
A Framework for Point-free Program
Transformation?

Alcino Cunha, Jorge Sousa Pinto, and José Proença

CCTC / Departamento de Informática, Universidade do Minho
4710-057 Braga, Portugal

{alcino,jsp,jproenca}@di.uminho.pt

Abstract. The subject of this paper is functional program transforma-
tion in the so-called point-free style. By this we mean first translating
programs to a form consisting only of categorically-inspired combinators,
algebraic data types defined as fixed points of functors, and implicit re-
cursion through the use of type-parameterized recursion patterns. This
form is appropriate for reasoning about programs equationally, but diffi-
cult to actually use in practice for programming. In this paper we present
a collection of libraries and tools developed at Minho with the aim of sup-
porting the automatic conversion of programs to point-free (embedded
in Haskell), their manipulation and rule-driven simplification, and the
(limited) automatic application of fusion for program transformation.

1 Introduction

Functional Programming has always been known to be appropriate for activities
involving manipulation of programs, such as program transformation. This is
due to the strong theoretical basis that underlies the programming languages:
the semantics of functional programs are easier to formalize.

As with any programming paradigm, different functional programmers use
different styles of programming; it is however true that most advanced program-
mers resort to some concise form where functions are written as combinations of
other functions, rather than programming by explicit manipulation of the argu-
ments and explicit recursion. For instance a function that sums the squares of
the elements in a list can be written in Haskell as

sum_squares = (foldr (+) 0) . (map sq) where sq x = x*x

A radical style of programming is the so-called point-free style, which totally
dispenses with variables. For instance the function sq above can be written as
sq = mult . (id /\ id), where the infix operator /\ corresponds to the split
combinator that applies two functions to an argument, producing a pair, and
mult is the uncurried product.

The origins of the point-free style can be traced back to the ACM Turing
Award Lecture given by John Backus in 1977 [1]. Instead of explicitly referring
? This work was partially supported by FCT project PURe (POSI/CHS/44304/2002).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

arguments, Backus recommended the use of functional forms (combinators) to
build functions by combining simpler ones. The particular choice of combinators
should be driven by the associated algebraic laws.

In the modern incarnation of these ideas, the combinators correspond to
morphisms in a category (where the denotational semantics of the language are
constructed) and the desired laws follow directly from universal properties of
this category. What is more, this approach extends smoothly to the treatment of
recursion in what is known as the data type-generic approach to programming [8,
14]. This allows one to reason equationally about functions obtained by applying
standard recursion patterns, thus replacing the use of fixpoint induction.

The generic aspect of this approach comes from the fact that all the con-
structions are parameterized by the recursive data types involved in the com-
putations. It is widely accepted that this style is a good choice for reasoning
about programs equationally and generically. It has also proved to be fruitful in
the field of program transformation [4], where well-known concepts like folding
or fusion over lists were first introduced by Bird to derive accumulator-based
implementations from inefficient specifications [2].

As a simple example of the kind of transformation we mean, in the function
sum_squares given above, the fold can be equationally fused with the map to
give the following one-pass function, where plus is uncurried sum.

sum_squares’ = foldr aux 0 where aux = curry (plus . (sq . fst /\ snd))

The drawback of using this radical point-free style is that, as the examples
in this paper show, programs written without variables are not always easy to
write or understand. In fact, it is virtually impossible to program without using
variables here and there. Pointwise vs. point-free is a lively discussion subject
in Haskell forums; the goal of the present paper is to present a set of libraries
and tools that support point-free program transformation, but this includes the
automatic translation of code to point-free form, so that programmers may apply
point-free techniques to their code with variables.

Specifically, we present here the following components, which are all freely
available as part of the UMinho Haskell Software distribution.

Pointless: a library for point-free programming, allowing programmers to type-
check and execute point-free code with recursion patterns, parameterized by
data types. With the help of extensions to the Haskell type system, we have
implemented an implicit coercion mechanism that provides a limited form
of structural equivalence between types. This has allowed us to embed in
Haskell a syntax almost identical to the one used at the theoretical level.

DrHylo: a tool that allows programmers to automatically convert Haskell code
to point-free form with recursion patterns. In particular, we employ the well-
known equivalence between simply typed λ-calculi and cartesian closed cat-
egories suggested by Lambek [12]. This serves as the basis for the translation
of a core functional language to categorical combinators, extended by the first
author [3] to cover sum types. A second component here is the application

Γ ` ? : 1

Γ (x) = A

Γ ` x : A

Γ [x 7→ A] ` M : B

Γ ` λx. M : A → B

Γ ` M : A → B Γ ` N : A

Γ ` M N : B

Γ ` M : A Γ ` N : B

Γ ` 〈M, N〉 : A× B

Γ ` L : A + B Γ ` M : A → C Γ ` N : B → C

Γ ` case L M N : C

Γ ` M : A× B

Γ ` fst M : A

Γ ` M : A× B

Γ ` snd M : B

Γ ` M : A

Γ ` inl M : A + B

Γ ` M : B

Γ ` inr M : A + B

Γ ` M : F (µF)

Γ ` inµF M : µF

Γ ` M : µF

Γ ` outµF M : F (µF)

Γ ` M : A → A

Γ ` fix M : A

Fig. 1. Typing rules

of a standard algorithm that converts recursive functions to hylomorphisms
of adequate regular data-types, thus removing explicit recursion.

