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Abstract

This article presents three methods to forecast accurately the amount of
traffic in TCP/IP based networks: a novel neural network ensemble approach
and two important adapted time series methods (ARIMA and Holt-Winters).
In order to assess their accuracy, several experiments were held using real-
world data from two large Internet service providers. In addition, different
time scales (five minutes, one hour and one day) and distinct forecasting looka-
heads were analyzed. The experiments with the neural ensemble achieved the
best results for five minutes and hourly data, while the Holt-Winters is the
best option for the daily forecasts. This research opens possibilities for the
development of more efficient traffic engineering and anomaly detection tools,
which will result in financial gains from better network resource management.

Keywords: network monitoring; multilayer perceptron; time series; traf-
fic engineering

1 Introduction

As more applications vital to today’s society migrate to TCP/IP networks, it is
crucial to develop techniques to better understand and forecast the behavior of
these networks. In effect, TCP/IP traffic prediction is an important issue for any
medium/large network provider and it is gaining more attention from the computer
networks community (Papagiannaki et al., 2005; Babiarz and Bedo, 2006). By
improving this task’s performance, network providers can optimize resources (e.g.
adaptive congestion control and proactive network management), allowing a better
quality of service (Alarcon-Aquino and Barria, 2006). Moreover, traffic forecast-
ing can also help to detect anomalies in the data networks. Security attacks like
denial-of-service or even an irregular amount of SPAM can in theory be detected
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by comparing the real traffic with the values predicted by forecasting algorithms
(Krishnamurthy et al., 2003; Jiang and Papavassiliou, 2004). The earlier detection
of these problems would conduct to a more reliable service.

Nowadays, TCP/IP traffic prediction is often done intuitively by experienced
network administrators, with the help of marketing information on the future num-
ber of costumers and their behaviors (Papagiannaki et al., 2005). Yet, this produces
only a rough idea of the real traffic. On the other hand, contributions from the
areas of Operational Research and Computer Science has lead to solid forecasting
methods that replaced intuition based ones in other fields. In particular, the field of
time series forecasting (TSF) deals with the prediction of a chronologically ordered
variable (Makridakis et al., 1998). The goal of TSF is to model a complex system as
a black-box, predicting its behavior based in historical data, and not how it works.

Due to its importance, several TSF methods have been proposed, such as the
Holt-Winters (Makridakis et al., 1998), the ARIMA methodology (Box and Jenkins,
1976) and artificial neural networks (NN) (Lapedes and Farber, 1987; Ding et al.,
1995; Malki et al., 2004; Cortez et al., 2005). Holt-Winters was devised for series
with trended and seasonal factors. More recently, a double seasonal version has
been proposed (Taylor, 2003). The ARIMA is a more complex approach, requiring
steps such as model identification, estimation and validation. NNs are connectionist
models inspired in the behavior of central nervous system, and in contrast with the
previous methods, they can predict nonlinear series. In the past, several studies
have demonstrated the predictability of network traffic by using similar methods,
such as Holt-Winters (Krishnamurthy et al., 2003) and ARIMA (Sang and Li, 2002;
Papagiannaki et al., 2005). Following the evidence of nonlinear network traffic
(Hansegawa et al., 2001), NNs have also been proposed (Jiang and Papavassiliou,
2004; Alarcon-Aquino and Barria, 2006; Wang et al., 2008).

In this work, several experiments are carried out, based on recent real-world data
provided by two ISPs, in order to provide network engineers with a useful feedback.
The main contributions of this work are:

i) Internet traffic is predicted using a pure TSF approach (i.e., only past values
are used as inputs), in contrast to (Krishnamurthy et al., 2003), which uses
compact summaries of traffic data, and (Papagiannaki et al., 2005), which uses
wavelets to smooth the signal, allowing its use in wider contexts;

ii) several forecasting methods are tested and compared, including a novel NN en-
semble based on fast heuristic procedures for time window and model selection,
and adaptations of the Holt-Winters, both traditional and recent double sea-
sonal versions, and the ARIMA methodology;

iii) in contrast with previous studies (Hansegawa et al., 2001; Jiang and Papavassil-
iou, 2004; Papagiannaki et al., 2005; Babiarz and Bedo, 2006; Alarcon-Aquino
and Barria, 2006; Wang et al., 2008), two distinct ISPs are considered, the
predictions are analyzed at different time scales (i.e. five minutes, hourly,
daily) and distinct ahead forecasts are performed.

