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Abstract This paper presents an augmented Lagrangian algorithm to solve continu-
ous constrained global optimization problems. The algorithm approximately solves
a sequence of bound constrained subproblems whose objective function penalizes
equality and inequality constraints violation and dependson the Lagrange multiplier
vectors and a penalty parameter. Each subproblem is solved by a population-based
method that uses an electromagnetism-like mechanism to move points towards opti-
mality. Benchmark problems are solved in a performance evaluation of the proposed
augmented Lagrangian methodology. A comparison with a well-known technique is
also reported.

1 Introduction

This paper presents a numerical study of an augmented Lagrangian methodology,
where the subproblems are solved by a stochastic populationbased algorithm, for
continuous constrained global optimization. We aim to address the problem in the
form:

min f (x) subject tog(x)≤ 0, h(x) = 0, x∈ Ω , (1)

where f : Rn → R, g : Rn → R
p andh : Rn → R

m are nonlinear continuous func-
tions andΩ = {x∈R

n : lb ≤ x≤ ub}. We do not assume that the objective function
f is convex. There may be many local minima in the feasible region. This class
of global optimization problems arises frequently in engineering applications. Spe-
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cially for large scale problems, derivative-free and stochastic methods are the most
well-known and used methods. The two main categories of methods to handle con-
straints in these algorithms are listed below.

1. Methods based on penalty functions. The constraints violation is combined with
the objective function to define a penalty function. This function aims to penalize
infeasible solutions by increasing their fitness values proportionally to their level
of constraints violation. Static, dynamic, annealing and adaptive penalties are the
most popular [2, 4, 8, 14, 16, 19]. Methods based on augmentedLagrangians are
common in deterministic type methods for global optimization, for example in
[6, 7, 15], but rare when combined with heuristics that rely on a population of
points to converge to the solution [1, 22, 23, 24].

2. Methods based on biasing feasible over infeasible solutions. They seem to be
nowadays interesting alternatives to penalty methods for handling constraints. In
this type of methods, constraints violation and the objective function are used
separately and optimized by some sort of order, being the constraints violation
the most important. See, for example, [9, 17, 18, 20, 21].

Here, we aim to show the functionality of an augmented Lagrangian methodol-
ogy to handle the equality and inequality constraints of theproblem (1), where the
subproblems are approximately solved by a stochastic global population based algo-
rithm. Due to its simplicity, the electromagnetism-like (EM) algorithm proposed in
[4, 5] is used to obtain the solution of each subproblem. The EM algorithm simulates
the electromagnetism theory of physics by considering eachpoint in the population
as an electrical charge. The method uses an attraction-repulsion mechanism to move
a population of points towards optimality.

Since the EM algorithm has been designed to find a minimizer which satisfies
x ∈ Ω , our subproblem has bound constraints. Although other constraint-handling
techniques have been implemented by the authors with the EM algorithm, namely,
the feasibility and dominance rules [17, 18], the separate feasibility and optimality
measures based on sufficient reduction conditions [20], andthe adaptive penalty
technique [19], the new proposed augmented Lagrangian strategy has been given
the best results so far.

Our implementation of an augmented Lagrangian methodologyis as follows: we
reformulate problem (1) converting each equality constraint into an inequality as
herein shown:|h j(x)| ≤ β , whereβ is a positive relaxation parameter. This is an
usual procedure in stochastic based methods [9, 18, 19]. In general, the relaxation
parameter is fixed over the entire iterative process. Typically, 10−3, 10−4 and 10−5

are common values in the literature. Our proposal defines a sequence{β k} of de-
creasing nonnegative numbers such that limk→∞ β k = β ∗ > 0. The idea is to tighten
the equality constraints relaxation scheme as iterations proceed. Further, a different
updating scheme for the penalty parameter is also proposed.When the level of con-
straints violation is under a specified tolerance, even if the infeasibility did not im-
prove, the penalty is allowed to decrease instead of increasing (see Algorithm 2.1).

