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Abstract: In the context of flexural strengthening of concrete structures, fiber reinforced polymers (FRP) 

have been used mostly by two main techniques: Externally Bonded Reinforcement (EBR) and Near-

Surface Mounted (NSM). Both strengthening techniques are applied on the cover concrete, which is 

normally the weakest region of the element to be strengthened. Consequently, the most common problem 

is the premature failure of the strengthening system that occurs more frequently in the EBR one. In an 

attempt of overcoming this weakness, another technique has been proposed, called MF-EBR – 

Mechanically Fastened and Externally Bonded Reinforcement, which uses multi-directional carbon fiber 

laminates, simultaneously glued and anchored to concrete. To compare the efficiency of NSM, EBR and 

MF-EBR techniques, four-point bending tests with RC beams were carried out under monotonic and 

cyclic loading. In this work the tests are described in detail and the obtained results are discussed. 

Additionally, to assess the performance of a FEM-based computer program for the prediction of the 

behaviour of RC beams strengthening according to these techniques, the beams submitted to monotonic 

loading were numerically simulated. 
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1. Introduction  

Over the last two decades, extensive research has been developed on the strengthening of reinforced 

concrete (RC) structures with fiber reinforced polymer (FRP) materials. High stiffness and tensile 

strength, low weight, easy installation procedures, high durability (no corrosion), electromagnetic 

permeability and practically unlimited availability in terms of geometry and size are the main advantages 

of these composites [1, 2]. 

The most common techniques for applying FRP’s are, in general, based on the use of 

unidirectional FRP’s through the: (i) application of fabrics (in situ cured systems) or laminates (pre-cured 

systems) glued externally on the surface of the element to strengthen (EBR – Externally Bonded 

Reinforcement); (ii) insertion of laminates (or rods) into grooves opened on the concrete cover (NSM – 

Near-Surface Mounted) [2, 3]. Epoxy adhesives are the most used to fix the FRP to concrete. The 

strengthening performance of these techniques depends significantly on the resistance of the concrete 

cover, which is normally the most degraded concrete region in the structure due to its greater exposure to 

environment conditions. As a result, premature failure of FRP reinforcement can occur and, generally, the 

full mechanical capacity of the FRP’s is not mobilized, mainly when adopting the EBR technique. To 

avoid this premature failure complements have been applied to the aforementioned strengthening 

techniques, such as the application of anchor systems composed of steel plates bolted in the ends of the 

FRP, the use of strapping with FRP fabric or the use of FRP anchor spikes. In addition to the stress 

concentration that these localized interventions introduce in the elements to strengthen, they require 

differentiated and time consuming tasks that can compromise the competitiveness of these techniques. 

More recently, some FRP-based alternatives for structural strengthening have been proposed [4]. 

The mechanically fastened fiber reinforced polymer (MF-FRP) technique has been introduced to 

strengthen concrete structures, and is mainly characterized by the use of hybrid (carbon and glass) FRP 

strips that are mechanically fixed to concrete using closely spaced fastening pins and, if necessary, 

anchors at the ends of the strip are applied to prevent debonding. According to the search performed the 

MF-FRP concept was initially explored at the University of Wisconsin under supervision of Lawrence 

Bank in 1998 [4]. This technique has already been used in some applications, e.g. reinforced concrete, 

wood and masonry structures, and several benefits have been pointed out, namely, quick installation with 

relatively simple hand tools, no need for special labour skills, no surface preparation required, and the 

strengthened structure can be immediately used after the installation of the FRP. From these tests an 



Sena-Cruz, J.M.; Barros, J.A.O.; Coelho, M.R.; Silva, L. (2011) “Efficiency of different techniques in flexural strengthening of RC 
beams under monotonic and fatigue loading.” Construction & Building Materials. (DOI: 10.1016/j.conbuildmat.2011.10.044) 

3 

increase of up to 50% of the carrying capacity was observed in some cases, when compared with the 

reference structure. Additionally, the occurrence of a more ductile failure mode for the FRP system is 

referred [5-12]. Nevertheless, some notable disadvantages of this technique have been reported, including 

greater initial cracking induced by the impact of fasteners in high-strength concrete, and less-effective 

stress transfer between the FRP and concrete due to the discrete attachment points [13]. 

