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Abstract: To evaluate the bond behavior between glulam and GFRP rods, applied according to the near-

surface mounted strengthening technique, an experimental program composed of beam and direct pullout 

tests was carried. In this experimental program three main variables were analyzed: the GFRP type, the 

GFRP location into the groove, and the bond length. From the monitoring system it was registered the 

loaded and free end slips, and the pullout force. Based on these experimental results, and applying an 

analytical-numerical strategy, the local bond stress-slip relationship was calculated. In this work the tests 

are described, the obtained results are presented and discussed, and the applicability of the inverse 

analysis to obtain the local bond law is demonstrated. 
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1. INTRODUCTION 

Glued laminated (glulam) timbers appeared for the first time at the beginning of the XX century, by Otto 

Hetzer. Since then, glued laminated technology faced great improvements. Nowadays, the manufacturing 

process of glulam is strict and industrialized, which makes the geometry very precise, the moisture 

content can be controlled, and mechanical properties can be obtained with relatively low dispersion. This 

leads to the possibility of developing glulam of higher mechanical resistance and elasticity modulus when 

comparing to solid wood. Glulam materials have widely been used in transportation infrastructures (e.g. 

bridges), and in roofs of pavilions. 

In the last two decades, considerable research has been done with fiber reinforced polymer (FRP) 

materials for the repair or strengthening of existing structures. High stiffness and tensile strength, low 

weight, easy installation procedures, high durability (no corrosion), electromagnetic permeability and 

practically unlimited availability in terms of geometry and size are the main advantages of these 

composites. Despite of these main advantages, some key issues like durability and long-term performance 

of FRP materials still deserve a great effort of research (ACI 2008 [1]). 

Currently, the most common strengthening techniques using FRP systems are (ACI 2008 [1]): the 

externally bonded reinforcement (EBR) and the near-surface mounted (NSM). The EBR strengthening 

technique has been widely studied and used, not only in concrete structures, but also in timber structures. 

The NSM technique is more recent, but its effectiveness in the flexural and shear strengthening is quite 

relevant. When compared to EBR, the NSM reinforcement has some advantages, such as (De Lorenzis 

and Teng 2007 [2]): (a) the amount of in situ installation work may be reduced, as surface preparation 

other than grooving is no longer required (e.g., covering removal is not necessary; irregularities of the 

timber surface can be more easily accommodated); (b) NSM reinforcement is less prone to debond from 

the substrate; (c) NSM elements can be more easily anchored into adjacent members to prevent debond 

failures; (d) NSM elements are protected by the wood cover and so are less exposed to accidental impact 

and mechanical damage, fire, and vandalism; (e) the aesthetic of the strengthened structure is virtually 

unchanged. 

In the literature few publications can be found related to the applications of FRP’s with the NSM 

technique to timber structures, e.g. Borri et al. (2005) [3], Johnsson et al. (2006) [4], Ahmad (2010) [5]. 
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The results pointed out in these research works revealed good performance of the NSM technique to 

increase both the load carrying capacity and the stiffness. 

In the context of any strengthening technique, bond behavior is an important issue, since it governs 

the performance of the composite strengthening system. The bond performance influences not only the 

ultimate load-carrying capacity of a reinforced element but also some serviceability aspects, such as 

deformation and crack width (this last one for the concrete structures). In the last decades several test 

methods have been proposed and used within the bond research scope, mainly in concrete material. The 

most common are the direct and the beam pullout tests. At the present time, there is no general agreement 

about the correct test setup to assess the bond behavior for the distinct FRP systems (Barros and Costa 

2010 [6]). 

To study the bond behavior between glulam and GFRP rods, applied according to the NSM 

strengthening technique, an experimental program composed of direct and beam pullout tests was carried 

out. The influence of GFRP type, the FRP location into the groove and the bond length, on the bond 

behavior was investigated. In the following sections the tests are described in detail, and the obtained 

results are presented and discussed. Using these results and applying an inverse analysis procedure, the 

local bond stress-slip relationship is derived. 

 

2. EXPERIMENTAL PROGRAM 

2.1 Specimens and Test Configuration 

The experimental program was composed of sixty six validated pullout bond tests. Bond lengths ranging 

between 30 and 180 mm were adopted in order to assess its influence on the bond behavior. The lower 

bond length value, 30 mm, was considered since the bond length must be large enough to be 

representative of the glulam-FRP’s interface conditions and to make negligible the unavoidable end 

effects. The upper bound was limited to 180 mm due to limitations associated to the specimen’s 

geometry. 

The code names given to the test series consist on alphanumeric characters separated by 

underscores (see Table 1). The first string indicates the GFRP type (GFRP1 and GFRP2). The second 

string defines the groove’s depth at which the FRP was installed (D1 and D2). Finally, the last string 

indicates the bond length in millimeters (for instance, Lb30 represents a specimen with a bond length of 
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30 mm). Fig. 1(a) shows the specimen geometry and the configuration of direct pullout tests (DPT). The 

specimen consists of a glulam block of 140 × 200 × 400 mm3 dimensions, in which a FRP is embedded. 

The bond test region was located in the upper part of the block, and several bond lengths, Lb, were 

analyzed (30, 60 and 120 mm for the D1 series; 30, 60, 120 and 180 mm for D2 series). To avoid a 

premature splitting failure in the glulam ahead the loaded end, the bond length started 50 mm far from the 

block end. The instrumentation of the specimens consisted on three linear variable differential transducers 

(LVDT) and a load cell. The LVDT1 was used to control the test, at 2 µm/s slip rate, and to measure the 

slip at the loaded end, sl, while the displacement transducer LVDT2 was used to measure the slip at the 

free end, sf. The LVDT3 was used to measure the rotation of the specimen. The applied force, F, was 

registered by a load cell placed between the specimen top surface and the actuator. The overall layout of 

the performed tests is depicted in Fig. 1(b). 

