
Experimental Evaluation of Distributed Middleware with a
Virtualized Java Environment

Nuno A. Carvalho, João Bordalo, Filipe Campos and José Pereira

High-Assurance Software Laboratory
Universidade do Minho

Portugal
{nuno,jbordalo,fcampos,jop}@di.uminho.pt

ABSTRACT
The correctness and performance of large scale service oriented
systems depend on distributed middleware components perform-
ing various communication and coordination functions. It is, how-
ever, very difficult to experimentally assess such middleware com-
ponents, as interesting behavior often arises exclusively in large
scale settings, but such deployments are costly and time consum-
ing. We address this challenge with MINHA, a system that virtual-
izes multiple JVM instances within a single JVM while simulating
key environment components, thus reproducing the concurrency,
distribution, and performance characteristics of the actual system.
The usefulness of MINHA is demonstrated by applying it to the
WS4D Java stack, a popular implementation of the Devices Profile
for Web Services (DPWS) specification.

Categories and Subject Descriptors
C.2.4 [Computer-communication networks]: Distributed Systems—
Distributed applications; D.2.5 [Software Engineering]: Testing
and Debugging—Distributed debugging

1. INTRODUCTION
Service oriented architectures are increasingly attractive in a wide

range of application scenarios outside typical enterprise informa-
tion systems. For instance, the Devices Profile for Web Services
(DPWS) has been proposed as the base for systems such as large
scale smart grids [7, 8] and safety critical medical devices [11].
These broadened requirements pose new challenges to service im-
plementations themselves and to middleware components that are
used to support them, as distributed services tend to exhibit com-
plex behaviors that cannot be reproduced with simple tests. And
any performance or correctness issues arising in safety critical sys-
tems can have catastrophic consequences.

Comprehensive experimental evaluation in a realistic environ-
ment is thus a key step in the validation of such systems. This has
been done using a spectrum of tools ranging from the orchestration
of actual systems to simulators. Obviously, the most realistic con-
ditions can be achieved by running an actual deployment, but this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4SOC ’11, December 12, 2011, Lisboa, Portugal
Copyright 2011 ACM 978-1-4503-1067-3/11/12 ...$10.00.

option is costly and time consuming, requiring the availability of
the entire system. This becomes even more difficult when dealing
with large clusters or large scale systems, even when resorting to
platforms such as PlanetLab [10] or virtual machines. As a conse-
quence, toy applications and small benchmarks are frequently used.
Observing and registering the results of the test deployment may it-
self disturb the results, hiding interesting system properties.

On the other hand, building a simulation model frees testing from
the availability of the target platform for deployment. By reproduc-
ing key aspects of the system in a single addressing space in the
context of a high level model of environment, it allows the analysis
and global modification of the system’s state with no interference.
Simulators such as PeerSim [9] have been shown to scale to very
large systems. Moreover, a simulation model is useful also while
the whole system isn’t available, as frequently happens during the
development phase. Unfortunately, a simulation model can only be
used to validate design. It does not validate the implementation of
middleware or services themselves, which often have complex con-
current software components. Moreover, even if some frameworks
such as Neko [14] or JiST [3] allow reusing code between the sim-
ulation and the implementation, they require the use of a custom
API.

An interesting tradeoff is the manipulation of simulation time
taking into account the real time measured when executing real
code segments, while providing simulation models of concurrency
and I/O primitives through native APIs [2, 1]. This paper proposes
MINHA, a system that virtualizes multiple JVM instances within a
single JVM while simulating key environment components, repro-
ducing the concurrency, distribution, and performance characteris-
tics of the actual distributed system. MINHA is available as open
source on http://gitorious.org/minha. In comparison with
previous work, it makes the following contributions:

� Virtualizes a significant portion of modern Java, allowing
off-the-shelf code to run unchanged, including threading, con-
currency control, and networking. In fact, it provides some-
thing akin to a Java hosted hypervisor, transparently running
multiple “virtual” JVMs within a single host JVM.

� Provides simulation models of networking primitives and an
automatic calibrator, that adjusts model parameters such that
it mimics an existing hardware/operating system combina-
tion. This allows performance results obtained with MINHA
to be compared with a real system.