Based on the MF-FRP technique, the mechanically fastened and externally bonded reinforcement 

technique (MF-EBR) has been proposed [14, 15]. The MF-EBR combines the fasteners from the MF-FRP 

technique and the externally glued properties from the EBR. In addition, all the anchors are pre-stressed. 

When this strategy is applied high levels of efficacy can be observed. 

To assess the efficiency of EBR, NSM and MF-EBR techniques, four-point bending tests with RC 

beams were carried out under monotonic and fatigue loading. The tests are described and the results are 

presented and discussed in detail. To appraise the capabilities of a computer program for the prediction of 

the behaviour of RC beams strengthening according to these techniques, a code package based on the 

finite element method (FEM) which includes several constitutive models for the material nonlinear 

analysis of RC structures was applied on the simulation of the beams submitted to monotonic loading. 

 

2. Experimental Program 

To appraise the effectiveness of the EBR, MF-EBR and NSM techniques, an experimental program 

composed of two series of four beams each was carried out. The difference between the series is restricted 

to the loading configuration: one series was subjected to monotonic loading, while the other to fatigue 

loading. Each series is composed of a reference beam (REF) and a beam for each investigated 

strengthening technique. 

 

2.1. Specimens and Test Configuration 

The RC beams have a cross section of 200 mm wide and 300 mm height, and 2000 mm of support 

distance. All the beams have three longitudinal steel bars of 10 mm diameter (3Ø10) at the bottom, and 

2Ø10 at the top (see Fig. 1). The transverse reinforcement is composed of steel stirrups of 6 mm diameter 

(Ø6) with a constant spacing of 100 mm in order to avoid shear failure. Fig. 2 includes the cross section 

of the strengthened beams. 
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Table 1 presents the main properties of the beams. In this table tf, Lf and wf are the thickness, the 

length and the width of the laminates, respectively, and ρs,eq is the equivalent longitudinal steel 

reinforcement ratio defined by Eq. 1, where b is the width of the beam; As and Af are the cross sectional 

area of the tensile longitudinal steel bars and FRP systems, respectively; Es and Ef are the modulus of 

elasticity of steel and FRP, respectively; and, ds and df are the distance from the top concrete compression 

fiber to the centroid of the steel bars and FRP systems, respectively. For all the strengthened beams an 

almost similar ρs,eq was applied. 

 s,eq
f fs

s s f

E AA

bd E bd
ρ = + ⋅  (1) 

In this experimental study, a four-point bending test configuration was adopted for the monotonic 

and fatigue tests (see Fig. 3a). A servo-controlled hydraulic system was used to perform the monotonic 

tests under displacement control, with a deflection rate of 20 µm/s, using the linear variable differential 

transducer (LVDT) located at the mid-span of the beam (LVDT3 in Fig. 3).  

The fatigue tests were performed between a minimum fatigue level of Smin=25% and maximum 

fatigue level of Smax=55%, where the S is the ratio between the applied load and the load carrying 

capacity, Fm, of the corresponding monotonic beam. According to [2] at 1 million cycles, the fatigue 

strength of the CFRP material is generally between 60 and 70% of the initial static ultimate strength and 

is relatively unaffected by the moisture and temperature exposures of concrete structures unless the resin 

or fiber/resin interface is substantially degraded by the environment. In addition, for the present 

specimens the yielding of the tensile longitudinal reinforcement start at about Smax=60%. Due to these 

reasons, Smax was defined as equal to 55%. The Smin was defined taking into account the maximum 

allowed deflection amplitude that can be applied with the servo-controlled device working at a frequency 

of 2 Hz. The fatigue tests were composed by three main steps: initially, a monotonic loading was applied 

under force control at a load rate of 100 N/s up to the maximum level (Smax), in order to obtain the initial 

response of the beam; then, 1 million cycles were imposed at 2 Hz of frequency between Smin × Fm and 

Smax × Fm; finally, a monotonic loading up to the failure, with the same configuration of the monotonic 

tests, was applied to the beams. 

In addition to the LVDT3, four other LVDTs were used to record the deflections in the loaded 

sections (LVDT2 and LVDT4) and at the sections coinciding with the free end of the FRP systems 

(LVDT1 and LVDT5), see Fig. 3a. Strain gauges were glued on the longitudinal steel reinforcement and 
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on the FRPs to measure the strains during the tests, see Fig. 3b-e. The LVDTs had an accuracy of 1.0 µm 

and a stroke of ±12.5 mm.  

