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Abstract. Engineering design optimization problems are formulated as
large-scale mathematical programming problems with nonlinear objec-
tive function and constraints. Global optimization finds a solution while
satisfying the constraints. Differential evolution is a population-based
heuristic approach that is shown to be very efficient to solve global op-
timization problems with simple bounds. In this paper, we propose a
modified differential evolution introducing self-adaptive control param-
eters, modified mutation, inversion operation and modified selection for
obtaining global optimization. To handle constraints effectively, in mod-
ified selection we incorporate global competitive ranking which strikes
the right balance between the objective function and the constraint vio-
lation. Sixteen well-known engineering design optimization problems are
considered and the results compared with other solution methods. It is
shown that our method is competitive when solving these problems.

Keywords: engineering design, constraints handling, ranking, differen-
tial evolution, global optimization

1 Introduction

In real-world engineering design optimization problems are formulated as large-
scale mathematical programming problems involving mixed variables with lin-
ear/nonlinear objective function and constraints. The constraints can be in-
equality and/or equality type. The design problems can often be formulated as
constrained nonlinear programming problems as follows:

minimize f(x)
subject to gk(x) ≤ 0 k = 1, 2, . . . ,m1

hl(x) = 0 l = 1, 2, . . . ,m2

lbj ≤ xj ≤ ubj j = 1, 2, . . . , n

(1)

where, f, gk, hl : R
n −→ R are real valued functions with feasible set F = {x ∈

R
n : g(x) ≤ 0,h(x) = 0 and lb ≤ x ≤ ub}. x can be mixed types of discrete,

integer and continuous. Problems (1) can be described only by nonlinear rela-
tionships, which introduce the possibility of multiple local minima. The task of
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the global optimization is to find a solution where the objective function obtains
its most extreme value, the global minimum while satisfying the constraints.

In the last decades, many stochastic solution methods with different con-
straints handling techniques have been proposed to solve (1). Stochastic meth-
ods involve random sample of solutions and the subsequent manipulation of
the sample to find good local (and hopefully global) minima. Stochastic meth-
ods can be based on a point-to-point search or on a population-based search.
Most of the existing population-based stochastic methods try to make the solu-
tion feasible by repairing the infeasible one or penalizing an infeasible solution
with the penalty function method. In penalty function method constrained prob-
lem is transformed into an unconstrained one by penalizing the objective func-
tion when the constraints are violated and then minimize the penalty function.
Deb and Goyal proposed a genetic adaptive search (GeneAS) [7], Parsopoulos
and Vrahatis proposed an unified particle swarm optimization (UPSO) [18] and
Tomassetti proposed a cost-effective algorithm with particle swarm optimization
(CPSO) [28] based on the penalty function method to solve engineering design
optimization problems. But in penalty function method it is not an easy task
to find an appropriate penalty parameter. Deb proposed an efficient constraints
handling technique for genetic algorithm (GA) [8] based on the feasibility and
dominance rules. In this technique a penalty function is used that does not
require any penalty parameter and the advantage of this technique is the objec-
tive function is not evaluated for infeasible points. This technique is suitable for
solving (1). Based on this technique Bernardino et al. proposed a hybrid genetic
algorithm with artificial immune system (HGA) [2], Cagnina et al. proposed a
simple constrained particle swarm optimizer (SPSO) [4] and Rocha and Fer-
nandes proposed a hybrid electromagnetism-like algorithm with descent search
(HEM) [23]. Another constraints handling technique is multilevel Pareto rank-
ing based on the constraints matrix [1, 19, 21]. This technique is based on the
concepts of Pareto nondominance in multiobjective optimization. Akhtar et al.
proposed a socio-behavioural simulation algorithm (SBS) [1], Ray and Tai pro-
posed an evolutionary algorithm with a multilevel pairing strategy (EA) [19] and
Ray and Liew proposed a society and civilization algorithm based on the sim-
ulation of social behaviour (SCA) [21]. Runarsson and Yao proposed stochastic
ranking and global competitive ranking for constrained nonlinear programming
based on the evolution strategy (ES) [24, 25]. In these methods the ranking is
based on the objective function as well as the constraint violation. Wang and
Yin proposed a ranking selection-based particle swarm optimizer (RPSO) [29]
and Y. Wang et al. proposed a hybrid evolutionary algorithm with adaptive
constraints handling technique (HEA) [30] for engineering design optimization
problems. He et al. proposed an improved particle swarm optimizer (IPSO) [11]
for solving (1). In their method a fly-back mechnism is used to move the infea-
sible particles to the previous feasible region. Hedar and Fukushima proposed a
filter simulated annealing method (FSA) [12] for constrained optimization prob-
lems. Here they used the filter method rather than the penalty method to handle
the constraints effectively. Coello Coello used multiobjective technique by treat-



