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16 Reinforcement design using linear analysis

Professor Paulo Lourenco
Minho University
Guimaraes, Portugal

Design of reinforced concrete structures can berie=i by the following

consecutive steps:

1. Select the initial dimensions of all the structues@ments using simple
rules of thumb or experience. These dimensionsidhmiable to satisfy
the serviceability and ultimate limit states, ahdwd fulfill the require-
ments for adequate site execution and any otherireagent applicable
(e.g. acoustic isolation, fire protection, etc.);

2. Perform a global structural analysis to calculdte internal forces (or
stresses) due to the combination of loads definetthé codes. The me-
thod almost used exclusively today is the finiteneént method and the
behavior of the structure is assumed to be linkestie at this stage;

3. Verify concrete initial dimensions and calculate tieinforcement capa-
ble of resisting the calculated internal forces.tiis stage, the ultimate
capacity of the individual cross sections is coasid, which is typically
associated with non-linear constitutive laws.

The main advantage of the above process is thearlielastic finite element
analysis is well established and is straightforwardpply. In addition, multiple
load cases can be easily incorporated and reinfegneis placed in the locations
where tensile stresses appear. These regions ponego the initial crack loca-
tions, helping to control crack propagation.

Of course there are also some disadvantages proloess described, as stress
redistribution can be difficult to incorporate, piging more expensive reinforce-
ment arrangement, no real information is obtainedusthe collapse load of the
structure, even if a lower bound estimate is oleivhen ductility is enforced,
and no real information is provided on inelastiepbmena as crack width, crack
spacing or maximum deflection, even if they candséimated for beam-type
structural elements. A consequence of the prosetbat detailing guidelines need
to be used to ensure ductility and serviceabilégndnds.

Only in very few selected cases of structures witlusual size, shape, or
complexity, a full nonlinear analysis of the prawéty designed structure would be
made for assessment, tracing out the entire behdakiough the uncracked,
cracked, and ultimate stages. Such an analysiga@Bneequires significant time
for pre-processing, computation and post-processihich is not compatible with
cost and time demands. Also, as nonlinear anatgsigires the definition of geo-
metry and reinforcement, it should not be regarated design tool but, mostly, as
an assessment tool.
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The simulation of concrete walls, slabs, assemilagevalls and slabs and
shells using finite element analysis is becomingtamdard in structural analysis
tools for building design, meaning that adequatéhowplogies for the design of
these elements are necessary.

In this chapter, we subsequently discuss desighaodstfor membrane states
(walls), bending states (slabs) and combinationsag occur in spatial assem-
blages of plates and in shells. Hereafter theyshwetly addressed as shells. De-
sign of reinforced concrete elements subjected embmane states has been de-
veloped since 1960s by authors like Baumann [...JeBtrup and Nielsen [...],
only to name of few. This process resulted in fdaauor reinforcement design
and check of concrete strength in the CEB-FIB Modete 1990 for Concrete
Structures.

Reinforcement design for slabs and shells has ralseived attention in the
Model Code 1990. For that purpose a three layaivgmh model was introduced.
Pioneers of this approach are Gupta and Marti. Mbst preliminary version of
Eurocode 2 suggested a different method on basikeohormal yield criterion.
That result is alternatively referred to as Woodr&r equations. It applies to
slabs only and not for shells. The later version F992-1-1:2004 removed this
method. The version EN 1992-2:2005 of Eurocode &raipcluded a solution in
its appendices, returning to the three layer saciiwiodel. This solution has re-
ceived a place in Part 2 of Eurocode 2 on Brid§éB. has published in 2008 a
Practitioners’ guide to finite element modelingreinforced concrete structures
This document also presents the three layer sahdwarel. Readers interested in
a more complete review of the historical developnuérihe different methods are
referred to [...].

Here we will refer to the three layer sandwich maafeEurocode 2 andib
practitioners’ guide asasic modelWe denote ibasicbecause the concept is very
useful, but the working-out still permits improvemiebecause internal lever arms
are only approximated. After the presentation efttsic model, we introduce an
advanced methoahich meets in a consistent way all equilibriunmditions.