SimpliFree: a tool for manipulating point-free code. Its use will be exemplified
here: (i) for the simplification of the very verbose terms produced by DrHylo;
and (ii) for program transformation by applying fold fusion.

Organization of the Paper. Section 2 introduces the languages used in the paper,
and Sect. 3 reviews notions of point-free equational reasoning, with the help of
an example. Pointless, DrHylo, and SimpliFree are described in Sects. 4, 5 and
6. Finally Sect. 7 concludes the paper.

2 The Pointwise and Point-free Styles of Programming

In both styles, types are defined according to the following syntax.

A,B ::= 1 | A → B | A×B | A + B | µF
F,G ::= Id | A | F ⊗G | F ⊕G | F } G

We assume a standard domain-theoretic semantics, where types are pointed
complete partial orders, with least element⊥. 1 is the single element type, A → B
is the type of continuous functions from A to B, A×B is the cartesian product,
A + B is the separated sum (with distinguished least element), and µF is a
recursive (regular) type defined as the fixed point of functor F .

Id denotes the identity functor, A the constant functor that always returns A,
⊗ and ⊕ the lifted product and sum bifunctors, and } composition of functors.
For example, booleans can be defined as Bool = 1 + 1, natural numbers as
Nat = µ(1⊕ Id), and lists with elements of type A as List A = µ(1⊕A⊗ Id).

Pointwise Language. Terms with variables are generated by the grammar

L,M,N ::= ? | x | M N | λx. M | 〈M,N〉 | fst M | snd M |
case L M N | inl M | inr M | inµF M | outµF M | fix M

Apart from variable, abstraction, and application, we find ?, which is the unique
inhabitant of the terminal type (as such, it equals ⊥1); fst and snd are projections

from a product type and inl and inr are injections into a sum type; 〈·, ·〉 is
a pairing construct, and case performs case-analysis on sums. Associated with
each recursive type µF are two unique strict functions inµF and outµF , that are
each other’s inverse. These provide the means to construct and inspect values of
the given type. Whenever clear from context, the subscripts will be omitted.

The typing rules are presented in Fig. 1. We now show examples of terms in
this language.

zero : Nat
zero = in (inl ?)

nil : List A
nil = in (inl ?)

succ : Nat → Nat
succ = λx. in (inr x)

cons : A → List A → List A
cons = λht. in (inr 〈h, t〉)

swap : A×B → B ×A
swap = λx. 〈snd x, fst x〉

null : List A → Bool
null = λl.case (out l) (λx.true) (λx.false)

distr : A× (B + C) → (A×B) + (A× C)
distr = λx. case (snd x) (λy. inl 〈fst x, y〉) (λy. inr 〈fst x, y〉)

Recursive functions are defined explicitly using fix. For example, assuming that
mult : Nat× Nat → Nat, the factorial and length functions can be defined as

fact : Nat → Nat
fact = fix (λf. λx. case (out x) (λy. succ zero) (λy. mult 〈succ y, f y〉))
length : List A → Nat
length = fix (λf. λl. case (out l) (λx. zero) (λx. succ (f (snd y))))

Point-free Language. The set of combinators that is of interest to us comes
from universal constructions in almost bicartesian closed categories, that is, cat-
egories with products, non-empty sums, exponentials, and terminal object. See
for instance [13] for a thorough treatment of the subject.

The point-free language contains the constants fst, snd, inl, inr, in, and out,
with the obvious types, and also the set of combinators given below. To convey
the meaning of each combinator, we give its definition in the pointwise language.

(· ◦ ·) : (B → C) → (A → B) → A → C
(· ◦ ·) = λfgx. f (g x)

id : A → A
id = λx. x

(· M ·) : (A → B) → (A → C) → A → (B × C)
(· M ·) = λfgx. 〈f x, g x〉

bang : A → 1
bang = λx. ?

(· O ·) : (A → C) → (B → C) → (A + B) → C
(· O ·) = λfgx. case x (λy. f y) (λy. g y)

ap : (A → B)× A → B
ap = λx. (fst x) (snd x)

· : (A × B → C) → A → B → C
· = λfxy. f 〈x, y〉

It is convenient to have derived combinators corresponding to the operation of
the product, sum, and exponentiation functors. These can be defined, respec-
tively, as f × g = f ◦ fst M g ◦ snd, f + g = inl ◦ f O inr ◦ g, and f• = f ◦ ap.

