
Processing XML: a rewriting system approach

Alberto Simões1 and José João Almeida2

1 Esc. Sup. de Est. Industriais e de Gestão
Instituto Politécnico do Porto
alberto.simoes@eu.ipp.pt

2 Departamento de Informática
Universidade do Minho

jj@di.uminho.pt

Abstract. Nowadays XML processing is performed using one of two
approaches: using the SAX (Simple API for XML) or using the DOM
(Document Object Model). While these two approaches are adequate for
most cases there are situations where other approaches can make the
solution easier to write, read and, therefore, to maintain.
This document presents a rewriting approach for XML documents pro-
cessing, focusing the tasks of transforming XML documents (into other
XML formats or other textual documents) and the task of rewriting other
textual formats into XML dialects.
These approaches were validated with some case studies, ranging from
an XML authoring tool to a dictionary publishing mechanism.

1 Introduction

Nowadays we can assert that most XML manipulation is done using the Docu-
ment Object Model (DOM) approach. The Simple API for XML (SAX) approach
is also used and is, usually, the best solution for parsing big documents.

This document presents yet another approach specially tailored to trans-
form XML documents into other but similar XML documents, or to transform
any kind of textual documents into structured XML documents. We present a
Text::RewriteRules, a rewriting system written in Perl. While it can be used
to rewrite and produce any kind of textual document, in this article we will
focus on rewriting XML documents, and producing XML from different kinds of
textual documents.

While there are other rewriting systems (say AWK or XSLT) they lack the
flexibility of the Perl programming language and, especially, of Perl regular ex-
pressions engine. Also, they do not support both rewriting approaches. Finally,
XSLT approach is not to rewrite the XML document looking at its syntax, but
looking to its tree, making the parsing indispensable.

The next section focuses on Text::RewriteRules engine, explaining the al-
gorithms available and how rules are written. Follows a section on XML gen-
eration from two different kinds of textual documents and in section 4 we will
discuss how to rewrite XML into other XML formats.

May, 2010 - Page. 27–38 ><ATA 2010 — ISBN: 978-972-99166-9-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Rewriting Engine

Although the approaches described in this article can be implemented using
any rewriting system, given it supports the regular expressions we will describe
shortly, for our experiments we are using Text::RewriteRules, a Perl mod-
ule for coding rewriting systems. Text::RewriteRules derived from previous
work, where a text-to-speech application was built as the composition of differ-
ent rewriting systems [2].

The basic concept of a rewriting system is simple: given a text T and a
sequence of pairs (pattern, action), check if there exists a pattern matching the
text. Every time it does, the associated action is executed.

The usual substitution operator/function that is available on most languages
can be seen as a rewriting system with just one rule. Every time the pattern
matches a portion of text, this text is substituted by a string (or the result of
invoking a function on the matched text). If we take a sequence of substitutions
and force them to be applied until all substitutions can not be done, we have a
simple but complete rewrite system.

While this simple solution can be used for some applications it is not flexible
enough. On some situations a simple pattern can not be used to check if a
substitution can be performed or not. We might want to check a database table
or any other resource to decide if the substitution should or not be performed.
Also, this database might have the information about what should be used to
substitute the matched text.

For this to be possible we need some more information, other than the pattern
and the action: we need a condition. This condition should be able to perform
any kind of computation it needs, ranging from querying a database to perform-
ing a web-query in a search- engine. Thus, our rules will be defined as triples:
(pattern, action, condition).

This simple concept can be expanded with extra functionalities like the ability
to execute code in the action or activate some action before any pattern is tested.

Text::RewriteRules supports two different working mechanisms:

– Fixed-Point Approach: apply rules in the order they appear, exhausting
the first ones before trying to apply the following ones. The system iterates
until no pattern matches the text;

– Sliding-Window Approach: apply rules in the order they appear, forcing
that the matching text is at the beginning of the string. As soon as a pattern
matches, a cursor is placed right after the match, and the next rule should
match in the cursor position. If no rule can be applied the cursor advances
(a character or a word accordingly with the user needs). This system iterates
until the cursor arrives at the end of the string.

2.1 Fixed-Point Approach

The fixed-point approach is the easier to understand but not necessarily the
most useful. Its idea is based on a sequence of rules that are applied by order.

28 ><ATA 2010 Alberto Simões et al.

The first rules are applied, and following rules are applied only then there is
no previous rule that can be applied. It might happen that a rule changes the
document in a way that the previous rules can be applied again. If that happens,
they will be applied again. This process ends when there is no rule that can be
applied (or if a specific rule forces the system to end).