 

2.2. Material Characterization 

The mechanical characterization of the concrete was assessed by means of compression tests. For this 

purpose, six cylindrical concrete specimens were tested at the time of the tested beams to evaluate the 

compressive strength and the modulus of elasticity according to the recommendations [16] and [17], 

respectively. From the compression tests, an average compressive strength value of 53.08 MPa, with a 

coefficient of variation (CoV) of 4.0%, and an average value of 31.17 GPa (CoV=4.4%) for the modulus 

of elasticity, were obtained. The age of the concrete beams at the date of experimental program was about 

two years. 

The steel of the longitudinal bars and stirrups has a denomination of A400 NR SD according to 

[18]. The main mechanical properties of these steel bars are presented in the numerical simulation section. 

Additional information related with the experimental characterization of the steel bars can be found 

elsewhere [19]. 

In this work, two different types of CFRP laminates were used: unidirectional (UD-CFRP) for the 

cases of EBR and NSM techniques, and multi-directional (MDL-CFRP) for the case of the MF-EBR 

technique. Both laminates have smooth surface. Tensile tests were performed according to [20] for both 

laminates (UD-CFRP and MDL-CFRP) to assess their tensile properties. Bearing tests with MDL-CFRP 

specimens were performed, according to [21], to evaluate the bearing resistance of this composite. A 

detailed description of these tests can be found elsewhere [15]. Table 2 presents the mechanical properties 

of both laminates. The S&P Resin 220 epoxy adhesive was used to glue the laminates to the concrete. 

From the experimental characterization of this adhesive the average values for the following parameters 

were determined [19]: tensile strength of 33.03 MPa (CoV=8.52%), ultimate strain of 0.48% 

(CoV=11.80%), modulus of elasticity of 7.47 GPa (CoV=4.28%) . According to the supplier, this epoxy 

resin has a compressive strength and bond concrete/laminate strength of 90 MPa and 3 MPa, respectively. 

A Hilti  chemical anchors system was adopted to fix mechanically the MDL-CFRP laminate to 

concrete for the case of the MF-EBR beam. This system is composed by the resin HIT-HY 150 max and 

the HIT-V M8 8.8 threaded anchors. 
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2.3. Preparation of the Specimens 

The preparation of the strengthened beams required several steps. For EBR and NSM beams, the 

strengthening procedures are quite well documented in the literature [22]. In the case of the MF-EBR 

beam, its strengthening involved the following main procedures: 

a. Holes of 11 mm of diameter and 100 mm depth were made in the soffit of the beam. The holes 

were cleaned using compressed-air and a steel brush; 

b. The holes were filled with the chemical adhesive, and the fasteners were then inserted up to a 

depth of 100 mm; 

c. A rough concrete surface was assured using a rotary hammer with a needle adapter. Compressed-

air was used to clean the final surface; 

d. A transparent acrylic strip was used to mark the fasteners position and, then, the holes in the 

laminates were executed. The laminates were cleaned with acetone; 

e. Epoxy adhesive was applied on the treated area in the concrete surface and on the laminate surface 

that will be in contact; 

f. The laminate was placed on the concrete surface and pressed against it to create a uniform 

thickness of 1 to 2 mm; 

g. The adhesive in excess was removed and the fasteners were cleaned from any dirt attached; 

h. The pre-defined pre-stress level was applied in two phases after the curing time of the epoxy 

adhesive: a torque moment of 40 N×m was applied to the fasteners one day before the test; in the 

day of the test, this torque moment was re-installed. 

For all the strengthened beams the epoxy adhesive preparation followed the supplier 

recommendations included in the technical data-sheets. The beams were kept in the laboratory 

environment before being tested. Tests were carried out at least 7 days after the application of the FRP 

reinforcement. 

From a practical point of view, the holes in the MDL-CFRP should be done after it has been glued 

to the concrete. However, to minimize the damage in the MDL-CFRP during the concrete drilling 

process, this strategy was not followed in the present work. 