Fig. 2(a) shows the specimen geometry and configuration adopted for the beam pullout tests 

(BPT). The specimen is composed by two glulam blocks (block A and B) of equal dimensions, 

140 × 200 × 300 mm3, interconnected by a steel hinge located at mid-span in the top part, and also by the 

FRP fixed at the bottom in which the FRP is embedded. The bond test region was located in the bottom 

part of block A, and several bond lengths, Lb, were analyzed (see Table 1). Like in the DPT, to avoid 

premature splitting failure in the glulam ahead the loaded end, the bond length started 50 mm far from the 

block end. The instrumentation of these specimens consisted on two LVDT’s, a strain gauge and a load 

cell. The LVDT2 was used to control the test, at 2 µm/s slip rate, and to measure the slip at the loaded 

end, sl, while the LVDT1 was used to measure the slip at the free end, sf. The applied force, F, was 

transmitted to the specimen through a steel plate that, in turn, transmits F/2 through two steel rods to the 

glulam blocks. The applied force was registered by a load cell placed between the steel plate and the 

actuator. A strain gauge, placed at the mid-span of the specimen, measured the FRP strains during the test 

(applied in one specimen per each series). 

 

2.2 Material characterization 

2.2.1 Timber 

In the present experimental program glued laminated timber, currently named by glulam, of strength class 

GL24h (NP EN 1194:1999 [7]), was used for all the series. The material characterization of the GL24h 



Sena-Cruz, J.; Branco, J.; Jorge, M.; Barros, J.A.O.; Silva, C.; Cunha, V.M.C.F. (2011) “Bond behavior between glulam and GFRP's 
by pullout tests.” Composites Part B: Engineering. (DOI:10.1016/j.compositesb.2011.10.022) 

5 
 

included compression and tension tests parallel to the grain, according to EN 408 [8]. Sixteen specimens 

were used for each type of test. From the compression tests, an average compressive strength of 

27.99 MPa with a coefficient of variation (CoV) of 17.6%, and an average modulus of elasticity of 6.62 

GPa (CoV=27.8%) were obtained. From the tension tests, an average tensile strength, a modulus of 

elasticity and a strain at the peak stress of 55.93 MPa (CoV=16.7%), 9.17 GPa (CoV=11.9%) and 6.35‰ 

(CoV=12.4%) were obtained, respectively. 

 

2.2.2 GFRP rod 

The GFRP rod used in the present work, with a trademark Maperod G, was provided in rolls of 6 meters 

each, and was supplied by MAPEI®. Two distinct types of Maperod G are available on the market. 

According to the supplier the major difference is limited to the external surface of these rods (see Fig. 3). 

In the present work both rods were studied and hereinafter, the rod with a rougher external surface will be 

denominated as GFRP2, whereas the other as GFRP1. These rods have a nominal diameter of 10 mm and 

the external surface is sand blasted. 

Tensile tests were carried out to assess the tensile mechanical properties of each GFRP rod type, 

according to ISO TC 71/SC 6 N - Part 1 - (2003) [9]. Tests were performed under a displacement rate of 

2 mm/min. To measure the modulus of elasticity, a clip gauge was mounted at middle region of each 

specimen. The results obtained from the mechanical characterization of the GFRP rods are presented in 

Table 2. In this table Ffmax is the maximum force, whereas σfmax is the corresponding tensile strength; 

σfmax= Ffmax/Af; Af is the GFRP cross-sectional area evaluated with the nominal diameter of the rod; Ef is 

the longitudinal elasticity modulus evaluated according the aforementioned standard; the strain at the 

maximum stress εfmax was evaluated assuming linear behaviour up to peak stress. Both GFRP rods have 

similar response, not only in terms of tensile strength but also in terms of modulus of elasticity. 

Nevertheless, GFRP2 presents a modulus of elasticity slightly higher. Very low values of the coefficients 

of variation (CoV) were obtained for the case of GFRP1, but a rather high value of CoV was registered 

for the strain at the maximum tensile stress for the GFRP2. For all the specimens the failure mode was 

explosive due to the fiber progressive rupture.  
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2.2.3 Epoxy adhesive 

In the present experimental work the epoxy MapeWood Paste 140, supplied by MAPEI®, was used. This 

thixotropic epoxy adhesive is currently used for the restoration of timber structural elements, and is 

composed of two premeasured parts (Part A = resin and Part B = hardener). To assess the mechanical 

properties of the hardened adhesive, tensile tests were carried out according to ISO 527-2 (1993) [10]. 

After casted, the six specimens were kept in the laboratory environment in the vicinity of the pullout 

specimens, and they were tested at the same age of the pullout tests. The adhesive specimens were tested 

in a universal test machine, at a displacement rate of 1 mm/min. A clip gauge mounted on the middle 

zone of the specimen recorded the strains, whereas a high accurate load cell has registered the applied 

force. From the tests an average tensile strength of 17.15 MPa (CoV=7.5%), modulus of elasticity of 

8.11 GPa (CoV=17.6%) and a strain at peak stress of 0.26% (CoV=19.6%) were obtained. 

 

2.3 Preparation of Specimens 

The preparation of the strengthened specimens required several steps. The NSM strengthening procedures 

are quite well documented in the literature (De Lorenzis and Teng 2007 [2]; Barros et al. 2007 [11]) and 

specific detailed information related to the specimens used in the present work can be found elsewhere 

(Jorge 2010 [12]). After strengthening, the specimens were kept in the laboratory environment before 

being tested. The pullout tests were carried out at least 10 days after the application of the FRP 

reinforcement. 

