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Abstract

Hypercomplex function theory generalizes the theory of
holomorphic functions of one complex variable by us-
ing Clifford Algebras and provides the fundamentals of
Clifford Analysis as a refinement of Harmonic Analysis
in higher dimensions. We define the Laguerre deriva-
tive operator in hypercomplex context and by using
operational techniques we construct generalized hyper-
complex monogenic Laguerre polynomials. Moreover,
Laguerre-type exponentials of order m are defined.

1 Introduction

In the theoretical background of any differential, integral or functional equation Special Functions are om-
nipresent. The use of symbolic algebraic calculation simplifies the detection of interesting unknown properties
and implies that the amount of papers written about Special Functions and related subjects is enormously in-
creasing. From this general point of view it seems also natural to ask for the role and the application of Special
Functions in Clifford Analysis. Since the theory of monogenic or Clifford holomorphic functions (see [1, 2])
has its origin in complex function theory one can expect that almost everything from Special Function theory
should have its counterpart in Clifford Analysis and that therefore a deeper study would not be interesting.
A first superficial look may confirm those positions, but two arguments exist that are in our opinion essential
for a different judgement about the usefulness of studies on Special Functions in Clifford Analysis. First, it
seems that the possible contribution to a different dealing with functions in several real variables could enrich
the multidimensional theory of Special Functions. Second, the use of the non-commutative Clifford Algebra
promises results which cannot be obtained in the usual multidimensional commutative setting.

After introducing very briefly the necessary notations in Section 2 we prepare from Section 3 to Section 6
the operational approach to generalized Laguerre polynomials as well as to Laguerre-type exponentials based
on our results from [3] and [4] about a special Appell sequence of polynomials and its connection with Bessel
functions.
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2 Laguerre derivative and monogenic Laguerre polynomials: an operational approach

The special sequence of monogenic Appell type polynomials which we use in this framework stresses the
central role of the hypercomplex derivative in questions of this type. This fact has been confirmed by several
authors, who meanwhile started to work with Appell sets in the context of Clifford Analysis also in connection
with other problems ([5, 6, 7]).

Our interest in Appell sequences in the Clifford setting has been motivated by the search for an exponential
function due to the connection with a corresponding generating exponential function. But the idea to ask for
the existence of a generalized holomorphic exponential function was from the beginning on in Clifford Analysis
a principal question and reflects the main differences with the complex case ([2, 8, 9, 10]).

The definition of the hypercomplex Laguerre derivative in Section 6 and its application for obtaining mono-
genic Laguerre polynomials in Section 7 stresses once more the usefulness of the concept of a hypercomplex
derivative in connection with the adaptation of the operational approach, developed by Dattoli, Ricci et al.
([11, 12, 13, 14]). Consequently, it leads us in Section 8 directly to the definition of a monogenic Laguerre-type
exponential, including its relationship with different types of Special Functions according to the dimension of
the considered Euclidean space (Theorem 7).

2 Basic notation

Let {e1, e2, . . . , en} be an orthonormal basis of the Euclidean vector space Rn with a non-commutative product
according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . , n,

where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, . . . , n}} with

eA = eh1
eh2

. . . ehr , 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1,

forms a basis of the 2n-dimensional Clifford Algebra C`0,n over R. Let Rn+1 be embedded in C`0,n by identifying
(x0, x1, . . . , xn) ∈ Rn+1 with x = x0 + x ∈ A := spanR{1, e1, . . . , en} ⊂ C`0,n. Here x0 = Sc(x) and
x = Vec(x) = e1x1 + · · · + enxn are the so-called scalar resp. vector parts of the paravector x ∈ A. The
conjugate of x is given by x̄ = x0−x and the norm |x| of x is defined by |x|2 = xx̄ = x̄x = x2

0 +x2
1 + · · ·+x2

n.
We consider functions of the form f(z) =

∑
A fA(z)eA, where fA(z) are real valued, i.e. C`0,n-valued

functions defined in some open subset Ω ⊂ Rn+1. The generalized Cauchy-Riemann operator in Rn+1, n ≥ 1,
is defined by

∂ := ∂0 + ∂x, ∂0 :=
∂

∂x0
, ∂x := e1

∂

∂x1
+ · · ·+ en

∂

∂xn
.