In this paper, we provide first a brief introduction to MINHA in
Sections 2 to 5, including the simulation kernel, JVM virtualiza-
tion, and environment models, then in Section 6 we demonstrate
automatic calibration and general usage. Section 7 illustrates appli-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Network

JVM 2
JVM 1

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Target middleware

Target application

...

Figure 1: Distributed Java application.

cability of MINHA by running a distributed application built with
the WS4D JMEDS (Java Multi Edition Stack), an implementation
of the Devices Profile for Web Services (DPWS) specification. Fi-
nally, Section 8 compares MINHA with previous proposals and Sec-
tion 9 concludes the paper.

2. OVERVIEW
The experimental evaluation of some middleware component usu-

ally requires the architecture outlined in Figure 1. Briefly, multiple
instances of an application that makes use of the target middleware
component are deployed in multiple JVMs. Distributed interac-
tions are then initiated by the application using the middleware,
that makes use of platform’s libraries and of the underlying Java
bytecode execution mechanism. Ideally, these JVMs are scattered
across multiple physical hosts, to accurately reproduce the impact
of distribution and avoid mutual interference. In fact, the amount
of hardware resources to run a real system, or even a set of virtual
machines on a smaller number of hosts, is often prohibitive. In fact,
even running multiple JVMs on the same host is quite demanding
in terms of memory.

MINHA allows reproducing the same distributed run within a sin-
gle JVM as shown in Figure 2. As we will show, this significantly
reduces the amount of memory required even in comparison with
the least demanding of the alternatives, which requires multiples
JVMs. Moreover, by virtualizing time using simulation, it reduces
the interference resulting from competing for shared resources.

In detail, the application and middleware classes for each in-
stance are loaded by a custom class loader that replaces native
libraries and synchronization bytecode for references to simula-
tion models. Some of these simulation models are developed from
scratch while others are produced by translating native libraries
themselves. The resulting code makes use of the simulation ker-
nel and time virtualization to run. Multiple instances are loaded
under the control of a command line user interface and configura-
tion loader, which has the following advantages.

Global observation without interference. Once the whole pro-
cess is centralized, it is possible to get a global observation of all
operation and system variables. As the instrumentation is at the
simulator side, whenever it is necessary to debug, the introduced
overhead is not taken into account opposing to the execution in the
real environment. So, the execution time, even when debugging,
can be considered for analysis. Moreover, global distributed execu-
tion and state can be observed consistently by any simple debugger.

Simulated components. When in a real execution, still in the de-
velopment phase, it is necessary to evaluate the system for different
environments (e.g. network configurations) and software compo-
nents (i.e. the application layer on top of the middleware). With
MINHA, such environments and software models can be replaced

JVM

Java Interpreter / JIT Compiler

Platform libraries (java.*)

Simulated events and resources

Time virtualization

U
se

r
 in

te
rf

ac
e

an
d

co
nf

ig
ur

at
io

n

Simulation models (network,...)

Virtual JVM 2

Virtual JVM 1

Bytecode instrumentation

Stubbed platform libraries
(fake.java.*)

Translated platform libraries
(moved.java.*)

Target middleware

Target application

...

Figure 2: Simulation of a distributed Java application.

by simulation models, and incorporated in a standard test harness
to be run automatically as code evolves.

Large scale. Large scale applications, that require a huge amount
of resources to be deployed in the real environment, make this
development more complicated. Testing during the development
phase may require a big share of the system already in operation
which requires high costs already in these phase. Some applica-
tions might even deal with sensitive information, which implies ex-
haustive testing to prove its correctness in order to safeguard such
critical data.

Automated “What-If” analysis. By resorting to simulated com-
ponents and running the system with varying parameters, the im-
pact of extreme environments can be assessed, exploring even con-
ditions that are not yet possible in practice. In fact, this can even
be automated by having parameters to be generated automatically
in order to seek for a given observable condition, e.g. the number
of CPU cores to which some code scales up to.

Finally, MINHA can also be extended to perform various fault-
injection operations, in space and time domains, as has been ac-
complished with CESIUM [2].