The remainder of this paper is organized as follows. Sect. 2 describes the pro-
posed stochastic augmented Lagrangian paradigm and Sect. 3briefly introduces the
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EM algorithm. Sect. 4 displays the results of the numerical experiments, including a
comparison with a well-known penalty method, and Sect. 5 contains some conclud-
ing remarks.

2 An augmented Lagrangian method

Most stochastic methods for global optimization are developed primarily for un-
constrained or simple bound constrained problems. Then they are extended to con-
strained optimization problems using, for example, a penalty technique. This type
of technique transforms the constrained problem into a sequence of unconstrained
subproblems by penalizing the objective function when constraints are violated. The
objective penalty function, in the unconstrained subproblem, depends on a positive
penalty parameter that must be updated throughout the iterative process. With most
penalty functions, the solution of the constrained problemis reached for an infinite
value of the penalty parameter. An augmented Lagrangian is amore sophisticated
penalty function for which a finite penalty parameter value is sufficient to yield con-
vergence to the solution of the constrained problem [3].

We now show the functionality of the proposed augmented Lagrangian function
when solving constrained global optimization problems. Practical and theoretical
issues from the augmented Lagrangian methodology are used with this population
based algorithm, the EM algorithm as proposed in [5], to compute approximate
solutions of the sequence of bound constrained subproblems.

Since equality constraints are the most difficult to be satisfied, our augmented
Lagrangian methodology considers problems only with inequality constraints, using
a common procedure in stochastic methods for global optimization to convert the
equality constraints of the problem into inequality constraints, as follows:|h j | ≤ β ,
j = 1, . . . ,m for a fixedβ > 0. For simplicity, the problem (1) is rewritten as

min f (x) subject toG(x)≤ 0, x∈ Ω , (2)

where the vector of the inequality constraints is now definedby

G(x) = (g1(x), . . . ,gp(x), |h1(x)|−β , . . . , |hm(x)|−β ) .

Our proposal concerning the relaxed equality constraints aims to tighten the re-
laxation scheme as iterations proceed, using variable relaxation parameter values.
Thus, a sequence of decreasing nonnegative values bounded by β ∗ > 0 is defined
as:

β k+1 = max

{

β ∗,
1
σ

β k
}

, σ > 1. (3)

The formula of the augmented Lagrangian that corresponds tothe inequality con-
straints in the converted problem (2) is:
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Lρ(x,µ) = f (x)+
ρ
2

p+m

∑
i=1

[

max

(

0, Gi(x)+
µi

ρ

)]2

(4)

whereρ is a positive penalty parameter andµ ∈ R
p+m represents the Lagrange

multiplier vector associated with thep+m constraints. Our proposed stochastic
augmented Lagrangian algorithm adapted to the reformulation (2), of the original
problem (1), and based on the Lagrangian (4) is presented in Algorithm 2.1:

Algorithm 2.1 (Augmented Lagrangian algorithm)
1: Given: µ+ > 0,ε∗ > 0, 0< α < 1, γ > 1,σ > 1,kmax, lmax, β ∗ > 0, 0< ρ− < ρ+, µ1 ∈ [0,µ+]
2: randomly generatex0 in Ω ; computeρ1; setk= 1
3: while ‖vk−1‖> ε∗ andk≤ kmax do
4: εk = max

{

ε∗,10−k
}

; updateβ k using (3); setl = 1

5: while
(

Lavg−Lρk(x(best),µk)
)

> εk andl ≤ lmax do

6: usexk−1 and randomly initialize a population ofpsize−1 points inΩ
7: run EM to compute a population of solutions to minxL I

ρk(x,µk) subject tox∈ Ω
8: l = l +1
9: end while
10: xk = x(best)

11: computevk
i = max

{

Gi(xk),−
µk

i

ρk

}

, i = 1, . . . ,m+ p

12: if k= 1 or‖vk‖ ≤ α‖vk−1‖ then
13: ρk+1 = ρk

14: else
15: if ‖vk‖ ≤ εk then

16: ρk+1 = max{ρ−,
1
γ

ρk}

17: else
18: ρk+1 = min{ρ+,γρk}
19: end if
20: end if
21: updateµk+1

i = min
{

max
{

0,µk
i +ρkGi(xk)