C1-functions f satisfying the equation ∂f = 0 (resp. f∂ = 0) are called left monogenic (resp.right
monogenic). We suppose that f is hypercomplex differentiable in Ω in the sense of [15, 16], i.e. has a
uniquely defined areolar derivative f ′ in each point of Ω (see also [17]). Then f is real differentiable and f ′

can be expressed by the real partial derivatives as f ′ = 1
2∂, where ∂ := ∂0 − ∂x is the conjugate Cauchy-

Riemann operator. Since a hypercomplex differentiable function belongs to the kernel of ∂, it follows that in
fact f ′ = ∂0f , like in the complex case.

3 Monogenic Appell sequences with respect to hypercomplex linear
operators

Let U1 and U2 be (right) modules over C`0,n and let T̂ : U1 −→ U2 be a hypercomplex (right) linear operator.

Definition 1. A sequence of monogenic polynomials (Fk)k≥0 is called a T̂ -Appell sequence if T̂ is a lowering
operator with respect to the sequence, i.e., if

T̂Fk = kFk−1, k = 1, 2, . . . ,

and T̂ (1) = 0.
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Taking into account that the operator 1
2∂ defines the hypercomplex derivative of monogenic functions, the

sequence of monogenic polynomials that is 1
2∂-Appell is the hypercomplex counterpart of the classical Appell

sequence and it is simply called Appell sequence or Appell set.

Theorem 1. A monogenic polynomial sequence (Fk)k≥0 is an Appell set if and only if it satisfies the binomial-
type identity

Fk(x) = Fk(x0 + x) =

k∑
s=0

(
k

s

)
Fk−s(x)xs0. (1)

Proof. Let (Fk)k≥0 be an Appell sequence of monogenic polynomials. Then, for any x ∈ A, we have(
1

2
∂

)s
Fk(x) =

k!

(k − s)!
Fk−s(x), s ≤ k. (2)

In the paravector variable x = x0 + x, let x be fixed and consider the real part x0 varying in R such that
Gk(x0) := Fk(x0 + x) is a polynomial of degree k in x0. From the Taylor expansion of G, we obtain

Gk(x0) =

k∑
s=0

G
(s)
k (0)

s!
xs0. (3)

Due to (2) and the monogeneity of the polynomials Fk (k = 0, 1, 2, . . . ), the s-th derivative of Gk, for s ≤ k,
can be written as

G
(s)
k (x0) = ∂s0Fk(x0 + x) = (

1

2
∂)sFk(x0 + x) =

k!

(k − s)!
Fk−s(x0 + x). (4)

The final result (1) follows now at once, by considering x0 = 0 in (4) and using (3). Conversely, the
hypercomplex derivative of (1) provides

1

2
∂Fk(x) = ∂0Fk(x0 + x) =

k∑
s=1

(
k

s

)
sFk−s(x)xs−1

0

= k

k−1∑
s=0

(
k − 1

s

)
Fk−1−s(x)xs0 = kFk−1(x0 + x) = kFk−1(x).

Remark 1. The Cauchy-Kovalevskaya extension (CK) (see e.g. [1]) is an important technique to construct a
monogenic function F in Rn+1, starting from an analytic function f in Rn. This extension is given by

F (x) := CK (f) (x) =

∞∑
j=0

(−1)j
xj0
j!

(
∂x
)j
f(x).

For monogenic Appell sets, the Cauchy-Kovalevskaya extension coincides with the binomial-type identity.
In fact, if the sequence (Fk)k≥0 is monogenic and Appell, we have for each k ≥ 1, −∂xFk(x) = ∂0Fk(x) =
kFk−1(x), which implies that

(−1)j∂jxFk(x) =
k!

(k − j)!
Fk−j(x), j ≤ k

and we get

CK (Fk) (x) =

∞∑
j=0

(−1)j
xj0
j!

(
∂x
)j Fk(x) =

k∑
j=0

(
k

j

)
xj0Fk−j(x).
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4 Appell sequence in terms of a paravector variable and its conjugate

In this section, we consider a special set of monogenic basis functions defined and studied to some extend
with respect to its algebraic properties in [3, 4, 18], namely functions of the form1

Pnk (x) =

k∑
s=0

T ks (n)xk−s x̄s, (5)

where

T ks (n) =
k!