The number of fasteners, the space between them and the depth of the holes were chosen taking 

into account the information derived from a previous experimental program of direct pull-out bond tests 

[15]. 
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3. Results 

From the results of the performed tests some notes can be taken. In the following paragraphs the main 

significant aspects are pointed out for the cases of experimental tests and numerical simulations. 

 

3.1. Monotonic Loading Results 

Table 3 resumes the main results obtained in the performed tests, while Fig. 4 depicts the relationship 

between force and displacement at mid-span during the tests. In this table Fcr, Fy, and Fmax are the load at 

concrete crack initiation, yield initiation of the longitudinal steel bars and maximum load, respectively, 

and δcr, δy, and δmax are the corresponding vertical displacements at the mid-span; εfu is ultimate strain in 

the FRP obtained in tensile tests, whereas εfy and εfmax area the maximum strain in the FRP at Fy and Fmax, 

respectively. 

It can be concluded that the most effective strengthening technique was the MF-EBR, not only due 

to the maximum load reached (Fmax=148.2 kN), but also in terms of deflection at failure and εfmax /εfu 

ratio. When compared with the EBR, the MF-EBR system had an increase of the load carrying capacity of 

about 37%. This superior behaviour cannot be completely explained by the higher axial stiffness, EfAf, of 

the laminate, since the ratio between the EfAf of the MDL-CFRP and EfAf of the UD-CFRP (used in the 

EBR beam) is only 1.1. The pre-stressed anchors have contributed for this higher strengthening 

effectiveness of MF-EBR technique. In fact, while EBR FRP systems failed by FRP peeling, and NSM 

FRP systems by concrete cover rip-off (detachment of the concrete cover that includes the CFRP strips), 

the MF-EBR FRP laminates failed by bearing (Fig. 5). The presence of the anchors avoided the premature 

debonding (peeling) of the laminates, as well as the detachment of the concrete cover (rip-off). 

Defining the level of ductility as the ratio between the deflection at the maximum load and the 

deflection at the yielding of the longitudinal steel bars (δmax/δy), in the MF-EBR beam the δmax/δy was 

equal to 4.35, which was much higher than the values registered in the other two strengthened beams, the 

EBR (1.80) and NSM (2.98) beams. 

Apparently, in the MF-EBR beam the force corresponding to the crack initiation, Fcr, is higher 

than the Fcr of the other beams. This behaviour can be explained by the contribution of pre-stress. In fact, 

the pre-stress provided by the anchors may have induced a compressive stress state on the concrete cover, 

which has delayed the concrete crack initiation. This phenomenon could also explain the higher load 
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carrying capacity between the concrete crack initiation and the steel yield initiation of the MF-EBR beam. 

After the longitudinal steel bars have yielded, a slight higher stiffness can be observed in the NSM beam, 

when compared with the MF-EBR beam. This behaviour can be justified by the confinement that 

surrounding concrete provides to the NSM CFRP laminates [23]. 

Fig. 6 presents the strains in the FRP laminates for three distinct load levels: at crack initiation (CR), at 

yielding initiation of the steel bars (YL), and at the maximum load (UL). In this graph, the location of the 

strain gauge (SG) is referred to the left extremity of the laminates. As expected, from the extremity of the 

laminate up to the point load (left shear span length), the strain variation along the laminate increased 

almost linearly up to the load level corresponding to the yield initiation of the steel bars, which reflects 

the variation of the applied bending moment. The minimum strains in the MF-EBR laminates up to the 

yield initiation is justified by the high strain concentration around the fasteners, leading to smaller values 

in the intermediate zones between consecutive fasteners, where SGf are installed. However, the presence 

of the fasteners has allowed the development of the highest strain field in the shear span length, which can 

be justified by analysing the failure mechanism that occurs between two consecutive mechanical 

fasteners, shown in Figure 7. Due to the concrete compressive struts formed between mechanical 

fasteners in the shear span region, the laminate bends introducing an increment of strain due to its 

curvature, which is responsible for the relatively high strain value registered in the SGf2. Due to the 

highest strain gradient developed near the most external fasteners, and the decrease of the inclination of 

the concrete struts in the direction of the supports of the beam, a strain value similar to the ones registered 

in the other strengthening techniques was recorded in SGf1. Since concrete struts were not formed 

between fasteners in the pure bending zone, the strain registered in the SGF4 is identical to the strain 

recorded in the EBR technique. 