The point-free language contains only values of functional type. As such,
elements of a non-functional type A are denoted by functions of the isomorphic

type 1 → A. The previous examples can be written in the point-free language:

zero : 1 → Nat
zero = in ◦ inl

nil : 1 → List A
nil = in ◦ inl

succ : Nat → Nat
succ = in ◦ inr

cons : A → List A → List A
cons = in ◦ inr

swap : A×B → B ×A
swap = snd M fst

null : List A → Bool
null = (true O false ◦ bang) ◦ out

distr : A× (B + C) → (A×B) + (A× C)
distr = (swap + swap) ◦ ap ◦ ((inl O inr)× id) ◦ swap

The language also contains a recursion operator: the hylomorphism recursion
pattern. This was introduced with the first study of recursion patterns in a
domain-theoretic setting [13], and was later proved to be powerful enough to
allow for the definition of any fixpoint [14]. It is defined as follows.

hyloµF : (F B → B) → (A → F A) → A → B
hyloµF = λg. λh. fix(λf. g ◦ Ff ◦ h)

Function h computes the values passed to the recursive calls, and g combines
the results of the recursive calls to compute the final result. The recursion tree
of a function defined as a hylomorphism is modeled by µF . The factorial and
length functions can then be defined in the point-free language as follows.

fact : Nat → Nat
fact = hyloList Nat (zero O mult) ((id + succ M id) ◦ outNat)
length : List A → Nat
length = hyloNat inNat ((id + snd) ◦ outList A)

Naturally, other derived operators can be defined using hylomorphism. The
following correspond to the well-known fold and unfold recursion patterns:

foldµF : (F A → A) → µF → A
foldµF = λg. hyloµF g outµF

unfoldµF : (A → F A) → A → µF
unfoldµF = λg. hyloµF inµF g

3 Point-free Program Transformation

The basic laws of the non-recursive calculus are given in the appendix. We will
exemplify their use in the context of a non-trivial program transformation taken
from [4]. We resort to the following fold-fusion law to treat recursion:

f ◦ (|g|)F = (|h|)F ⇐ f strict ∧ f ◦ g = h ◦ Ff cata-Fusion

where we use the compact notation (|g|)F for foldµF g (strictness conditions are
discussed in detail in [4]). Consider the function isums::[Int]->[Int] that
computes the initial sums of a list.

isums [] = []

isums (x:xs) = map (x+) (0 : isums xs)

This can be optimized by introducing an accumulating parameter to store at each
point the sum of all previous elements in the list. We first define an operator
⊕ : List Int × Int → List Int as ⊕ (l, x) = mapList (plus x) l. The function isums
can then be written as the fold isums = (|nil O⊕ ◦ swap ◦ (id× cons ◦ zero M id)|).

The optimized function isumst can be calculated from the equation isumst =
⊕ ◦ isums, or isumst l y = mapList (plus y) (isums l) pointwise, which plays the
role of specification to the transformation. It can be checked that one obtains
by fusion, with F the base functor of lists,

isumst = (|nil O comp ◦ swap ◦ (plus× k)|)

if there exists a function k such that ⊕ ◦ cons ◦ zero M id = k ◦ ⊕ (the derived
constant combinator · is defined in the appendix. The following calculation
allows to identify k = cons• ◦ split ◦ id M id.

⊕ ◦ cons ◦ zero M id
= { isums-Aux }

cons• ◦ split ◦ (plus×⊕) ◦ zero M id
= {×-Absor, zero is a left-identity of plus }

cons• ◦ split ◦ id M⊕
= { const-Fusion }

cons• ◦ split ◦ id ◦ ⊕ M⊕
= {×-Fusion }

cons• ◦ split ◦ id M id ◦ ⊕

This uses a new split combinator that internalizes (·M·) in the point-free language,
as well as an auxiliary law proved elsewhere [4].

split : (BA × CA) → (B × C)A

split = (ap× ap) ◦ π1 × id M π2 × id
split-Def

⊕ ◦ cons = cons• ◦ split ◦ (plus×⊕) isums-Aux

Substituting k and converting the resulting definition back to pointwise, one
obtains at last the following linear time definition (isums runs in quadratic time).

isums_t :: [Int] -> Int -> [Int]

isums_t [] y = []

isums_t (x:xs) y = (x+y) : isums_t xs (x+y)

4 Pointless Haskell: Programming Without Variables

This section describes our implementation of a Haskell library for point-free
programming.

Implementing the Basic Combinators. It is well known that the semantics of
a real functional programming language like Haskell differs from the standard
domain-theoretic characterization, since all data types are by default pointed
and lifted (every type has a distinct bottom element). This means that Haskell
does not have true categorical products because (⊥,⊥) 6= ⊥, nor true categori-
cal exponentials because (λx.⊥) 6= ⊥. For instance, any function defined using
pattern-matching, such as \(_,_) -> 0, can distinguish between (⊥,⊥) and ⊥.
This problem does not occur with sums because the separated sum also has a
distinguished least element.

