
Novel Fish Swarm Heuristics for Bound

Constrained Global Optimization Problems

Ana Maria A.C. Rocha1, Edite M.G.P. Fernandes2

and Tiago F.M.C. Martins2

1 Department of Production and Systems, University of Minho,
4710-057 Braga, Portugal
arocha@dps.uminho.pt

2 Algoritmi R&D Centre, University of Minho,
4710-057 Braga, Portugal

emgpf@dps.uminho.pt, martins.tiago41@gmail.com

Abstract. The heuristics herein presented are modified versions of the
artificial fish swarm algorithm for global optimization. The new ideas
aim to improve solution accuracy and reduce computational costs, in
particular the number of function evaluations. The modifications also
focus on special point movements, such as the random, search and the
leap movements. A local search is applied to refine promising regions.
An extension to bound constrained problems is also presented. To assess
the performance of the two proposed heuristics, we use the performance
profiles as proposed by Dolan and Moré in 2002. A comparison with three
stochastic methods from the literature is included.

Keywords: Global optimization, Derivative-free method, Swarm intel-
ligence, Heuristics

1 Introduction

In this paper, we consider the problem of finding a global solution of a nonlinear
optimization problem with bound constraints in the following form:

minimize
x∈Ω

f(x) (1)

where f : IRn → IR is a nonlinear function and Ω = {x ∈ IRn : l ≤ x ≤ u} is
the feasible region. The objective function f may be non-smooth and may pos-
sess many local minima in the set Ω since we do not assume that f is convex.
Many derivative-free algorithms and heuristics have been proposed to solve (1),
namely those based on swarm intelligence. Probably the most well-known are
the particle swarm optimization [11, 20], the ant colony [10, 15] and the artifi-
cial bee colony [9] algorithms. Evolutionary strategies are also common and new
algorithms are always emerging [16]. Recently, an artificial life computing algo-
rithm that simulates fish swarm behaviors was proposed and applied in some
engineering context [7, 8, 18, 19]. The behavior of a fish swarm inside water is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

beautiful to watch and although it is simple in concept, it turns out to be a
complex system to simulate. Fish swarm movements seem randomly defined and
yet they are objectively synchronized. Fishes desire to stay close to the swarm,
protecting themselves from predators and looking for food, and to avoid colli-
sions within the group. These behaviors inspire mathematical modelers aiming
to solve optimization problems in an efficient manner. Behavioral model-based
optimization algorithms seek to imitate, as well as to make variations on the
swarm behavior in nature, and to create new types of abstract movements. The
fish swarm behaviors inside water may be summarized as below:

i) random behavior - in general, fish swims randomly in water looking for food
and other companions;

ii) searching behavior - this is a basic biological behavior since fish tends to the
food; when fish discovers a region with more food, by vision or sense, it goes
directly and quickly to that region;

iii) swarming behavior - when swimming, fish naturally assembles in groups
which is a living habit in order to guarantee the existence of the swarm and
avoid dangers;

iv) chasing behavior - when a fish, or a group of fishes, in the swarm discovers
food, the others in the neighborhood find the food dangling quickly after it;

v) leaping behavior - when fish stagnates in a region, it leaps to look for food
in other regions.

The artificial fish is a fictitious entity of a true fish. Its movements are simula-
tions and interpretations of the above listed fish behaviors [8]. The environment
in which the artificial fish moves, searching for the minimum, is the feasible
search space of the minimization problem. Considering the problem that is ad-
dressed in the paper, the feasible search space is the set Ω (see Eq. (1)). The
position of an artificial fish in the solution space is herein denoted by a point x
(a vector in IRn).

We will use the words ‘fish’ and ‘point’ interchangeably throughout the paper.
The artificial fish swarm (AFS) algorithm uses a population of points to identify
promising regions looking for a global solution [18]. This paper proposes new
heuristics to incorporate into the AFS algorithm aiming to improve accuracy
and reduce computational costs. The new heuristics are focused on:

– the algorithmic interpretation of some fish behaviors, like random, searching
and leaping;

– a greedy criterion aiming to define a selecting behavior;
– a random local search, aiming to refine the best solution at the end of each

iteration;
– a priority-based AFS strategy, aiming to speed fish movements.