 

3.2 Fatigue loading 

Table 4 includes the relevant results obtained in the post-fatigue monotonic tests, while Fig. 8 depicts the 

relationship between force and displacement at mid-span up to rupture, after beams having been subjected 

to one million of cycles. 

Up to crack initiation the behaviour of these beams was similar to the one observed in the 

monotonic tests, i.e. the highest cracking load was registered in the MF-EBR beam. In terms of maximum 

load and ultimate deflection capacity, the NSM was the most effective strengthening technique. When 
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compared with the corresponding monotonic tests, marginal variation in terms of maximum load was 

obtained for the case of the REF, EBR and MF-EBR beams, whereas an increment of 9% was attained in 

the NSM beam. This might be justified by the smaller number and size of flaws and voids in the adhesive 

layer that bond the NSM laminates to the concrete of this beam when compared to the NSM monotonic 

beam. The inferior performance of the MF-EBR beam, when compared with the monotonic one, can be 

attributed to a possible loss of efficiency of the prestressed anchorages during the fatigue cycles, since 

only one nut was used per anchor, and due to a bearing strength degradation of the MDL-CFRP during 

the cycles. 

The EBR and NSM beams exhibited the same failure modes occurred in the monotonic tests. 

Despite the performance in the monotonic tests, the MF-EBR beam presented a more fragile failure mode 

with bearing and inter-laminar failure of the FRP. 

Fig. 9 presents the variation of the minimum and maximum displacements at mid-span during the 

fatigue cycles. Marginal variations can be observed. In fact, a decrease of 8.3%, 3.0%, 0.3% and 12.1% in 

terms of stiffness was observed for the REF, EBR, MF-EBR and NSM beams, respectively. 

Fig. 9 and a zoom into Fig. 8 show that above the deflection correspondent to the average load between 

Smin and Smax in the MF-EBR and NSM beams (≅60kN), a higher degradation of stiffness occurred in the 

MF-EBR beam. Above this load level the bond effectiveness starts being relevant for the beam’s load 

carrying capacity, which might justify the smaller ultimate load and the corresponding deflection in the 

MF-EBR beam submitted to fatigue loading. In fact, due to the formation of the concrete struts between 

consecutive fasteners, with damage to crack formation concentrated near the fasteners (Fig. 5), the bond 

condition of the MDL-CFRP laminates were degraded during the cyclic loading. 

In sections 3.1 and 3.2 several explanations were given for the observed phenomena, but no well 

supported conclusion can be retrieved due to the small number of tests. Therefore, further investigation is 

required to verify if the observed tendency is confirmed. 

 

3.3. Numerical simulation 

The monotonic tests were numerically simulated. Aspects such as crack initiation, stiffness degradation, 

steel yield initiation and load carrying capacity are focused. All the simulations were performed with the 

FEMIX computer program [24]. The tested beams were modelled as a plane stress problem. As example, 

Fig. 10 shows the geometry, the finite element mesh, loading configuration and support conditions 
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adopted in the study of the MF-EBR beam. To simulate the concrete part of the specimens, 4-node 

Serendipity plane stress elements with 2×2 Gauss-Legendre integration scheme were used. 

An elasto-plastic multi-fixed smeared crack model was adopted to simulate the nonlinear material 

behaviour of concrete [25]. The crack evolution in fracture mode I was simulated using the Cornellisen 

[26] tension softening diagram. The following concrete properties were used in the numerical 

simulations: density, ρ=25 N/mm3; Poisson’s ratio, νc=0.2; initial Young’s modulus, Eci=31.17 GPa; 

compressive strength, fc= 53.08 MPa; stress at crack initiation, fct=2.9 MPa; fracture energy, 

Gc=0.09 N/mm; crack band width, lb, was assumed equal to square root of the area of the integration point 

(IP) in order to assure that the results are not dependent of the mesh refinement; threshold angle, α=89º; 

maximum number of cracks per integration point, ncr=2. 