ing the constraints as objectives for single-objective evolutionary optimization
[5]. Liu proposed a fuzzy proportional-derivative controller (FPDC) [17] and Lee
and Geem proposed a harmony search algorithm (HS) [16] for engineering design
optimization problems.

Differential evolution (DE) proposed by Storn and Price [27] is a population-
based heuristic approach that is very efficient to solve derivative free global op-
timization problems with simple bounds. DE’s performance largely depends on
the amplification factor of differential variation and crossover control parameter.
Hence self-adaptive control parameters ought to be implemented in DE. Some-
times it is required to improve the local search and quality of the solution. A local
search starts from a candidate solution and then iteratively moves to a neigh-
bour solution. Typically, every candidate solution has more than one neighbour
solutions and the choice of movement depends only on the information about
the solutions in the neighbourhood of the current one. An efficient constraints
handling technique is also desirable in the solution method. In this paper, we
propose a modified differential evolution (mDE) introducing self-adaptive con-
trol parameters, modified mutation, inversion operation and modified selection
for solving problems (1) for obtaining global solutions. To handle the constraints
effectively, in modified selection we incorporate the global competitive ranking to
find the fitness of all individuals. Since the design variables can be mixed types,
we give short description to handle these variables in the solution method.

The organization of this paper is as follows. We describe the constraints
handling technique with global competitive ranking in Section 2. In Section 3 the
modified differential evolution is outlined. Section 4 describes the experimental
results and finally we draw the conclusions of this study in Section 5.

2 Constraints Handling Technique

Stochastic solution methods are mostly developed for global optimization over
unconstrained problems. Finally, they are extended to constrained problems with
the modification of solution procedures or by applying penalty functions. To han-
dle the constraints effectively in engineering design optimization problems (1),
firstly it is required to calculate the degree of the average constraint violation of
an individual point in a population by

φ(xi) =
1

m

(

m1
∑

k=1

max{0, gk(xi)} +

m2
∑

l=1

|hl(xi)|

)

, i = 1, 2, . . . , NP, (2)

where m = m1 + m2 is the total number of constraints and NP represents the
number of individuals in the population. For a given value of an individual point
xi, if all the constraints are satisfied then it returns zero, otherwise it returns
the average constraint violation. In this paper, we take an individual point as a
feasible one if φ(xi) ≤ δ, where δ is a very small positive number. An alternative
method to transform equality to inequality constraints that can be found in
literature is |h(x)| − δ ≤ 0. So all the constraints become inequalities.



In constrained optimization, it is very important to right balance between
the objective function and the average constraint violation. Nowadays, there
are many constraints handling techniques. In Table 1 some constraints handling
techniques found in literature are listed.

Table 1. Different constraints handling techniques

Constraints Handling Technique Reference

Tournament selection based on dominance and feasibility [2, 4, 8, 22, 23]
Penalty function approach [7, 15, 18, 28]
Multilevel Pareto ranking scheme [1, 19–21]
Stochastic ranking & Global competitive ranking [24, 25]
Multiobjective technique [5]
Genotypic-based distances to move from infeasible to feasible [6]
Fly-back mechanism from infeasible to previous feasible [11]
Filter method [12]
Generalized reduced gradient [13]
Search new harmony until feasible harmony [16]
Fuzzy proportional-derivative free controller [17]
Ranking based selection [29]
Adaptive constraints handling [30]
Gradient repair & constraint fitness priority-based ranking [32]

In the following, the constraints handling technique based on the global com-
petitive ranking method that is considered in this paper for solving engineering
design optimization problems in the general form (1) is described briefly. We
applied four constraints handling techniques in our other work for constrained
nonlinear optimization problems and found that the global competitive ranking
method gave better performance. So this is the reason for choosing this method.