The result of this research is expected to allow the development of intelligent
TCP/IP traffic forecasting engines.
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The article is organized in four sections. Firstly, the Internet traffic data is
presented and analyzed. The forecasting methods are given in section 3, while the
results are presented and discussed in the section 4. Finally, in the last section
closing conclusions are drawn.

2 Time series analysis

A time series is a collection of time ordered observations (y1, y2, . . . , yt), each one
being recorded at a specific time t (period), appearing in a wide set of domains such
as Finance, Production and Control (Makridakis et al., 1998). A time series model
(ŷt) assumes that past patterns will occur in the future. Another relevant concept is
the horizon or lead time (h), which is defined by the time in advance that a forecast
is issued.

The performance of a forecasting model is evaluated by an accuracy measure,
such as the sum squared error (SSE) and mean absolute percentage error (MAPE)
(Makridakis et al., 1998):

et = yt − ŷt,t−h

SSEh =
∑P+N

i=P+1 e2
i

MAPEh = 1

N

∑P+N
i=P+1

|ei|
yi

× 100%
(1)

where et denotes the forecasting error at time t; yt the desired value; ŷt,p the predicted
value for period t and computed at period p; P is the present time and N the number
of forecasts.

The MAPE is a common metric in forecasting applications, such as electricity
demand (Malki et al., 2004; Taylor et al., 2006), and it measures the proportionality
between the forecasting error and the actual value. This metric will be adopted in
this work, since it is easier to interpret by the network administrators. In addition,
it presents the advantage of being scale independent. It should be noted that the
SSE values were also calculated but the results will not be reported since the relative
forecasting performances are similar.

Our approach uses already available information provided by the Simple Network
Management Protocol (SNMP) that quantifies the traffic passing through every net-
work interface with reasonable accuracy (Stallings, 1999). SNMP is widely deployed
by every ISP/network, so the collection of this data does not induce any extra traffic
on the network.

This work analyzes traffic data (in bits) from two different ISPs, denoted here
as A and B. The A dataset belongs to a private ISP with centres in 11 European
cities. The data corresponds to a transatlantic link and was collected from 6:57
AM on 7th June to 11:17 AM on 29 July, 2005. Dataset B comes from UKERNA1

and represents aggregated traffic in the the UK academic network backbone. It
was collected between 19th November 2004, at 9:30 AM, and 27th January 2005,
at 11:11 AM. The A time series was registered every 30 seconds, while the B data
was recorded every five minutes. The first series (A) included 8 missing values,
which were replaced using a linear interpolation (Hastie et al., 2001). The missing

1United Kingdom education and research networking association
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data is explained by the fact that the SNMP scripts are not 100% reliable, since
the SNMP messages may be lost. Yet, this occurs very rarely and it is statistically
insignificant. Finally, it should be mentioned that within this domain it is difficult
to collect more than 2/3 months of data, since network servers often reboot or pass
through update/maintenance changes.

Depending on the time scale, the following forecasting types can be defined (Ding
et al., 1995):

• real-time, which concerns samples not exceeding a few minutes and requires
an on-line forecasting system;

• short-term, from one to several hours, crucial for optimal control or detection
of abnormal situations;

• middle-term, typically from one to several days, used to plan resources; and

• long-term, often issued several months/years in advance and needed for strate-
gic decisions, such as financial investments.

Due to the characteristics of the Internet traffic collected, this study will only
consider the first three types. Therefore, three new time series were created for each
ISP by aggregating the original values; i.e. summing all data samples within a given
period of time. The selected time scales were (Figure 1): every five minutes (series
A5M and B5M), every hour (A1H and B1H) and every day (A1D and B1D)2.
Due to the temporal nature of this domain, a sequential holdout (i.e. train/test
split) will be adopted for the forecasting evaluation. Hence, the first 2/3 of the
series will be used to fit (train) the forecasting models and the remaining last 1/3 to
evaluate (test) the forecasting accuracies (Table 1). Under this scheme, the number
of forecasts is equal to N = NT − h + 1, where h is the lead time period and NT
is the number of samples used for testing.

