
Achieving Eventual Leader Election in WS-Discovery

Filipe Campos
Universidade do Minho
fcampos@di.uminho.pt

José Pereira
Universidade do Minho

jop@di.uminho.pt

Rui Oliveira
Universidade do Minho

rco@di.uminho.pt

Abstract—The Devices Profile for Web Services (DPWS)
provides the foundation for seamless deployment, autonomous
configuration, and joint operation for various computing de-
vices in environments ranging from simple personal multimedia
setups and home automation to complex industrial equipment
and large data centers. In particular, WS-Discovery provides
dynamic rendezvous for clients and services embodied in
such devices. Unfortunately, failure detection implicit in this
standard is very limited, both by embodying static timing
assumptions and by omitting liveness monitoring, leading to
undesirable situations in demanding application scenarios. In
this paper we identify these undesirable outcomes and propose
an extension of WS-Discovery that allows failure detection to
achieve eventual leader election, thus preventing them.

I. DPWS AND WS-DISCOVERY

Th OASIS Devices Profile for Web Services (DPWS)
standard [1] specifies a minimal set of requirements that a
Web Service implementation must comply with to provide
secure messaging, dynamic discovery and description, and
simple event notification. Its goal is to bring Service Ori-
ented Computing (SOC) to devices such as small sensors and
common appliances, without constraining the behavior and
features of richer service implementations on more powerful
devices. As protocols and standards that meet these goals for
Web Services already exist, this profile defines some con-
straints and adaptations for their applicability in resource-
constrained machines. In particular, DPWS is interesting as
the base for self-configurable data centers by building it in
management consoles that exist in server hardware.

DPWS builds on standard Web Services concepts of
Client and Message and introduces the definition of a Device
and Hosted Service. A Device, also known as Hosting
Service, handles Messages specifically belonging to the
standards comprising DPWS, for discovery and description.
A Hosted Service handles application specific messages and
can be addressed directly, i.e., without encapsulation.

A core feature of the DPWS Hosting Service is compli-
ance with WS-Discovery [2], which allows services to be
located dynamically. Briefly, it assumes that (i) services send
an announcement when joining or leaving the network in
order to minimize the need for polling and repeated searches;
and that (ii) Clients can probe for services by type or scope
and resolve a service by name. It provides various modes
of operation, depending on the availability of a Discovery

Proxy and to adapt to different scale and resource availability
scenarios.

In the Ad-Hoc Mode, entities on the network should make
no assumption on the existence of a Discovery Proxy. Hence,
discovery messages are multicast to the entire network while
responses are unicast to the inquiring entity. In Managed
Mode, every Target Service and Client must know the
address of a Discovery Proxy to enable successful discovery
using unicast messages exchanges. Consequently, discovery
messages are unicast to a Discovery Proxy, which also
responds through unicast messages to the enquiring entity.

The way that different entities become aware of the
Discovery Proxy can be made through different means, such
as explicit configuration or even dinamic discovery of the
d:DiscoveryProxy type itself. This last option paves
the way for dynamic mode switching.

The Discovery Proxy continuously listens to the well
known WS-Discovery multicast group in order to capture
any Hello and Bye messages from other Target Services,
in order to store or update information on them, and Probe
and Resolve messages from Clients looking for other Target
Services, to whom the Proxy sends a unicast Hello message.

This configuration option is clearly the most desirable.
The use of a Discovery Proxy reduces the amount of mes-
sages that are multicast, thus reducing network and Device
resources consumed in scenarios with large number of De-
vices. By dinamically discovering the Discovery Proxy itself,
it avoids the need for a centralized a priori configuration, that
defeats the purpose of WS-Discovery.

Unfortunately, as we describe in Section II coping with
failure of Service, and in particular of the Discovery Proxy,
according to the standard is much less graceful than startup
and discovery, as there is no provision for liveness moni-
toring or operation of multiple Proxies concurrently. We ad-
dress this in Section III by introducing a small set of changes
that allows for eventual leader election, thus providing the
key building block on which arbitrary services can provide
stability guarantees.

II. PROBLEMS

This simple dynamic discovery protocol has however
some shortcomings and can lead to undesirable executions.
Consider the following two examples:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615149?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1) Newly arrived Proxy: If a new Discovery Proxy con-
nects to a network it multicasts a Hello message containing
its type. Since Clients and Devices should consider the leader
Discovery Proxy to be the one identified in the last dis-
covery Hello, Probe Match or Resolve Match message they
received, these entities will then contact this Discovery Proxy
to fulfill any discovery query. As a Discovery Proxy should
not perform active searches but update its stored information
only by listening to Hello and Bye messages, Clients will be
querying a Proxy that might have no knowledge of relevant
Devices.