 

3. RESULTS AND DISCUSSION 

Fig. 4 depicts the average pullout force versus loaded end slip (Fl-sl) relationships for all the tested series, 

whereas Tables 3 and 4 include the main results obtained on the direct and beam pullout tests (DPT and 

BPT), respectively. In these tables Ffmax is the maximum pullout force; Ffu is FRP tensile strength (see 

also Table 2); τmax,av1 and τmax,av2 are the average bond stress at the rod-epoxy and glulam-epoxy 

interfaces, respectively, and are evaluated by Ffmax / (Pf Lb) and Ffmax / (Pg Lb), where Pf is the perimeter 

of the FRP cross-section and Pg is perimeter of the groove cross-section in contact with the adhesive; sfmax 

and slmax are the free end and loaded end slips at Ffmax, respectively. 
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The pullout force was directly evaluated by the values registered in the load cell for the case of 

direct pullout configuration. In the beam pullout tests, two distinct approaches were initially adopted (see 

Fig. 2): (i) the first one was based on the force values measured at the load cell and takes into account the 

internal lever arm, i.e., the distance between the longitudinal axis of the GFRP and the contact point at the 

steel hinge; (ii) the second approach is based on the values recorded by the strain gage glued to the GFRP 

rod and takes into account the corresponding modulus of elasticity and its cross sectional area. In general 

no significant differences were found between both approaches (Jorge 2010 [12]); so, in the context of the 

present work the first one was adopted. 

In the direct pullout tests the records registered by the LVDT1 (see Fig. 1) include not only the 

loaded end slip, sl, but also the elastic deformation of the FRP between the loaded end section and the top 

surface of the timber block (50 mm of distance). In the present analysis only the sl was considered. 

In general, the Fl-sl responses are characterized by a short linear branch followed by a nonlinear 

response up to peak load. In some series post-peak response can be observed. When the type of test is 

compared, beam pullout tests yielded to superior performance, not only in terms of higher peak load, but 

also a more ductile response, since the Fl-sl responses always include a post-peak phase. In the pullout 

bending tests the FRP bar is simultaneously submitted to an axial force and a curvature due to the rotation 

of the beam. The influence of the curvature is higher at the loaded end vicinity. The relative vertical 

displacement between the top surface of the groove and the top surface of the bar introduces a lateral 

confinement pressure in the bar. Assuming that the behaviour of the GFRP-glulam interface system can 

be governed by a Mohr-Coulomb model, this lateral pressure increases the bond resistance, which is 

responsible for the higher peak bond force registered in the BPT.  

From these figures is also visible that the peak pullout force and the slip at this load level increase 

with the bond length. Furthermore, comparing Fig. 4(a-b) with (c-d) it can be concluded that the rougher 

external surface of the GFRP2 rod contributed to increase the peak pullout force and the corresponding 

loaded end slip (see also Tables 3 and 4), since similar mechanical properties were obtained in the 

experimental characterization of these bars (see Table 2). The increase in terms of Ffmax due to the distinct 

surface treatment of the GFRP rods, found for the series Lb30, Lb60 and Lb120 was 16%, 35% and 29% 

and, 7%, 11% and 25% for the DPT and BPT, respectively. From this statement is evident fact the effect 

of the influence of the external surface was more important for the case of DPT. 
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Fig. 4(e-f) shows that the benefits in terms of peak pullout force derived from installing the GFRP 

bar into the groove as deeper as possible was only relevant for the larger bond lengths (120 and 180 mm). 

From the comparison of the D1 and D2 curves it can be concluded that the pullout capacity increases with 

the depth that the bar is installed into the groove, which is in agreement with results obtained with NSM 

CFRP laminates (Costa and Barros 2011 [13]). 

Analyzing the results included in Tables 3 and 4 the following main conclusions can be pointed 

out: 

• The Ffmax increases with the bond length. The maximum average value occurred for the 

GFRP1_D2_Lb180 of the BPT series, i.e. in the series with a GFRP deeper placed into the 

groove; 

• As expected, the pullout efficiency, defined by the Ffmax / Ffu ratio, increased with the bond 

length. For the case of the BPT an average of about 80% was attained in the 

GFRP1_D2_Lb180; 

• As expected, bond strength has decreased with the increase of the bond length (see columns of 

τmax,av1 and τmax,av2) due to the non-constant tangential stress along the longitudinal axis of the 

FRP (Sena-Cruz and Barros 2004 [14]). It was also predictable higher values for τmax,av1 when 

compared with τmax,av2, since the contact area for the latter is larger; 

• In general, all the parameters present quite low values of the corresponding coefficients of 

variation. The exception is for the values of slips at the loaded and free ends. In fact high 

coefficients of variation were observed, and an eventual justification can be attributed to the 

difficulty in measuring this physical entity; 

• Fig. 5 shows the principal obtained failure modes: (i) glulam shear failure (GS); 

(ii) glulam/adhesive interfacial sliding (GAI); (iii) FRP/adhesive interfacial sliding and 

adhesive splitting (FAI+SPL). Analyzing the failure modes obtained no special tendency can 

be observed. 