Table 1: The scale and length of Internet traffic time series

Series Time scale Train length Test length Total length
A5M 5 min. 9848 4924 14772
A1H 1 hour 821 410 1231
A1D 1 day 34 17 51
B5M 5 min. 13259 6629 19888
B1H 1 hour 1105 552 1657
B1D 1 day 46 23 69

The autocorrelation coefficient is a statistic that measures the correlation be-
tween a series and itself, lagged of k periods (Box and Jenkins, 1976):

rk =

∑T−k
t=1 (yt − y)(yt+k − y)

∑T
t=1(yt − y)

(2)

2The datasets are available at: http://www3.dsi.uminho.pt/pcortez/series/
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Figure 1: The Internet traffic time series (A5M, B5M, A1H, B1H, A1D and
B1D) with several daily, weekly and seasonal patterns (e.g. traffic decrease in late
December in B datasets is due to Christmas season).
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where y1, . . . , yT stands for the time series and y for the series’ average. Autocor-
relations are useful for the detection of seasonal components (Makridakis et al.,
1998). For example, the autocorrelations for the A5M and A1H series are plotted
in Figure 2. The daily seasonal effect (K1 = 288) is visible for the five minute data,
while two seasonal components appear at the hourly scale, due to the the intraday
(K1 = 24) and intraweek cycles (K2 = 168).
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Figure 2: The autocorrelations for the series A5M (left) and A1H (right)

3 Forecasting methods

3.1 Naive benchmark

A common naive forecasting method is to predict the future as the present value.
Yet, this method will perform poorly in seasonal data. Thus, a better alternative is
to use a seasonal version, where a forecast will be given by the observed value for
the same period related to the previous seasonal cycle (Taylor et al., 2006):

ŷt+h,t = yt+h−K (3)

where K is the seasonal period. In this work, K will be set to the weekly cycle.
This naive method, which can be easily adopted by the network administrators, will
be used as a benchmark for the comparison with other forecasting approaches.

3.2 Holt-Winters

The Holt-Winters is an important forecasting technique where the predictive model
is based on trended and seasonable patterns that are distinguished from noise by
averaging the historical values. It presents advantages such as simplicity of use,
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reduced computational demand and accuracy for seasonal series. The model is
defined by the equations (Makridakis et al., 1998):

Level St = α yt

Dt−K1

+ (1 − α)(St−1 + Tt−1)

Trend Tt = β(St − St−1) + (1 − β)Tt−1

Seasonality Dt = γ yt

St
+ (1 − γ)Dt−K1

ŷt+h,t = (St + hTt) × Dt−K1+h

(4)

where St, Tt and Dt stand for the level, trend and seasonal estimates, K1 for the
seasonal period, and α, β and γ for the model parameters. When there is no seasonal
component, the γ is discarded and the Dt−K1+h factor in the last equation is replaced
by the unity.

More recently, this method has been extended to encompass two seasonal cycles
(Taylor, 2003):

Level St = α yt

Dt−K1
Wt−K2

+ (1 − α)(St−1 + Tt−1)

Trend Tt = β(St − St−1) + (1 − β)Tt−1

Seasonality 1 Dt = γ yt

StWt−K2

+ (1 − γ)Dt−K1

Seasonality 2 Wt = ω yt

StDt−K1

+ (1 − ω)Wt−K2

ŷt+h,t = (St + hTt) × Dt−K1+hWt−K2+h

(5)

where Wt is the second seasonal estimate, K1 and K2 are the first and second
seasonal periods; and ω is the second seasonal parameter.

The initial values for the level, trend and seasonal estimates will be set by aver-
aging the early observations (Taylor, 2003). The parameters (α, β, γ and ω) will be
optimized by a grid search, which works by testing all combinations of a discrete set
of values for each parameter. The aim is to get the lowest training error (SSE1),
which is a common procedure within the forecasting community.

3.3 ARIMA methodology

The ARIMA is another important forecasting approach that goes through model
identification, parameter estimation and model validation (Box and Jenkins, 1976).
The main advantage of this method relies on the accuracy over a wider domain of
series, despite being more complex than the Holt-Winters. The model is based on a
linear combination of past values (AR components) and errors (MA components),
being named autoregressive integrated moving-average (ARIMA).