As discussed in [6], this fact complicates equational reasoning because the
standard laws about products and functions no longer hold. In point-free how-
ever, as will be shown later, pairs can only be inspected using a standard set of
combinators that cannot distinguish both elements, and thus Haskell pairs can
safely be used to model products. If we prohibit the use of seq, the same applies
to functions. Sums are modeled by the standard Haskell data type Either.

data Either a b = Left a | Right b

Concerning the implementation of the terminal object 1, the special prede-
fined unit data type () is not appropriate, because it has two inhabitants ()
and undefined. The same applies to any isomorphic data type with a single
constructor without parameters. 1 can however be defined as the following data
type, whose only inhabitant is undefined (to be denoted by _L).

newtype One = One One

_L = undefined

The definition of the point-free combinators in the Pointless library is trivial
(see [3] for details). Equipped with these definitions, non-recursive point-free
expressions can be directly translated to Haskell. For example, the swap and
distr functions can be encoded as follows.

swap :: (a,b) -> (b,a)

swap = snd /\ fst

distr :: (c, Either a b) -> Either (c,a) (c,b)

distr = (swap -|- swap) . app . ((curry inl \/ curry inr) >< id) . swap

Implementing Functors and Data Types. The implementation of recursive types
in Pointless is based on the generic programming library PolyP [15]. This library
also views data types as fixed points of functors, but instead of using an explicit
fixpoint operator, a non-standard multi-parameter type class with a functional
dependency [10] is used to relate a data type d with its base functor f.

class (Functor f) => FunctorOf f d | d -> f

where inn’ :: f d -> d

out’ :: d -> f d

The dependency d -> f means that different data types can have the same
base functor, but each data type can have at most one. The main advantage of

using FunctorOf is that predefined Haskell types can be viewed as fixed points
of functors (the use of the primes will be clarified later). A relevant subset of
PolyP was reimplemented in Pointless according to our own design principles.

To avoid the explicit definition of the map functions, regular functors are
described using a fixed set of combinators, according to the definitions

newtype Id x = Id {unId :: x}

newtype Const t x = Const {unConst :: t}

data (g :+: h) x = Inl (g x) | Inr (h x)

data (g :*: h) x = g x :*: h x

newtype (g :@: h) x = Comp {unComp :: g (h x)}

The Functor instances for these combinators are trivial and omitted here.
Given this set of basic functors and functor combinators, the recursive structure
of a data type can be captured without declaring new functor data types. For
example, the standard Haskell type for lists can be declared as the fixed point

instance FunctorOf (Const One :+: (Const a :*: Id)) [a]

where inn’ (Inl (Const _)) = []

inn’ (Inr (Const x :*: Id xs)) = x:xs

out’ [] = Inl (Const _L)

out’ (x:xs) = Inr (Const x :*: Id xs)

Naturally, it is still possible to work with data types declared explicitly as fixed
points. The fixpoint operator can be defined at the type level using newtype.

newtype Functor f => Mu f = Mu {unMu :: f (Mu f)}

The corresponding instance of FunctorOf can be defined once and for all.

instance (Functor f) => FunctorOf f (Mu f)

where inn’ = Mu

out’ = unMu

The following multi-parameter type class is used to convert values declared
using the functor combinators into standard Haskell types and vice-versa.

class Rep a b | a -> b

where to :: a -> b

from :: b -> a

The first parameter should be a type declared using the basic set of functor
combinators, and the second is the type that results after evaluating those com-
binators. The functional dependency imposes a unique result to evaluation. Un-
fortunately, a functional dependency from b to a does not exist because, for
example, a type A can be the result of evaluating both Id A and A B.

The instances of Rep are rather trivial. For the case of products and sums,
the types of the arguments should be computed prior to the resulting type. This
evaluation order is guaranteed by using class constraints. We give as examples
the identity, constant, and product functors:

instance Rep (Id a) a

where to (Id x) = x

from x = Id x

instance Rep (Const a b) a

where to (Const x) = x

from x = Const x

instance (Rep (g a) b, Rep (h a) c) => Rep ((g :*: h) a) (b, c)

where to (x :*: y) = (to x, to y)

from (x, y) = from x :*: from y

To ensure that context reduction terminates, standard Haskell requires that
the context of an instance declaration must be composed of simple type variables.
In this example, although that condition is not verified, reduction necessarily
terminates because contexts always get smaller. In order to force the compiler
to accept these declarations, a non-standard type system extension must be
activated with the option -fallow-undecidable-instances.

A possible interaction with a Haskell interpreter could now be

> to (Id ’a’ :*: Const ’b’)

(’a’,’b’)

> from (’a’,’b’) :: (Id :*: Const Char) Char

Id ’a’ :*: Const ’b’

> from (’a’,’b’) :: (Id :*: Id) Char

Id ’a’ :*: Id ’b’

Note the annotations are compulsory since the same standard Haskell type can
represent different functor combinations. This type-checking problem can be
avoided by annotating the polytypic functions with the functor to which they
should be specialized (similarly to the theoretical notation). Types cannot be
passed as arguments to functions, and so this is achieved indirectly through the
use of a “dummy” argument. By using the type class FunctorOf, together with
its functional dependency, it suffices to pass as argument a value of a data type
that is the fixed point of the desired functor.