3. SIMULATION KERNEL
The simulation kernel of the MINHA platform is structured in

two layers. The first is a simple event-based simulation kernel,
offering only abstract resource management primitives. The sec-
ond provides the basis for the combination of real and simulated
code, by (i) measuring the time of execution and management of a
simulated processor; and (ii) allowing sequential Java code to exe-
cute by eliminating the inversion of control resulting from the event
simulation. The execution of a portion of real code is depicted in
Figure 3. First, a SimulationThread (ST) is kept for each thread
of control, but runs only when a simulation event corresponding to
allocation of time to such thread in a CPU resource is scheduled.
Concurrency is thus achieved by interleaving the execution of sec-
tions of code according to simulation time.

In detail, a simulation event running in the timeline thread T cor-
responds to the execution of ST between two invocations of the
pause() method, which blocks the execution of the thread. The
state of the stack and program counter are implicitly part of the sim-
ulation state and thus do not need explicit management. For ST to
advance, the wake-up event that calls into wakeup() method must
be scheduled. Typically, an executing thread enters its wakeup()
event in one or more queues or schedules it at some specific instant

event.run() event.run()event.run()

stopTime()startTime()

ST

T

st.pause()

st.wakeup()

sim. code
st.pause()

st.wakeup()

st.pause()

st.wakeup()

cpu.acquire()

st.pause()
app. code sim. code

simulation time delta
(wait for free CPU resource)

simulation time delta
(wait for simulation time

to catch up to real time delta)

real time delta

cpu.release()

Figure 3: Avoiding inversion of control and achieving time virtualization.

in the future, before blocking in the pause() method.
Moreover, the actual time measured in code execution can be re-

flected in the usage of a resource. In particular, each Simulation-
Thread is associated with a resource that represents the proces-
sor. At any given simulation instant, it is possible to execute the
startTime() method, which postpones the execution for a simu-
lation instant on which the processor is free. The thread execution
continues until the stopTime() method is invoked, being the cor-
responding interval of time measured. The simulated processor is
then marked as busy during the corresponding real time delta. Thus
the simulation time advances according to the actual time spent to
perform a sequence of code.

Note that the real time delta is measured with a thread-local vir-
tualized CPU cycle timer. This avoids interference by other threads
running in the same host and provides an accurate cost of instruc-
tions actually executed by the thread under control of the simula-
tor. Finally, this works only as long as threads block only within
the pause() method and nowhere else. The following section ad-
dresses this issue by ensuring that all Java instructions and library
operations that can potentially block are virtualized.

4. VIRTUALIZED JVM
For simulation to reflect the real time of the execution of a se-

quence of code in the occupation of a simulated processor, blocking
operations such as thread synchronization and input/output must
be avoided and translated into corresponding simulation primitives.
Moreover, code executing in different virtual instances cannot in-
terfere directly through shared variables.

These goals are achieved with a custom class loader that uses
ASM Java bytecode manipulation and analysis framework [4] to
rewrite classes, introducing calls into the simulation kernel as ap-
propriate. Isolation of different virtual JVMs is achieved by using a
separate instance of this class loader for each virtual JVM. A subset
of classes, containing the simulation kernel and environment mod-
els, are kept global by delegating their load to the system’s class
loader. This provides a controlled channel for virtual JVMs to in-
teract. Although MINHA currently uses this to redirect such inter-
actions through a simulation kernel and to simulated environment
models, the same approach could be used for directly sharing real
resources.

4.1 Platform libraries
The main challenge is that Java prohibits, for security reasons,

the transformation of standard classes under the java.* package,
which contains the ones that need replacement for virtualization.
The solution is to rewrite all references to such classes that need to
be re-implemented to stubs in a different fake.java.* package.

This is the case for all classes that have native methods, to pre-
vent simulation instances from escaping their sandboxes, and again
converted to simulation primitives, or in special cases, such as file
system access, encapsulated in the simulation environment and in-
voked safely by the core. Similarly, special static methods, such as
System.nanoTime() are intercepted and overridden to meet the
semantics of the simulation environment.

Some classes cannot be changed at all, e.g. java.lang.String.
Fortunately, this is not a problem since they do not contain any
static members that would leak information between simulation
instances or operations that must be intercepted: synchronization
primitives and native methods.