The non seasonal model is denoted by the form ARIMA(p, d, q) and is defined
by the equation:

φp(L)(1 − L)dyt = θq(L)et (6)

where yt is the series; et is the error; L is the lag operator (e.g. L3yt = yt−3);
φp = 1−φ1L−φ2L

2−. . .−φpL
p is the AR polynomial of order p; d is the differencing

order; and θp = 1− θ1L− θ2L
2 − . . .− θqL

q is the MA polynomial of order q. When
the series has a non zero average through time, the model may also contemplate a
constant term µ in the right side of the equation. For demonstrative purposes, the
full time series model is presented for ARIMA(1, 1, 1): ŷt,t−1 = µ + (1 + φ1)yt−1 −
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φ1yt−2 − θ1et−1. To create multi-step predictions, the one step-ahead forecasts are
used iteratively as inputs (Taylor et al., 2006).

There is also a multiplicative seasonal version, often called SARIMA and denoted
by the term ARIMA(p, d, q)(P1, D1, Q1). It can be written as:

φp(L)ΦP1
(LK1)(1 − L)d(1 − L)D1yt = θq(L)ΘQ1

(LK1)et (7)

where K1 is the seasonal period; ΦP1
and ΘQ1

are polynomial functions of orders
P1 and Q1. Finally, the double seasonal ARIMA(p, d, q)(P1, D1, Q1)(P2, D2, Q2) is
defined by (Taylor et al., 2006):

φp(L)ΦP1
(LK1)ΩP2

(LK2)(1 − L)d(1 − L)D1(1 − L)D2yt

= θq(L)ΘQ1
(LK1)ΨQ2

(LK2)et
(8)

where K2 is the second seasonal period; ΩP2
and ΨQ2

are the polynomials of orders
P2 and Q2.

The constant and the coefficients of the model are usually estimated by us-
ing statistical approaches (e.g., least squares methods). It was decided to use the
forecasting package X-12-ARIMA from the U.S. Bureau of the Census (Time-Series-
Staff, 2002), for the parameter estimation of a given model. For each series, several
ARIMA models will be tested and the BIC statistic, which penalizes model com-
plexity and is evaluated over the training data, will be the criterion for the model
selection, as advised by the X-12-ARIMA manual.

3.4 Artificial neural networks

Neural models are innate candidates for forecasting due to their flexibility (i.e. there
is no a priori restrictions on the type of relationship to be modeled) and nonlinear
learning capabilities. Indeed, the use of NNs for TSF began in the late eighties with
encouraging results and the field has been consistently growing since (Lapedes and
Farber, 1987; Ding et al., 1995; Malki et al., 2004; Cortez et al., 2005).

Although there are other neural architectures, the majority of the NN studies use
the multilayer perceptron network (Lapedes and Farber, 1987; Cortez et al., 1995;
Ding et al., 1995; Tong et al., 2004; Cortez et al., 2005). With this network, TSF is
achieved by using a sliding time window (Wang et al., 2008), defined by the set of
time lags {k1, k2, . . . , kI} used to build a forecast. For a given time period t, the NN
inputs are yt−kI

, . . . , yt−k2
, yt−k1

and the desired output is yt. For example, let us
consider the series 51, 102, 143, 194, 235 (yt values). If the {1, 3} window is adopted,
then two training examples can be created: 5, 14 → 19 and 10, 19 → 23.

In this work, fully connected multilayer perceptrons, with one hidden layer of
H hidden nodes, bias and shortcut connections will be adopted (Figure 3). To
introduce nonlinearity, the logistic activation function was applied on the hidden
nodes. The linear function was used in the output node, in order to scale the range
of the outputs (Cortez et al., 2005). The final model is given by:

ŷt,t−1 = wo,0 +
∑I

i=1 yt−ki
wo,i

+
∑o−1

j=I+1 f(
∑I

i=1 yt−ki
wj,i + wj,0)woj

(9)
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where wi,j denotes the weight of the connection from node j to i (if j = 0 then
it is a bias connection), o denotes the output node and f the logistic function
( 1

1+e−x ). Similar to ARIMA, multi-step forecasts are built by iteratively using 1-
ahead predictions as inputs (Taylor et al., 2006).

i

wi,0

w
i,j

j

Input Layer Hidden Layer Output Layer

+1

+1

x
t−k

x

x
t−k

1

t−k
2

I

x
t

...

...

+1

...

+1

Figure 3: The neural network architecture

In the training stage, the NN initial weights are randomly set within the range
[−1.0; 1.0]. Then, the RPROP algorithm was adopted, since it presents a faster
training when compared with other algorithms such as the backpropagation (Ried-
miller, 1994). The training is stopped when the error slope approaches zero or after
a maximum of 1000 epochs.