This algorithm is specially useful when we want to substitute all occurrences
of some specific pattern to something completely different. As an example, con-
sider the e-mail anonymization for mailing list public archives:

RULES anonymize
\w+(\.\w+)*@\w+\.\w+(\.\w+)*==>[[hidden email]]
ENDRULES

This simple rule will substitute all occurrences of the specified pattern3 by
the specified text. As this process intends to substitute all occurrences of e-mails,
and the replacement text does not match the e-mail rule, we do not have the
problem of the rewriting system entering an endless loop.

2.2 Sliding-Window Approach

The sliding-window approach tries to match patterns right after the position of
a specific cursor, and after some portion is rewritten, the cursor is put just after
that portion. So, the sliding-window approach will never rewrite text that was
already rewritten.

When using this approach the user does not need to position the cursor. It is
automatically initialized in the beginning of the text, and is automatically placed
after the matching portion every time a substitution is made. If no rule can be
applied at the cursor position it is automatically moved ahead one character (or
one word).

This approach is especially useful when the rewrite rules output can be
matched by some other rule that will mess up the document.

As a concrete example, consider a rewriting system that does brute-force
translation (translates each word using a bilingual dictionary). After translating
the English word ‘date’ to the Portuguese word ‘data’ we do not want it to be
translated again as if it were an English word.

To solve this problem we might add a mark to each translated word, and
removed all of them at the end. Another option is to use a sliding-window ap-
proach: we translate the word at the cursor position, and move it to the right of
the translated word.

Follows an example of how this works4

3 This is a simple pattern that does not cover all e-mail cases, but good enough for
illustrating the DSL.

4 While the underscore character is being used as the cursor in this example,
Text::RewriteRules uses a special non printable character, not found on normal
text.

Processing XML: a rewriting system approach ><ATA 2010 – 29

_ latest train
último _ train
último combóio _

To write this translator using Text::RewriteRules we just need to use a flag
when defining the rule, so that Text::RewriteRules knows it should use a
sliding window.

RULES/m translate
(\w+)=e=> $translation{$1} !! exists($translation{$1})
ENDRULES

2.3 Text::RewriteRules Rules

Text::RewriteRules programs can include one or more set of rules. After com-
pilation, each rules set will generate a function that receives a text, rewrites it,
and returns the resulting text.

The generated functions can be composed with standard functions, or with
other rewriting functions.

There are different kind of rules: simple substitution, substitution with code
evaluation, conditional substitutions, and others. In the fixed-point behavior, the
system will rewrite the document until no rule matches, or a specific rule makes
the system exit.

Each rewrite system is enclosed between RULES and ENDRULES strings, as in
the following example:

RULES xpto
left hand side pattern ==> right hand side
left hand side pattern =e=> right hand side
left hand side pattern ==> right hand !! condition
ENDRULES

This block evaluates to a function named xpto that is the requested rewrite
system. It is possible to pass extra arguments to the RULES block adding them
after a slash like:

RULES/m xpto
left hand side pattern ==> right hand side
left hand side pattern =e=> right hand side
left hand side pattern ==> right hand !! condition
ENDRULES

The /m argument is used to change the default fixed-point algorithm to the
sliding windows one.

30 ><ATA 2010 Alberto Simões et al.

2.4 Rule Types

Regarding rules, there are very different kinds. To help understanding examples
in the next sections a quick presentation of the more relevant rules follows:

– simple pattern substitution rules are represented by the ==> arrow. The left
side includes a Perl regular expression and the right side includes a string
that will be used to replace the match. This string can use Perl variables,
both global or captured values. These simple rules can include restrictions
of application. These restrictions are added at the end of the rule after !!.
This condition can use global variables or captured values and is written in
common Perl syntax.

– in some situations it is important to be able to evaluate the right side of the
rule, calculating the value to be used based on portions of the matched string.
Evaluation rules are denoted by a =e=> arrow. These rules allow conditions
as well.

– there are two special rules to be used just the first time the function is called,
or to force the rewrite system to exit. The first is the =begin=> rule. It has
no left side and the right side is Perl code that changes in some manner the
text that will be rewritten. The =last=> rule does not have a right hand side.
It just exits from the rewrite system as soon as the left hand side regular
expression matches.

2.5 Recursive Regular Expressions

What makes Text::RewriteRules suitable for rewriting XML, as shown in sec-
tion 4, is the Perl ability to define recursive regular expressions.

Fortunately, regular expressions are not regular anymore [3]. The old defini-
tion of regular expressions and their direct conversion to automata is no longer
the rule when talking about scripting languages regular expression engines.