Fig. 6 presents the influence of the bond length (Lb) on the following parameters: pullout force 

efficiency (Fmax/Ffu), loaded end slip (sl), average bond strength at FRP/adhesive interface (τav1), and 

average bond strength at adhesive/glulam interface (τav2). The Fmax/Ffu ratio and the sl have increased with 
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the bond length, however, a non-asymptotic trend can be observed. Larger Lb values need to be 

investigated to obtain the maximum values for the Fmax/Ffu ratio. The increase rate of sl with Lb seems to 

increase linearly with Lb. A distinct trend is observed for the series GFRP1_D2. Fig. 6 also evidences the 

benefits in terms of Fmax/Ffu and τav1, when the rod is deeper installed into the groove. The better 

performance that can be achieved when selecting a bar of rougher surface is quite visible in terms of 

Fmax/Ffu and bond stresses. The decrease of the average bond stress with the increment of the bond length 

in all tested series seems to tend to an asymptotic value. 

 

4. NUMERICAL ANALYSIS 

The mathematical representation of the pullout phenomenon is often expressed by a second order 

differential equation, which can be established either in terms of forces (Naaman et al. 1990 [15], 

Sujvorakul et al. 2000 [16], Banholzer et al. 2005 [17]), or derived in terms of slip (Russo et al. 

1990 [18], Focacci et al. 2000 [19], Sena-Cruz and Barros 2004 [14]). In the present work the local bond 

law was established in terms of slip and obtained by an inverse analysis procedure. Here, it will be 

presented a brief overview of the analytical formulation. The detailed description of the analytical model, 

as well as the inverse analysis strategy can be found elsewhere (Sena-Cruz and Barros 2004 [14], Sena-

Cruz et al. 2006 [20]). The adopted analytical model to obtain the local bond stress–slip law has shown a 

good predictive performance on modeling a diversity of pullout test results, such as: near-surface 

mounted CFRP laminate strips (Sena-Cruz et al. 2006 [20]), galvanized steel rebar (Sena-Cruz et al. 

2009 [21]), discrete steel fibers embedded in concrete medium (Cunha et al. 2008 [22], 2010 [23]).  

 

4.1 Local bond-slip  

The equilibrium of the free body with an infinitesimal length dx of a GFRP rod bonded to glulam by an 

adhesive can be given by: 

( )f f f f f fA P dx d Aσ τ σ σ⋅ + ⋅ ⋅ = + ⋅  (1) 

where τ = τ [s(x)] is the local bond shear stress acting on the contact surface between the rod and the 

glulam, and s is the slip, i.e. the relative displacement between the GFRP and the glulam. Finally, σf, Af 

and Pf are the normal stress, cross section area and perimeter of the GFRP rod, respectively.  
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Assuming that the GFRP has a linear elastic constitutive law in the longitudinal direction (��� =

�� ∙ ���) and neglecting the glulam deformability in the slip determination, after simplification of Eq. 1, 

the second order differential equation that governs the local bond phenomena of the bar-matrix interface 

is given by: 

2

2
( )f

f f

Pd s
x

E Adx
τ= ⋅  (2) 

 

4.2 Pullout load-slip relationship  

Consider a GFRP rod inserted in glulam over a bond length Lb, where N is the generic applied pullout 

force, and sf and sl are, respectively, the free and loaded end slips (see Fig. 7). When the GFRP rod is 

slipping due to an applied pullout force, �	, the following functions can be evaluated along the rod bond 

length: slip along the rod, s(x); bond shear stress along the embedded length, τ(x); GFRP strain, εf ; and 

the axial force, N(x), where the origin of x axis coincides with the free extremity of the bond length. 

In Fig. 7 the slip diagram along the rod, s(x), can be regarded as the sum of two components. A 

constant component, sf, which produces a rigid body displacement of the GFRP, whereas the sd(x) 

component results from the deformation of the GFRP. Moreover, for any point x of the GFRP embedded 

length, just the sd(x) component will result in a GFRP rod length change, thus the rod deformation at a 

point x is obtained from ( ) ( ) /( )f f fx N x E Aε = . The pullout force is given by Eq. 3, which was obtained 

by equating both the internal and external work produced, respectively, by the rod elastic deformation and 

the bond stress profile at the GFRP interface (Sena-Cruz et al. 2009 [21]). 

( )
2 ( )

b

f

s x L

f f f s
N E A P s dsτ

=
= ⋅ ⋅ ⋅ ⋅∫

ɶ

 (3) 

The analytical bond stress-slip relationship used in the present work is defined by Eq. 4, where τm 

and sm are, respectively, the bond strength and its corresponding slip. Parameter α defines the shape of the 

pre-peak branch, whereas α’  determines the shape of the post-peak branch. 

( ) , ( ) ,m m m m
m m

s s
s s s s s s

s s

α α

τ τ τ τ
′−

   
= ≤ ∧ = >   

   
 (4) 
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4.3 Numerical procedure 

Considering the entities described in Fig. 7, the boundary conditions at the free and loaded ends are 

indicated in Eq. 5. Numerical and experimental entities are simultaneously used; hence the experimental 

one was distinguished by an overline, i.e. �	
 represents for the pullout force experimentally measured in 

the i-th experimental scan read-out. 

( ) ( )

(0) ( )

0 (0) 0 ( )

(0) 0 ( ) /

f b l

b b

f f b b f f

s s s L s

x N x L N L N

L N L E Aε ε

 = =
 = → = ∧ = → = 

 = = 

 (5) 

The GFRP rod pullout tests provide data in terms of pullout force, �	, and free-end slip, �̅�, for 

several scan read-outs, being �̅�

  and �	
 the values of the i-th scan read out. Regarding these experimental 

results, the set of unknown parameters of the local bond relationship (τm, sm, α, α’  comprised in Eq. 4) is 

desired to be found in order to fit the differential Eq. 2 as accurately as possible. Further details of the 

developed algorithm to obtain the local bond law by inverse analysis can be found elsewhere (Sena-Cruz 

et al. 2004 [14], 2006 [20]). 