The longitudinal and transverse steel reinforcements, as well as the FRPs, were simulated with 2-

node linear cable elements with two Gauss-Legendre integration points. Perfect bond between the 

concrete and steel reinforcements was assumed. Bi-linear stress-strain relationship up to the ultimate load 

was assumed for the simulation of steel reinforcements. A linear stress-strain relationship, up to the 

tensile strength, was adopted for the case of unidirectional laminates (EBR and NSM beams). A bi-linear 

stress-strain relationship was assumed for the simulation of multi-directional CFRP laminate (MF-EBR 

beam) to account the bearing behaviour. Table 5 includes the properties adopted in the simulations of the 

steel reinforcements and FRPs. 

Perfect bond between concrete and FRP was assumed for the simulation of the NSM beam since 

experimental failure mode was by rip-off, while for the cases of EBR and MF-EBR beams slip was 

allowed. To model slip at the CFRP-concrete interface, in the simulations of EBR and MF-EBR beams 4-

node interface finite elements with two Gauss-Lobatto integration points were used. In the present 

numerical analysis the following relationship in terms of bond stress versus slip (τ−s) was adopted to 

simulate the nonlinear behaviour of the CFRP-concrete interface: 
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where τm and sm are the bond strength and the corresponding slip, respectively; α and α ′ define the shape 

of the τ−s law in the pre- and post-peak branches, respectively. Assuming that the normal stiffness of the 

interface elements has a marginal effect on the bonding behaviour, a constant value of 107 N/mm3 was 



Sena-Cruz, J.M.; Barros, J.A.O.; Coelho, M.R.; Silva, L. (2011) “Efficiency of different techniques in flexural strengthening of RC 
beams under monotonic and fatigue loading.” Construction & Building Materials. (DOI: 10.1016/j.conbuildmat.2011.10.044) 

11 

attributed. Literature dealing with the bond phenomenon between CFRP’s and concrete in the context of 

MF-EBR technique is extremely scarce. Therefore, the evaluation of τm was based on the information 

included in the technical data-sheet of the adhesive, whereas the other parameters were adjusted to fit the 

experimental response, mainly sm, α and α′. Thus, τm=3.0 MPa, sm=0.17 mm, α=0.9 and α′=2.0 were 

assumed for the simulation of the EBR beam, and τm=3.0 MPa, sm=0.05 mm, α=0.9 and α′=10.0 for the 

simulation of the MF-EBR beam. To simulate the anchors in the MF-EBR beam, 2-D linear elastic frame 

elements were used with perfect bond to concrete. 

A uniform temperature variation of -146ºC was applied to the frame elements, in order to simulate 

the pre-stress in anchors (40 N×m torque). With this temperature variation is possible to induce in the 

anchors the same compressive state that the real torque gives to them. 

Fig. 11 depicts the load versus deflection at mid-span obtained experimentally and numerically 

for the REF, EBR, MF-EBR and NSM beams. From the analysis of these curves of the first three beams, 

the main aspects observed in the experimental tests, such as crack initiation, yield initiation and load 

carrying capacity are well captured. The numerical simulation of the NSM beam predicts very well the 

experimental response up to the yield initiation of the steel bars. Above this deflection the model predicts 

a stiffer response, indicating that after yield initiation this simulation was not able of capturing the intense 

gradient of damage formed in the concrete surrounding the steel bars and CFRP laminates due to the 

higher stress transfer gradient to the laminates caused by the yielding of the steel bars. 

 

4. Conclusions 

In this paper the flexural strengthening effectiveness of a new technique (MF-EBR) is investigated. This 

technique combines the fasteners from the MF-FRP technique and the epoxy bond-based performance 

from the EBR technique. In addition, all the fasteners are pre-stressed. This flexural strengthening 

technique uses multi-directional laminates exclusively made with carbon fiber reinforced polymers 

(CFRP). 

To compare the efficiency of the MF-EBR, EBR and NSM strengthening techniques, an 

experimental program with RC beams was carried out. This program is composed by two series of beams, 

one submitted to monotonic loading and the other to a fatigue loading. In the monotonic tests, when 

compared to the reference beam, an increase on the loading carrying capacity of 37%, 87% and 86% was 

obtained for the EBR, MF-EBR and NSM strengthened beams, respectively. When compared to the EBR 
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beam, an increase of about 37% on the loading carrying capacity for MF-EBR technique was obtained. 