Languages like Perl support extensions that make their regular expressions
powerful tools, making them comparable to grammars, supporting capturing and
referencing, look-ahead, look-behind and recursion:

– regular expressions can define capture zones: pieces of the regular expression
that, after matching, will be stored for latter usage;

– regular expressions can define look-ahead or look-behind, making the regular
expression to match just if a specific expression is (or not) before or after
the matching zone;

– recursion was introduced in the Perl world with Perl 5.105 and lets the user to
specify a regular expression that depends on itself. As an example, consider
the following expression that matches a balanced parenthesis block:6

my $parens = qr/(\((?:[^()]++|(?-1))*+\))/;

5 About January 2008.
6 We will not explain the regular expression as that would take too much space. You
are invited to read Perl man-page perlre.

Processing XML: a rewriting system approach ><ATA 2010 – 31

Text::RewriteRules includes a set of engineered (regular) expressions that
make the language rewriting task easier:

– [[:BB:]], [[:PB:]] and [[:CBB:]] match balanced bracketed blocks, bal-
anced parenthesized blocks and balanced curly braces blocks, respectively;

– [[:XML:]] and [[:XML(tag):]] match well formed XML fragment. The
latter forces the root element name.

These expressions do not just match, but also capture. For the balanced pairs it
is possible to automatically capture its contents and for the XML fragments it is
possible to capture the top-level tag name, as well as the top-level tag contents.

2.6 XML Generation

For simpler XML generation from Perl code we will use XML::Writer::Simple
[1]. This Perl module allows the usage of a Perl function for each tag in use,
making XML elements generation as simple as the invocation of a function.
Although this module is not part of the rewriting system it helped reducing the
code size and raising code legibility.

3 Rewriting Text into XML

This section presents two different situations where the ability to rewrite textual
documents and produce XML was the fastest solution. While the two examples
share the approach, they differ on the objective:

– the first case study rewrites a textual format into another TEI (Text Encod-
ing Initiative) format, maintaining the existing structure but also detecting
and annotating new information;

– follows the creation of a DSL (Domain Specific Language) [6] for XML au-
thoring. In this case the rewriting system acts like a computer language
compiler.

3.1 Annotating a Textual Dictionary

Dicionário-Aberto [5] is a project aiming to transcribe a general language dic-
tionary. The transcribing process was performed by volunteers using a textual
syntax, based only in bold and italic mark-up (using asterisks and underscores,
respectively), new lines to separate entry senses and empty lines to separate
word entries.

This basic syntax was chosen so volunteers (with different degrees of knowl-
edge) could transcribe easily. The drawback is the lack of annotation on the
resulting textual document.

One of the best formats to describe general dictionaries using any kind of
mark-up is the Text Encoding Initiative XML Schema [7]. As a brief analysis of
the schema can show, this format has a rich dictionary structure.

32 ><ATA 2010 Alberto Simões et al.

Our challenge was to find a method to transform the few annotated dictionary
format into TEI. The solution was to use a rewrite approach, enhancing the
textual format step by step.

The rewriting system is too big to be presented completely in this article. It
contains more than 40 rules. Briefly, the system acts in this order:

1. different entries are separated using the empty line separator. A start and
end tag is glued to the result of processing the contents of that entry. Also,
some extra end tags are added, closing the definition and sense;

2. follows a set of rules to detect morphologic properties. These properties are
in italic. Therefore, as described earlier, they are bounded in underscores.
Unfortunately there is more text in italic. To distinguish them, lists of the
used morphologic properties and geographic classifiers were created. These
lists were used to rewrite morphologic properties into the corresponding TEI
tags;

3. finally there is a bunch of rules to fix the generated XML. For instance, after
the morphological information it is needed a definition opening tag. This is
performed finding all morphologic information closing tags and checking if
they are followed by the definition opening tag.

All this process is performed by rewrite, with regular expressions being matched
and rewriting the document contents accordingly. This kind of analysis of the
document would be really hard to perform with standard parsing techniques7.

To help the legibility of the rewriting system the XML::Writer::Simplemod-
ule is used. Instead of defining textually the XML being generated, this module
defines automatically functions for each tag. These functions generate the open-
ing and closing tag with the same name (eg. a gramGrp function would generate
a pair of gramGrp opening and closing tags). This module functions also take
care of generating empty elements when no content is supplied, and generating
correctly tag attributes.

3.2 An XML Authoring Tool

XML was designed to be an exchange format. Its syntax enhances the infor-
mation structure representation, but it has readability (and human authoring)
problems. Manual XML authoring would be easier if we could:

– reduce the size of structural information;
– create abreviation mechanisms for constant parts or parametric macros;
– create include mechanisms;
– support scripting capabilities;

This subsection will discuss how to develop a simple DSL for XML documents
authoring.