The quality of the trained network will depend on the choice of the starting
weights, since the error function is non convex and the training may fall into local
minima. To solve this issue, the solution adopted is to use a neural network ensemble
(NNE) where R different networks are trained (here set to R = 5) and the final
prediction is given by the average of the individual predictions (Hastie et al., 2001).
In general, ensembles are better than individual learners, provided that the errors
made by the individual models are uncorrelated, a condition easily met with NNs,
since the training algorithms are stochastic in nature (Dietterich, 2000).

Under this setup, the NNE performance will depend on two crucial parameters:
the choice of the input time lags and number of hidden nodes (H). Feeding a NN
with uncorrelated variables or time lags will affect the learning process due to the
increase of noise. A NN with 0 hidden neurons can only learn linear relationships and
it is equivalent to the classic Auto-Regressive (AR) model. By increasing the number
of hidden neurons, more complex functions can be learned but also it increases the
probability of overfitting to the data and thus losing the generalization capability.

Since the search space for these parameters is high, heuristic procedures will be
proposed in the next section to reduce the computational effort, limiting the search
to a few time window/hidden node combinations during the model selection step.
In this stage, the training data (2/3 of the series’ length) will be further divided
into training and validation sets. The former, with 2/3 of the training data, will be
used to train the NNE. The latter, with the remaining 1/3, will be used to estimate
the network generalization capabilities. The NNE with the lowest validation error
(average of all MAPEh values) will be selected. After the model selection, the final
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NNE is retrained using all training data.

4 Experiments and results

The Holt-Winters and NNs were implemented in an object oriented programming
environment developed in the Java language by the authors. Regarding the ARIMA
methodology, the different models will be estimated using the X-12-ARIMA package
(Time-Series-Staff, 2002). The best model (with the lowest BIC values) will be
selected and then the forecasts are produced in the Java environment.

The Holt-Winters (HW) models were adapted to the series characteristics. The
seasonal version (K1 = 7) was used for the daily values, while the double seasonal
variant (K1 = 24 and K2 = 168) was applied on the hourly series. Both seasonal
(K1 = 288) and non seasonal versions were tested for the five minute scale data,
since it was suspected that the seasonal effect could be less relevant in this case.
Indeed, SSE errors obtained in the training data backed this claim. To optimize
the parameters of the selected models (Table 2), the grid-search used a step of
0.01 for the five minute and daily data. The grid step was increased to 0.05 in the
hourly series, due to the higher computational effort required by the double seasonal
models.

Table 2: The selected Holt-Winters forecasting models

Series K1 K2 α β γ ω
A5M – – 0.76 0.09 – –
A1H 24 168 0.70 0.00 1.00 1.00
A1D 7 – 0.00 0.00 1.00 –
B5M – – 1.00 0.07 – –
B1H 24 1105 0.95 0.00 0.75 1.00
B1D 7 – 1.00 0.01 0.01 –

Regarding the ARIMA, an extensive range of models were tested. In all cases,
the µ constant was set to zero by the X-12-ARIMA package. For the daily series,
the p, P1, q and Q1 orders ranged from 0 to 2; and the d and D1 orders were set to
0 and 1, in a total of 35 models. In case of the hourly data, no differencing factors
were used, since the series seems stationary and the Holt-Winters models provided
no evidence for trended factors, with very low β values. A total of eight double
seasonal ARIMA models were tested, by using combinations of the p, P1, P2, q, Q1

and Q2 values up to a maximum order of 2. Finally, for the five minute datasets,
3 single seasonal (maximum order of 1) and 25 non seasonal (maximum order of 5)
models were explored. Similar to the Holt-Winters case, for these series only non
seasonal ARIMA models were selected. Table 3 shows the best ARIMA models.