Both the basic and advanced model will first becaésed for cases of mod-
erate transverse shear forces which can be camjidte concrete. After that we
make the extension to slabs with larger transvetsmar forces, which require
transverse shear reinforcement, an extension wea@Wearti [...].

16.1Design of membrane states

Consider a membrane element with a thicknessubjected to applied in-
plane forces, ny, andn,,. The reinforcement consists of two orthogonal séts
rebars parallel to the, y-axes.As andA,, are the needed reinforcement areas per



unit length in this co-ordinate system. They areuated from forces, andns,
respectively. The purpose of this Section is td fiormulas foms, andns,

The applied forces will be resisted by the reindmnent and concrete contri-
butions. It is assumed that the concrete is subjlettt uni-axial compressiam
parallel to the cracking orientation, at an anglevith the y-axis. The two rebar
sets in Fig. 16.1b and the concrete struts of Féglc together must carry the ap-
plied loads of Fig. 16.1a. For the sign conventiérthe appliedn,,, n,, andn,,
loads we refer to Chapter 1. The forogsandng, are always positive or zero, and
the membrane fora, in the concrete is negative or zero.

In the chosemx,y-coordinate system, the shear resistance of tnéoreement
is zero and the state of stress of the concrataiiaxial. The first principal mem-
brane force is zero and the compressive fagagccurs in the second principle di-
rection. The stress state in Fig. 16.1a is equitaldth the combination of the
states in Figs. 16.1b and 16.1c when the follovédggilibrium conditions are sa-
tisfied

n, =N, +nsin’ @
n, =ny,+ncos @ (16.1)

n, =-n.sing coyy

The condition holds that the second principal stsgss smaller than the compres-
sive strength, of concrete
> —hf

n . (16.2)

c

The applied forces are in the left member of E46.1) to (16.3), and the internal
forces are in the right member. It should be reméhthatn, is negative, sos, is
larger thann,, andng, larger tham,,. The cases of = 0 andd = n/2 are trivial,
meaning that only one set of reinforcement is néedigned with the axig or x,
respectively. Assuming th&t# 0 andé # n/2, Equ. (16.1) to (16.3) can be recast
such that the steel and concrete forces are irlefihanember and the applied
forces in the right

N, = N, +n, tand
n,, = n,+n, cotd (16.3)

— My

" sinfcod

Equ. (16.7) indicates thal, andd must have the same sign, so that negative,
or in compression. The total amount of reinforcenm be obtained from Equ.
(16.5) and (16.6), and equals,



Ngx +Ngy = Ny + Ny +Ny (tand +cot o)

(16.4)

Note that the last term in this equation is alwpgsitive, asn,, andé§ have
the same sign. Thus, the minimum amount of reimfiorent corresponds th =
* /4. For these values & noting that the reinforcement must be always sub-
jected to tension, i.é> 0 andng, > 0, Equ. (16.5) and (16.6) give, > -|n,,| and
Ny > -|ny| respectively. Or else thevalue must be changed. Therefore four dif-

ferent cases of reinforcement have to be considered

Case 1l Reinforcement in x- and y-direction needed

For this case it holds

nxx2—|nxy|, n,=- |an l;

nsx = r1><>(+| nxyl’ nsy: nyy+ |nxy
T

Hztz, n.=- 2, |

Case 2 Only reinforcement in y-direction needed

For this case the following equations hold

nxx<_|nxy| - nsx: 0

n
tang = ——=;
Xy
2 2
n n
— Xy Xy
n,=n,—-——, n,20 - n >—
sy vy ’ sy yy
nXX nXX
2
n
— Xy
nc - nxx +

Case 3 Only reinforcement in x-direction needed

For this case the following equations hold

(16.5)

(16.6)



tangd = -2~
nyy
2 2
n f (16.7)
oy Xy
n, =nN,——, nsx2 0 - ﬂxx2 n_
Yy yy
2
— Xy
n = nyy+ .
Yy

Case4 Noreinforcement needed in any direction

No cracking occurs and the stress state is biawiapression. In the concrete two
principle membrane forces; andn., are present.