Although the basic principles are generic, the examples will use HTML di-
alect, in order to be easier to follow.
7 Unfortunately and given article page limits no example of rules are shown. The
complete conversion script can be downloaded from https://natura.di.uminho.
pt/svn/main/ProjectoDicionario/txt2xml.

Processing XML: a rewriting system approach ><ATA 2010 – 33

Generic transformations The first type of constructs added to XPL (XML
Programming Language, the name of the language we are defining) just change
the syntactic sugar for XML tags, from the usual start and end tag to a simple
function-oriented syntax.

Basically, instead of writing the full XML tags like

<h1>XML programming language</h1>

DSL
see the XPL manual

XPL lets the user to write

h1{XML programming language}

ul{li{DSL}
li{see the a{href:{...} XPL manual}}}

To implement this syntax using Text::RewriteRules we defined the follow-
ing Perl code:

1 my $ID = qr{\w+}; # Identifier
2

3 while(<>) { print loadit(html($_)) }
4

5 RULES html
6 ($ID)[[:CBB:]] ==> <$1>$+{CBB}</$1>
7 <(.*?)>($ID):[[:CBB:]] ==> <$1 $2=’$+{CBB}’>
8 (\\[{}]) =e=> saveit($1) # protect escaped \{
9 ENDRULES

Explanatory notes:

line 3 rewrite the standard input with the html rewrite system, and reload the
saved portions.

lines 5–9 define the html rewrite system (that generates the html function).
line 6 expand tags (a{b} to <a>b);
line 7 treat attributes (transform <a>at:{b}... in ...);

This rewriting system uses two new functions available in Text::RewriteRules:

– saveit takes a string and saves it in a symbol table. It returns a special
token that will be placed in the text being rewritten. This is specially useful
to protect portions of text that would be otherwise rewritten by subsequent
rules.

– loadit performs the inverse operation, replacing all occurrences of the spe-
cial tokens by the respective stored string.

34 ><ATA 2010 Alberto Simões et al.

Abbreviation mechanisms In order to provide programmability constructs,
the rewriting system will use an auxiliary table (named TAB) to store user-defined
functions.

1 RULES html
2 ...
3 ($ID)=[[:CBB:]] =e=> savefunc($1,$+{CBB},1),""
4 ($ID)[[:CBB:]] =e=> $TAB{$1}->($+{CBB}) !! defined $TAB{$1}

Explanatory notes:

line 3 support function definition (f={...}).The function savefunc, (not pre-
sented here) inserts a function definition in the auxiliary symbol table.

line 4 detect function invocations (f{arg}) and evaluate them (if the function
is defined in the symbol table).

Adding these two rules to the html rewrite system it is now possible to define
macros like the following ones:

r ={font{color:{red} #1}} # red text
q ={div{class:{boxed} #1}} # to use CSS box
jpgi={img{src:{#1.jpg} alt:{image of a #1}}} # jpeg image

q{ p{r{Animals:} jpgi{cat} jpgi{donkey}} }

Note that #1 is the argument for the macro, idea stollen from TEX. After pro-
cessing this document the resulting XHTML document will look like:

<div class=’boxed’>
<p>

 Animals:

</p>
</div>

Include mechanisms Finally, the language also supports different types of
include mechanisms:

– split the code in order to reduce the size of the source document and have
document modularity (just like #include in the C programming language);

– to separate different concepts (example: store function definitions in a new
notation block;

– to include verbatim examples of code (like \verbatiminput in TEX);

For XPL we defined two include mechanisms: inc – include, and vinc –
verbatim include. inc provides modularity support:

Processing XML: a rewriting system approach ><ATA 2010 – 35

RULES html
...
inc[[:CBB:]] =e=> ‘cat $+{CBB}‘ !! -f $+{CBB}
inc[[:CBB:]] =e=> die("can’t open file") !! not -f $+{CBB}

The inclusion is just the substitution of the include command by the file con-
tents. The rewriting system will take care to process the new commands in next
iterations.

For including verbatim files we defined a second rewrite system, that will
replace this verbatim include command by the file contents. This could not
be done at the html function level as other rewrite rules would rewrite the
file contents. The inclusion also needs to protect special characters for HTML
inclusion.