The majority of classes in platform libraries is however 100%
Java code that can be translated in the same manner as user code
in middleware and applications, as happens with data structures in
java.util.*. These are analyzed and processed automatically,
more specifically, all synchronization primitives are converted into
simulation synchronization primitives, becoming part of the moved
package , e.g. java.util.Hashtable becomes moved.java.

util.Hashtable automatically. Again, all references to these
classes are updated accordingly.

4.2 Synchronization
Thread synchronization done with primitives in java.util.

concurrent.* are easily dealt with by redirecting to their sim-
ulated counterparts in fake.java.util.concurrent.* as de-
scribed previously. The remaining challenge is to intercept and
translate usage of native Java monitor bytecode operations and im-
plicit mutex/condition variable pair in each object. This is achieved
by injecting fake.java.lang.Object as an ancestor of all trans-
lated classes and then rewriting monitor operations to invocations
of methods in this class. Such methods then use simulation prim-
itives for synchronization, namely, for locking/unlocking, waiting,
and notifying. static synchronized methods are translated by
adding an additional field to their class, which contains a singleton
instance of an object used for synchronization.

This would however be very costly, as it requires creating two
additional objects for each application object and executing two
simulation events for each synchronization operation. This over-
head is avoided by lazily creating locks and condition variables, as
these are not used in the vast majority of application objects, and
creating a fast path in synchronization operations that avoids simu-
lation events unless there is contention.

Finally, this approach would still be unfeasible in two cases. The
first is explicit synchronization operations on objects that cannot be
translated, e.g. Object[], which is solved by keeping a hash table
of shadow objects that are used when the default path fails. The

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000

B
W

 (
M

b
it
/s

)

Size (bytes)

Real
Minha

(a) Writing

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000

B
W

 (
M

b
it
/s

)

Size (bytes)

Real
Minha

(b) Reading

Figure 4: Validation of the network configuration (bandwidth).

second is implicit synchronization on class construction, needed
for proper implementation of singletons, that cannot be overridden.
The solution here is to pre-load classes that take advantage of such
synchronization.

5. INPUT/OUTPUT MODELS
Simulation models required by platform libraries encapsulate the

expected behavior of significant environment components. De-
pending on the goal of each run, different simulated components
or models with different levels of detail can be used.

5.1 Network
Mainly, for distributed middleware and applications, networking

APIs in the Java platform must be mapped to new implementa-
tions based on event simulation. Currently, this is done with a high
level simulation of a network that trades detail for better simula-
tion performance. The mapping of the IP addresses to the existing
instances, i.e., how to know what addresses are allocated to which
instance, as well as which addresses are active in MINHA platform,
is also the responsibility of the network model.

In detail, the network is modeled as a resource shared by all com-
munication channels, with a finite capacity, that when exhausted
prevents access to the overflowing packets. What happens to such
packets depends on the transport protocol being used. UDP packets
are dropped whereas TCP ones are delayed (but never reordered)
until there is enough free bandwidth capacity. The network access
control is performed by the leaky bucket algorithm in which the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000

R
o

u
n

d
 T

ri
p

 (
m

s
)

Size (bytes)

Real
Minha

Figure 5: Validation of the network configuration (round-trip
time).

internal transmission order of different streams is chosen by the
round robin algorithm in order to ensure fairness between flows.

The initial version of MINHA supports TCP, UDP, Multicast and
IP network protocols through the java.net API. The same pro-
cedure can be repeated for other APIs (e.g., java.nio) and proto-
cols.

5.2 File system
In terms of file system access, MINHA currently intercepts reads

and writes in order to avoid direct invocation of native I/O methods
by real code, thus providing the illusion of separate file systems to
different instances even if running in the same JVM.

Therefore, this does not currently faithfully reproduce the per-
formance characteristics of separate disks and should not be used
to asses software components whose performance depends heavily
on storage. To achieve that, simulation models of storage compo-
nents must be build and calibrated, much as is described here for
networks.

6. DEPLOYMENT
Using MINHA to assess some distributed application or middle-

ware component requires configuring a number of virtual JVM in-
stances, by providing their command line arguments, and calibrat-
ing I/O models to mimic the target environment, with parameters
computed from a set of micro-benchmarks.