2) Clients select disparate Proxies: As UDP multicast
traffic is not a reliable means of communication, and es-
pecially if multiple Discovery Proxies boot simultaneously
as happens when recovering from a general power failure,
Clients may end up selecting different Discovery Proxies.
Note that unless the Client repeats its probing step or a
Proxy its advertisement (i.e. either of them is restarted), this
situation will not be corrected and Clients will not be able
to make use of common services.

Similar scenarios are possible regarding specific services
other than the Discovery Proxy, although in that case the po-
tential large scale might call for more elaborate solutions [5].
Moreover, if Clients rely on not obtaining different Devices
for the same discovery probe, the current situation is even
more inadequate. In this paper, we restrict our presentation
to cases where eventual agreement on the Proxy is sufficient.

III. LEADER ELECTION

Our proposal to minimize these problems is to slightly ex-
tend WS-Discovery such that the selection of the Discovery
Proxy when transitioning from Ad-Hoc to Managed Mode
leads to eventual leader election. The first challenge is to
select a protocol that fits the assumptions of the DPWS. In
particular, a protocol that depends on knowledge of number
of processes and a higher bound on process faults [3] is
not adequate when the system’s purpose is discovery and
self-configuration. The alternative is a protocol that rests
solely on timing assumptions, preferably if it adapts to actual
environment [4].

The second challenge is to integrate such protocol into
DPWS such that no existing assumptions are invalidated,
i.e. that existing Clients and Devices can continue to be
used seamlessly together with novel Clients and Devices,
that obey the new protocol. This can be achieved as follows:

First, we propose the use of an additional UDP multi-
cast channel or group to facilitate communication among
Discovery Proxies. This group, known as Proxies Multicast
Group, allows this communication to be performed out of
reach of Devices and Clients. In detail, when a Discovery
Proxy responds to the new element with a unicast Hello
message, it simultaneously sends a copy of it to the Proxies
Multicast Group. This way, other Proxies are able to verify

the liveness of other Proxies. By using a separate multicast
group, this avoids excessive traffic.

Second, we use the value of the InstanceId attribute,
enclosed in the d:AppSequence element exchanged in
discovery messages. The standard recommends that this is
the number of times a Device boots, or, alternatively and
more appealingly, the number of seconds since midnight
January 1, 1970, at the time of boot. The described ap-
proach assumes this last option for the semantics of the
InstanceId attribute, as the lower is the value, the older
the Proxy is, and therefore it is more likely to possess
information on more Devices and Services in the network.

Each Proxy can thus observe all Probe messages on the
d:DiscoveryProxy type, as these are always multicast,
and replies, on the new multicast channel. This allows
monitoring to be done by estimating time to reply [4].
Moreover, by using the InstanceId value, an older Proxy
will try to override Probe replies and Hello messages from
more recent Proxies, thus maintaining a stable leadership.

IV. CONCLUSIONS AND FUTURE WORK

We have shown that by taking advantage of existing
features of WS-Discovery and with a minor extension, it is
possible to provide eventual leader election semantics in the
selection the Discovery Proxy, thus inherently avoiding some
problem scenarios. As a future work we aim at extending
the guarantees such that discovery provides agreement on
Devices selected for specific services through a consensus
protocol. This should provide many of the advantages of a
centralized configuration server for DPWS without the need
for centralized management.

ACKNOWLEDGMENTS

This work is partially supported by FCT grants
SFRH/BD/66242/2009 and PDTC/EIA-EIA/109044/2008.

REFERENCES

[1] Devices Profile for Web Services (DPWS) 1.1 OA-
SIS Standard. http://docs.oasis-open.org/ws-dd/dpws/1.1/os/
wsdd-dpws-1.1-spec-os.html, 01 July 2009.

[2] Web Services Dynamic Discovery (WS-Discovery) 1.1 OASIS
Standard. http://docs.oasis-open.org/ws-dd/discovery/1.1/os/
wsdd-discovery-1.1-spec-os.html, 01 July 2009.

[3] A. Mostefaoui, M. Raynal, and C. Travers. Crash-resilient
time-free eventual leadership. In Proceedings of the 23rd
IEEE International Symposium on Reliable Distributed Sys-
tems, SRDS ’04, pages 208–217, 2004.

[4] B. Satzger, A. Pietzowski, W. Trumler, and T. Ungerer. A
new adaptive accrual failure detector for dependable distributed
systems. In Proceedings of the 2007 ACM symposium on
Applied computing, SAC ’07, pages 551–555, 2007.

[5] W. Wogels and C. Ré. WS-Membership - Failure management
in a web-services world. In WWW (Alternate Paper Tracks),
2003.