Global Competitive Ranking

Runarsson and Yao [25] proposed a constraints handling technique for con-
strained problems in a population-based stochastic method in order to strike
the right balance between the objective function and the average constraint vi-
olation. This method is called global competitive ranking and is deterministic.
In this method, an individual point is ranked by comparing it against all other
members of the population. It is assumed that either the objective function or
the average constraint violation is used in deciding an individual point’s rank.

In this ranking method, at first the objective function f is evaluated and the
average constraint violation φ is calculated for all the individuals in a popula-
tion. Then for all individuals, the f and φ are sorted separately in ascending
order since we consider the minimization problem and given rank. Special con-
sideration is given to the tied individuals. In the case of tied individuals the
same higher rank will be given. For example, suppose there are eight individuals
and in ascending order based on some value, these are 〈6, (5, 8), 1, (2, 4, 7), 3〉
(individuals in parentheses have same value). So for ranking these individuals,



it becomes I(6) = 1, I(5) = I(8) = 2, I(1) = 4, I(2) = I(4) = I(7) = 5, I(3) = 8,
where I represents the rank. After the ranking of all the individuals based on
the objective function f and the average constraint violation φ (separately), the
fitness function of an individual point is calculated by

Φ(xi) = Pf

If (i) − 1

NP − 1
+ (1 − Pf )

Iφ(i) − 1

NP − 1
(3)

where, If (i) and Iφ(i) are the ranks of an individual point xi based on the
objective function and the average constraint violation, respectively. Pf indicates
the probability that fitness is calculated based on the rank of objective function.
It is clear from the above that Pf can be used easily to bias the calculation of
fitness according to the objective function or the average constraint violation.
The probability should take a value 0.0 < Pf < 0.5 in order to guarantee that
a feasible solution may be found. From the above fitness function, the fitness
of an individual point will be 0.0 ≤ Φ ≤ 1.0. So the best individual point in a
population has the lowest fitness value.

3 Modified Differential Evolution

Differential evolution (DE) is a simple yet powerful population-based evolution-
ary algorithm for global optimization over continuous spaces [27]. The DE al-
gorithm has become more popular and has been used in many practical cases,
mainly because it has demonstrated good convergence properties and is easy to
understand. DE is a floating point encoding that creates a new candidate point
by adding the weighted difference between two individuals to a third one in the
population. This operation is called mutation. The mutant point’s components
are then mixed with the components of target point to yield the trial point.
This mixing of components is referred to as crossover. In selection, a trial point
replaces a target point in the following generation only if it has better or equal
fitness. DE has three parameters: amplification factor of differential variation F ,
crossover control parameter CR, and population size NP .

It is not an easy task to set the appropriate parameters since these depend on
the nature and size of the optimization problems. Hence, self-adaptive control
parameters ought to be implemented. In original DE, three points are chosen
randomly for mutation and the base point is then chosen at random within the
three. This has an exploratory effect but it slows down the convergence of DE. In
this paper, we propose a modified differential evolution (mDE) for engineering
design optimization problems (1) that includes the modifications proposed by
Brest et al. [3] for calculating control parameters F and CR, and Kaelo and
Ali [14] for modified mutation. We also implement the inversion operation and
introduce a modified selection based on the global competitive ranking that
is capable to handle the constraints of problems (1) in mDE. The modified
differential evolution is outlined below.

The target point of mDE is defined by xi,z = (xi1,z, xi2,z, . . . , xin,z), where
z is the index of generation and i = 1, 2, . . . , NP . NP does not change during



the optimization process. The initial population is chosen randomly and should
cover the entire component spaces.
Self-adaptive control parameters: We use self-adaptive control parameter for F
and CR proposed by Brest et al. [3] by generating a different set (Fi, CRi) for
each point in the population. The new control parameters for next generation
Fi,z+1 and CRi,z+1 are calculated by