The NNE heuristic rules for model selection were set as follows. The number of
tested hidden nodes (H) was within the range {0,2,4,6,8}, since in previous work
(Cortez et al., 2005) it has been shown that complex series can be modeled by small
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Table 3: The selected ARIMA forecasting models

Series Model Parameters
A5M (5 0 5) φ1 = 2.81, φ2 = −3.49, φ3 = 2.40, φ4 = −0.58, φ5 = −0.13

θ1 = 1.98, θ2 = −1.91, θ3 = 0.75, θ4 = −0.26, θ5 = −0.20
A1H (2 0 0)(2 0 0)(2 0 0) φ1 = 1.70, φ2 = −0.74, Φ1 = 0.60, Φ2 = 0.06

Ω1 = −0.08, Ω2 = 0.28
A1D (2 1 0)(0 1 0) φ1 = −0.46, φ2 = −0.35
B5M (5 0 5) φ1 = 1.58, φ2 = −0.59, φ3 = 1.00, φ4 = −1.58, φ5 = 0.59

θ1 = 0.74, θ2 = −0.08, θ3 = 0.97, θ4 = −0.77, θ5 = 0.06
B1H (2 0 1)(1 0 1)(1 0 1) φ1 = 1.59, φ2 = −0.62, Φ1 = 0.93, Ω1 = 0.82,

θ1 = 0.36, Θ1 = 0.72, Ψ1 = 0.44
B1D (1 1 2)(0 1 1) φ1 = 0.41, θ1 = 0.45, θ2 = 0.36, Θ1 = 0.53

neural structures. Based on the seasonal traits, three different sliding windows were
explored in each time scale:

• {1,2,3,4,5,6,7,8}, {1,2,3,6,7,8} and {1,7,8} for the daily series;

• {1,2,3,24,25,26,168,167,169}, {1,2,3,11,12,13,24,25,26} and {1,2,3,24,25,26} for
the hourly data; and

• {1,2,3,5,6,7,287,288,289}, {1,2,3,5,6,7,11,12,13} and {1,2,3,4,5,6,7} for the five
minute scale.

Table 4 presents the selected NNEs. Regarding the selected time lags, it is interesting
to notice that there are two models that contrast with the previous methods. The
B5M model includes seasonal information (K1 = 288), while the A1H does not use
the second seasonal factor (K2 = 168).

Table 4: The selected neural forecasting models

Series Hidden nodes (H) Input time lags
A5M 6 {1,2,3,5,6,7,11,12,13}
A1H 8 {1,2,3,24,25,26}
A1D 0 {1,7,8}
B5M 0 {1,2,3,5,6,7,287,288,289}
B1H 0 {1,2,3,24,25,26,168,167,169}
B1D 0 {1,7,8}

After the model selection stage, the forecasts were performed for each method
by testing a lead time from h =1 to 24, for the five minute and hourly data, and an
horizon of h =1 to 7 for the daily series. In case of the NNE, 20 runs were applied
to each configuration in order to present the results in terms of the average and
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t-student 95% confidence intervals (Flexer, 1996). Table 5 shows the forecasting
errors for each method, when using the smallest and largest lookaheads. The global
performance is presented as the average error (h) for all h values. The overall view
is given in Figure 4, where the MAPE is plotted for all horizons.

Table 5: Comparison between the forecasting methods (MAPEh values, in percent-
age)

Series Horizon (h) naive Holt-Winters ARIMA NNE

A5M

1 34.79 2.98 2.95 2.91±0.00⋆

24 34.83 21.65 18.08 16.30±0.21⋆

h 34.80 11.98 10.68 9.59±0.08⋆

B5M

1 20.10 1.44 1.74 1.43±0.01
24 19.99 14.36 11.32 10.92±0.24⋆

h 20.05 7.65 6.60 6.34±0.11⋆

A1H

1 65.19 12.96 7.37 5.23±0.03⋆

24 65.89 33.95 28.18 25.11±0.59⋆

h 65.67 50.60 26.96 23.48±0.49⋆

B1H

1 34.82 3.30 3.13 3.25±0.01
24 35.54 17.31 15.15 12.20±0.07⋆

h 35.18 13.69 12.69 12.26±0.03⋆

A1D
1 6.77 6.77 8.49 8.76±0.00
7 6.25 6.25 7.23 7.99±0.00
h 6.34 6.34 8.12 8.48±0.00

B1D
1 20.81 7.00 9.79 12.99±0.01
7 13.65 18.38 21.11 31.04±0.01
h 17.62 13.43 18.18 24.89±0.01

⋆ - Statistically significant when compared with other methods

As expected, the naive benchmark reveals a constant performance at all lead
times for the five minute series and it was greatly outperformed by the other fore-
casting approaches. Indeed, the remaining three methods obtain quite similar and
very good forecasts (MAPE values within the range 1.4% to 3%) for a 5 minute
lead. As the horizon is increased, the results decay slowly and in a linear fashion,
although the Holt-Winters method presents a higher slope for both ISPs. At this
time scale, the best approach is given by the NNE (Table 5).