To achieve an implicit coercion mechanism it suffices to insert the conversions
in the functions that refer to functors, namely inn’, out’, and fmap (thus the
use of primes). The following functions should be used instead.

inn :: (FunctorOf f d, Rep (f d) fd) => fd -> d

inn = inn’ . from

out :: (FunctorOf f d, Rep (f d) fd) => d -> fd

out = to . out’

pmap :: (FunctorOf f d, Rep (f a) fa, Rep (f b) fb) =>

d -> (a -> b) -> (fa -> fb)

pmap (_::d) (f::a->b) =

to . (fmap f :: FunctorOf f d => f a -> f b) . from

Implementing Recursion. A polytypic hylomorphism operator can be defined:

hylo :: (FunctorOf f d, Rep (f b) fb, Rep (f a) fa) =>

d -> (fb -> b) -> (a -> fa) -> a -> b

hylo mu g h = g . pmap mu (hylo mu g h) . h

Due to the use of implicit coercion it is now possible to program with hylomor-
phisms in a truly point-free style. For example, the definition of factorial from
Section 2 can now be transcribed directly to Haskell. The same applies to de-
rived recursion patterns. Notice the use of bottom as the dummy argument to
indicate the type to which a polytypic function should be instantiated.

fact :: Int -> Int

fact = hylo (_L :: [Int]) f g where g = (id -|- succ /\ id) . out

f = one \/ mult

fold (_::d) g = hylo (_L::d) g out

unfold (_::d) g = hylo (_L::d) inn g

5 DrHylo: Deriving Point-free Hylomorphisms

DrHylo is a tool for deriving point-free definitions for a subset of Haskell. The
resulting definitions can be executed with the Pointless library. It is based on
the well-known equivalence between the simply-typed λ-calculus and cartesian
closed categories, first stated by Lambek [12]. One half of this correspondence is
testified by a translation from pointwise terms to categorical combinators, later
used by Curien to study a new implementation technique for functional languages
– the categorical abstract machine [5]. We show here how the translation can be
extended to handle sums and recursion.

This translation is the starting point for our point-free derivation mechanism.
The way variables are eliminated resembles the translation of the lambda calculus
into de Bruijn notation, where variables are represented by integers that measure
the distance to their binding abstractions. Typing contexts are represented by
left-nested pairs, as defined by the grammar Γ ::= ? | 〈Γ, x : A〉, with x a variable
and A a type. The translation Φ operates on typing judgments, translated as
Φ(Γ : B ` M : A) : B → A according to the rules (typing information omitted)

Φ(Γ ` ?) = bang
Φ(Γ ` x) = path(Γ, x)
Φ(Γ ` MN) = ap ◦ (Φ(Γ ` M) M Φ(Γ ` N))
Φ(Γ ` λx.M) = Φ(〈Γ, x〉 ` M)
Φ(Γ ` 〈M,N〉) = Φ(Γ ` M) M Φ(Γ ` N)
Φ(Γ ` fst M) = fst ◦ Φ(Γ ` M)
Φ(Γ ` snd M) = snd ◦ Φ(Γ ` M)
Φ(Γ ` inl M) = inl ◦ Φ(Γ ` M)
Φ(Γ ` inr M) = inr ◦ Φ(Γ ` M)
Φ(Γ ` case L M N) = ap ◦ (either ◦ (Φ(Γ ` M) M Φ(Γ ` N)) M Φ(Γ ` L))
Φ(Γ ` in M) = in ◦ Φ(Γ ` M)
Φ(Γ ` out M) = out ◦ Φ(Γ ` M)

path(〈c, y〉, x) =
{

snd if x = y
path(c, x) ◦ fst otherwise

Each variable is replaced by the path to its position in the context tuple,
given by function path. The translation of a closed term M : A → B is a point of

type 1 → (A → B), which can be converted into the expected function of type
A → B as ap ◦ (Φ(? ` M) ◦ bang M id).

Concerning the translation of the case construct, first notice that case L M N
is equivalent to (M O N) L. This equivalence exposes the fact that a case is just
an instance of application, and as such its translation exhibits the same top
level structure ap ◦ (Φ(Γ ` M O N) M Φ(Γ ` L)). The question remains of how
to combine Φ(Γ ` M) : Γ → (A → C) and Φ(Γ ` N) : Γ → (B → C) into a
function of type Γ → (A+B → C). Our solution is based on the internalization
of the uncurried version of the either combinator, that can be defined in point-
free as follows.

either : (A → C)× (B → C) → (A + B) → C

either = (ap O ap) ◦ (fst× id + snd× id) ◦ distr

We give as examples the translations of the swap and coswap functions. The
former is translated as the following closed term of functional type, which we
then convert to a function of type A×B → B ×A and simplify as expected.