Fi,z+1 =

{

Fl + λ1 × Fu, if λ2 < τ1

Fi,z, otherwise

CRi,z+1 =

{

λ3, if λ4 < τ2

CRi,z, otherwise,

(4)

where λk ∼ U[0, 1], k = 1, . . . , 4 and τ1 = τ2 = 0.1 represent probabilities to
adjust parameters Fi and CRi, respectively. Fl = 0.1 and Fu = 0.9, so the
new Fi,z+1 takes a value from [0.1, 1.0] in a random manner. The new CRi,z+1

takes a value from [0, 1]. Fi,z+1 and CRi,z+1 are obtained before the mutation is
performed. So, they influence the mutation, crossover and selection operations
of the new point xi,z+1.
Modified mutation: We use the mutation proposed by Kaelo and Ali [14] in mDE.
After choosing three points randomly the best point based on the fitness value is
selected for the base point and the remaining two points are used as differential
variation, i.e., for each target point xi,z, a mutant point is created according to

vi,z+1 = xr3,z + Fi,z+1(xr1,z − xr2,z), (5)

where r1, r2, r3 are randomly chosen from the set {1, 2, . . . , NP}, mutually dif-
ferent and different from the running index i and r3 is the index with the best
fitness value. This modification has a local effect when the points of the popu-
lation form a cluster around the global minimizer. In mDE, we also propose a
modification in the above mutation. After every B generations the best point
found so far is used as the base point and two randomly chosen points are used
as differential variation, i.e., vi,z+1 = xbest + Fi,z+1(xr1,z − xr2,z). These mod-
ifications allow mDE to maintain its exploratory feature as well as explore the
region around each best and at the same time expedite the convergence.
Crossover: In order to increase the diversity of the perturbed component points,
crossover is introduced. To this end, the crossover point ui,z+1 is formed, where

uij,z+1 =

{

vij,z+1 if (rj ≤ CRi,z+1) or j = zi

xij,z if (rj > CRi,z+1) and j 6= zi
(6)

In (6), rj ∼ U[0, 1] performs the mixing of jth component of points, zi is ran-
domly chosen from the set {1, 2, . . . , n} and ensures that ui,z+1 gets at least one
component from vi,z+1.
Inversion: Since in mDE a point has n-dimensional real components, inversion
can easily be applicable. With the inversion probability (pinv ∈ [0, 1]), two posi-
tions are chosen on the point ui, the point is cut at those positions, and the cut
segment is reversed and reinserted back into the point to create the trial point



u′

i. In practice, mDE with the inversion has been shown to give better results
than those obtained without the inversion.
Bounds check: When generating the mutant point, some components can be
generated outside the search spaces. So, in mDE after inversion the bounds of
each component should be checked.
Modified selection: After calculating the fitness value of all target and trial points
all together, in order to decide whether or not it should become a member of
generation z +1, the trial point u′

i,z+1 is compared to the target point xi,z using
the greedy criterion in the following way

xi,z+1 =

{

u′

i,z+1 if Φ(u′

i,z+1) ≤ Φ(xi,z)
xi,z otherwise.

Termination condition: Let Gmax be the maximum number of generations. If
fmax,z and fmin,z are the maximum and minimum objective function values
attained at z then our mDE algorithm terminates if (z > Gmax or (fmax,z −
fmin,z) ≤ η), for a very small positive number η.

In mDE we also incorporate the elitism to preserve the best point found
so far throughout the entire generations. Since engineering design optimization
problems have mixed variables, so we are having attention to handle discrete
and integer variables. For discrete variables we randomly generate values from
an appropriate discrete set in initialization and mutation. For integer variables
we use rounding off to the nearest integer at evaluation stages.

4 Experimental Results

We code mDE in C with AMPL [9] interfacing and compile with Microsoft
Visual Studio 9.0 compiler in a PC having 2.5 GHz Intel Core 2 Duo processor
and 4 GB RAM. We set the value of parameters NP = min(100, 10n), B = 10,
pinv = 0.05, δ = 10−5, Pf = 0.45 and η = 10−6. We consider 16 benchmark
problems found in literature. The first problem is a classical benchmark problem
in constrained nonlinear optimization. Remaining 15 engineering design opti-
mization problems are commonly used for test problems. 30 independent runs
for all problems were performed and the obtained results were compared with
other solution methods found in literature. Values in “bold” in tables represent
the best obtained in the listed comparisons. We model six of the selected
problems in AMPL modeling language. These and the remaining ten problems
can be made available from http://www.norg.uminho.pt/emgpf/problems.htm.