6.1 General usage
The deployment process of a distributed application is straight-

forward. We simply start MINHA with the application’s main classes
as arguments. The following shows the command line that starts a
simple echo client/server pair:

$ java minha.Run 10.0.0.1 EchoServer, \
10.0.0.2 EchoClient 10.0.0.1

In this example two virtual JVMs are started. The first runs on
a simulated node with the 10.0.0.1 IP address and executes Echo-
Server without further arguments. The second runs on a node with
the 10.0.0.2 IP address the EchoClient class, with the server’s
address as a command line argument.

Note that both EchoServer and EchoClient are standard Java
programs making use of the standard API and run also directly on
unmodified JVMs. For instance, to achieve the same effect without
MINHA, one would run the following on a real host with address
10.0.0.1:

$ java EchoServer

and the the following on a second real host:

$ java EchoClient 10.0.0.1

There are more configuration parameters for minha.Run, the loader,
including automatic assignment of IP addresses, that due to lack of
space will not be mentioned in this article.

6.2 Calibration and validation
The calibration procedure is driven by the available hardware for

testing, hence MINHA is configured accordingly. Since the CPU
time spent on each task is dictated by the hardware, the calibration
is only valid to the hardware and operating system on which it was
performed. In this paper, all the tests were executed in two hosts
with the following configuration each: 64-bit Ubuntu Server 8.04.4
Linux, two 12 core AMD OpteronTM Processor 6172, 2.1GHz, 128
GB RAM, 64-bit Sun Microsystems Java SE 1.6.0_24 connected
through a Gigabit network.

Network calibration is performed by running two network bench-
marks: flood and round trip. The flood benchmark provides us with
the maximum outgoing bandwidth of an host, as well as the send-
ing and receiving overheads. The round trip benchmark exhibits
the time needed by an host to receive a package. In both bench-
marks, 500.000 messages with payloads from 1 to 5000 bytes are
exchanged. Network bandwidth was configured as Gigabit, using
the leaky bucket algorithm to control network access. The network
latency is computed from a round-trip benchmark.

Benchmark results of runs with two hosts, in both the real and
simulated environments, are compared to verify if they match. Fig-
ure 4(a) shows the maximum outgoing bandwidth of a TCP socket
using the flood benchmark. Figure 4(b) shows the result of the
same benchmark at the receiver’s end. Figure 5 shows the result
of the round trip benchmark. These results in real and simulated
benchmarks are very similar, which validates the calibration for the
used hardware.

7. CASE STUDY: WS4D
The case study used for evaluating MINHA was a publish/sub-

scribe scenario using Web Services where a publisher notifies sev-
eral hundred devices that subscribe a specific topic. This is a chal-
lenging scenario, since it is costly to obtain such large number of
independent devices and very time consuming to setup and run ex-
periments across them.

7.1 Middleware
The Devices Profile for Web Services (DPWS) OASIS standard

defines a set of protocols, that resource constrained devices should
implement in order to achieve seamless networking and interoper-
ability through Web Services. DPWS-compliant stack implementa-
tions must support WS-Eventing, which will be used to implement
the notification scenario for the case study. Although WS-Eventing
lacks explicit support for brokered dissemination, provided in the
WS-Notification family of standards, it embodies a flexible filter-
ing mechanism in the base specification, favoring lightweight im-
plementations and the many-to-one dissemination scenario. It has
therefore been the preferred choice for connected devices, namely,
within DMTF standard WS-Management [18] and DPWS.

Multiple implementations of the DPWS exist, and more and more
vendors are adopting it in their products. For instance, it is included
in Microsoft’s most recent operating systems, Windows Vista, Win-
dows Embedded CE, and Windows 7, thus being available in most
personal computers and various devices such as set-top boxes. There

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

L
a

te
n

c
y
 (

m
s
)

Devices

Multiple JVMs
Minha

(a) Latency.

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 0 50 100 150 200 250 300

D
u

ra
ti
o

n
 (

s
)

Devices

Multiple JVMs
Minha (sim)
Minha (real)

(b) Duration.