nxx<_|nxy| nyy<_|n><y|
2 2
or n
n, <— n, <—~
nxx nyy
(16.8)
n,=0, ny =0
2
_ nxx + nyy nxx_ nyy 2
n(:1,(:2 - 2 - 2 rl(y

Rebar design and check on concrete stress

The four cases are summarized in Fig. 16.2. Thadtas correspond to the opti-
mum direction of concrete compression, i.e., @dh&lue leading to the minimum
amount of reinforcement. The reinforcement desigmtobtained from

(16.9)

whereas, andasy are steel areas per unit length &ggis the design yield strength
of the reinforcement. The concrete stress is gbxyen

fo = —nc/ h (16.10)



which must be checked against the design compeesstiengthf,y. For this
strength we can apply the Model Code 1990 or thetRioners guide dfib.

Model Code 1990

The Model Code 1990 recommends

Caselto3

fc cd2
Case 4 f, (16.11)

< f
<Kf,

where

f
f,, =0.60 1-— | f 16.12
cd2 ({ 250 cd ( )
1+3.6% g,
= > o =—=
(1+a) g,

Heref. is the design strength of the concrdigjs the characteristic strength of
the concrete, and; and 0, are the two principal compressive stresses. Tfwse
mulas are based on experimental studies on biearadrete behaviour of Kupfer.

fib practitioners’guide

The practitioners’guide dib recommends following planned changes to the ACI
code. The proposed formula for the concrete streisgt

f, =0.853f, ly. (16.13)

where the factor 0.85 accounts for the variatiagnvben the in-situ and cylindrical
strengths, # accounts for influence of transverse tensile stfaiis the characte-
ristic compression strength, apds the partial safety factor. The formula fois

1

= (16.14)
0.8+17C;,

B

Hereing, is the major principle strain normal to the direatiof the concrete struts.
For this strain the yield strain of the steel remsEment might be chosen, so=
fsya/ E, whereE is the Young’s modulus of steel.



Remar k

At this point, it should be pointed out that thenrepntinuous variation of concrete

compressive strength between Cases 3 and 4, oebet®ases 2 and 4 does not
seem acceptable. This gains special relevance a$16dL0) corresponds practi-

cally to an absolute minimum of cracked reinforcedcrete. However, this seems
to be the price to pay for a simplified design azzh.

16.2 Design of slabs. Normal moment yield criterion

Similarly to the case of an element in membrante simensioning of slabs
and shells from internal forces obtained in a éretement analysis is based on an
equilibrium model at ultimate state. While caretuinsideration of the limited
ductility of concrete is important in the dimensiogy of membrane elements, such
a concern is lower for slabs because such striganetypically under-reinforced.
Failure is usually governed by yielding of reinfencent, with the exception of
point loads, which may result in brittle punchirgldires in slabs and in shells
without transverse reinforcement.

The stress resultants acting in a slab are theigmdomentsn,, andm,, and
twisting momentsn,,. For the derivation of the design equations a&ettho-
gonal axes is chosen in directionandy, giving moments per unit length,,, m,,
andmy, such tham,> m,,. Basis of the derivation is the normal momentdyieri-
terion. It states that

states. The resulting formulas for the design mdmare presented in Fig. 16.4.
Reinforcement is provided in the andy-directions to resist design ultimate mo-
mentsmy,, My, My, andm,. The subscriptb andt indicate bending moments giv-
ing tension in the slab bottom and slab top, redpalyg. The bottom is at the posi-
tive z-side of the slab middle plane, and the top ahtgative side. The shown
equations are used in many software packagesdabrmrsinforcement design. Of-
ten even only the top-left corner of the figuraised.

Evaluation

The use of the equations of Fig. 16.4liscouragedor a number of reasons.
The equations are not able to take into consideratiansverse shear forces, do



not check for concrete crushing, and do not fudduilibrium. It is strongly rec-
ommended to use the three layer sandwich modekhwnapplies for slabs and
shells. This is the subject of Section 16.3 andiGed6.4.