(n)k

(n+1
2 )(k−s)(

n−1
2 )(s)

(k − s)!s!
, n ≥ 1 (6)

and a(r) denotes the Pochhammer symbol, i.e. a(r) = Γ(a+r)
Γ(a) , for any integer r > 1, and a(0) := 1. The case

of a real variable will formally be included in the above definitions as the case n = 0 with T 0
0 (0) = 1 and

T ks (0) = 0, for 0 < s ≤ k.
It can be proved, under the additional (but natural) condition Pnk (1) = 1 that the sequence P := (Pnk )k∈N

is Appell, i.e.
1

2
∂Pnk = kPnk−1. (7)

Other important properties of such a sequence can also be obtained. For our purpose here, we highlight the
following essential results:

1. Denoting by ck(n), n ≥ 1 the alternating sum
k∑
0

(−1)sT ks (n), then for n ≥ 1, k = 1, 2, . . .

ck(n) :=

k∑
0

(−1)sT ks (n) =


k!!(n− 2)!!

(n+ k − 1)!!
, if k is odd

ck−1(n), if k is even

(8)

and c0(n) = 1, n ≥ 0. As usual, we define (−1)!! = 0!! = 1.

2. The binomial-type formula (1) can be written as

Pnk (x) =

k∑
s=0

(
k

s

)
xk−s0 Pns (x) =

k∑
s=0

(
k

s

)
cs(n)xk−s0 xs. (9)

If x is real, i.e. x = x0, (9) leads to P0
k(x0) = xk0 and if x0 = 0, i.e. x = x, we obtain the essential

property which characterizes the difference to the complex case

Pnk (x) = ck(n)xk.

Using these properties, we can easily compute the first polynomials, n ≥ 1:

Pn0 (x) = 1, Pn1 (x) = x0 +
1

n
x,

Pn2 (x) = x2
0 +

2

n
x0x+

1

n
x2, Pn3 (x) = x3

0 +
3

n
x2

0x+
3

n
x0x

2 +
3

n(n+ 2)
x3.

1Special monogenic polynomials in terms of x and x̄ similar to (5) have been considered before in [19] and some subsequent
papers of the same authors. But the authors have been concerned with the extension of the theory of basic sets of polynomials
in one complex variable, as introduced by J. M. Whittaker and B. Cannon, to the setting of Clifford analysis. At the time of
publication of [19] the concept of hypercomplex differentiability ([16]) or the corresponding use of the hypercomplex derivative,
first published in [15], have not been available for the investigation of Appell sequences of monogenic polynomials. In the
quaternionic framework (n = 2) and using a completely different approach, these polynomials were also obtained in [20] as part
of complete polynomial bases systems.
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We observe that in the complex case (n = 1), the polynomials P1
k coincide, as expected, with the usual powers

zk. In fact, from (8), we get ck(1) = 1, for all k. Then, the binomial-type formula (9) permits to state that

P1
k(x) =

k∑
s=0

(
k

s

)
xk−s0 xs = (x0 + e1x1)

k ' zk.

5 Monogenic exponential function

As mentioned in the introduction the existence of a generalized holomorphic exponential function was a
principal question from the beginning of Clifford Analysis. At that time only the Riemann approach to
generalized holomorphic (monogenic) functions as solutions of ∂f = 0 or f∂ = 0 was at hand and was
even considered as the only one possible approach (see [1, 2]). But distinguishing a generalized holomorphic
exponential function f = f(x), x ∈ Rn+1, among all functions in the kernel of ∂ is not possible, if one relies
only on this fact or has in mind to conserve only some formal algebraic structure. In this context it seems
remarkable, that one cannot find any remark on a regular quaternionic exponential function in the work of
Fueter, one of the founders of hypercomplex function theory (see [21]).

Nevertheless, if the characterization should naturally be based on some analogy with the ordinary complex
exponential function f(z) = ez, z ∈ C, then several different approaches are at our disposal which could
lead to a generalized exponential function. First, one could demand a formal series representation similar to
f(z) :=

∑∞
k=0

zn

k! . But the fact that only for the complex case n = 1, an integer power of x belongs to the set
of monogenic functions, causes problems by taking directly this usual series expansion as a defining relation.