Figure 6: Performance and resource usage.

are also some projects, like Service-Oriented Architecture for De-
vices (SOA4D), managed by Schneider Electric, or Web Services
for Devices (WS4D) [17], managed by MATERNA and the univer-
sities of Dortmund and Rostock, which provide DPWS stacks im-
plemented in different programming languages. In particular, we
selected the WS4D Java Multi Edition DPWS Stack (JMEDS) as
it is compatible with both the Standard (J2SE) and Micro (J2ME
CLDC) Editions of the Java platform, hence supporting a wide
range of devices. For this purpose, the JMEDS framework sup-
plies several facilities of its own alternatively to those provided by
the J2SE API, even in the J2SE version, such as data structures
(e.g. various types of Lists, Maps, Sets and Iterators); utility classes
(some mathematical functions missing on CLDC, string manipula-
tion or logging operations); and thread pools and synchronization
locks. It also makes use of a third party XML parser library.

The case study was implemented on version 2 beta 3a of the
WS4D JMEDS available for J2SE, which supports DPWS Standard
version 1.1, enabling the implementation of both Client and Device
entities which are compliant with this specification.

7.2 Application
The evaluation consisted in running an eventing scenario where

a value is propagated from a single publisher device to a number
of consumer devices, through the use of WS-Eventing. Hence, the
producer device provides an eventing service with a notification op-
eration that generates a message to convey new temperature values,
and all the consumer devices are configured to contact the producer

to subscribe that same notification operation.
The execution procedure of each test comprised the following

steps: First, the manager device is started, to control the entire run.
The publisher device and the subscriber devices are then started.
The manager is notified, through the WS-Discovery Hello mes-
sages from each device, that all of them have started correctly. Af-
terwards, it informs all the subscribers of the publisher’s endpoint
for them to subscribe to and signals the publisher to start dissem-
inating events. The publisher periodically generates and dissemi-
nates new events. When the publisher has disseminated the con-
figured amount of events, it notifies the manager which contacts
all the devices to inform that the testing run is terminating and on
which file they should write the acquired measurements.

7.3 Results and discussion
The tests consisted in 10 runs for each evaluated number of de-

vices, where each run consisted in the periodic emission of 60
events with an interval of 5 seconds, using one of the hosts de-
scribed in Section 5. As a baseline, first, each device is run as a
separate real JVM. This run is labeled as Multiple JVMs. Then,
each device is run as a virtual JVM under control of MINHA within
a single host JVM. This run is labeled Minha. Results presented
in Figure 6 are the arithmetic mean of all the runs for each con-
figuration. For latency measurements, the first 10 iterations were
discarded in order to minimize the effect of Java JIT compilation,
although it also masks the delay of TCP connection establishment.

In detail, Figure 6(a) presents the interval between the emission
of a message by the publisher and its reception by a subscriber is
then measured in nanoseconds. The sampling of the emission time
instant is done right before the emission of a notification by the
publisher. The reception time measurement is the first operation in
the event treatment performed by the subscriber’s designated event
sink which deals with new messages. It is interesting that using
multiple JVMs underestimates the impact in latency of a growing
number of devices, as the large number of CPU cores required to
run the test as whole turns out to be used also for parallel dissemina-
tion, which would not happen in a real setting with actual devices.

Figure 6(b) shows the total amount of time for each run. Unsur-
prisingly, without MINHA the test runs in real time and takes ap-
proximately 300 s, plus some setup time for devices to start up and
connect that grows with scale. With MINHA, the time observed
within the simulation closely reproduces the real time necessary
without MINHA. However, since MINHA has a simulated timeline
(i.e. it does not wait, but instead advances the clock to the next
significant instance) it is able to finish the run in less time than for
up to 50 devices. After that, the overhead of the simulation means
that the simulation takes a significant amount of additional time to
run. This is expected to improve significantly in the future as paral-
lel simulation is used in MINHA instead of the simple single-thread
kernel currently implemented.

Moreover, this is not a significant challenge to the scalability of
MINHA, since the upper bound on the size of a system that can be
simulated is in general imposed by available memory. In this case,
MINHA has an advantage, since it uses much less memory for a
run with 300 devices (almost 5 times less), as portrayed in table 1.
This table shows the sum of resident memory used by all the 302
processes involved with multiple JVMs, and the memory used by
the single process that runs MINHA.