}

,µ+
}

, i = 1, . . . ,m+ p
22: k= k+1
23:end while

This algorithm extends recent work with the Powell-Hestenes-Rockafellar aug-
mented Lagrangian function presented in [6, 7], where equalities and inequalities
are treated separately. In Algorithm 2.1 the penalty parameter ρ , besides being in-
creased, when infeasibility is not reduced, it is also reduced whenever the constraints
violation is under a specified toleranceεk; otherwise it is not changed. Further, a
safeguarded scheme is also included in the process. This is motivated by the need
to keep the penalty parameter bounded and the subproblems well conditioned. This
procedure is reported in the lines 12–20 of Algorithm 2.1.The initial value for the
penalty parameter is defined by

ρ1 = max
{

10−6,min
{

10, 2| f (x0)|/(‖max(0,G(x0))‖2)
}

}
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for an arbitrary initial approximationx0 [6, 7]. The algorithm also updates the La-
grange multipliers using first order estimates and safeguarded schemes. This is a
crucial issue to maintain the sequence{µk} bounded.

Further, lines 5-9 of the algorithm show details of the inneriterative process to
compute an approximation to the solution of subproblem (5),at each iterationk :

min
x

Lρk(x,µk) subject tox∈ Ω (5)

for fixed values of the parametersρk andµk. For each set of fixed values of penal-
ties and Lagrange multipliers, a reasonable approximate solution of subproblem (5)
is required so that convergence could be promoted [3]. Sincethe EM algorithm is
based on a population of points, with sizepsize, the point which yields the least
objective function value, denoted by the best point of the population,x(best), after
stopping, is taken as the next approximation to the problem (1). We also note that our
stochastic EM algorithm uses the approximationxk−1 as one of the points of the pop-
ulation to initialize the EM algorithm. The remainingpsize−1 points are randomly
generated. The inner iteration counter is represented byl . This process terminates
when the difference between the function value at the best point, Lρk(x(best),µk),
and the average of the function values of the population,Lavg, is under a specified
toleranceεk. This tolerance decreases as outer iterations proceed. A limit of lmax

iterations is also imposed.

3 The electromagnetism-like mechanism

In this section, we briefly present the EM mechanism, proposed in [5], for solving
the subproblems in the Algorithm 2.1. Here, the objective isto compute an approx-
imate minimizer ofLρk(x,µk), for fixed values of the parametersρk andµk. For

simplicity we use the notationL k(x) = Lρk(x,µk). Because EM is a population
based algorithm, the inner iterative process begins with a population ofpsize solu-
tions (line 6 in Algorithm 2.1). The best found solution, denoted byx(best), and the
average of function values, are defined by

x(best) = argmin
{

L
k(x(s)) : s= 1, . . . , psize

}

andL
k
avg=

psize

∑
s=1

L
k(x(s))/psize,

(6)
respectively, wherex(s),s= 1, . . . , psize represent the points of the population. The
main steps of the EM mechanism are shown in Algorithm 3.1. Details of each step
follow.

The EM mechanism starts by identifying the best point,x(best), of the population
using the augmented LagrangianL k for point assessment, see (6). According to the
electromagnetism theory, the total force exerted on each point x(s) by the other
psize−1 points is inversely proportional to the square of the distance between the
points and directly proportional to the product of their charges:
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Algorithm 3.1 (EM algorithm)
1: Given: x(s),s= 1, . . . , psize
2: evaluate the population and selectx(best)
3: compute the chargesc(s), s= 1, . . . , psize
4: compute the total forcesF(s), s= 1, . . . , psize
5: move the points exceptx(best)
6: evaluate the new population and selectx(best)
7: apply local search tox(best)
8: computeL k(x(best)) andL k

avg.