 

4.4 Numerical results 

The local bond stress-slip relationship for each series was calibrated from the average experimental 

pullout load-slip curve. In this study was primarily intended to model the pullout behavior up to the 

maximum load. On the inverse analysis process, the search of α and α’ of the local bond relationship was 

conducted within the interval ]0, 1], whereas for τm and sm no boundaries were fixed. For the longitudinal 

elasticity modulus, the average values obtained on the mechanical characterization of the GFRP rods were 

used (see Table 2). For the geometrical properties, a cross-sectional area, Af, of 78.54 mm2 and a cross-

sectional perimeter, Pf, of 31.415 mm were adopted. 

The pullout force vs. loaded end slip (Fl-sl) curves obtained by the numerical inverse analysis 

procedure and experimentally, are compared in Fig. 8, being possible to conclude that the developed 

numerical strategy can predict with good accuracy the (Fl-sl) curves. The parameters of the local bond law 

defined in Eq. 4, which lead to the numerical (Fl-sl) curves, are included in Tables 5 and 6 for the bending 

and direct pullout tests, respectively. Moreover, in Tables 5 and 6, is also included the normalized error, 

Err, of the numerical fitting process to the experimental curve defined by the ratio between e and the area 
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under the experimental curve, being e the area between the experimental and numerical curves; the ratio 

between the maximum experimental pullout load and the maximum numerical pullout, Ffmax/Ffnum; and 

the ratio between the loaded end slip at Ffmax and the loaded end slip at Ffnum, sfmax/sfnum. In general, the 

obtained Err was relatively small with the exception of GFRP1_D2_Lb60 series that exceeded 10%. The 

Ffmax/Ffnum ratio obtained is close to the unit, [0.985-1.059], which shows the good accuracy on the 

estimation of the maximum pullout load. On the other hand, for sfmax/sfnum the Ffmax/Ffnum ratio ranged 

from 0.949 to 1.129, with several series with values close to the unit. 

Analyzing the parameters of the local bond stress law obtained by inverse analysis, included in 

Tables 5 and 6, the following main conclusions can be pointed out: 

• In general, the slip at maximum bond stress, sm, increases with the bond length, for both the 

beam and direct pullout tests; 

• The maximum bond stress, τm, decreases with the increase of the bond length, for both the 

beam and direct pullout series. GFRP1_D2_Lb60 series for both beam and direct tests are 

exceptions. Moreover, higher values of τm were obtained for the bending pullout test 

configuration; 

• For α parameter, which defines the shape of the pre-peak branch, it was not visualized any 

clear trend with the variation of the bond length. Nevertheless, the values of α obtained from 

the simulation of direct pullout tests where rather higher than the ones obtained from the beam 

pullout tests. An average value of 0.88 was obtained for the direct tests, whereas for the beam 

tests an average value of 0.57 was obtained. Notice that the allowed interval for parameter α 

ranges from 0 to 1.0. Moreover, as α tends to 1.0, the concavity of the pre-peak branch 

diminishes tending to a straight segment; 

• No clear trend was observed for α’. This was expected since α’ controls the shape of the post-

peak branch bond law, which has more preponderance on the softening phase of the pullout 

load – slip response. However, notice that α’ also influences the pullout load–slip response up 

to the maximum load. In Fig. 9 is depicted an example of the local bond stress τ variation over 

the GFRP longitudinal embedded length (x) corresponding to the maximum pullout load. It 

can be observed, for the maximum pullout load, that at the loaded end (x = 60 mm) the local 

bond strength, τm, was already attained for a lower pullout force. 
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Fig. 10 depicts the bond length influence on the numerical average bond strength, τav,num, and on 

numerical bond strength, τm. The values of τav,num, which are included in Tables 5 and 6, were computed 

in a distinct fashion from the average bond strength τmax,av1 and τmax,av2 obtained from the experimental 

results. The procedure to calculate τav,num was the following: i) for each series, at the maximum pullout 

load was obtained the corresponding slip variation over the longitudinal embedded length, s(x); ii)  the 

bond stress variation along the embedded length, τ (x) = τ [s(x)], is determined adopting for the local 

bond law the parameters obtained from the inverse analysis; iii)  the area under τ (x) is computed; 

iv) finally τav,num is obtained by dividing the area under τ (x) diagram by the corresponding embedment 

length, Lb. In Fig. 9 is also depicted τav,num obtained for the beam series GFRP1_D2_Lb60. The computed 

values of τav,num, as expected, were smaller than the τm. Moreover, in general, they were within the 

envelope of the average bond strength values at the FRP/adhesive interface, τmax,av1, see Fig. 10a. 

 

5. CONCLUSIONS 

The present work presented an experimental study on bond characterization between GFRP rods and 

glulam, using the near surface mounted (NSM) strengthening technique, through beam and direct pullout 

tests (BPT and DPT). The type of GFRP rod (GFRP1 and GFRP2), the groove geometry/FRP location 

(D1 and D2) and the bond length (Lb=30, 60, 120 and 180 mm) were the main variables studied. 

The maximum pullout force (Ffmax), the loaded and free ends slips (sl and sf), and the ratio between 

maximum pullout force and the FRP strength (Ffmax / Ffu) have increased with Lb, while the bond strength 

(τmax) has decreased with the increase of Lb. A rougher external surface of the rod (GFRP2) has provided 

a better bond performance, as well as a deeper installation of the GFRP into the groove (D2). In general, 

the pullout force versus loaded end slip relationships (Fl-sl) are characterized by a short linear branch 

followed by a nonlinear response up to peak load. When the type of test is compared, BPT yielded to 

superior performance, not only in terms of peak load, but also in the ductility of the Fl-sl response. 