Himmelblau’s Function

This is a common benchmark function for constrained nonlinear optimization
problems proposed by Himmelblau [13]. This problem has five design variables
and six inequality constraints and details of the problem are described in [8, 11,
24]. For fair comparison, we set Gmax = 3000 and maximum number of function
evaluations, nfemax = 90000 according to He et al. [11] for termination con-
dition rather than termination condition discussed in Section 3. We compared



Table 2. Comparative results of Himmelblau’s function

Values
Best solution found

mDE GA [8] IPSO [11] GRG [13] HS [16] ES [24]

x1 78.000000 – 78.000000 78.000000 78.000 –

x2 33.000000 – 33.000000 33.000000 33.000 –

x3 29.995123 – 29.995256 29.995256 29.995 –

x4 45.000000 – 45.000000 45.000000 45.000 –

x5 36.775724 – 36.775813 36.775813 36.776 –

f(x) -30665.587237 -30665.539 -30665.539 -30665.539 -30665.500 -30665.539
– Not available

the obtained results from our mDE with other solution methods such as GA,
IPSO, generalized reduced gradient, GRG [13], HS and ES. The comparative
results based on the best objective function value are shown in Table 2. It is
shown that our mDE is rather competitive for solving Himmelblau’s function.

Heat Exchanger Design

The heat exchanger design problem is also a common benchmark function for
constrained nonlinear optimization problems, and is described in [8, 16, 24]. This
problem has eight design variables and six inequality constraints. We set Gmax =
2000 and nfemax = 150000. We compared the obtained results from our mDE
with GA, HS, FPDC, HEM and ES. The comparative results based on the best
objective function value are shown in Table 3. From the table, it is shown that
our mDE is rather competitive when solving this problem.

Table 3. Comparative results of heat exchanger design problem

Values
Best solution found

mDE GA [8] HS [16] FPDC [17] HEM [23] ES [24]

x1 579.315 – 500.004 951.8 607.211 –

x2 1361.100 – 1359.311 1529.5 1560.399 –

x3 5108.084 – 5197.960 4807.3 5303.680 –

x4 182.018 – 174.726 206.6 173.324 –

x5 295.647 – 292.082 307.9 287.951 –

x6 217.982 – 224.705 193.4 205.448 –

x7 286.372 – 282.645 298.7 284.110 –

x8 395.647 – 392.082 407.8 387.925 –

f(x) 7048.499 7060.221 7057.274 7288.8 7471.290 7054.316
– Not available

Welded Beam Design

The design of a welded beam is the most commonly used test problem for
engineering design optimization problems to check the effectiveness of a solution
method. The objective is to minimize the cost of a welded beam, subject to



Table 4. Comparative results of welded beam design problem

Values
Best solution found

mDE HGA [2] IPSO [11] FSA [12] SCA [21] HEM [23] HEA [30]

x1 0.244429 0.244386 0.244369 0.244353 0.244438 0.243532 0.244369

x2 6.215393 6.218304 6.217520 6.217592 6.237967 6.167268 6.217518

x3 8.291471 8.291165 8.291471 8.293904 8.288576 8.377163 8.291477

x4 0.244369 0.244387 0.244369 0.244353 0.244566 0.243876 0.244369

f(x) 2.380810 2.381217 2.380956 2.381065 2.385435 2.386269 2.380957

the constraints on the shear stress, bending stress, buckling load on the bar,
end deflection of the beam and side constraints. The problem has four design
variables and seven inequality constraints, and is described in [1, 11]. We set
Gmax = 1000 and nfemax = 30000 as in [11]. We compared the obtained
results from our mDE with other solution methods such as HGA, IPSO, FSA,
SCA, HEM and HEA. The comparative results are shown in Table 4. The best
solution obtained by mDE is better than other solutions.