16.3 Slab and shdl e ements. Basic model

The problem to be discussed in the present Sedithe design of a shell
element of thicknesh, subjected to combined membrane forces and bemdaig
ments and where the directions of the principaiutal and membrane forces do
not, in general, coincide. A slab element is a mparase of the stated problem.
Fig. 16.5 shows the applied forces and momentssd ferces and moments have
to be in equilibrium with the tensile forces in tt@nforcement and the compres-
sive forces in the concrete. We choose a sglygfaxes as we did in the Chapters
3 and 4, where is pointing downward, see Fig. 16.5. The reinfareat consists
again of a mesh of orthogonal rebars parallel ¢oxfjraxes, now placed in a up-
per and lower layer. We refer to the upper or @t by the subscript(negative
z-side) and to the lower or bottom layertb{positivez-side).

The formulation of this problem is identical to tbee in Section 16.1 for
membrane states. Again, the total resistance oéldment is obtained by adding
the concrete and reinforcement contributions. Welehahe shell element as a
three layer sandwich, shown in Fig. 16.6. The olagers are covers of the sand-
wich and the inner layer is the core. The coveelayrovide resistance to the in-
plane effects of flexure and membrane loading, evttile core provides a shear
transfer between the covers. The thickness of dvers isa and the distance be-
tween the middle planes of the coverd,is

Dependent on its size the transverse sheae foas impact on the amount of
the reinforcement in the covers. For small valles/tdo not, otherwise they do.
To decide whether the shear forces are small wet cwssider the maximum
shear forcey, as specified in Eq.(4.24).

Vo =V + V2 (16.15)

which acts in the direction of an anglgwith thex-axis, defined by Equ.(4.23).

<

tang =2t (16.16)
VX

This shear force is small if it is below the shegacking resistancé,z; . Where
Tcred IS the nominal strength of the slab without traarse reinforcement. Then the



core will remain uncracked. For the valug.q we may apply ENV 1992-1-1,
which provides

Toea =0.25f 4(1.6-d,)( 1.2 4p)+ 0.15, (16.17)

c,red

Here,f.q is the design tensile strength,is the internal lever arm in metegs,is
the percentage of longitudinal reinforcement agglis the in-plane normal com-
pressive stress. If significant tensile membrarred® are applied to the element,
Tereq Should be taken equal zero. Provided that no féigmit tensile membrane
forces exist, the expression in Equ.(16.15) carsib®lified to a lower bound,
neglecting the positive effect of the longitudinainforcement.

T..eq =0.30f 4(1.6-d) (16.18)

c,red

16.3.1 Basic model. No cracking due to transverse shear.

We start with the case of small shear forces. Thercore layer is supposed not to
crack and is able to carry transverse shear fofigs.16.6b depicts the sandwich
model for this case. The need for reinforcementsemly be investigated for the
combination of membrane forces and bending andihgisnoments. It is an im-
portant decision which thickness is assigned tddbeand bottom layer. In the ba-
sic model these thicknesses are equal to each. éthaher it is assumed that all
reinforcement layers are positioned in the middéne of the outer sandwich lay-
ers. Therefore one lever ampapplies for both directionsandy. The membrane
forces in the external layers are given by

nxxt =&+&' nxxb = _&*— rl(x
d, 2 d, 2

My Ny L VLY
_my, Ny _ my, ny
n,=—+—=, n,=-——2+=
“ood, 2 wood 2

Using the expressions provided above for the cavembrane elements, we can
obtain the final expressions for the forces pet width for the reinforcement de-
sign in shells
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L L P
d 2 d 2
Y Y (16.20)
L PO PO L
d 2 d 2
QoM Ny fomy N,
Sod, 2 | d 2
From these forces reinforcement percentages cadereed
nsx nS t nsxb — nsyb
pxt =_sxt_ , pyt =N , pxb = s p b = (1621)
h fsyd h fsyd h fsyd g h f syc

wherefgyqis the design yield stress of steel.