We remark that the modified heuristics are devised to consider the bound
constraints of the problem.

For a practical assessment of the proposed modifications, numerical exper-
iments are carried out involving a set of 25 benchmark problems. The results
show that our proposals have promising performances.

The organization of the paper is as follows. In Sect. 2, we introduce the gen-
eral AFS paradigm. Sect. 3 introduces the proposed modifications and presents
a detailed description of the procedures in the new algorithm. Sect. 4 describes
the numerical experiments and Sect. 5 presents the conclusions.

2 The Artificial Fish Swarm Paradigm

The used notation is as follows: xi ∈ IRn denotes the ith point of a population;
xbest is the point that has the least objective function value and fbest is the
corresponding function value; xi

k ∈ IR is the kth (k = 1, . . . , n) component of
the point xi of the population; m is the number of points in the population.

The crucial issue of the artificial fish swarm algorithm is the ‘visual scope’
of each point. This represents the closed neighborhood of xi with ray equal to
a positive quantity v. In the context of the simple bound constrained problem
(1), addressed in this paper, the definition of v is shown later on in Eq. (7).

Let Ii be the set of indices of the points inside the ‘visual scope’ of point
xi, where i /∈ Ii and Ii ⊂ {1, . . . ,m}, and let npi be the number of points
in its ‘visual scope’. Depending on the relative positions of the points in the
population, three possible situations may occur:

– when npi = 0, the ‘visual scope’ is empty, and the point xi, with no other
points in its neighborhood to follow, moves randomly searching for a better
region;

– when the ‘visual scope’ is crowded, the point has some difficulty in following
any particular point, and searches for a better region choosing randomly
another point (from the ‘visual scope’) and moves towards it;

– when the ‘visual scope’ is not crowded, the point is able either to swarm
moving towards the central or to chase moving towards the best point.

The condition that decides when the ‘visual scope’ of xi is not crowded is

npi

m
≤ θ, (2)

where θ ∈ (0, 1] is the crowd parameter. In this situation, point xi has the ability
to swarm or to chase. The algorithm simulates both movements and chooses the
best in the sense that a better function value is obtained.

The swarming behavior is characterized by a movement towards the central
point in the ‘visual scope’ of xi, defined by

c =

∑

j∈Ii xj

npi
. (3)

However, the swarming behavior is activated only if the central point has a better
function value than that of xi. Otherwise, the point xi follows the searching
behavior.

In the searching behavior, a point is randomly chosen in the ‘visual scope’
and a movement towards it is carried out if the random point improves over xi.
Otherwise, the point moves randomly.

The chasing behavior is carried out when a point, denoted by xmin, with the
minimum function value inside the ‘visual scope’ of xi, satisfies

f(xmin) ≡ min
{

f(xj) : j ∈ Ii
}

< f(xi). (4)

However, if this last condition is not satisfied then the point activates the search-
ing behavior. We refer to [18, 19] for some details.

3 The Modified AFS Algorithm

First, we present the proposed main algorithm that incorporates the selecting
and local behaviors. The algorithm has eight main procedures: Initialize, Ran-
dom, Search, Swarm, Chase, Select, Leap and Local. Then, we present details of
our proposals for the procedures to translate random, searching and leaping be-
haviors. Further, a simple procedure Select, aiming to define the elite population
for the next iteration, and the procedure Local to refine the search around xbest,
are also presented.

Later on in this section, another modification to the below main algorithm
is introduced to speed fish movements.

We remark that the algorithm has been devised to solve bound constrained
optimization problems in a way that feasibility is always maintained throughout
all point movements. In the Algorithm 1, t represents the iteration counter.

Algorithm 1 Modified AFS algorithm
t ← 0
xi(t)(i = 1, . . . ,m) ← Initialize
While stopping criteria are not met do

For each xi(t) do
If ‘visual scope’ is empty then

yi(t)← Random(xi(t))
else

If ‘visual scope’ is crowded then
yi(t)← Search(xi(t))

else
yi(t)← best of Swarm(xi(t)) and Chase(xi(t))

End for
xi(t+ 1)(i = 1, . . . ,m)← Select(xi(t), yi(t)(i = 1, . . . ,m))
If ‘stagnation’ occurs then

xrand(t+ 1)← Leap(xrand(t+ 1))
xbest(t+ 1)← Local(xbest(t+ 1))
t ← t + 1

End while

In this algorithm, xrand represents a randomly selected point from the popu-
lation. We now present details of each procedure. To simplify the notation, the
dependence of each point on t is dropped out whenever the concerned entities
are from the same iteration.