Secondly, one could look for a monogenic function which fulfills the functional equation f(z + w) =
f(z)f(w). But to conserve the functional equation in the higher dimensional case in this form is illusorily,
because the set of monogenic functions is not closed with respect to multiplication.

A third possibility would be through an analytic continuation approach (Cauchy-Kowalevskaya extension)
starting from the exponential function with real argument and asking for a monogenic function with restriction
to the real axis equal to the exponential function with a real argument. Indeed, the first attempts towards a
meaningful definition of an exponential function in the context of Clifford Analysis have been [8, 9] and both
papers rely on the Cauchy-Kowalevskaya extension approach (see also [1]).

But with the hypercomplex derivative at our disposal it was natural to define a generalized holomorphic
exponential function f as a solution of the simple first order differential equation f ′ = f , with f(0) = 1. Here,
of course, the derivative means the hypercomplex derivative f ′ = 1

2∂f.
This approach is also well motivated by the fact that hypercomplex differentiability is granted for our type

of solutions of generalized Cauchy-Riemann systems. In [3, 4, 5] we have chosen exactly this approach, but
still combined with the idea that through the construction of a set of special polynomials with differential
properties like xn also an easy to handle series representation should be obtained. Therefore we combined the
differential equation approach with the construction of Appell sequences of holomorphic polynomials as will
be described in the following.

Giving a T̂ -Appell sequence F := (Fk)k≥0 of homogeneous monogenic polynomials, we can define formally
a corresponding monogenic exponential function as

T̂ExpF (x) :=

∞∑
k=0

Fk(x)

k!
. (10)

The function T̂ExpF is an eigenfunction of the hypercomplex operator T̂ , i.e., it holds

T̂ (T̂ExpF (λx)) = λ T̂ExpF (λx), λ ∈ R.

In other words, (10) constitutes a generalization of the classical exponential function. For example, considering
the Appell set P := (Pnk )k∈N0

defined by (5)-(6), the corresponding exponential function is

1
2∂

ExpP(x) =

∞∑
k=0

Pnk (x)

k!
. (11)
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Following [3], we denote the exponential function (11) in Rn+1, simply by Expn. It follows immediately
from the above definition that Expn is an eigenfunction of the operator 1

2∂ and, in addition, Expn(xt) is an
exponential generating function of the sequence P.

With ω(x) :=
x

|x|
and ω2 = −1 as the equivalent for the imaginary unit i we can prove the following result

(c.f.[3]):

Theorem 2. The Expn-function can be written in terms of Bessel functions of the first kind, Ja(x), for orders
a = n

2 − 1, n2 as

Expn(x0 + x) = ex0Γ

(
n

2

)(
2

|x|

)n
2−1 (

Jn
2−1(|x|) + ω(x)Jn

2
(|x|)

)
.

The exponential function in Rn+1 defined above, permits to consider the exponential operator

Expn(λT̂ ) =

∞∑
k=0

Pnk (T̂ )

k!
λk, λ ∈ R (12)

as a multidimensional counterpart in hypercomplex function theory of the usual exponential operator eλQ =
∑∞
k=0

Qk

k! λ
k.

6 Hypercomplex Laguerre derivative operator

The operational approach to the classical Laguerre polynomials as considered in [13, 14] is based on the

introduction of the so-called Laguerre derivative operator in the form ∂
∂xx

∂
∂x acting on the set of (x

k

k! )k≥1. Its
generalization to the case of paravector valued functions of a paravector variable can be realized by a natural
combination of the hypercomplex derivation operator 1

2∂ and the Euler operator

E :=

n∑
k=0

xk
∂

∂xk
.

Therefore we use the paravector representation of x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn) of Rn+1,

x = x0 + x1e1 + · · ·+ xnen, y = y0 + y1e1 + · · ·+ ynen ∈ A.

The usual Euclidean inner product in Rn+1 can be expressed by the scalar part of the product of x and ȳ, i.e.

〈x, y〉 = Sc(x ȳ).

Substituting now y by the operator ∂̄, we obtain the following form of the Euler operator

〈x, ∂̄〉 = Sc(x ∂) = E.