The most favourable aspect of the MF-EBR technique was, however, the deflection level at ultimate load 

(δmax), which is an indicator of ductility performance. In fact the normalized deflection capacity at 

maximum load (δmax/δy, with δy being the deflection at yield initiation) was 4.35, which was much higher 

than that registered in the other two strengthened beams, the EBR (1.80) and NSM (2.98) beams. In 

addition, more ductile failure mode was observed for MF-EBR technique. 

In terms of post-fatigue monotonic tests, the NSM beam has provided the highest increase in the 

ultimate load (101%), since the MF-EBR and EBR beams presented an increase of load capacity of 84% e 

43%, respectively, when compared with the maximum load of the control beam. In the fatigue tests the 

NSM beam presented the highest normalized deflection capacity at maximum load (6.7), while a value of 

3.5 and 2.4 was registered in the MF-EBR and EBR beams, respectively. 

In spite of the present results being credible, contributing for the knowledge in this area, further 

investigation is required to better understand the observed phenomena. 

Numerical simulations of the monotonic tests demonstrated that current FEM tools can simulate 

with high accuracy all the principal aspects observed in the tests such as crack initiation, stiffness 

degradation, yielding initiation in steel bars, and load carrying capacity. However, the smeared crack 

models hardly capture the rip-off failure mode observed in the NSM beams, since higher gradient of 

damage formed in the concrete surrounding the steel bars and CFRP laminates occurred. 
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TABLE CAPTIONS   

 

Table 1 — Properties of the beams. 

Table 2 — Mechanical properties of the CFRP laminates (average values) [15]. 
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Table 5 — Properties adopted for the simulation of the steel reinforcements, CRFP and MDL-CFRP. 
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Table 1 — Properties of the beams. 

Beam 
Type of 

laminate 

N.º of 

laminates 
tf [mm] Lf [mm] wf [mm] ρs,eq [%] 

REF - - - - - 0.439 

EBR Unidirectional 2 1.41 1400 30 0.550 

MF-EBR Multidirectional 2 2.07 1400 30 0.553 

NSM Unidirectional 4 1.41 1400 15 0.561 
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Table 2 — Mechanical properties of the CFRP laminates (average values) [15]. 

Property UD-CFRP MDL-CFRP 

Tensile strength [MPa] 2435 (CoV=5.8%) 1866 (CoV=5.1%) 

Modulus of elasticity [GPa] 158 (CoV=3.9%) 118 (CoV=2.8%) 

Ultimate tensile strain [%] 1.50 (CoV=4.7%) 1.58 (CoV=5.1%) 

Unclamped bearing strength [MPa] n/a 316.4 (CoV=11.8%) 

Clamped bearing strength [MPa] n/a 604.4 (CoV=5.8%) 
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Table 3 — Main results obtained in the monotonic tests. 

Beam 
Crack initiation Yielding Ultimate 

δmax/δy 
εfy/εfu 

[%] 

εfmax/εfu 

[%] 
FRP Failure mode 

δcr [mm] Fcr [kN] δy [mm] Fy [kN] δmax [mm] Fmax [kN]  

REF 0.36 29 3.8 70 22.6 79.3 5.95 - - - 

EBR 0.27 25 4.1 90 7.4  108.4 (37%)* 1.80 24.0 36.6 Peeling 

MF-EBR 0.38 32 4.2 96 18.3 148.2 (87%)* 4.35 15.8 69.3 Bearing 

NSM 0.40 29 4.9 104 14.6 147.3 (86%)* 2.98 23.4 63.3 Rip-off 

* (Fmax- Fmax,REF)/ Fmax,REF where Fmax,REF is the maximum load of the reference beam. 
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Table 4 — Main results obtained in the post-fatigue monotonic tests. 

Beam 

Crack initiation Yielding Ultimate 

δmax/δy 
εfy/εfu 

[%] 

εfmax/εfu 

[%] 
FRP Failure mode δcr 

[mm] 

Fcr 

[kN] 

δy 

[mm] 

Fy 

[kN] 

δmax 

[mm] 

Fmax 

[kN] 

REF 0.26 20 2.5 66 23.3 79.9 9.32 - - - 

EBR 0.32 27 3.0 94 7.1 114.2 (43%)* 2.37 14.6 29.6 Peeling 

MF-EBR 0.35 31 3.7 101 12.9 147.2 (84%)* 3.49 15.0 63.4 Bearing 

NSM n/a n/a 3.3 105 22.2 160.7 (101%)* 6.73 15.4 55.7 Rip-off 

* (Fmax- Fmax,REF)/ Fmax,REF where Fmax,REF is the maximum load of the reference beam. 