3.1 Initialize

The procedure Initialize aims to randomly generate the initial population of m
points in the set Ω. Each point xi in the population is componentwise computed
by

xi
k = lk + ω(uk − lk), for k = 1, . . . , n, (5)

where uk and lk are the upper and lower bounds respectively of the set Ω, and
ω is an independent uniform random number distributed in the range [0, 1]. The
simplified notation ω ∼ U [0, 1] will be used throughout the paper. The procedure
computes the best and the worst function values found in the population as
follows:

fbest = min
{

f(xi) : i = 1, . . . ,m
}

and fworst = max
{

f(xi) : i = 1, . . . ,m
}

.
(6)

3.2 The ‘visual scope’

To define the ‘visual scope’, a fixed value for the neighborhood ray, depending
on the bound constraints of the problem, is defined as

v = δ max
k∈{1,...,n}

(uk − lk), (7)

where δ is a positive visual parameter. In general, this parameter is maintained
fixed over the iterative process. However, experiments show that a slow reduc-
tion accelerates the convergence to the solution [4]. Thus, we use the following
update δ = max {δmin, µδδ}, every s iterations, where 0 < µδ < 1 and δmin is a
sufficiently small positive constant.

3.3 Search

When the ‘visual scope’ is crowded, see Eq. (2), the algorithm activates the pro-
cedure Search. Here, a point inside the ‘visual scope’ is randomly selected, xrand

(rand ∈ Ii), and the point xi is moved towards it if the condition f(xrand) <
f(xi) holds. Otherwise, the point xi is moved randomly (see procedure Random
below). When xi is moved towards xrand, the following direction is used di =
xrand−xi. This movement is carried out component by component (k = 1, . . . , n)
and takes into account the allowed movement towards the upper bound uk and
lower bound lk of the set Ω. Furthermore, the direction of movement is nor-
malized so that feasibility can be maintained. Algorithm 2 describes this simple
movement along a specific direction d.

Algorithm 2 Movement
ω ∼ U [0, 1]
For each component xk do

If dk > 0 then

yk ← xk + ω
dk
‖d‖

(uk − xk)

else

yk ← xk + ω
dk
‖d‖

(xk − lk)

End for

3.4 Random

The procedure Random is used to move a point randomly inside the ‘visual
scope’. This procedure is called when the ‘visual scope’ is empty or when, in the
procedure Search, the point xrand is worst than xi. Details of our interpretation
of a random behavior are shown in the Algorithm 3.

Algorithm 3 Random
For each component xk do

ω1 ∼ U [0, 1]; ω2 ∼ U [0, 1]
If ω1 > 0.5 then

If uk − xk > v then
yk = xk + ω2 v

else
yk = xk + ω2(uk − xk)

else
If xk − lk > v then

yk = xk − ω2 v
else

yk = xk − ω2(xk − lk)
End for

3.5 Swarm and Chase

The procedures Swarm and Chase perform movements that can be considered
as local searches. In fact, when the ‘visual scope’ of a point xi is not crowded,
the point may have two behaviors. One is related with a movement towards the
central point of the ‘visual scope’, c, computed as shown in Eq. (3), denoted by
swarming behavior. The procedure Swarm defines the direction of the movement
as di = c − xi and xi is moved according to the Algorithm 2 if f(c) < f(xi).
Otherwise, the procedure Search is called.

The other, denoted by chasing behavior, is related with a movement towards
the point that has the least function value, xmin, as previously defined in Eq.
(4). Thus, the procedure Chase defines the direction, di = xmin− xi, and moves
xi according to the movement defined in the Algorithm 2 if xmin improves over
xi. Otherwise, the procedure Search is called.