16.3.2 Basic model. Cracking due to transverse shear

If the transverse shear forces are high enoughaduyge cracking of the sandwich
core, additional reinforcement is required. Here fallow the approach as pro-
posed by Marti [...]. An alternative proposal canfbend in EN 19922-1-1:2004.
The core is treated like the web of a girder ofiffed cross-section running in the
Bo-direction of the maximal shear force. Fig. 16.@&pidts that concrete struts in
the core come into being under an ar@isith the middle plane. To ensure equi-
librium additional membrane forces must occur ie thpper and lower cover.
Choosing? = 45 leads to additional membrane forces in both cowésszev, in
the direction of the maximal shear force. The chat 45 for the crack angle in
the core is conforming to the traditional Morschss for reinforced concrete
beams. Decomposing the additional membrane forabencovers to membrane
forces inx- andy-direction leads to the following expressions

S Mo M M, e, Y
XXt dv 2 2V0’ xb d/ 2 2\6
L LY L L

=G T (16.22)
\ 0

n :&_‘_&_'_vay' N, ﬂ'+_r1<y+v_’<vy
Mood, 20 2y ¢ d 2 2
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Using the expressions provided above for membraements the final expres-
sions for the design of reinforcement obtainedsfozlls are

e Ma e Ve My Ry WY
d 2 2y | d 2 2y
= My My W) My, Ny Y
Tood, 2 2, | d 2 2y
oM e V) My Ry WY
d 2 2y d 2 2y

n =_&+&+i+ —ﬂ'+£y+ N

oood, 2 2y | d 2 2y

v

n

(16.23)
n

From these forces reinforcement percentages areedeby the formulas in
Equ.(16.17-1). Transverse reinforcement is needddarpercentage, given by

VO
16.18
17 (16.18)

v “syd

P, =

In practical problems, it is recommended to inceede slab or shell thickness so
that transverse reinforcement is avoided.

16.3.3 Evaluation

The basic sandwich model is simple to apply, biindely is an approximation of
reality. We mention that:

« lItis assumed that the core does not contributeaimsferring membrane forces,
which for reasons of compatibility cannot be cotrec

e The basic model works with equal thickness for tilve outer layers of the
sandwich. In general this need not be the case.

« It is assumed that both reinforcement layers irater layer are positioned in
the middle plane of the cover, which is physicaihpossible.

* The angled of the membrane crack direction in both outer lay®s been ta-
citly assumed to be +45The same applies to the anglgfor the cracks in the
core due to the transverse shear force.

It is a consequence of some suppositions thatibguih only is satisfied in an

approximate manner, the deviance being of an isargadegree for higher rein-

forcement percentages. Particularly in case ofelawgsting moments the method
is unsafe.
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An improvement is made if the anglésndp, are not fixed to +4% In next Sec-
tion 16.4 we present an advanced sandwich modalsdt starts from the supposi-
tion of a three layer sandwich and division of fotcansfer, such that the covers
carry the membrane forces, bending and twisting emdmand the core carries the
shear forces. For the rest the shortcomings ob#sc model are fully repaired.
We assign its own plane to each reinforcement |Jgyemit the thickness of cov-
ers to differ, have crack angles freely adapt, eEgdrously satisfy equilibrium
conditions. So a consistent set of suppositions thy foundation of the advanced
model.

16.4 For mulation of the advanced three-layer model

In the consistent model, the internal ledgiis not assumed priori and it is not
equal in all directions, being calculated usingitamative process. Four different
cases must be analyzed and treated separatelseif@rcement needed in both
outer layers; (b) reinforcement needed only inkih#tom layer; (c) reinforcement
needed only in the top layer; (d) no need for micément. The complete formu-
lation of the problem, the software code and vaiétacan be found in [....]. The
described phenomena are simple but the resultingtems are reasonably com-
plex, leading to an indeterminate system of nowliregjuations.

The geometry of the advanced model is shown in Fég... We introduce dif-
ferent distancehy, hy, hy, andhy, for the four reinforcement layers to the middle
plane of the slab. The thickness of the outer Ry®a, anday, respectively. The
core between these layers has thickingsAs done for the basic model, we define
resisting reinforcement forces,, Nsy, Nsw and ngy, The two forces for thex-
direction are summed ta, and for they-direction tons,. Correspondingly resist-
ing reinforcement momentss, andm, are defined. For the concrete top and bot-
tom layer we introduce resisting foraegandn.,, respectively, and resisting con-
crete momentsn, and my, Here, subscripts and ¢ indicate steel and concrete,
respectively, and subscriptsandb indicate again top and bottom external layer,
respectively.