Spring Design 1

This is a real-world optimization problem involving discrete, integer and contin-
uous design variables. The objective is to minimize the volume of a compression
spring under static loading. The design problem has three variables and eight

Table 5. Comparative results of spring design 1 problem

Values
Best solution found

mDE GeneAS [7] IPSO [11] DE [15] in [26] RPSO [29]

x1 0.283 0.283 0.283 0.283 0.283 0.283

x2 1.223021 1.226 1.223041 1.223041 1.180701 1.223041

x3 9 9 9 9 10 9

f(x) 2.65852 2.665 2.65856 2.65856 2.7995 2.65856

inequality constraints [7, 11, 15]. We set Gmax = 500 and nfemax = 15000
[11]. We compared the obtained results from our mDE with GeneAS, IPSO,
differential evolution, DE [15], solution method proposed in [26] and RPSO.
The comparative results are shown in Table 5. The best solution obtained by
mDE is better than other solutions.

Spring Design 2

This problem aims to minimize the weight of a tension/compression spring. This
problem has three continuous variables and four constraints [2, 11, 28]. We set
Gmax = 500 and nfemax = 15000 [11]. The comparative results are shown in
Table 6 where the best solution obtained by mDE is better than other solutions.



Table 6. Comparative results of spring design 2 problem

Values
Best solution found

mDE HGA [2] IPSO [11] FSA [12] HEM [23] CPSO [28] HEA [30]

x1 0.051689 0.051661 0.051690 0.051743 0.051557 0.051644 0.051689

x2 0.356734 0.356032 0.356750 0.358005 0.353534 0.355632 0.356729

x3 11.287348 11.329555 11.287126 11.213907 11.479520 11.353040 11.288294

f(x) 0.012664 0.012666 0.012665 0.012665 0.012667 0.012665 0.012665

Pressure Vessel Design

The design of a cylindrical pressure vessel with both ends capped with a
hemispherical head is to minimize the total cost of fabrication [1, 11]. The
problem has four design variables and four inequality constraints. This is a
mixed variables problem where x1 and x2 are discrete of integer multiples
of 0.0625 inch., and other two are continuous. We set Gmax = 1000 and

Table 7. Comparative results of pressure vessel design problem

Values
Best solution found

mDE SBS [1] HGA [2] IPSO [11] HEM [23] CPSO [28] RPSO [29]

x1 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125

x2 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375

x3 42.1000 41.9768 42.0950 42.0984 42.0700 42.0984 42.0984

x4 176.6173 182.2845 176.6797 176.6366 177.3762 176.6366 176.6366

f(x) 6059.525 6171.000 6060.138 6059.714 6072.232 6059.714 6059.714

nfemax = 30000 [11]. The comparative results from our mDE, with SBS, HGA,
IPSO, HEM, CPSO and RPSO, are shown in Table 7. From the table, mDE is
competitive with other methods.

Speed Reducer Design

The weight of the speed reducer is to be minimized subject to the constraints
on bending stress of the gear teeth, surface stress, transverse deflections of the
shafts and stress in the shafts. See description in [1, 2, 4, 28]. There are seven
variables and 11 inequality constraints. This is a mixed variables problem, where
x3 is integer (number of teeth) and others are continuous. We set Gmax = 500
and nfemax = 35000. The comparative results are shown in Table 8 where the
best solution obtained by mDE is rather competitive than other solutions.

Three-Bar Truss Design

The design of a three-bar truss is to minimize the volume of the truss subject to
the stress constraints [21]. This problem has two design variables representing
the cross-sectional areas of two bars (two identical of three-bar) and three in-
equality constraints. We set Gmax = 500 and nfemax = 10000. The comparative



Table 8. Comparative results of speed reducer design problem

Values
Best solution found

mDE SBS [1] HGA [2] SPSO [4] HGA [6] HEM [23] CPSO [28]

x1 3.499615 3.506122 3.500000 3.500000 3.500000 3.500062 3.500000

x2 0.700000 0.700006 0.700000 0.700000 0.700000 0.700000 0.700000

x3 17 17 17 17 17 17 17

x4 7.300000 7.549126 7.300003 7.300000 7.300008 7.367704 7.300000

x5 7.715320 7.859330 7.715322 7.800000 7.715322 7.731763 7.800000

x6 3.350215 3.365576 3.350215 3.350214 3.350215 3.351341 3.350215

x7 5.286654 5.289773 5.286654 5.286683 5.286655 5.286937 5.286683

f(x) 2994.320 3008.080 2994.471 2996.348 2994.342 2995.804 2996.348

results are shown in Table 9 where the best solution obtained by mDE is rather
competitive than other solutions.