3.6 Select

The Algorithm 1 includes a selection task aiming to accept trial points only
if they improve over the previous ones. Thus, the computed trial point yi(t)
replaces xi(t), for the next iteration, if the greedy criterion holds:

xi(t+ 1) =

{

yi(t), if f(yi(t)) < f(xi(t))
xi(t), otherwise

. (8)

3.7 Leap

When the best objective function value in the population does not change for a
certain number of iterations, the algorithm may have fallen into a local minimum.
This is herein denoted by ‘stagnation’. The other points of the population will in
the subsequent iterations eventually converge to that local minimum. To be able
to leap out the local and try to converge to the global minimum, the algorithm
implements the procedure Leap, every r iterations, when the best solutions are
not significantly different, i.e., when

|fbest(t)− fbest(t− r)| ≤ η (9)

holds, for a small positive tolerance η, where r defines the periodicity for testing
the criterion. A point is randomly selected from the population and a random
movement is carried inside the set Ω. The Algorithm 4 describes the pseudo-code
of this procedure Leap. In the algorithm, xrand represents a randomly selected
point from the population (rand ∈ {1, . . . ,m}).

Algorithm 4 Leap
For each component xrand

k do
ω1 ∼ U [0, 1]; ω2 ∼ U [0, 1]
If ω1 > 0.5 then

xrand
k = xrand

k + ω2 (uk − xrand
k)

else
xrand
k = xrand

k − ω2 (x
rand
k − lk)

End for

3.8 Local

The modified AFS algorithm includes a procedure aiming to gather the local
information around the best point of the population. It is denoted by procedure
Local and corresponds to a simple random line search applied component by
component to xbest. The main steps are as follows. For each component k (k =
1, . . . , n), xbest is assigned to a temporary point z. Next, a random movement of
length ν maxk∈{1,...,n}(uk− lk), where ν is a small positive parameter, is carried

out and if a better point is obtained within Lmax iterations, xbest is replaced by
z, the search ends for that component and proceeds to another one. Although
a more sophisticated procedure could be used [14], this simple local search has
been shown to improve accuracy at a reduced computational cost.

3.9 Stopping Criteria

The algorithm is terminated when one of the following conditions is verified:

nfe > nfemax or |fworst − fbest| < ε (10)

where nfe represents the counter for the number of objective function evalua-
tions, nfemax is the maximum number of function evaluations allowed and ε is
a small positive tolerance. The values fworst and fbest were previously defined in
Eq. (6).

3.10 A Priority-based AFS Strategy

The motivation for the below proposed modification is the following. When the
‘visual scope’ of a point xi is not crowded, Algorithm 1 simulates two behaviors,
the swarming and the chasing behaviors. To check if the movements towards
the points xmin and c are carried out, their function values are compared with
f(xi) and although f(xmin) is already known, the objective function must be
evaluated at c. Furthermore, the two computed trial points must be compared
to each other to select the best one. This procedure is expensive in terms of
function evaluations.

To reduce function evaluations, the proposal simulates one behavior at each
time instead of trying both behaviors at the same time. We rank the chasing
behavior with highest priority, so that the movement in direction to xmin is
carried out first if f(xmin) < f(xi). Otherwise, the swarming behavior will be the
alternative. So, the movement in direction to c is then carried out if f(c) < f(xi).
However, if the latter condition does not hold the procedure Search is then called.
We denote this modification by mAFS-P.

4 Numerical Experiments

Twenty five small problems (with 2 ≤ n ≤ 10), yet difficult to solve, from a
benchmark set were used in our numerical experiments. The list is: ACK, BR,
CB3, CB6, CM2, EP, GP, GRP, GW, H3, H6, MC, NF2, NF3, OSP, PQ, RB,
RG, S5, S7, S10, SBT, SF1, SF2 and WP, see Appendix B of [1]. The algorithms
were coded in C#, and the results were obtained in a computer Intel Core 2 Duo
P9700 2.8 GHz, with 6 GB 1066MHz of RAM, running Microsoft Windows 7.

First, the effect of some parameters on the algorithm performance is analyzed.
Then, we compare the two new AFS heuristics: mAFS (as in Algorithm 1) and
mAFS-P (with the movement towards xmin as the priority movement). Finally,
we include a benchmark comparison with three stochastic-type solvers: (i) ASA,
a point-to-point search based on adaptive simulated annealing [6]; (ii) CMA-
ES, a population-based evolution strategy with a covariance matrix adaptation
[5]; and (iii) PSwarm, a population-based particle swarm in a pattern search
algorithm [17].