Casel. Reinforcement in both outer layers.

In case reinforcement is needed in the outer laybesresisting forces and mo-
ments for the reinforcement in tReandy- directions are given by

nsx = nsxt+ nsxt

- (16.25)
nsy - nsyt+ r‘Isyt
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rnsx == nsxt hxt+ nsxt hxh
16.26
rT.|sy = nsylhy1+ nsythyk ( )
and for the concrete by
N, =-4 fc
N, =-af. (16.27)
1

m, =->(h-a)n,

L (16.28)
M, =§( h-4g) n,

Equ. (16.23)-(16.26) provide the internal forcesl amoments. Equilibrium with
the applied set of forces and moments leads to

n, =n,+n,sin’ 8+ n,sir g,
n, =ng,+n,cos 6+ n,codd, (16.29)
n, =-n,sing, coy, - n, sirg, co,

m, = m, + m,sin° 8+ m,sirr o,
m,, =m,+ ”1100§ 6.+ m, CO§9b (16.30)
m,, =-m,sing, co®, - m, sird, co,

Equations (16.27) to (16.29) correspond to the nrambforces, while equations
(16.30) to (16.32) correspond to bending equatioffs. 6, # 0,77/ 2 and

6, 20,77/ 2, (16.24), (16.26), (16.29) and (16.32) give

-n :(h_at)rky_zmw
"’ h. sin 26, 16.31
—n, :(h_qn)nxy-'-zmw (16.3)
® h, sin 26,

Reinforcement will be given upon solving (16.27)(16.32). The objective is to
calculate the forces in the reinforcement, nsy, Nsq, and ng, The other un-
knowns ares, a,, 6; andd,. Therefore the system of six equations contaightei
unknowns. This means that the valueg,aindé, should be chosen so that the to-
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tal amount of reinforcement is minimized. The valad 6, = 6, = n/4 anda; = a,
=0.2h can be assumed as an initial guess. Setting fnesafd to n/4 is obvious,
as this value minimizes the total reinforcementriembrane elements. Setting
a=0.2h is a usual value for beam sections. The valuesttare adjusted by an
iterative procedure until equilibrium is fulfilledhe reader is referred to [...] for a
full description of the iterative method.

Compressive crushing is checked by enforciag &h+ 3, < h and tensile rein-
forcement is calculated by Equ.(16.17-1), assurnialgling of reinforcement.

Case 2. Reinforcement in bottom layer only.

In case of biaxial compression in the top layeinfoecement in the top layer is
not needed. We indicate the concrete top layer mamebforces byl Neyye and
Ny The forces and moments that the reinforcemenstsed thex,y-directions
are given by

=n

nsx sxb

sy nsyb

rnsx = nsxbhxb
rnsy = nsybhyb

(16.32)

and by the concrete bottom layer are

ncb = _ab fc

1
mm=5(h-%)m

(16.33)

Equilibrium with the applied set of forces and mantseyields

nxx = nsx+ ncxt + nchin2 Hb
n, =n,+n,+n,cos 6, (16.34)

Ny = Ny —N,SING, o,

M, = M+ M+ msin® 6,
m, =m + m,+ m,cos 8, (16.35)
my, = My, ~ m,Sind,co¥,

with
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1
My = 'E(h' a) N,
1
m, = —E(h— a) n, (16.36)

1
My = -5( h-g) n,,

In the current case there are still eight unknowswever, one extra equation
must be added to the six equations of equilibritepresenting the biaxial state of
stress in the concrete top layer

2
Neye + Neyt Next + Neyt
Ny = -8, f, =— 5 A [ = 5 °VJ +Nt (16.37)

Here,f. has a higher value than the uni-axial compresstuength of cylinders
due to biaxial confinement. Nevertheless theresggbt unknowns and seven equ-
ations, meaning th#, should be chosen so that the total amount of setefment
is minimized.

Case 3. Reinforcement in top layer only

The case of biaxial compression in the bottom lageédentical to the case of
biaxial compression in the top layer, with a raiatof indices. Therefore estab-
lishing the equilibrium equations requires no addél explanation.