 



Sena-Cruz, J.M.; Barros, J.A.O.; Coelho, M.R.; Silva, L. (2011) “Efficiency of different techniques in flexural strengthening of RC 
beams under monotonic and fatigue loading.” Construction & Building Materials. (DOI: 10.1016/j.conbuildmat.2011.10.044) 

21 

Table 5 — Properties adopted for the simulations of the steel reinforcements, UD-CRFP and MDL-

CFRP. 

Material εP1 [‰] σP1 [MPa] εP2 [‰] σP2 [MPa] 

Ø6 2.36 452.0 135.75 475.00 

Ø10 2.53 455.0 160.00 475.00 

UD-CFRP 15.00 2434.6 - - 

MDL-CFRP 3.30 390.0 20.00 850.00 

Note: bi-linear law defined by the points (εP1, σP1) and (εP2, σP2). εP1=strain at the end of the first branch; 

σP1=stress at the end of the first branch; εP2=strain at the end of the last branch; σP2=stress at the end of 

the last branch. 
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FIGURE CAPTIONS 

Fig. 1 — RC beam: (a) cross section; (b) longitudinal view. Note: all dimensions are in millimetres. 

Fig. 2 — Cross section of the strengthened beams: (a) EBR; (b) MF-EBR; (c) NSM. Note: all dimensions 

are in millimetres. 

Fig. 3 — Test configuration: (a) vertical deflection; (b) strains on the steel bars; (c) strains on the 

laminate of the EBR beam; (d) strains on the laminate of the MF-EBR beam; (e) strains on the laminates 

of the NSM beam. Note: all dimensions are in millimetres. 

Fig. 4 — Force vs. displacement relationship of the tested beams under monotonic loading. 

Fig. 5 — Failure mode of the MDL-CFRP laminates in the MF-EBR strengthened beam: (a) lateral view; 

(b) bearing failure detail of the laminates. 

Fig. 6 — Strain variation in the FRPs. 

Fig. 7 — Failure mechanisms in the MF-EBR beam. 

Fig. 8 — Force vs. displacement relationship of the beams after the fatigue cycles. 

Fig. 9 — Variation of the displacement at mid-span along the fatigue cycles. 

Fig. 10 — Geometry, the finite element mesh, loading and support conditions of the MF-EBR beam. 

Note: all units are in millimetres. 

Fig. 11 — Load vs. deflection at mid-span obtained experimentally and numerically for the monotonic 

tested beams. 
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(a) (b) 

Fig. 1 — RC beam: (a) cross section; (b) longitudinal view. Note: all dimensions are in millimetres. 
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(a) (b) (c) 

Fig. 2 — Cross section of the strengthened beams: (a) EBR; (b) MF-EBR; (c) NSM. Note: all dimensions 

are in millimetres. 
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Fig. 3 — Test configuration: (a) vertical deflection; (b) strains on the steel bars; (c) strains on the 

laminate of the EBR beam; (d) strains on the laminate of the MF-EBR beam; (e) strains on the laminates 

of the NSM beam. Note: all dimensions are in millimetres. 
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Fig. 4 — Force vs. displacement relationship of the tested beams under monotonic loading. 
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(a) 

Fig. 5 — Failure mode of the MDL

(b) bearing failure detail of the 
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(b) 

Failure mode of the MDL-CFRP laminates in the MF-EBR strengthened beam: (a) 

(b) bearing failure detail of the laminates. 
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EBR strengthened beam: (a) lateral view; 
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Fig. 6 — Strain variation in the FRPs. 
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Fig. 7 — Failure mechanisms in the MF-EBR beam. 
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Fig. 8 — Force vs. displacement relationship of the beams after the fatigue cycles. 
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Fig. 9 — Variation of the displacement at mid-span along the fatigue cycles. 
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Fig. 10 — Geometry, finite element mesh, and loading and support conditions of the MF-EBR beam. 

Note: all units are in millimeters. 
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Fig. 11 — Load vs. deflection at mid-span obtained experimentally and numerically for the monotonic 

tested beams. 
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