Using the fact that P := (Pnk )k∈N0
is a sequence of homogeneous monogenic polynomials which is Appell,

it is easy to understand the action of the operators E and ∂ on Pnk , for each k ≥ 1. More precisely, we have

E (Pnk ) = kPnk

and combining with the hypercomplex derivative it follows that

1

2
∂E (Pnk ) = k2Pnk−1. (13)

This action of the hypercomplex derivation 1
2∂ in combination with the Euler operator E is essential for

our definition of a generalized Laguerre derivative operator

LD :=
1

2
∂E.
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In this context we noticed also an interesting relationship of both operators in connection with a generalized
Leibniz rule, slightly different from that considered by other authors for the expression of a product of two
paravector valued functions under the action of ∂̄. In [22], the authors deduced a generalized Leibniz rule for
quaternionic-valued functions, with respect to the operator ∂̄. Cumbersome, but straightforward calculations
lead to an analogous formula for paravector-valued functions in arbitrary dimensions and with respect to
the operator ∂. Since ∂ plays the role of the hypercomplex derivative operator in the monogenic function
theory, the following results show a deeper analogue in higher dimensions to the well known Leibniz rule for
holomorphic functions.

Theorem 3. (generalized Leibniz rule) Let u, v be paravector-valued functions continuously differentiable in
some open set of Rn+1. Then

∂(u v) = (∂u)v − u
(
∂v
)

+ 2 Sc(u∂)v.

In particular, if u = x
∂(x v) = (n+ 1)v − x

(
∂v
)

+ 2Ev.

We note that if v is a monogenic function, the generalized Leibniz rule reads

∂(x v) = (n+ 1)v + 2Ev (14)

and, for the particular choice v = Pnk , we obtain, taking into account the homogeneity of Pnk ,

∂(xPnk ) = (n+ 1 + 2k)Pnk .

7 Monogenic Laguerre polynomials

Consider the polynomials

Qnk :=
Pnk
k!
, k = 0, 1, . . . .

Recalling (13) we conclude that Q := (Qnk )k≥0 is a LD-Appell sequence, since

LD(Qnk ) =
1

2
∂E(Qnk ) = kQnk−1. (15)

Moreover

(LD)r(Qnk ) =
k!

(k − r)!
Qnk−r, r ≤ k. (16)

Next, we use (12) in order to apply the exponential operator Expn(LD) to the sequence Q and obtain, for
each k ≥ 1,

Lnk := Expn(LD) (Qnk ) =

∞∑
r=0

1

r!
Pnr (LD) (Qnk ) . (17)

The binomial-type formula (9) permits to state, for each r ≥ 0 and k ≥ 1, that

Pnr (LD) (Qnk ) = Pnr (
1

2
∂E) (Qnk ) = Pnr (

1

2
(∂0 − ∂x)E) (Qnk )

=

r∑
s=0

(
r

s

)
cs(n)

(
1

2
∂0E

)r−s(
−1

2
∂xE

)s
(Qnk ) .

Since Qnk is monogenic, −∂xQnk = ∂0Qnk = 1
2∂Q

n
k and hence, from (16) it follows

Pnr (LD) (Qnk ) =

r∑
s=0

(
r

s

)
cs(n)

1

2r
(LD)

r
(Qnk )

=

r∑
s=0

(
r

s

)
cs(n)

1

2r
k!

(k − r)!
Qnk−r.
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Substituting now this expression in (17), we obtain the monogenic polynomials

Lnk (x) =

k∑
r=0

1

r!

r∑
s=0

(
r

s

)
cs(n)

1

2r
k!

(k − r)!
Qnk−r(x)

=

k∑
r=0

(
k

r

)
1

2r
γr(n)Qnk−r(x), k = 0, 1, . . . , (18)

where

γr(n) =

r∑
s=0

(
r

s

)
cs(n) =

[ r+1
2 ]∑

m=0

(
r + 1

2m

)
c2m(n).

We notice that the sequence (γr(n))r≥0 is obtained as the binomial transform of the sequence (cs(n))s≥0

(see, e.g., [23]), with inversion

cr(n) =

r∑
s=0

(
r

s

)
(−1)r−sγs(n).

The constant polynomial Ln0 (x) ≡ 1 is included in a natural way in the expression (18), since γ0(n) = 1
independently of the dimension n. As a direct consequence of the fact that (Qnk )k≥0 is a LD-Appell sequence,
we have the following

Theorem 4. The sequence of monogenic polynomials (Lnk )k≥0 is a LD-Appell sequence.