Case 4. No reinforcement at all

Finally, in the case of biaxial compression in &pd bottom layers, there is no
need of reinforcement and the solution is uniquesulning that the concrete top
layer membrane forces amg Ny andng,y: respectively in the,y-direction and as
shear force, and the concrete bottom layer membi@oes aréc, Neyn NNy
with a similar meaning, the equilibrium equationigint be written as

nxx = ncxt + ncxb
N,y = Ny + Ny (16.38)

nxy = ncxyt+ ncxyh
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nlo( = rn:xt+ rrl:xb
m, = my,+ my, (16.39)
n’lxy = rn:xyl+ rn:xyt
with
1 1
My, = 'E(h' a) N n@xb=—2( h- g) n,
1 1
m,, = _E(h_ a) . myb=5( h- q) n, (16.40)

1 1
rn:xylz_z(h_ Q) r1><yl' n]:xylzz( h- EO r?:xy

The principle concrete compression forces in eaghrlmay be calculated accord-

ing to
N TN n.-n,\
— t yt t yt
nC‘t_ x2 c + ( cx2 c]_'_nsxy‘

> (16.41)
_ Moo ¥ Ny New™ Neyo
en =5 i\/[ 2 Cy] * o
and the layer thickness may be calculated accotditige MC90 as
n
at — __¢tmax ’ a} - _ ncb,max (1642)

Kf cdl

As shown above there are eight unknowns and eggrdtens (the six equilibrium
equations and two equations to check the maximumpeessive stress in the lay-
ers), meaning that the problem is determined.

16.5Applications on element level

In this Section we illustrate the use of the basid advanced model for two ele-
ments. The first one is subjected to a combinatioa membrane force and bend-
ing moment. The second is a slab element subjéctadwisting moment.
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16.5.1 Element with membrane force and bending moment

An element is subjected to an applied set of a ingnchoment and membrane
shear force given by, = 235 KNm/m anah,, = 1806 kN/m. The material proper-
ties of concrete and steel dge= 41.8 MPa andl, = 492 MPa. The location of the
reinforcement is given bl = hy, = 0.122 m anth,; = hy, = 0.100 m. This element
is chosen because an experimental result of KirghérCollins is available.

The top row in Table 16.1 shows that in total 11dm/m reinforcement is
applied in the element in the test. Not all thenfimicement yielded at failure. The
second row in the table is the prediction of thedesl reinforcement basis of a
non-linear analysis by an iterative computer progreith optimization. This pro-
vided a minimum amount of reinforcement equal to66&rf/m [...]. The third
row presents the results of the basic sandwich hetktthe fourth row of the ad-
vanced model.

Table 16.1 — Reinforcement for single shell element

Reinforcement areas (éfm)
Method X— y— X — bot- y — bot- tot
top top tom tom al
Experi- 41. 13. 41.8 13.9 11
ment 8 9 1.4
Nonli- 0.0 14. 37.6 16.9 68
near 1 .6
Basic 0.0 15. 39.9 18.4 74
mod. 7 .0
Ad- 0.0 16. 36.8 17.9 71
vanced 6 .3

For the basic model an average distance of laygre®to the middle plane of the
element of 0.111 m is chosen. Therefdye 0.222 m. On basis of Equ. (16.12) to
(16.14) we find the following

N, = 235/0.222= 1059 kN/n
N, = —235/0.222= ~ 1059 kN/r

Ny, =0
n, =0
Ny, =1806/2= 903 kN/m
N, =1806/2= 903 kN/m
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Using the expressions for membrane elements ib$siple to obtain, for the top
layer ( reinforcement not needed)

n2
n..=n ——Xy‘:o—ﬁ: 770 kN/m
n -1059

n, =-1059+ 903 =-1829 kN/m
ct 59

a,, =0

>

770

= =— — x10°=15.7cm /n
o f. 492x10

Ny 71829 0.073 m

AT e 0 6x 418 10

Note that the value of the effective compressivength was here assumed as
0.6f.. Similarly, for the bottom layer

oo | Ny] =1059+ 903= 1962 kN/r
nsyb = nxyb+| nxyi =0+903= 903 kN/m
Ny, = =2|n,,| = —2x 903= 1806 kN/m

nsxb =n +

a, == 1982 10399 m
f, 492x10
a, = N o903 10t =184 ci im
f,  492x16
-1806
=———=0.072m
% 0.6x 41.8< 16