Table 9. Comparative results of three-bar truss design problem

Values
Best solution found

mDE FPDC [17] SCA [21] HEM [23] HEA [30]

x1(= x3) 0.788663 0.7511 0.788621 0.788764 0.788680

x2 0.408242 0.5262 0.408401 0.408000 0.408234

f(x) 263.8919 265.07 263.8958 263.8960 263.8958

Hydrostatic Thrust Bearing Design

The thrust bearing design problem aims to minimize power loss associated with
the bearing. This problem consists of four design variables and seven constraints,
and is described in [5, 7, 11]. We set Gmax = 3000 and nfemax = 90000 according
to [11]. The comparative results from different solution methods are shown in
Table 10. The best solution obtained by mDE is better than other solutions.

Table 10. Comparative results of hydrostatic thrust bearing design problem

Values
Best solution found

mDE GA [5] GeneAS [7] BGA [7] IPSO [11]

x1 5.955780 6.271 6.778 7.077 5.956869

x2 5.389013 12.901 6.234 6.549 5.389175

x3(×10−6) 5.396500 5.605 6.096 6.619 5.402133

x4 2.277653 2.938 3.809 4.849 2.301547

f(x) 1631.1716 1950.2860 2161.6000 2295.1000 1632.2149

Tubular Column Design

The design of a tubular column aims at minimizing the cost of fabrication [17].



This problem has two design variables with two inequality constraints. We set
Gmax = 500 and nfemax = 10000. The comparative results are shown in Table
11. It is shown that the best result obtained by mDE is slightly greater than
that of FPDC.

Table 11. Comparative results of tubular column design problem

Method x1 x2 f(x)

mDE 5.4512 0.2919 26.5311
FPDC [17] 5.4507 0.2920 26.5310

HEM [23] 5.4511 0.2920 26.5323

Tanker Fleet Design

The design of a tanker fleet is to minimize the total cost, which includes the
cost of fuel, the cost of hull and the cost of machinery. The details description of
this problem can be found in [19]. This is a mixed variables problem having nine
design variables and 19 inequality constraints. Variable x5 is integer (number
of ships). We set Gmax = 500 and nfemax = 40000. We compared the obtained
results from mDE with EA and HEM. The comparative results are shown in
Table 12. From table it is shown that mDE gave better result of 14, 514, 897.18
although the number of ships is 7.

Table 12. Comparative results of tanker fleet design problem

Method x1 x2 x3 x4 x5 x6

mDE 41.0473 20.2914 78530.3591 284.0244 7 12.3864
EA [19] 27.6300 12.0900 15200.0000 165.2000 44 7.4060
HEM [23] 48.3175 19.9585 79071.9980 279.4188 8 12.4186

x7 x8 x9 f(x)
0.7284 16.8862 88817.2680 14,514,897.18

0.9280 10.9100 22660.0000 135,500,000.00
0.7347 14.4925 118646.5600 21,216,265.00

Gear Train Design

A compound gear train is to be designed to minimize the error between the
obtained gear ratio and a required gear ratio of 1/6.931 subject to the ranges
on gear teeth [7, 18]. This problem has four design variables and all are strictly
integers. We set Gmax = 1000 and nfemax = 40000. The comparative results are
shown in Table 13 where mDE is rather competitive when solving this problem.

I-Beam Design

The design of a simply supported I-beam is a multiobjective optimization
problem where the objectives are to minimize the cross-sectional area and the
static deflection subject to the stress constraint. This problem has four design



Table 13. Comparative results of gear train design problem

Method x1 x2 x3 x4 f(x)

mDE 49 19 16 43 2.700857E-12
GeneAS [7] 49 16 19 43 2.7E-12

UPSO [18] – – – – 2.70085E-12
HEM [23] 49 19 16 43 2.700857E-12

– Not available

Table 14. Comparative results of I-beam design problem

Method x1 x2 x3 x4 f(x)

mDE 80.0000 50.0000 4.4221 5.0000 809.5464

PSO [22] – – – – 127.95–829.57†

HIA [31] – – – – 127.41–833.04†

– Not available †Range of values in the Pareto front

variables and one inequality constraint, and is described in [22, 31]. We dropped
the static deflection objective function and added this to the constraints with
maximum allowable deflection 0.006 cm taken from the minimum deflection of
the Pareto front [22, 31]. So this problem became a single objective optimization
problem. We set nfemax = 10000 as in [22]. We compared the obtained
results from our mDE with PSO and hybrid immune algorithm, HIA [31]. The
comparative results are shown in Table 14. From the Pareto front, in [22] with
minimum deflection of 0.006 cm the cross-sectional area is 829.57 cm2 and
in [31] the cross-sectional area is 833.04 cm2 whereas by mDE it is 809.5464 cm2.