To compare computational requirement and solution accuracy, all the exper-
iments are allowed to run until a specified maximum number of function evalu-
ations is attained (see Eq. (10)). We use nfemax = 100n2. The factor n2 aims
to show the effect of dimensionality on the algorithms performance, as higher
dimension problems are in general more difficult to solve than lower dimension
ones. Other user defined parameters are set as follows: ε = 10−5, η = 10−8 and
s = n. In the procedure Local we set ν = 0.001, and the maximum number of
iterations therein allowed for the search along each component of the point is
Lmax = 10. In all experiments, we solve each problem 30 times, and a population
of m = min{200, 10n} points is used. The parameter r, from the procedure Leap
is set equal to m.

4.1 Parameters Effect Using Factorial Design

Although no serious attempt was made to find the best parameter settings, some
additional experiments were carried out to show the effect of parameter values
on the performance of the modified AFS heuristics. Following a sensitivity study
concerning the parameters δ, µδ and θ [4], we run mAFS-P using now a Design
of Experiments approach [13]. A full factorial design based on two factors - the
pair (initial δ, µδ) and θ - is implemented. The tested levels of each factor are:

– (initial δ, µδ) (4 levels): (1, 0.5), (1, 0.9), (n, 0.5), (n, 0.9);
– θ (3 levels): 0.5, 0.8, 1.

The factorial design carried out with the factors (initial δ, µδ) and θ requires
12 different combinations to be tested. Each combination was tested 30 times
with different random seeds on all the previously referred 25 problems. The
performance assessment is based on the average relative deviation (ARD) defined
by:

ARD =
1

30

30
∑

l=1

100

∣

∣f l
best − f∗

∣

∣

|f∗|
(11)

as suggested in [21], where f l
best is the best solution found at run l and f∗ is the

global solution known in the literature, for a particular problem. The smaller the
ARD the better the performance is. However, when f∗ = 0, the average of the
30 best solutions is used, instead of the ARD in (11). The observed ARD values
for the different combinations of levels of factors are statistically different. The
12 values of ARD obtained for eight selected problems (ACK with n = 10, BR
with n = 2, CB6 with n = 2, GW with n = 10, H6 with n = 6, NF2 with n = 4,
RG with n = 10, SBT with n = 2) are shown in Fig. 1. The plots in the figure
show that the two sets of parameters affect the performance of the algorithm,
and are dependent on the problem. There are however some tendencies: i) when
µδ = 0.9, the value θ = 0.8 gives better results, ii) when µδ = 0.5, then θ = 1
gives better performances. The initial δ values, 1 and n, give equal performances.
In the subsequent experiments we set µδ = 0.9, δmin = 0.1, θ = 0.8 and the initial
δ to n.

Fig. 1. Comparison of ARD with different (initial δ, µδ) and θ values.

4.2 Comparison Based on Performance Profiles

To compare the performance of the modified AFS algorithms, we use the per-
formance profiles as described in Dolan and Moré’s paper [3]. This is a recent
and useful tool to interpret and visualize benchmark results [12]. Our profiles
are mainly based on the metric favg, the average of the best solutions obtained
over the 30 runs. Occasionally we use fbest, the best of the obtained solutions.
It has been advised to report the central tendency of the results to measure and
compare the performance of stochastic algorithms, since the best result of all is
always biased and smaller than all the others [2].

Let P and S be the set of problems and the set of solvers in comparison,
respectively, and mp,s be the performance metric used when solving problem
p ∈ P by solver s ∈ S. The relative comparison is based on the performance

ratios defined by

rp,s =

{

1 +mp,s −min{mp,s : s ∈ S}, if min{mp,s : s ∈ S} < ǫ
mp,s

min{mp,s : s ∈ S}
, otherwise , (12)

for ǫ = 0.00001 [17]. The overall assessment of the performance of a particular
solver s is given by

ρs(τ) =
no. of problems where rp,s ≤ τ

total no. of problems
. (13)

Thus, ρs(τ) gives the probability, for solver s ∈ S, that rp,s is within a factor
τ ∈ IR of the best possible ratio. The value of ρs(1) gives the probability that
the solver s will win over the others in the set. Thus, to just see which solver is
the best, i.e., which solver has the least value of the performance metric mostly,
then ρs(1) should be compared for all the solvers. The higher the ρs the better
the solver is. On the other hand, ρs(τ) for large values of τ measures the solver
robustness.