The advanced sandwich model requires five iteratigmovides the thickness of
the layers equal to 0.072m and 0.075m for the top lzottom respectively, and
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the reinforcement results as given in the third @Wwrable 16.1. It can be seen
that the results are almost the same as the barstbwéch model. If the results of
the nonlinear analysis are assumed as referenoesyahe basic sandwich model
provides +8% and the advanced sandwich model pesvidi% of the total rein-

forcement.

16.5.2 Slab element with twisting moment

A slab element is subjected to pure torsion by gpliad twisting moment.
The value of the twisting moment is one time chasgr= 42.5 kNm/m and one
time m,, = 101.5 kNm/m. These values are chosen becausisre$ a test are
available. Marti [...] obtained them for a lightlyinéorced (0.25%) and a severely
reinforced (1.0%) element, respectively. The mateproperties ard, = 44.4
MPa, andfsy = 479 MPa for the light reinforcement afig= 412 MPa for the se-
vere reinforcement. The location of the reinforcatrie given byh,, = h,, = 0.073
m andhy; = hy, = 0.084 m, for the light one, afg; = hy, = 0.066 m andh,; = hy, =
0.082 m, for the severe one. Column ‘ExperimeniTable 16.2 provides the rein-
forcement existing in the element, which is the sanx- andy-direction, and in
the top and bottom layer (5 é&m for light and 20 ciim for severe reinforce-
ment).

The slab method on basis of the normal moment yigtdrion violates equi-
librium as different reinforcements are calculafed each direction. This is in
agreement with the formulation, as different lesems are found for each rein-
forcement direction, but equilibrium requires tloecks in all reinforcements to be
the same. The basic and advanced sandwich modilsefyuilibrium correctly.

The normal moment method provides a reasonablesécwative) value of
reinforcement for the small twisting moment butusracceptable, unsafe value of
reinforcement for the large twisting moment. Thenfiecement found is irx-
direction about 27% less than the required valuk 189 less iry-direction. The
basic model is very safe for the small moment, équally unsafe for the large
moment. The prediction by the advanced sandwichein@dexact for the small
moment and only 3% too low for the large one, whiglvery satisfactory. The
reason for the bad predictions is that the locatibthe resultant for the forces in
the concrete are incorrectly calculated and theraation between the different
forces in reinforcement and concrete are neglectbédrefore, the equations on
basis of the normal moment yield criterion and llasic sandwich model should
be used with much precaution, or not used at dltaibed results from these mod-
els must be distrusted if high reinforcement ratare obtained.

Table 16.2 — Reinforcement for slab elements due to pure torsion.

Test | Reinforcement areas (&m)
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. Normal mo- . Advanced
Experi- . . Basic sand- .
ment yield crite- . sandwich
ment . wich model
rion model
Smal
I
twist Ay, =5.0
ing 5.0 A, =53 5.6 5.0
mo-
ment
Larg
€ Ay = 14.6
twist 20.0 AS" ~ 16‘3 16.2 194
ing yo
mo-
ment

16.6 Applicationson structural level

16.6.1 Deep beam

16.6.2 Slab
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16.7 M essage of the Chapter

Reinforcement in a membrane state (wall) can bayded including the effect
of shear forces. Four different cases must be densil, ranging from the need
to apply reinforcement in two directions to nof@itement at all.

Design of reinforcement in a slab on basis of themal moment yield criterion
leads to simple, easy to apply formulas. Howevergimeck on concrete crush-
ing is at disposal and equilibrium is not satisfied

The three layer sandwich model for slabs and siethents leads both to de-
sign of reinforcement, a check on concrete crushamg includes a reinforce-
ment design method for transverse shear forces.

Two variants of the sandwich model are known, basit advanced.. The basic
model is easy to apply. However, it is an unsafpraximation when large
twisting moments occur. The advanced model comglgtaccounts for the real
geometry of the element and yields safe results.
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