Φ(? ` swap) = snd ◦ snd M fst ◦ snd : 1 → (A×B → B ×A)

26666666666664

ap ◦ (snd ◦ snd M fst ◦ snd ◦ bang M id)
= {×-Absor }

ap ◦ (snd ◦ snd M fst ◦ snd× id) ◦ (bang M id)
= {∧-Cancel }

(snd ◦ snd M fst ◦ snd) ◦ (bang M id)
= {×-Fusion }

snd ◦ snd ◦ (bang M id) M fst ◦ snd ◦ (bang M id)
= {×-Cancel }

snd M fst

Consider now the translation of the function coswap defined as

coswap : A + B → B + A
coswap = λx.case x (λy. inr y) (λy. inl y)

The following result is obtained, which (given some additional facts about either)
can be easily simplified into the expected definition inr O inl.

ap ◦ (either ◦ (inr ◦ snd M inl ◦ snd) M snd) : 1 → (A + B → B + A)

It can be shown that the translation Φ is sound [5], i.e, all equivalences
proved with an equational theory for the λ-calculus can also be proved using
the equations that characterize the point-free combinators. Soundness of the
translation of sums is proved in [3].

Translating Recursive Definitions. Two methods can be used for translating
recursive definitions into hylomorphisms. The first is based on the direct encod-
ing of fix by a hylomorphism, first proposed in [14]. The insight to this result

is that fix f is determined by the infinite application f (f (f . . .)), whose re-
cursion tree is a stream of functions f , subsequently consumed by application.
Streams can be defined as Stream A = µ(A ⊗ Id) with a single constructor
in : A × Stream A → Stream A. Given a function f , the hylomorphism builds
the recursion tree in (f, in (f, in (f, . . .))), and then just replaces in by ap. The
operator and its straightforward translation are given as follows

fix : (A → A) → A
fix = hyloStream (A→A) ap (id M id) Φ(Γ ` fix M) = fix ◦ Φ(Γ ` M)

Although complete, this translation yields definitions that are difficult to
manipulate by calculation. Ideally, one would like the resulting hylomorphisms
to be more informative about the original function definition, in the sense that
the intermediate data structure should model its recursion tree. An algorithm
that derives such hylomorphisms from explicitly recursive definitions has been
proposed [9]. In the present context, the idea is to use this algorithm in a stage
prior to the point-free translation: first, a pointwise hylomorphism is derived, and
then the translation is applied to its parameter functions. DrHylo incorporates
this algorithm, adapted to the setting where data types are declared as fixed
points, and pattern matching is restricted to sums. Although restrictions are
imposed on the syntax of recursive functions, most useful definitions are covered.

Given a single-parameter recursive function defined as a fixpoint, three trans-
formations are produced by the algorithm: one to derive the functor that gen-
erates the recursion tree of the hylomorphism (F), a second one to derive the
function that is invoked after recursion (A), and a third one for the function that
is invoked prior to recursion (C). In general, the function fix (λf. λx. L) : A → B
is translated as the following hylomorphism.

hyloµ(F(L)) (λx. A(L)) (λx. C(L)) : A → B

For example, the length function is converted into the following hylomorphism,
which can easily be shown to be equal to the expected definition.

length : List A → Nat
length = hyloµ(1⊕Id) (λx. case x (λy.in (inl ?)) (λy. in (inr y)))

(λx. (out x) (λy. inl ?) (λy. inr (snd y)))

Pattern Matching. In order to apply this translation to realistic Haskell code,
we still need to accommodate in our λ-calculus some form of pattern-matching,
and data types defined by collections of constructors. It is well-known how to
implement an algorithm for defining FunctorOf instances for most user-defined
data types [15]. This algorithm is incorporated in DrHylo, and since it replaces
constructors by their equivalent fixpoint definitions, it suffices to have pattern-
matching over the generic constructor in, sums, pairs, and the constant ?.

We will now introduce a new construct that implements such a mechanism,
but with some limitations: there can be no repeated variables in the patterns,
no overlapping, and the patterns must be exhaustive. It matches an expression

against a set of patterns, binds all the variables in the matching pattern, and
returns the respective right-hand side.

P ::= ? | x | 〈P, P 〉 | in P | inl P | inr P
M,N ::= . . . | match M with {P → N ; . . . ;P → N}

Instead of directly translating this new construct to point-free, a rewriting system
is defined that eliminates generalized pattern-matching, and simplifies expres-
sions back into the core λ-calculus previously defined [3]. We remark that since
Haskell does not have true products, this rewrite relation can sometimes produce
expressions whose semantic behaviour is different from the original.

Consider the Haskell function \ (x,y) -> 0. It diverges when applied to _L,
but returns zero if applied to (_L,_L). This function can be encoded using match
and translated into the core λ-calculus using the following rewrite sequence.

λz.match z with {〈x, y〉 → in (inl ?)}
 λz.match (fst z) with {x → match (snd z) with {y → in (inl ?)}}
 λz.match (fst z) with {x → in (inl ?)}
 λz.in (inl ?)