Comparing mAFS and mAFS-P. Here we aim to compare the two novel AFS
heuristics: mAFS and mAFS-P. Figure 2 contains two plots with the performance
profiles obtained when 100n2 function evaluations are allowed.

1 1.2 1.4 1.6 1.8 2 2.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ(
τ)

Performance profile on f
avg

 with 100n2 function evaluations

mAFS
mAFS−P

1 1.2 1.4 1.6 1.8 2 2.2
0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ(
τ)

Performance profile on f
best

 with 100n2 function evaluations

mAFS
mAFS−P

Fig. 2. Performance profiles on favg and fbest with 100n2 function evaluations.

From the plot on the left, based on the average performance, we conclude
that the mAFS-P outperforms mAFS in 85% of the tested problems. This means
that in 85% of the problems the values of favg - the metric mp,s in these profiles
- obtained by mAFS-P are better or equal to those obtained by mAFS. Their
corresponding performance ratios rp,s are then equal to one (see Eq. (12)). We

may conclude that when the allowed number of function evaluations is small,
the mAFS-P version is able to reach, in average, the most accurate solutions.
The plot on the right shows the profiles based on fbest. The version mAFS-P
still gives the best solutions for most of the problems.

We also run both heuristics using nfemax = 1000n2. Figure 3 shows the
profile based on the metric favg. The plot here has two parts. One aims to give
more visibility near τ = 1 and the other aims to show the tendency for large
values of τ . When allowing a large number of function evaluations in each run,
the heuristic mAFS-P reaches, in average, more accurate solutions than mAFS
in about 68% of the problems.

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ(
τ)

1 1.2 1.4 1.6 1.8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

Performance profile on f
avg

 with 1000n2 function evaluations

ρ(
τ)

mAFS
mAFS−P

Fig. 3. Comparison of AFS heuristics mAFS and mAFS-P with 1000n2 function eval-
uations: performance profiles on favg

Comparison with other Solvers. In this part, we make a relative comparison
between the heuristic mAFS-P and the three stochastic solvers ASA, CMA-ES
and PSwarm. We run all the solvers until a specified maximum number of func-
tion evaluations is reached. Here we set nfemax = 1000n2. Each problem is
solved 30 independent times. The size of the population m is kept the same for
all solvers. All the other parameters are set as the default values in the corre-
sponding solvers. Usually they correspond to values that give the best results for
most of the therein tested problems. The profiles are based on the metric favg
and their relative performances are shown in Fig. 4.

1 1.02 1.04 1.06 1.08 1.1 1.12
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Performance profile on f
avg

 with 1000n2 function evaluations

τ

ρ(
τ)

50 100 150 200 250
0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ(
τ)

mAFS−P
ASA
CMA−ES
Pswarm

Fig. 4. Comparison of solvers based on performance profiles on favg with 1000n2 func-
tion evaluations.

We may conclude that CMA-ES outperforms the other solvers, followed by
mAFS-P. While CMA-ES gives the best favg values for 72% of the tested prob-
lems, our heuristic mAFS-P gives the same best favg values in 60% of the prob-
lems, clearly superior to the other two solvers in comparison. Thus, the experi-
ments show that the proposed mAFS-P algorithm has a promising performance.

5 Conclusions

This paper presents two novel heuristics, herein denoted by mAFS and mAFS-P,
that rely on artificial life computing and swarm intelligence behaviors to detect
promising regions and converge to the solution of global optimization problems.
The modifications were introduced into the Artificial Fish Swarm algorithm aim-
ing to improve solution accuracy and reduce computational efforts, namely the
number of function evaluations. The new heuristics have been devised to handle
bound constrained optimization problems. The new proposals for the heuris-
tics were implemented and tested with a benchmark set of global optimization
problems. A comparison with other stochastic solvers from the literature is also
included. The herein proposed heuristics are effective in reaching the global so-
lutions. The implementation of an augmented Lagrangian methodology in the
heuristic mAFS-P to handle equality and inequality constraints is now under
investigation.

Acknowledgments. The authors would like to thank the support of Portuguese
Foundation for Science and Technology (FCT).