Failure modes included glulam shear failure, interfacial failure glulam/adhesive, interfacial failure 

FRP/adhesive and adhesive splitting. 
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Using a numerical approach, a local bond stress-slip relationship was obtained from the test 

results. The parameters that define this relationship were, however, found to be dependent on the bond 

length. 
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TABLE CAPTIONS 

Table 1 – Experimental program 

Table 2 – Main results obtained on the mechanical characterization of the GFRP rods (average values) 

Table 3 – Main results obtained on the direct pullout tests, DPT (average values) 

Table 4 – Main results obtained on the beam pullout tests, BPT (average values) 

Table 5 – Local bond stress–slip relationship parameters obtained from IA of the pullout bending tests 

Table 6 – Local bond stress–slip relationship parameters obtained from IA of the direct pullout tests 
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Table 1 – Experimental program 

Material 
Depth 

(mm) 

Lb 

(mm) 
Denomination N. of specimens 

GFRP1 15 

30 GFRP1_D1_Lb30 6 (D); 4 (B) 

60 GFRP1_D1_Lb60 6 (D); 2 (B) 

120 GFRP1_D1_Lb120 6 (D); 4 (B) 

GFRP1 20 

30 GFRP1_D2_Lb30 2 (D); 3 (B) 

60 GFRP1_D2_Lb60 2 (D); 3 (B) 

120 GFRP1_D2_Lb120 3 (D); 3 (B) 

180 GFRP1_D2_Lb180 2 (D); 2 (B) 

GFRP2 15 

30 GFRP2_D1_Lb30 3 (D); 2 (B) 

60 GFRP2_D1_Lb60 3 (D); 4 (B) 

120 GFRP2_D1_Lb120 4 (D); 2 (B) 

 

 Note: D – Direct pullout test; B – Beam pullout test 
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Table 2 – Main results obtained on the mechanical characterization of the GFRP rods (average values) 

GFRP 
Ffmax 

(kN) 

σσσσfmax 

(MPa) 

Ef 

(GPa) 

εεεεfmax 

(‰) 

Failure 

mode 

GFRP1 61.12 (3.5%) 778.14 (3.5%) 38.42 (1.3%) 20.25 (2.3%) XGM (all) 

GFRP2 61.15 (1.6%) 786.04 (2.8%) 41.60 (7.8%) 18.99 (10.2%) OGM (all) 

Notes: XGM – Explosive failure in gauge measuring length; OGM – Explosive failure located outside 

of the gauge measuring length. The values between parentheses are the corresponding coefficients of 

variation. 
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Table 3 – Main results obtained on the direct pullout tests, DPT (average values) 

Series Ffmax 

(kN) 

Ffmax / Ffu 

(%) 

τmax,av1 

(MPa) 

τmax,av2 

(MPa) 

sfmax 

(mm) 

slmax 

(mm) 

Failure mode 

GFRP1_D1_Lb30 9.58 

(5.6%) 

15.68 

(5.6%) 

10.17 

(5.6%) 

6.97 

(5.3%) 

0.25 

(13.2%) 

0.34 

(17.0%) 

FAI+SPL 

GFRP1_D1_Lb60 16.89 

(11.4%) 

27.64 

(11.4%) 

8.96 

(11.4%) 

6.13 

(11.3%) 

0.31 

(22.3%) 

0.62 

(19.5%) 

FAI+SPL 

GFRP1_D1_Lb120 24.17 

(5.0%) 

39.54 

(5.0%) 

6.41 

(5.0%) 

4.39 

(5.3%) 

0.29 

(5.5%) 

0.86 

(12.9%) 

FAI+SPL (5)* 

FAI+GS+SPL (1)*  

GFRP1_D2_Lb30 11.10 

(4.5%) 

17.98 

(4.5%) 

11.78 

(4.5%) 

6.65 

(4.6%) 

0.12 

(2.7%) 

0.21 

(23.1%) 

GAI+FAI; GAI 

GFRP1_D2_Lb60 22.83 

(0.9%) 

36.98 

(0.9%) 

12.11 

(0.9%) 

6.79 

(0.9%) 

0.22 

(24.2%) 

0.44 

(22.8%) 

FAI+CR; GS 

GFRP1_D2_Lb120 31.29 

(4.2%) 

50.69 

(4.2%) 

8.30 

(4.2%) 

4.67 

(4.6%) 

0.20 

(20.6%) 

1.02 

(12.4%) 

GAI; GAI+FAI; 

GAI+GS 

GFRP1_D2_Lb180 37.78 

(8.9%) 

61.20 

(8.9%) 

6.68 

(8.9%) 

3.76 

(9.1%) 

0.15 

(37.8%) 

1.30 

(5.7%) 

GS; FAI 

GFRP2_D1_Lb30 11.84 

(8.8%) 

19.18 

(8.8%) 

12.57 

(8.8%) 

8.65 

(8.4%) 

0.33 

(15.0%) 

0.32 

(22.9%) 

FAI+GAI+SPL; 

GAI ; FAI+SPL 

GFRP2_D1_Lb60 20.17 

(2.4%) 

32.67 

(2.4%) 

10.70 

(2.4%) 

7.30 

(2.3%) 

0.36 

(15.1%) 

0.66 

(8.8%) 

FAI+GAI+SPL; 