F(s) =
psize

∑
r 6=s

Fs
r ≡















(x(r)−x(s))
c(s)c(r)

‖x(r)−x(s)‖2 , if L k(x(r))< L k(x(s))

(x(s)−x(r))
c(s)c(r)

‖x(r)−x(s)‖2 , otherwise
,

for s= 1, . . . , psize, where the chargec(s) of pointx(s) determines the magnitude of
attraction of that point over the others through

c(s) = exp

(

−n
(

L k(x(s))−L k(x(best))
)

∑psize
r=1 (L k(x(r))−L k(x(best)))

)

.

Then, the normalized total force vector exerted on each point x(s) is used to move
the point in the direction of the force by a random step sizeι ∼U [0,1], maintaining
the point inside the setΩ . Thus fors= 1, . . . , psize(s 6= best) and for each component
i = 1, . . . ,n

xi(s) =















xi(s)+ ι
Fi(s)
‖F(s)‖

(ubi −xi(s)), if Fi(s)> 0

xi(s)+ ι
Fi(s)
‖F(s)‖

(xi(s)− lbi), otherwise
.

Finally, a local search is performed around the best point ofthe population in order
to refine the solution. In [5], a simple random local search isproposed. This is de-
scribed in Subsect. 3.1. In this paper, we also aim to integrate in the EM algorithm a
more sophisticated local search (see Subsect. 3.2). Our numerical experiments show
that our proposal significantly improves the performance ofthe overall augmented
Lagrangian algorithm.

3.1 Random local search

Here, we briefly describe the local search proposed in [5] forthe population-based
EM algorithm. This is a simple random line search applied component by compo-
nent tox(best). For each componenti, x(best) is assigned to a temporary pointy.
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Then a random movement of maximum lengthδEM maxj(ubj − lb j), δEM > 0 is
carried out and if a better position is obtained within maxlocal iterations,x(best) is
replaced byy, the search ends for that component and proceeds to another one. Al-
though this local search is based on a simple random procedure, it has been shown
to greatly improve accuracy of the EM algorithm.

3.2 Hooke and Jeeves local search

In this section, we describe our modification to the originalEM algorithm. In our
proposal, the local procedure is based on the Hooke and Jeeves (HJ) pattern search
algorithm. This is a derivative-free method that searches in the neighborhood of
a point x for a better approximationvia exploratory and pattern moves [11, 12].
To reduce the number of function evaluations, the HJ patternsearch algorithm is
applied to the current best point only,x(best). This algorithm is a variant of the
coordinate search, in the sense that incorporates a patternmove to accelerate the
progress of the algorithm, by exploiting information obtained from the search in
previous successful iterations.

The exploratory move carries out a coordinate search (a search along the coordi-
nate axis) about the best point, with a step lengthδHJ. If a new trial point,y, with
a better fitness value thanx(best) is encountered, in the sense that the augmented
LagrangianL k value is better, the iteration is successful. Otherwise, the iteration is
unsuccessful andδHJ is reduced by a factor 0< ∆HJ < 1. If the previous iteration
was successful, the vectory− x(best) defines a promising direction and a pattern
move is then implemented, meaning that the exploratory moveis carried out about
the trial pointy+(y− x(best)), rather than about the current pointy. Then, if the
coordinate search is successful, the returned point is accepted as the new point; oth-
erwise, the pattern move is rejected and the method reduces to coordinate search
abouty. Please see [11] for details. To ensure that only points insideΩ are tested in
the HJ pattern search algorithm, a projection scheme is used, i.e., for each compo-
nent j, if y j < lb j or y j > ubj theny j is set tolb j or ubj respectively.

4 Numerical Experiments

In this section, we report the results of our numerical study, after running a set of 24
benchmark constrained global problems, described in full detail in [13]. The prob-
lems are known as g01-g24 (the ‘g’ suit, where six problems only have equality
constraints, thirteen have inequality constraints, five have both equalities and in-
equalities and all have simple bounds). Not all problems have multi-modal objective
functions, although some are difficult to solve. The best known solution for problem
g20 is slightly infeasible. We remark that g02, g03, g08 and g12 are maximization
problems that were transformed and solved as minimization ones.
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Fig. 1 Comparison of Hooke and Jeeves and Random searches based onfavg (left) and fbest(right).