Turning to the hourly scale, the naive method is still the worst method. As be-
fore, the other methods present the lowest errors for the 1-ahead forecasts. However,
the error curves are not linear and after a given horizon, the error decreases, in a
behavior that may be explained by the seasonal effects (Figure 4). The differences
between the methods are higher for the first provider (A) than the second one.
Nevertheless, in both cases the ARIMA and NNE outperform the Holt-Winters
method. Overall, the neural approach is the best model with a 3.5% global dif-
ference to ARIMA in dataset A1H and a 0.4% improvement in the second series
(B1H). The higher relative NNE performance for the A ISP may be explained by
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Figure 4: The forecasting error results (MAPE) plotted against the lead time (h)
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the presence of nonlinear effects (as suggested in Table 4).
The analysis of the daily results shows a different behavior. The naive approach

is one of the best options for the A1D data. This effect also occurs for series B1D,
although only after a lead time of h ≥ 3 for NNE, h ≥ 4 for ARIMA and h ≥ 6 for
Holt-Winters. In both series, the best choice is the Holt-Winters method, which is
equivalent to the naive method for the A series. These results are not surprising,
since the Holt-Winters can be quite accurate even when few historic values are
present (Makridakis et al., 1998). It should be noticed that the training data for
A1D contains only 34 elements, while B1D contains 46. In contrast, NNs tend to
give bad results when less than 50 observations are used (Makridakis, 1982).

For demonstrative purposes, Figure 5 presents 100 forecasts given by the NNE
method for the series A1H and horizons of 1 and 24. The figure shows a good fit
by the forecasts, which follow the series. Another relevant issue is related with the
computational complexity. With a Pentium IV 1.6GHz processor, the NNE training
(including 5 runs of the RPROP algorithm) and testing for this series required only
41 seconds. In this case, the computational demand for Holt-Winters increases
around a factor of three, since the 0.05 grid-search required 137 seconds. For the
double seasonal series, the highest effort is given by the ARIMA model, where the
X-12-ARIMA estimation took more than two hours of processing time.
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Figure 5: Example of the neural forecasts for series A1H and lead times of h = 1
and h = 24

5 Conclusions

In this article, three time series methods were presented to forecast the amount of
traffic in TCP/IP based networks. A neural network ensemble (NNE) was developed
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and the both the Holt-Winters and the ARIMA methods were adapted. Recent real-
world data collected from two large Internet source providers (ISPs) was analyzed
using different ahead predictions and time scales (e.g. every five minutes, hour and
day).

A comparison among the time series methods shows that both ARIMA and NNE
produce the lowest errors for the five minute and hourly data, with the latter method
presenting the best overall performance. As shown in the previous section, and also
argued in (Taylor et al., 2006), the ARIMA methodology is impractical for on-line
forecasting systems because it requires more computation. Although the search
space for NNE is high (i.e. selecting the best neural architecture and set of time
lags), the heuristics proposed here for feature/model selection reduce substantially
the computational effort and are easy to implement, while still providing competitive
forecasts. Hence, the NNE is the recommended approach, since it can be used in real-
time and this is crucial for dynamic resource allocation. At the daily scale, the Holt-
Winters provided the best forecasts since our datasets contained few observations.
However, in a on-line setting, an ISP could easily store hundreds of daily aggregated
data. Thus, we believe that the proposed NNE would also lead to accurate forecasts
in such scenario.

The experimental results reveal promising performances. Only a 1% to 3% error
was obtained for the five minute forecasts. This value increased from 11% to 17%
when the forecasts were issued two hours in advance. For the short-term predic-
tions, the error goes from 3% to 5% (one hour in advance) until 13% to 22% (24 hour
lookahead). Finally, the daily forecasts gave rise to error rates of 7% (one day hori-
zon) and 6% to 13% (one week lookahead). Moreover, once this work was designed
assuming a passive monitoring system, no extra traffic is required in the network.
Hence, the recommended approach opens room for the development of better traffic
engineering tools and methods to detect anomalies in the traffic patterns.

In the future, similar methods will be applied to forecast traffic demands as-
sociated with specific Internet applications, since this might benefit management
operations performed by ISPs, such as traffic prioritization. Another interesting
possibility, would be the exploration of similar forecasting approaches to other do-
mains (e.g. electricity demand or road traffic).
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