GAI+FAI; AI+GS 

GFRP2_D1_Lb120 31.44 

(4.0%) 

50.93 

(4.0%) 

8.34 

(4.0%) 

5.75 

(4.0%) 

0.35 

(8.1%) 

1.01 

(7.0%) 

FAI+CR (1)*  

FAI+SPL (3)* 

Notes: FAI – FRP/adhesive interfacial sliding; GAI – glulam/adhesive interfacial sliding; SPL – adhesive splitting; GS – glulam 

shear failure; CR – adhesive cracking; FF – FRP failure; the percentages values between parenthesis are the corresponding 

coefficients of variation; *the value between parenthesis is the number of specimens with this type of failure mode. 
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Table 4 – Main results obtained on the beam pullout tests, BPT (average values) 

Series Ffmax 

(kN) 

Ffmax / Ffu 

(%) 

τmax,av1 

(MPa) 

τmax,av2 

(MPa) 

sfmax 

(mm) 

slmax 

(mm) 

Failure mode 

GFRP1_D1_Lb30 11.81 

(9.3%) 

19.32 

(9.3%) 

12.53 

(9.3%) 

8.62 

(10.0%) 

0.09 

(71.6%) 

0.20 

(31.0%) 

FAI+CR (3)*; 

GAI+FAI+CR 

GFRP1_D1_Lb60 20.19 

(0.2%) 

33.04 

(0.2%) 

10.71 

(0.2%) 

7.43 

(0.7%) 

0.12 

(93.8%) 

0.45 

(13.9%) 

FAI+CR 

GFRP1_D1_Lb120 27.42 

(2.0%) 

44.87 

(2.0%) 

7.31 

(2.6%) 

5.00 

(2.1%) 

0.06 

(96.6%) 

0.90 

(12.1%) 

FAI+CR 

GFRP1_D2_Lb30 12.64 

(11.0%) 

20.68 

(11.0%) 

13.41 

(11.0%) 

7.58 

(11.5%) 

0.07 

(62.1%) 

0.17 

(28.2%) 

GAI; FAI+CR; 

FAI+GAI+CR 

GFRP1_D2_Lb60 22.46 

(5.7%) 

36.76 

(5.7%) 

11.92 

(5.7%) 

6.76 

(5.6%) 

0.11 

(25.3%) 

0.36 

(21.0%) 

GAI; FAI+CR; GS 

GFRP1_D2_Lb120 34.29 

(8.9%) 

57.15 

(8.9%) 

9.10 

(8.9%) 

5.15 

(9.1%) 

0.06 

(48.8%) 

0.95 

(3.4%) 

GAI+FAI+CR (1)*; 

FAI+CR (2)*  

GFRP1_D2_Lb180 48.49 

(13.5%) 

79.36 

(13.5%) 

8.58 

(13.5%) 

4.83 

(13.7%) 

0.19 

(35.7%) 

2.91 

(14.7%) 

GAI+FAI+CR; 

GAI+GS 

GFRP2_D1_Lb30 15.49 

(6.4%) 

25.09 

(6.4%) 

16.44 

(6.4%) 

11.21 

(7.0%) 

0.25 

(68.6%) 

0.30 

(19.7%) 

FAI+CR; GAI 

GFRP2_D1_Lb60 24.85 

(9.9%) 

40.25 

(9.9%) 

13.18 

(9.9%) 

9.09 

(10.3%) 

0.10 

(64.6%) 

0.37 

(61.7%) 

FAI+CR (2); GS+GAI; 

FAI+GAI+CR 

GFRP2_D1_Lb120 33.69 

(6.8%) 

54.58 

(6.8%) 

8.94 

(6.8%) 

6.06 

(4.6%) 

0.38 

(92.3%) 

0.90 

(3.1%) 

FAI+CR; GS+FAI+CR 

Notes: FAI – FRP/adhesive interfacial sliding; GAI – glulam/adhesive interfacial sliding; SPL – adhesive splitting; GS – glulam 

shear failure; CR – adhesive cracking; FF – FRP failure; the percentages values between parenthesis are the corresponding 

coefficients of variation; *the value between parenthesis is the number of specimens with this type of failure mode. 
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Table 5 – Local bond stress–slip relationship parameters obtained from IA of the pullout bending tests 

Series sm 

(mm) 

τm 

(MPa) 

α 

(-) 

α’  

(-) 

Err. 

(%) 

sfmax / sfnum 

(-) 

Ffmax / Ffnum 

(-) 

τav,num 

(MPa) 

GFRP1_D1_Lb30 0.12 12.7 0.86 0.40 2.6 1.174 1.019 11.93 

GFRP1_D1_Lb60 0.22 11.0 0.55 0.20 4.1 1.219 1.017 10.39 

GFRP1_D1_Lb120 0.30 7.8 0.40 0.35 4.0 1.129 1.028 6.80 

GFRP1_D2_Lb30 0.14 12.4 0.51 0.30 3.6 1.018 1.014 11.88 

GFRP1_D2_Lb60 0.22 13.2 0.46 0.20 1.7 1.082 1.018 10.08 

GFRP1_D2_Lb120 0.34 10.1 0.83 0.10 2.7 1.072 1.043 9.18 

GFRP1_D2_Lb180 2.10 9.2 0.30 0.20 3.2 0.976 1.059 8.78 

GFRP2_D1_Lb30 0.22 16.0 0.65 0.60 1.5 1.019 1.014 15.14 

GFRP2_D1_Lb60 0.19 13.5 0.50 0.50 6.3 1.082 1.018 11.85 

GFRP2_D1_Lb120 0.25 10.9 0.67 0.52 2.1 1.085 1.043 8.43 
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Table 6 – Local bond stress–slip relationship parameters obtained from IA of the direct pullout tests 

Series sm 

(mm) 

τm 

(MPa) 

α 

(-) 

α’  

(-) 

Err. 