8. RELATED WORK
A number of simulation tools have been targeted at distributed

computer systems, providing simulation primitives as well as mod-
els of computer networks and other components. For instance,

Table 1: Average memory usage for 300 devices.
Execution mode RAM (GB)
Multiple JVMs 25.4

MINHA 5.7

OMNeT++ [16] is targeted mainly at networks but its large model
library includes also disks, file-systems, and other significant com-
ponents. It does not however provide a direct route to assessing
existing middleware components as possible in MINHA. It should
however be possible, and very interesting, to interface MINHA to
OMNeT++ to reuse its mature simulation kernel and vast model
library.

Simulation kernels such as RacewaySSF [5] can also take advan-
tage of multiple CPU cores to parallelize simulation code and exe-
cute large models faster. It should be possible to use such a kernel
instead of MINHA’s, thus reaping the same benefits. Note however
that in MINHA, most of the time is dedicated to running real code,
and thus it should be possible to take advantage of multiple cores
even if no parallel event-driven simulation is done. Interestingly,
the SSF standard uses a dedicated thread for each process marked
as not simple, much as MINHA runs Java threads.

An interesting trade-off is achieved by JiST (Java in Simulation
Time) [3], a simulation kernel that allows event-driven simulation
code to be written as Java threaded code, but avoids the overhead
of a native thread for each simulated thread by using continuations.
JiST does not however virtualize Java APIs and thus cannot be used
to run most of existing Java code. It also does not accurately reflect
the actual overhead of Java code in simulation time.

Neko [14] provides the ability to use simulation models as ac-
tual code, provided that its event-driven API is used instead of the
standard Java classes. Moreover, it does not accurately reflect the
actual cost of executing code, using a simple model that allows the
relative cost of the communication and computation operations to
be adjusted.

Combining real and simulated components has also been used
previously to evaluate software. For instance, ModelNet [15] simu-
lates a WAN in a LAN to evaluate large scale distributed programs.
It requires however that sufficient computer nodes are available to
accurately reproduce the behavior of systems. Another example is
FAUmachine [12], a virtualization system that can simulate various
hardware components. It is however targeted mostly at operating
system components and not at distributed systems.

The approach of MINHA is closer to CESIUM [2], which also
accurately reflects the cost of executing real code in simulated re-
source usage. MINHA does however virtualize a significant part
of a modern Java platform, thus providing unprecedented support
for running off-the-shelf code. In particular, the virtualization of
threading and concurrency control primitives provides additional
detail when simulation concurrent code, as is usually the case of
middleware components. Moreover, CESIUM uses currentTime-
Micros() for timing code execution, which is too coarse and sus-
ceptible to interference by background tasks.

A similar approach is also provided by UMLsim [1], a Linux-
based hypervisor that virtualizes Linux while providing a simulated
timeline and network. This does however require that a separate
JVM is run within each virtual machine, which incurs in signifi-
cant overhead and limits the scale of tests that can be performed.
Moreover, the code has not been maintained and is restricted to a
now obsolete version of Linux, making it a poor choice nowadays.

In fact, many researchers and developers must resort to actual
distributed systems to evaluate their distributed software. Namely,

EmuLab [6] provided a set of dedicated computer nodes and net-
working hardware that could be reconfigured to mimic different
large scale systems. By using a decentralized approach, Planet-
Lab [10] provides a much larger platform to run any off-the-shelf
code, with added realism. Although setting up and running exper-
iments in PlanetLab can in itself be challenging, systems such as
Splay [13] make it much easier to setup, run, and observe experi-
ments at the expense of limiting the developer to a specific frame-
work and the Lua language.

9. CONCLUSION
This paper introduces MINHA, a simulation platform that allows

multiple virtual JVM instances that run off-the-shelf Java middle-
ware components and distributed applications within a single host
JVM, much as an hypervisor enables multiple virtual machines
within a single server. In contrast with common hypervisors, MINHA
manages a simulated timeline which is updated using accurate mea-
surements of the time spent executing real code fragments, hence
reproducing the performance of multiple physically independent
hosts. Finally, it includes simulation models of networking compo-
nents for realistically mimicking a distributed execution.