The resulting function is different from the original since it never diverges. Apart
from this problem, with this pattern-matching construct it is now possible to
translate into point-free many typical Haskell functions, using a syntax closer to
that language. For example, distr and the length function can be defined as

distr : A × (B + C) → (A × B) + (A × C)
distr = λx.match x with {〈y, inl z〉 → inl 〈y, z〉; 〈y, inr z〉 → inr 〈y, z〉}
length : List A → Nat
length = fix(λf.λl.match l {in (inl ?) → in (inl ?); in (inr 〈h, t〉) → in (inr (f t))})

6 SimpliFree: Implementing Program Transformations

This section presents SimpliFree, a tool to transform Haskell programs written
in the point-free style using Pointless. This tool can be used both to simplify
point-free expressions, namely those generated by DrHylo, and to perform some
program transformations using fold fusion. For full details on the tool and its
implementation the reader is directed to [16].

Basic Principles. SimpliFree is based on the concept of strategic rewriting : there
is a clear distinction between rewrite rules, that just dictate how an equational
law should be oriented in order to transform a full term, and rewriting strategies,
that specify how the basic rules should be applied inside a term and combined
in order to produce a full rewrite system.

Likewise to other program transformation tools, such as MAG [7], SimpliFree
is based on the notion of active source: inside a Pointless program one can also
define the rules and strategies that will be used to transform it. When the tool
runs with such a program as input, a new Haskell file is produced where:

– Point-free expressions are parsed into an abstract syntax data type Term.
– Rewrite rules are converted into functions of type Term -> m Term, that try

to use Haskell’s own pattern matching mechanism to apply a rewrite step to
a term (m must be a monad belonging to class MonadPlus).

– Strategies are built using a basic set of strategy combinators defined in the
SimpliFree library, which in turn are defined using the strategic programming
library Strafunski [11].

When the resulting file is compiled and executed it returns the transformed
Pointless program. Alternatively, it can also be interpreted, allowing the user
to inspect the full sequence of rewrite rules applied to a particular expression.
Notice that the SimpliFree library already implements some powerful strategies
that can be used to effectively simplify most point-free expressions.

Implementing Rules. Rules and strategies are defined in a special annotated
block inside the program to be transformed. In particular, rules have a name,
and a definition that uses the same concrete syntax of the Pointless library. For
example, ×-Cancel, applied to the first argument of a split, and ×-Fusion,
applied from right to left, can be defined as follows.

{- Rules:

prodCancel1 : fst . (f /\ g) -> f

prodFusionInv : (f . h) /\ (g . h) -> (f/\g) . h

-}

One of the fundamental problems to be solved when converting these rules
into Haskell functions is how to handle the associativity of composition. In or-
der to avoid implementing matching modulo associativity from scratch, a basic
completion procedure had to be implemented on rewrite rules. Sequences of com-
positions are kept right-associated, and when the left hand side of a rule is a
composition, it should be matched not only against a single composition, but
also against a prefix of a sequence of compositions. For example, the first rule
above is translated into the following function.

prodCancel1 (FST :.: (f :/\: g)) = return (f)

prodCancel1 (FST :.: ((f :/\: g) :.: x)) = return (f :.: x)

prodCancel1 _ = fail "rule prodCancel1 not applied"

Completion is not always this trivial. For example, when a variable is the left
argument of a composition there might be the need to try different associations
before finding a successful matching. Another problem arises when non-linear
patterns are used in the left-hand side of a rule. Since the Haskell matching
mechanism cannot handle these patterns, fresh identifiers must be generated
to replace repeated variables, and appropriate equality tests have to be intro-
duced in the function bodies. If a rule combines both these problems (such as
prodFusionInv above) its implementation becomes rather complex.

Strategies. As mentioned above, Strafunski was used in the implementation of
strategies and strategy combinators. Strafunski supports two kinds of strategies:
type-preserving strategies, of type TP m for a given monad m, that given a term
of type t return a term of type m t; and type-unifying strategies, of type TU a
m, where the result is always of type m a regardless of the type of the input.
In SimpliFree all strategies are type-unifying. To be more specific they have
type TU Computation m, where Computation is a data type containing both the
resulting point-free term, and the list of all intermediate steps in the rewriting
sequence. For each step, both the name of the applied rule and the resulting
term is recorded.

First of all, there is a basic function that promotes a rule into a strategy:

rulePF :: (MonadPlus m) => String -> (Term -> m Term) -> TU Computation m

Given a rule, it tries to apply it at most once anywhere inside a term. If successful,
it applies an auxiliary type preserving strategy to the full term that associates
all compositions to the right. The first argument of rulePf is the name of the
rule to be recorded.

The library also provides a series of strategy combinators, such as and, that
given two strategies tries to apply the first and, if successful, applies the second
to the result of the first; or, that given two strategies tries to apply the first and,
if not successful, tries to apply the second; many, that repeatedly tries to apply
a strategy until it fails; oneOrMore, that tries to apply a strategy at least once;
and opt, that tries to apply a strategy at most once.

