance of optimization
codes. The performance profile for a solver is the (cumulative) distribution function for a
performance metric. Performance profiles provide a means of visualizing the expected per-
formance difference among solvers, while avoiding arbitrary parameter choices and need to
discard solver failures from the performance. This comparison is very interesting when the test
set has a large number of problems. Graphically it is interpreted as the probability distribution

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance profile (# iterations)

%
 p

ro
bl

em
s

2x times slower than best

Filter IR
LOQO
NPSOL

Figure 15. Comparison with LOQO and NPSOL.

22 C. E. P. Silva and M. T. T. Monteiro

that a given solver is at worst x times slower than the best. An easy interpretation of this
graphic is that for any given measure a solver is the best when its graphic is tending faster to 1.

The graphic of performance profiles with respect to the number of iterations is presented in
figure 15, where a log scale is used. This figure shows that in almost 60% of the problems the
Filter IR has the highest probability of being the optimal solver for the number of iterations.

4.2 Some conclusions and future work

The algorithm is still in an improvement phase but some conclusions can already be made.
With respect to IR philosophy, one can conclude that the feasibility phase speeds up the
convergence. The filter method is very simple to implement and replaces the penalty function.
The temporary pair creates filters with smaller size, improving its management. The line search
strategy in the filter method avoids the resolution of another subproblem when the trial point
is not accepted by the filter whereas in the trust-region another subproblem must be solved.

Future work perspectives will be concerned with the algorithm performance, namely, to
expand the algorithm for solving equality constraints optimization problems and improve-
ment of the filter management. To study other schemes to estimate the Lagrange multipliers,
to introduce second-order corrections to avoid Marato’s effect and to implement the filter
restoration phase are also ideas to consider. The algorithm evaluation with other performance
measurements, such as CPU time, gradient and function counts and its convergence analysis
with internal procedures, are other suggestions for future work.

Acknowledgements

This work has been partially supported by project POCTI/MAT/45276/2002, Nonlinear
semi-infinite programming solver.

References

[1] Fletcher, R. and Leyffer, S., 2002, Nonlinear programming without a penalty function. Mathematical
Programming, 91, 239–270.

[2] Martínez, J.M. and Pilotta, E.A., 2000, Inexact-restoration algorithm for constrained optimization. Journal of
Optimization Theory and Applications, 104, 135–163.

[3] Martínez, J.M. and Pilotta, E.A., 2005, Inexact restoration methods for nonlinear programming: advances and
perspectives. Optimization and Control with Applications, in the series Applications in Optimization, Vol. 96
(New York: Springer), pp. 271–292.

[4] Birgin, E.G. and Martínez, J.M., 2005, Local convergence of an inexact-restoration method and numerical
experiments. Journal of Optimization Theory and Applications, 127, 229–247.

[5] Martínez, J.M., 2001, Inexact-restoration method with lagrangian tangent decrease and new merit function for
nonlinear programming. Journal of Optimization Theory and Applications, 111, 39–58.

[6] Gonzaga, C.C., Karas, E. and Vanti, M., 2003, A globally convergent filter method for nonlinear programming.
SIAM Journal on Optimization, 14, 646–669.

[7] Antunes, A.S. and Monteiro, M.T.T., 2004, Paper presented at the XXVIII Congreso Nacional de Estatística e
Investigación Operativa, Cádiz, 25–29 October.

[8] Wächter, A. and Biegler, L.T., 2006, On the implementation of a interior-point filter line-search algorithm for
large-scale nonlinear programming. Mathematical Programming, 106, 25–57.

[9] Wächter, A. and Biegler, L.T., 2005, Line search filter methods for nonlinear programming: local convergence.
SIAM Journal Optimization, 16, 32–48.

[10] Wächter, A. and Biegler, L.T., 2005, Line search methods for nonlinear programming: motivation and global
convergence. SIAM Journal of Optimization, 16, 1–31.

[11] Chin, C.M., 2002, A global convergence theory of a filter line search method for nonlinear programming.
Numerical Optimization Report.

[12] Chin, C.M., 2003, A local convergence theory of a filter line search method for nonlinear programming.
Numerical Optimization Report.

A filter algorithm 23

[13] Gill, P.E., Hammarling, S.J., Saunders, M.A. and Wright, M.H., 1986, User’s guide for LSSOL: a fortran
package for constrained linear least-squares and convex quadratic programming. Technical Report 86-1, Systems
Optimization Laboratory, Department of Operations Research, Stanford University.

[14] Gill, P.E., Murray, W., Saunders, M.A. and Wright, M.H., 1986, User’s guide for NPSOL: a fortran package for
nonlinear programming. Technical Report 86-2, Systens Optimization Laboratory, Department of Operations
Research, Stanford University.

[15] Fourer, R., Gay, D.M. and Kernighan, B.W., 1993, AMPL: A Modelling Language for Mathematical
Programming (Pacific Grove, CA: Duxburg Press).

[16] Gay, D.M., 1997, Hooking your solver to AMPL. Technical Report 97-4-06, Computing Sciences Research
Center, Bell Laboratories.

[17] Silva, C.E.P. and Monteiro, M.T.T., 2006, A filter inexact-restoration method for nonlinear programming. TOP,
submitted.

[18] Vanderbei, R.J., 1999, LOQO user’s manual, version 4.05. Technical Report ORFE-99, Operations Research
and Financial Engineering, Princeton University.

[19] Dolan, E.D. and Moré, J.J., 2001, Benchmarking optimization software with performance profiles. Mathematical
Programming A, 91, 201–213.