The usefulness of MINHA is demonstrated by showing first how
an automatic calibration mechanism ensures that performance mea-
surements accurately reproduce those obtained in a real system.
Then, how the WS4D Java stack, an off-the-shelf middleware com-
ponent, is evaluated on a large scale system with hundreds of simu-
lated devices in single host using 5� less RAM than needed for
separate JVMs. In fact, MINHA avoids the error introduced by
running all devices within a single host, competing for the same
CPU resources, and provides a more truthful approximation of a
distributed system.

10. ACKNOWLEDGMENTS
This work was partially funded by PT Inovação and by FCT

through project SFRH/BD/66242/2009.

11. REFERENCES
[1] W. Almesberger. umlsim - A UML-based simulator. In

Linux.Conf.Au, 2004.
[2] G. Alvarez and F. Cristian. Applying simulation to the design

and performance evaluation of fault-tolerant systems. In 16th
Symposium on Reliable Distributed Systems (SRDS’97),
1997.

[3] R. Barr, Z. Haas, and R. van Renesse. JiST: An efficient
approach to simulation using virtual machines.
Software–Practice and Experience, 35(6), May 2005.
Reprinted in Handbook on Theoretical and Algorithmic
Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer
Networks, Jie Wu, editor.

[4] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code
manipulation tool to implement adaptable systems. In In
Adaptable and extensible component systems, 2002.

[5] J. H. Cowie, D. M. Nicol, and A. T. Ogielski. Modeling
100,000 nodes and beyond: Self-validating design.
Computing in Science and Engineering, 1999.

[6] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad,
T. Stack, K. Webb, and J. Lepreau. Large-scale virtualization
in the Emulab network testbed. In R. Isaacs and Y. Zhou,
editors, USENIX Annual Technical Conference, pages
113–128. USENIX Association, 2008.

[7] S. Karnouskos and T. de Holanda. Simulation of a smart grid
city with software agents. Computer Modeling and
Simulation, 2009. EMS ’09. Third UKSim European
Symposium on, pages 424 – 429, 2009.

[8] S. Karnouskos and A. Izmaylova. Simulation of web service
enabled smart meters in an event-based infrastructure.
Industrial Informatics, 2009. INDIN 2009. 7th IEEE
International Conference on, pages 125 – 130, 2009.

[9] A. Montresor and M. Jelasity. PeerSim: A scalable P2P
simulator. In H. Schulzrinne, K. Aberer, and A. Datta,
editors, Peer-to-Peer Computing, pages 99–100. IEEE, 2009.

[10] L. Peterson and T. Roscoe. The design principles of
PlanetLab. SIGOPS Oper. Syst. Rev., 40:11–16, January
2006.

[11] S. Pöhlsen, S. Schlichting, M. Strähle, F. Franz, and
C. Werner. A dpws-based architecture for medical device
interoperability. In O. Dössel, W. C. Schlegel, and
R. Magjarevic, editors, World Congress on Medical Physics
and Biomedical Engineering, September 7 - 12, 2009,
Munich, Germany, volume 25/5 of IFMBE Proceedings,
pages 82–85. Springer Berlin Heidelberg, 2009.

[12] S. Potyra, V. Sieh, and M. D. Cin. Evaluating fault-tolerant
system designs using FAUmachine. In Proceedings of the
2007 workshop on Engineering fault tolerant systems, EFTS
’07, New York, NY, USA, 2007. ACM.

[13] SPLAY Project.
http://www.splay-project.org/.

[14] P. Urban, X. Defago, and A. Schiper. Neko: a single
environment to simulate and prototype distributed
algorithms. In Information Networking, 2001. Proceedings.
15th International Conference on, pages 503 –511, 2001.

[15] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker. Scalability and accuracy in a
large-scale network emulator. SIGOPS Oper. Syst. Rev.,
36:271–284, December 2002.

[16] A. Varga. OMNeT++. In K. Wehrle, M. Günes, and J. Gross,
editors, Modeling and Tools for Network Simulation, pages
35–59. Springer, 2010.

[17] Web Services for Devices (WS4D) Project.
http://www.ws4d.org/.

[18] Web Services Management (WS-Management) Standard.
http://www.dmtf.org/standards/wsman.