References

1. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several
stochastic algorithms on selected continuous global optimization test problems,
Journal of Global Optimization, 31, 635–672 (2005)

2. Birattari, M., Dorigo, M.: How to assess and report the performance of a stochastic
algorithm on a benchmark problem: mean or best result on a number of runs?,
Optimization Letters, 1, 309–311 (2007)

3. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles, Mathematical Programming, 91, 201–213 (2002)

4. Fernandes, E.M.G.P., Martins, T.F.M.C., Rocha, A.M.A.C.: Fish swarm intelli-
gent algorithm for bound constrained global optimization, In: Aguiar, J.V. (ed.),
CMMSE 2009, 461–472 (2009) ISBN: 978-84-612-9727-6

5. Hansen, N.: The CMA evolution strategy: a comparing review, In: Lozano, J.A.,
Larranaga, P., Inza, I., Bengoetxea, E. (eds.), Towards a new evolutionary compu-
tation. Advances on estimation of distribution algorithms, pp. 75–102 (2006)

6. Ingber, L.: Adaptive simulated annealing (ASA): lessons learned, Control and Cy-
bernetics, 25, 33–54 (1996)

7. Jiang, M., Mastorakis, N., Yuan, D., Lagunas, M.A.: Image segmentation with
improved artificial fish swarm algorithm, In: Mastorakis, N., Mladenov, V., Kon-
targyri, V.T. (eds.) ECC 2008, Lecture Notes in Electrical Engineering, 28, pp.
133–138, Springer-Verlag (2009) ISBN: 978-0-387-84818-1

8. Jiang, M., Wang, Y., Pfletschinger, S., Lagunas, M.A., Yuan, D.: Optimal multiuser
detection with artificial fish swarm algorithm, In: Huang, D.-S., Heutte, L., Loog,
M. (eds.), CCIS 2, ICIC 2007, Springer-Verlag, 1084–1093 (2007)

9. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm, Journal of Global Opti-
mization, 39, 459–471 (2007)

10. Karimi, A., Nobahari, H., Siarry, P.: Continuous ant colony system and tabu search
algorithms hybridized for global minimization of continuous multi-minima func-
tions, Computational Optimization and Applications, 45, 639–661 (2010)

11. Kennedy, J., Eberhart, R.C.: Particle swarm optimization, IEEE International
Conference on Neural Network, 1942–1948 (1995)

12. Mittelmann, H.D., Pruessner, A.: A server for automated performance analysis of
benchmarking data, Optimization Methods and Software, 21, 105–120 (2006)

13. Montgomery, D.C.: Design and Analysis of Experiments, John Wiley & Sons (5th
ed.) (2002)

14. Rocha, A.M.A.C., Fernandes, E.M.G.P.: Hybridizing the electromagnetism-like al-
gorithm with descent search for solving engineering design problems, International
Journal of Computer Mathematics, 86, 1932–1946 (2009)

15. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains, European
Journal of Operational Research, 185, 1155–1173 (2008)

16. Stanoyevitch, A.: Homogeneous genetic algorithms, International Journal of Com-
puter Mathematics, 87, 476–490 (2010)

17. Vaz, A.I.F., Vicente, L.N.: A particle swarm pattern search method for bound con-
strained global optimization, Journal of Global Optimization, 39, 197–219 (2007)

18. Wang, C.-R., Zhou, C.-L., Ma, J.-W.: An improved artificial fish-swarm algorithm
and its application in feed-forward neural networks, In: Proceedings of the 4th
ICMLC, pp. 2890–2894 (2005)

19. Wang, X., Gao, N., S. Cai, Huang, M.: An artificial fish swarm algorithm based
and ABC supported QoS unicast routing scheme in NGI, In: Min, G. et al. (eds.)
ISPA 2006, LNCS, vol. 4331, pp. 205–214. Springer-Verlag (2006)

20. Zahara, E., Hu, C.-H.: Solving constrained optimization problems with hybrid
particle swarm optimization, Engineering Optimization, vol. 40, no. 11, pp. 1031-
1049 (2008)

21. Zhang, C., Ning, J., Ouyang, D.: A hybrid alternate two phases particle swarm
optimization algorithm for flow shop scheduling problem, Computers & Industrial
Engineering, 58, 1–11 (2010)