Disc Brake Design

This problem deals with the design of a multiple disc brake, and is described in
[20] and is a multiobjective optimization problem. The objectives of the design
are to minimize the mass of the brake and to minimize the stopping time. This
problem has four design variables and five inequality constraints. We dropped
the stopping time objective function and added this to the constraints with
maximum allowable stopping time 32.0 sec. taken from the maximum stopping
time of the Pareto front [20]. We set Gmax = 1000 and nfemax = 30000. We
compared the obtained results from our mDE with swarm metaphor, SM [20]
and HEM. The comparative results are shown in Table 15. It is shown that mDE
is rather competitive when solving this problem.

Table 15. Comparative results of disc brake design problem

Method x1 x2 x3 x4 f(x)

mDE 55.00 75.00 1764.42 2.00 0.1274

SM [20] – – – – 0.2–2.7†

HEM [23] 55.00 75.00 1862.87 2.00 0.1274

– Not available †Range of values in the Pareto front



Four-Bar Truss Design

The design of a four-bar truss is a multiobjective optimization problem where the
objectives are to minimize the volume of the truss and displacement subject to
the stress constraints on four design variables which represent the cross-sectional
areas [20]. We dropped the displacement objective function and added this to the
constraints with maximum allowable displacement 0.04 cm. We set Gmax = 1000
and nfemax = 30000. The comparative results are shown in Table 16. It is shown
that mDE is also capable of solving this problem.

Table 16. Comparative results of four-bar truss design problem

Method x1 x2 x3 x4 f(x)

mDE 1.000000 1.414214 1.414214 1.000000 1400.000

SM [20] – – – – 1400–3000†

HEM [23] 1.000003 1.414214 1.414214 1.000000 1400.001

– Not available †Range of values in the Pareto front

Ceramic Grinding Design

The design of a ceramic grinding wheel is a maximization problem. The objec-
tive is to maximize the material removal rate, subject to a set of constraints
comprising surface roughness, number of flaws and input variables [10, 32]. We
set Gmax = 300 and nfemax = 9000. We compared the obtained results from
mDE with GA [10] and hybrid particle swarm optimizer, HPSO [32]. The com-
parative results are shown in Table 17. It is shown that mDE outperforms other
two methods when solving this maximization problem.

Table 17. Comparative results of ceramic grinding design problem

Method x1 x2 x3 f(x)

mDE 8.4888 12.1953 500.0000 103.5237

GA [10] 8.22 12.05 494.12 99.05
HPSO [32] 8.4878 12.1946 500.0000 103.5048

From the above discussion it is shown that in almost all engineering design
optimization problems our mDE is competitive with other solution methods.

5 Conclusions

In this paper, to make the DE more efficient to handle the constraints in engi-
neering design optimization problems, a modified differential evolution (mDE)
algorithm is proposed. The modifications focus on self-adaptive control parame-
ters and modified mutation. Inversion operation is also implemented in the pro-
posed mDE. To handle the constraints effectively, all target and trial points are



ranked all together using the global competitive ranking based on the objective
function and the average constraint violation for competing in selection oper-
ation to decide which point wins for next generation population. This ranking
strikes the right balance between the objective function and the constraint viola-
tion for obtaining global optimization while satisfying the constraints. Handling
of mixed variables are also presented.

To test the effectiveness of proposed mDE, 16 well-known design problems
have been considered. A comparison of the obtained results by mDE based on
the best objective function value with the results by other existing methods
reported in literature is presented. It is shown that in almost all design problems
our mDE is competitive with other solution methods. In future we will focus on
exact mixed variables handling techniques to include in the proposed mDE.
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