Since the algorithm relies on some random parameters and variables, we solve
each problem 30 times and take average of the obtained solutions, herein denoted
by favg. The best of the solutions found after all runs is denoted byfbest. The size
of the population depends onn, and since some problems have large dimension,
n> 20, we choosepsize= min{200,10n}. The fixed parameters are set in this study
as follows:µ+ = ρ+ = 1012, ε∗ = 10−6, α = 0.5, γ = 2, σ = 2, β ∗ = ρ− = 10−12,
β 1 = 10−3. We definekmax = 50 andlmax = 30 so that a maximum of 1500 itera-
tions are allowed. We remark that the other conditions in thestopping criteria of the
Algorithm 2.1 (in the outer and inner iterative processes) may cause the termination
of the algorithm before reaching the 1500 iterations. The initial multiplier vector is
set to the null vector. The values for the two parameters of the random local search
are set as proposed in [5]: maxlocal = 10, δEM = 0.001. In our implementation of
the HJ pattern search, we set the initialδHJ to 1 and the factor∆HJ = 0.1.

To compare the performance of the HJ local search procedure,with the random
local search of the EM algorithm [5], when incorporated in the proposed augmented
Lagrangian context, we use Dolan and Moré’s performance profiles [10]. The two
profiles are based on the metrics:favg, the average of the solutions obtained after the
30 runs, andfbest, the best solution over the 30 runs. For each solver in comparison,
the plot shows the proportion of problems in the set, denotedby ρ(τ), that has the
best value of the metric, for each value ofτ ∈ R. Thus, to see which solver has the
least value of the metric mostly, then its value ofρ(1) should be compared with
those of the other solvers in comparison. The higher theρ the better the solver is.
On the other hand,ρs(τ) for large values ofτ measures the solver robustness.

Hooke and Jeeves local search performs significantly betterthan Random local
search when comparing the average performance (left plot inFig. 1) and it gives
the best results for about 71% of the problems against 57% of the problems with
Random search (plot on the right of Fig. 1).

Table 1 reportsfbestand favg obtained by our study and those of [2] for the eleven
problems therein registered (g01-g11) andf ∗ is the best known solution as reported
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in [13]. In [2], a genetic algorithm combined with an adaptive penalty function is
implemented. These are mainly concerned with the frequencyof penalty parame-
ters updating and constraints violation computation. For afair comparison, we use
the same conditions described in [2]:psize= 100, runs = 25, maximum number of
generations = 1000, leading to 100000 fitness function evaluations. We have better
performance (both infbestand favg) than the adaptive penalty algorithm of [2] (best
results are in boldface) in all but g02, g03, g06 and g10 problems.

Table 1 Comparison of our results with the best of 5 variants in [2]

Prob. f ∗ our study [2]
fbest favg fbest favg

g01 -15.0000 -15.0000 -15.0000 -14.9998 -14.9989
g02 -0.80362 -0.76250 -0.63387-0.79252 -0.72555
g03 -1.00050 -0.99634-0.92664 -0.99725 -0.77797
g04 -30665.54-30665.55 -30665.55 -30665.32 -30578.55
g05 5126.4975126.497 5126.498 5126.779 5323.866
g06 -6961.814 -6945.097 -6761.717-6961.448 -6805.229
g07 24.3062 24.3062 24.3062 24.5450 27.8486
g08 -0.09583 -0.09583 -0.08992 -0.09583 -0.08769
g09 680.630 680.630 680.691 680.681 681.470
g10 7049.25 7074.93 7217.08 7070.56 8063.29
g11 0.74990 0.75000 0.75000 0.75217 0.88793

5 Final remarks

From our preliminary numerical tests, we may conclude that the proposed aug-
mented Lagrangian algorithm is able to effectively solve constrained problems till
optimality and seems to be competitive with a well-known penalty based algorithm.
Practical engineering problems, for example, those reported in [2], will be solved in
the near future. We also aim to test our algorithm with a point-to-point search yet
stochastic method, when solving the bound constrained subproblems.
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