Following the classical case, we substitute x by −x in (18), and we define the monogenic Laguerre
polynomials in Rn+1 by

Lnk (x) := Lnk (−x) =

k∑
r=0

(−1)k−r
(
k

r

)
1

2r
γr(n)

Pnk−r(x)

(k − r)!
, k = 0, 1, . . . . (19)

The first monogenic Laguerre polynomials are given by

Ln0 (x) = Ln0 (x0 + x) = 1

Ln1 (x) = Ln1 (x0 + x) = −Pn1 (x0 + x) + 1
2

(
1 + 1

n

)
= −

(
x0 + 1

nx
)

+ 1
2

(
1 + 1

n

)
Ln2 (x) = Ln2 (x0 + x) = 1

2!P
n
2 (x0 + x) +

(
1 + 1

n

)
Pn1 (x0 + x) + 1

4

(
1 + 3

n

)
= 1

2!

(
x2

0 + 2
nx0x+ 1

nx
2
)
−
(
1 + 1

n

)(
x0 + 1

nx
)

+ 1
4

(
1 + 3

n

)
Special cases:

1. Complex case (n = 1)

We recall that for n = 1, the polynomials P1
k are isomorphic to the complex powers zk (k = 0, 1, 2, . . . ).

On the other hand, we have that cs(1) = 1, for arbitrary s. Therefore,

γr(1) =

r∑
s=0

(
r

s

)
= 2r

and we obtain,

L1
k(x) =

k∑
r=0

(−1)k−r
(
k

r

)P1
k−r(x)

(k − r)!
=

k∑
r=0

(−1)k−r
(
k

r

)
zk−r

(k − r)!
, k = 0, 1, . . . ,

i.e. L1
k are isomorphic to the holomorphic Laguerre polynomials of one complex variable.
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2. Real case (n = 0)

In this case, P0
k(x0) = xk0 and cs(0) ≡ 1, for all values of s, and we have again γr(0) = 2r. Then, (19)

leads to

L0
k(x) =

k∑
r=0

(−1)k−r
(
k

r

)
xk−r0

(k − r)!
, k = 0, 1, . . . ,

which coincides with the well-known Laguerre polynomials defined on the real line.

Following the same operational approach we can construct generalized Laguerre polynomials in Rn+1. In
[24] the differential operator ∂

∂xx
∂
∂x + α ∂

∂x was considered associated to the real case. The hypercomplex
counterpart is given by

LD
(α) :=LD + α

1

2
∂, α ∈ R.

This operator is a lowering operator associated with the sequence Q(α) := (Qn,αk )
k≥0

, where

Qn,αk :=
Pnk

Γ(k + α+ 1)
, k = 0, 1, . . . .

Indeed,

LD
(α)Qn,αk = k Qn,αk−1, k = 1, 2, . . . .

Therefore, considering the exponential operator Expn(LD
(α)) applied to the sequence Q(α) and repeating

the above procedure, we obtain for each k ≥ 1,

Ln,αk := Expn(LD
(α))Qn,αk =

∞∑
r=0

1

r!
Pnr (LD

(α))Qn,αk

=

k∑
r=0

1

r!

1

2r
γr(n)

k!

(k − r)!
Qn,αk−r

=

k∑
r=0

(
k

r

)
1

2r
γr(n)

Pnk−r
Γ(k + α− r + 1)

.

The constant polynomials Ln,α0 (x) ≡ 1, for any α ∈ R and x ∈ A are included in a natural way in the
previous expression. Using the fact that Q(α) is a LD

(α)-Appell set, we obtain

Theorem 5. The sequence of monogenic polynomials (Ln,αk )
k≥0

is a LD
(α)-Appell set.

Considering now the normalizing factor Γ(k+α+1)
k! and substituting x by −x in the expression of Ln,αk , i.e.,

considering the polynomials

Ln,αk (x) :=
Γ(k + α+ 1)

k!
Ln,αk (−x),

we can define the monogenic generalized Laguerre polynomials of degree k (k = 0, 1, 2, . . . ),

Ln,αk (x) =

k∑
r=0

(−1)k−r
(
k

r

)
1

2r k!
γr(n)

Γ(k + α+ 1)

Γ(k + α− r + 1)
Pnk−r(x). (20)

The ordinary cases of the generalized Laguerre polynomials defined on the real line and on the complex
plane can also be obtained from (20) by considering n = 0 and n = 1, respectively.