1 while(<>){ print loadit(verbatim(html($_))) }
2

3 RULES/m verbatim
4 <vinc>(.*?)</vinc>=e=> bpre(protect(‘cat $1‘))!! -f $1
5 ENDRULES
6

7 RULES/m protect
8 <==>\<
9 >==>\>

10 &==>\&
11 ENDRULES

Explanatory notes:

line 4 protect is rewriting the contents of the file being included.
lines 8–10 transforms HTML special characters into entities.

Scripting embbeding XPL also supports Perl code embbeding, using the perl
command. Its implementation is just the code execution, and substitution by the
respective result string.

RULES html
perl[[:CBB:]]=e=> do($+{CBB}),$@ !! -f $+{CBB}
...
ENDRULES

4 Rewriting XML into XML

Text::RewriteRules can easily rewrite XML documents both as if they were
plain text documents or using the defined recursive regular expressions for XML.

36 ><ATA 2010 Alberto Simões et al.

These regular expressions are tailored so that they match well formed XML
blocks making it easier to remove or replace complete elements subtrees.

Textual XML rewriting is not necessarily faster or more efficient than DOM
oriented processing. It all depends on the document size and the DOM structure.
But textual XML rewriting can be easier to understand and can be more pow-
erful on some specific situations. Also, these two approaches are not mutually
exclusive. One can process the document using the rewrite approach to detect
the relevant elements to process, and use a DOM aware tool to process that
XML fragment. This is the approach we will show in the next example.

The example will remove duplicate entries from a TMX (Translation Mem-
ory eXchange) file. These files size is, usually, quite large, but the structure is
quite simple and repetitive. They consist of a list of translation units: pairs of
sentences, in two different languages.

RULES/m duplicates
([[:XML(tu):]])==>!!duplicate($1)
ENDRULES

sub duplicate {
my $tu = shift;
my $tumd5 = md5(dtstring($tu, -default => $c));
return 1 if exists $visited{$tumd5};
$visited{$tumd5}++
return 0;

}

In the example the rewritting system is very simple. It matches XML trees
that have as the tag tu as root element, and substitutes it by nothing in case of
it is duplicate. The duplication mechanism processes the translation unit using a
DOM approach (using XML::DT module [4]), concatenating the translation unit
contents, and calculating its MD5. If it is already visited a true value is returned.
If not, that MD5 is saved for future reference.

5 Conclusions

The presented case studies shown that the text rewriting approach is a powerful
technique to convert textual document formats. Also, the ability to use a module
to generate XML tags easily and the availability of recursive regular expressions
matching complete well formed XML structures make Text::RewriteRules
suitable to generate XML and to rewrite XML documents.

The described tools are being used in production in different projects, from
the generation of a 30 MB dictionary XML file from a 13 MB text file, taking
about nine minutes. The difference on the file sizes show the high number of
generated XML tags.

Processing XML: a rewriting system approach ><ATA 2010 – 37

We also described how this rewriting approach can be used for the creation
of domain specific languages, namely for the authoring of XML documents.

Finally, the ability to rewrite XML documents in other formats (or to rewrite
contents) make the tool suitable for rewriting XML dialects. This approach does
not require the creating of a complex data structure in memory, just loading
the document as text, and searching on it for the relevant fragments. These
can be extracted and processed by a common DOM-oriented approach. Using
a streaming library this means it is possible to process huge files where small
chunks need processing without loading the full document to memory.

All the modules and tools described are available from CPAN8 and can be
used free of charge.

References

1. José João Almeida and Alberto Simões. Geração dinâmica de APIs Perl para cri-
ação de XML. In José Carlos Ramalho, Alberto Simões, and João Correia Lopes,
editors, XATA 2006 — 4a Conferência Nacional em XML, Aplicações e Tecnologias
Aplicadas, pages 307–314, Portalegre, February 2006.

2. José João Almeida and Alberto Manuel Simões. Text to speech — “A rewriting
system approach”. Procesamiento del Lenguaje Natural, 27:247–253, 2001.

3. Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates, Se-
bastopol, California, January 1997.

4. Alberto Simões. Down translating XML. The Perl Review, 1(1):6–11, Winter 2004.
5. Alberto Simões and Rita Farinha. Dicionário aberto: Um novo recurso para PLN.

Vice-Versa, 2010. forthcomming.
6. Arie van Deursen, P. Klint, and J.M.W. Visser. Domain-specific languages. Tech-

nical Report SEN-R0032, ISSN 1386-369X, CWI, 2000. an annotated bibligraphy.
7. Edward Vanhoutte. An introduction to the TEI and the TEI Consortium. Lit

Linguist Computing, 19(1):9–16, April 2004.

8 Comprehensive Perl Archive Network, available at http://search.cpan.org/

38 ><ATA 2010 Alberto Simões et al.