(%) 

sfmax / sfnum 

(-) 

Ffmax / Ffnum 

(-) 

τav,num 

(MPa) 

GFRP1_D1_Lb30 0.28 9.3 0.95 0.10 2.6 1.047 1.000 9.00 

GFRP1_D1_Lb60 0.51 8.0 0.99 0.30 3.2 0.950 0.986 7.41 

GFRP1_D1_Lb120 0.57 7.2 0.87 0.10 1.3 1.000 1.008 6.21 

GFRP1_D2_Lb30 0.16 11.2 0.72 0.50 2.2 1.190 0.985 10.71 

GFRP1_D2_Lb60 0.29 12.5 1.00 0.90 10.7 0.975 1.035 10.67 

GFRP1_D2_Lb120 0.65 9.5 1.00 0.20 6.2 0.989 0.991 7.76 

GFRP1_D2_Lb180 0.41 7.2 0.40 0.60 0.8 1.000 1.002 6.41 

GFRP2_D1_Lb30 0.35 13.2 0.96 0.80 2.5 0.949 1.000 12.65 

GFRP2_D1_Lb60 0.49 10.7 0.96 0.20 0.5 1.000 1.005 10.01 

GFRP2_D1_Lb120 0.69 9.9 0.99 0.85 2.4 1.000 1.006 7.99 
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FIGURE CAPTIONS 

Fig. 1 – Direct pullout tests: (a) Specimen geometry and configuration; (b) Layout. Note: all dimensions 

are in millimeters. 

Fig. 2 – Beam pullout tests: (a) Specimen geometry and configuration; (b) Layout. Note: all dimensions 

are in millimeters. 

Fig. 3 – FRP rods used in the experimental program: (a) GFRP1; (b) GFRP2. 

Fig. 4 – Pullout force vs. loaded end slip for the series GFRP1_D1 (a-b), GFRP2_D1 (c-d) and 

GFRP1_D2 (e-f) for the beam and direct pullout tests, respectively (average curves). 

Fig. 5 – Typical failure modes obtained in the pullout tests. 

Fig. 6 – Bond length influence on: (a) efficiency in terms of maximum load; (b) loaded end slip; (c) 

average bond strength τav1; (d) average bond strength τav2. 

Fig. 7 – Entities in the analytical model. 

Fig. 8 – Pullout force vs. loaded end slip relationships obtained by inverse analysis for the series: 

GFRP1_D1 (a-b), GFRP2_D1 (c-d) and GFRP1_D2 (e-f) for the beam and direct pullout tests, 

respectively. 

Fig. 9 – Variation of the bond stress,τ, and slip, s, along the GFRP longitudinal embedded length (x) for 

the beam series GFRP1_D2_Lb60. 

Fig. 10 – Bond length influence on: (a) the numerical average bond strength τav,num; (b) numerical bond 

strength τm. 

  



Sena-Cruz, J.; Branco, J.; Jorge, M.; Barros, J.A.O.; Silva, C.; Cunha, V.M.C.F. (2011) “Bond behavior between glulam and GFRP's 
by pullout tests.” Composites Part B: Engineering. (DOI:10.1016/j.compositesb.2011.10.022) 

25 
 

  

(a) (b) 

Fig. 1: Direct pullout tests: (a) Specimen geometry and configuration; (b) Layout. Note: all dimensions 

are in millimeters.  
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(a) 

 

(b) 

Fig. 2: Beam pullout tests: (a) Specimen geometry and configuration; (b) Layout. Note: all dimensions 

are in millimeters. 
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(a) 

 

(b) 

Fig. 3 – FRP rods used in the experimental program: (a) GFRP1; (b) GFRP2. 
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   (a) 
 

 
   (b) 

 
   (c) 
 

 
   (d) 

 
   (e) 
 

 
   (f) 

Fig. 4 – Pullout force vs. loaded end slip for the series GFRP1_D1 (a-b), GFRP2_D1 (c-d) and 

GFRP1_D2 (e-f) for the beam and direct pullout tests, respectively (average curves). 
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GS – Glulam shear failure GAI – Glulam/adhesive 

interfacial sliding 
FAI+SPL – FRP/adhesive 

interfacial sliding + adhesive 
splitting 

Fig. 5 – Typical failure modes obtained in the pullout tests. 
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(a)  

(b) 

 
(c) 

 
(d) 

Fig. 6 – Bond length influence on: (a) efficiency in terms of maximum load; (b) loaded end slip; (c) 

average bond strength τav1; (d) average bond strength τav2. 
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Fig. 7 – Entities in the analytical model. 
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   (a) 
 

 
   (b) 

 
   (c) 
 

 
   (d) 

 
   (e) 
 

 
   (f) 

Fig. 8 – Pullout force vs. loaded end slip relationships obtained by inverse analysis for the series: 

GFRP1_D1 (a-b), GFRP2_D1 (c-d) and GFRP1_D2 (e-f) for the beam and direct pullout tests, 

respectively. 
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Fig. 9 – Variation of the bond stress,τ, and slip, s, along the GFRP longitudinal embedded length (x) for 

the beam series GFRP1_D2_Lb60. 
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(a) 

 
(b) 

Fig. 10 – Bond length influence on: (a) the numerical average bond strength τav,num; (b) numerical bond 

strength τm. 
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