Notice that in the case α = 0, we have Ln,0k ≡ Lnk in a similar way as for the ordinary Laguerre and
generalized Laguerre polynomials.

Remark 2. The polynomials Ln,αk can be directly obtained by applying the exponential operator Expn(−LD(α))
to the sequence (Qn,αk (−x))

k≥0
.



10 Laguerre derivative and monogenic Laguerre polynomials: an operational approach

In the origin, we have

Ln,αk (0) =
1

2k k!
γk(n)

Γ(k + α+ 1)

Γ(α+ 1)
,

due to the homogeneity of the polynomials Pnk and the fact that Pn0 (x) ≡ 1.

A straightforward computation shows that the monogenic generalized Laguerre polynomials (20) satisfy

LD
(α)Ln,αk (x) = −(k + α)Ln,αk−1(x). (21)

Moreover,
1

2
∂Ln,αk (x) = −Ln,α+1

k−1 (x). (22)

This relation implies that (
1

2
∂

)j
Ln,αk (x) = (−1)

j
Ln,α+j
k−j (x), j = 0, 1, . . . , k

and, in particular, due to the fact that L
(α)
0 (x) ≡ 1 it follows(

1

2
∂

)k
Ln,αk (x) = (−1)

k
.

Theorem 6. The monogenic generalized Laguerre polynomials satisfy the equality(
1

2
∂

)2

(xLn,αk (x)) = −1

2
(n+ 1− 2α)Ln,α+1

k−1 (x)− (k + α)Ln,αk−1(x).

Proof. Using formula (14), we obtain(
1

2
∂

)2

(x v) =
1

2
(n+ 1)

(
1

2
∂

)
v + LDv,

which implies that any monogenic function v satisfies the second-order differential equation

(x v)′′ =
1

2
(n+ 1− 2α)v′ + LD

(α)v,

with the notation (.)′ := 1
2∂(.). Choosing now v = Ln,αk and using properties (21)-(22), we obtain the desired

equality.

8 Monogenic Laguerre-type exponentials

Considering once more the LD
(α)-Appell sequence Q(α) := (Qn,αk ), we obtain from (10) the Laguerre-type

exponential

LD(α)ExpQ(α)(x) :=

∞∑
k=0

Qn,αk (x)

k!
=

∞∑
k=0

Pnk (x)

k!Γ(k + α+ 1)
, α ∈ R. (23)

If α = r is an integer and we substitute x by −x, we have

Cr(x) :=

∞∑
k=0

(−1)k
Pnk (x)

k!(k + r)!
.

which, for n = 0 (real case), coincides with the Bessel-Tricomi function (see, e.g., [25]),

Cr(x0) =

∞∑
k=0

(−x0)k

k!(k + r)!
= x

−r/2
0 Jr(2

√
x0),
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and shows its relation to the Bessel function Jr of order r.

In the case α = 0, the monogenic Laguerre-type exponential (23) is given by

L
Expn(x) :=

LDExpQ(x) =

∞∑
k=0

Pnk (x)

(k!)2
, (24)

and can be generalized to an arbitrary m-th Laguerre-type exponential (or mL-exponential) as

mLExpn(x) :=
mLDExpQ(x) =

∞∑
k=0

Pnk (x)

(k!)m+1
, (25)

which is an eigenfunction of the operator mLD := 1
2∂E

m. Notice that for the case m = 0, the 0L-exponential
coincides with the exponential function defined in Section 5 and if x is a real number, then the function

mLExp0 gives the generalized Laguerre-type exponential presented by Dattoli and Ricci in [12].
Considering the cases n = 0 (real case) and m = 1, LExp0(x0) can be written in terms of modified Bessel

functions of the first kind,

LExp0(x0) = I0(2
√
x0).

When x = x, an explicit representation of (24) can also be obtained.

Theorem 7. The
LDExp-function (24) can be written in terms of hypergeometric functions as

L
Expn(x) = 0F3

(
;

1

2
, 1,

n

2
;−|x|

2

16

)
+ ω(x)

|x|
n

0F3

(
; 1,

3

2
,
n

2
+ 1;−|x|

2

16

)
. (26)

Proof. We start by considering the expression of
L
Expn(xiei), for i = 1, 2, . . . , n, i.e.

L
Expn(xiei) =

∞∑
k=0

1

(k!)2

k∑
s=0

T ks (n) (xiei)
k−s (−xiei)s

=

∞∑
k=0

1

(k!)2

k∑
s=0

T ks (n) (−1)sxki e
k
i

and applying relation (8) to obtain

L
Expn(xiei) =

∞∑
k=0

1

(k!)2
ck(n)xki e

k
i

=

∞∑
m=0

(−1)m(
(2m)!

)2 c2m(n)x2m
i + ei

∞∑
m=0

(−1)m(
(2m+ 1)!

)2 c2m+1(n)x2m+1
i .

After some calculation we end up with

L
Expn(xiei) =

∞∑
m=0

am(−1)m
x2m
i

m!
+ eixi

∞∑
m=0

bm(−1)m
x2m
i

m!
, (27)

where

am =
1

24m
(

1
2

)
m

(1)m
(
n
2

)
m

and bm =
1

n24m (1)m
(

3
2

)
m

(
n
2 + 1

)
m

.

Therefore,

L
Expn(xiei) = 0F3

(
;

1

2
, 1,

n

2
;−x

2
i

16

)
+ ei

xi
n

0F3

(
; 1,

3

2
,
n

2
+ 1;−x

2
i

16

)
. (28)

The expression for
L
Expn(x) follows almost in the same way. In fact, since

x = x1e1 + x2e2 + · · ·+ xnen =
x1e1 + x2e2 + · · ·+ xnen

|x|
|x| = ω(x)|x|
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and ω(x)2 = −1, then (27) and (28) lead to

L
Expn(x) = 0F3

(
;

1

2
, 1,

n

2
;−|x|

2

16

)
+ ω(x)

|x|
n

0F3

(
; 1,

3

2
,
n

2
+ 1;−|x|

2

16

)
.

Special cases:

1. For n = 1, (26) gives the complex function

L
Exp1(e1x1) = Ber0(2

√
|x1|) + e1 Bei0(2

√
|x1|).

2. If x = x1e1 + x2e2,
L
Exp2 is the reduced quaternion valued function,

L
Exp2(x) = I0(

√
2|x|)J0(

√
2|x|) + ω(x)I1(

√
2|x|)J1(

√
2|x|).

3. For the particular case n = 3, (26) leads to

L
Expn(x) =

1√
2|x|

(
Bei

1
(2
√

2)− Ber
1
(2
√

2)

+ ω(x)
(1 + |x|
|x|

Bei1(2
√

2) +

√
2

|x|
Ber0(2

√
2)− |x| − 1

|x|
Ber1(2

√
2)
))

. (29)

Here, as usual, Ber
ν
(x) and Bei

ν
(x) denote the Kelvin functions, i.e., the real and imaginary parts, respectively,

of the νth order Bessel function of the first kind Jν(x3π4 i), where x is a real number.

Finally, we remark that the absolute convergence of the defined exponential functions
LD(α)Exp(x) (23)

and mLExpn(x) (m = 0, 1, . . . ) (25) is ensured because, for each k ≥ 0, we have

|Pnk (x)| ≤
k∑
s=0

T ks (n) |x|k−s |x̄|s = |x|k ,

taking into account that T ks (n) are positive and
∑k

0 T
k
s (n) ≡ 1, for all n ∈ N.

9 Conclusions

Concluding, it is worth noticing that the question of general Clifford Algebra valued Laguerre type polynomials
has been studied before, for example in [26]. By considering functions with values in the Clifford Algebra
C`0,n over the complex numbers, the authors use an interesting algebraic approach for the construction of
Clifford-Laguerre polynomials which guarantees orthogonality with respect to some weight function. However,
the Laguerre polynomials constructed in [26] are not monogenic, whereas our main concern was to obtain
Laguerre polynomials which continue to be holomorphic (monogenic). The used exponential operator allowed
to construct a natural generalization of the complex variable to the multidimensional case via Clifford Algebras
by an analytic approach. Moreover, the definition of monogenic Laguerre-type exponentials in Section 8 shows
the relevant role of Special Functions in Clifford analysis.

Forthcoming work will be the systematical use of the operational approach as a general tool for studying
monogenic hypercomplex polynomials, their properties and applications.
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