Using these strategy combinators we could define the following strategy in a
specially annotated block inside a Pointless program.

{- Strategies:

simplestrat : compute and (many fold_macros)

compute : simplify and (opt ((oneOrMore unfold_macros) and compute))

simplify : many base_rules

base_rules : natId1 or natId2 or prodCancel1 or prodCancel2 ...

unfold_macros : exp_unfold or swap_unfold ...

fold_macros : exp_fold or swap_fold ...

-}

Each strategy has a name and definition that can refer to rules (defined inside the
Rules block) or use strategy combinators to build complex rewriting systems. In
this example, simplestrat tries to apply as many as possible rules from a set of
base rules (that encode most of the laws presented in the appendix) in order to
simplify a term. When these rules can no longer be applied, it tries to expand one
or more macros (such as the definition of common functions like swap, or derived
combinators like exponentiation) and returns to the simplification process. If no
macros remain to be expanded the simplification stops. In the end it tries to
rebuild macros in order to return a more understandable point-free expression
to the user. Notice that the translation of strategies to Haskell is trivial: it is
only necessary to replace rule invocation by the application of rulePF to the
respective name.

Example. The SimpliFree tool has a predefined strategy advstrat that can be
used to effectively simplify the point-free expressions derived by DrHylo. This
strategy is an elaboration of the strategy simplstrat presented above. In a
Pointless program we can specify which of the defined or predefined strategies
should be used to transform each point-free declaration. After applying the tool
to such a program, the resulting Haskell file contains for each declaration an addi-
tional function whose invocation produces the specified transformation, printing
at the same time all intermediate steps. The name of this function is just the
concatenation of the point-free declaration name and the strategy name (sepa-
rated by an underscore). For example, after specifying that the swap definition
returned by DrHylo should be transformed using the strategy advstrat, the
following result can be obtained in the Haskell interpreter.

*Main> swap_advstrat

app . ((curry ((snd . snd) /\ (fst . snd)) . bang) /\ id)

= { expCancel }

((snd . snd) /\ (fst . snd)) . (bang /\ id)

= { prodFusion }

(snd . snd . (bang /\ id)) /\ (fst . snd . (bang /\ id))

= { prodCancel2 }

(snd . id) /\ (fst . snd . (bang /\ id))

= { natId2 }

snd /\ (fst . snd . (bang /\ id))

= { prodCancel2 }

snd /\ (fst . id)

= { natId2 }

snd /\ fst

More elaborate examples, in particular involving the conditional fusion law,
can be found in [16].

7 Conclusions and Future Work

We have focused on the most important aspects of each component of the frame-
work; more documentation can be found at the UMinho Haskell Software
pages:

http://wiki.di.uminho.pt/wiki/bin/view/PURe/PUReSoftware

While Pointless has reached a stable stage of development, there are still many
points for improvement in the other components. In DrHylo, the translation of
recursive functions must be improved with the automatic translation to other
standard recursion patterns such as folds, unfolds, and paramorphisms, rather
than always resorting to the all-encompassing hylomorphisms.

In SimpliFree, we plan to incorporate other laws for recursive functions, such
as unfold-fusion. An immediate goal is to make the fusion mechanism more
powerful, to cover at least all the transformations that can be done in state-of-
the-art tools such as MAG.

A significant improvement will be the introduction of truly generic laws: in
the current version of SimpliFree different fold fusion laws are used for different
data types. This is an unfortunate mismatch with the theoretical notation, where
recursion patterns and laws are generically defined once and for all.

References

1. John Backus. Can programming be liberated from the von Neumann style? a func-
tional style and its algebra of programs. Communications of the ACM, 21(8):613–
641, 1978.

2. Richard Bird. The promotion and accumulation strategies in transformational pro-
gramming. ACM Transactions on Programming Languages and Systems, 6(4):487–
504, October 1984.

3. Alcino Cunha. Point-free Program Calculation. PhD thesis, Departamento de
Informática, Universidade do Minho, 2005.

4. Alcino Cunha and Jorge Sousa Pinto. Point-free program transformation. Funda-
menta Informaticae, 66(4):315–352, 2005. Special Issue on Program Transforma-
tion.

5. Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms, and Func-
tional Programming. Birkhuser, 2nd edition, 1993.

6. Nils Anders Danielsson and Patrik Jansson. Chasing bottoms, a case study in
program verification in the presence of partial and infinite values. In Dexter Kozen,
editor, Proceedings of the 7th International Conference on Mathematics of Program
Construction (MPC’04), volume 3125 of LNCS. Springer-Verlag, 2004.

7. Oege de Moor and Ganesh Sittampalam. Generic program transformation. In
D. Swierstra, P. Henriques, and J. Oliveira, editors, Proceedings of the 3rd Inter-
national Summer School on Advanced Functional Programming, volume 1608 of
LNCS, pages 116–149. Springer-Verlag, 1999.

8. Jeremy Gibbons. Calculating functional programs. In R. Backhouse, R. Crole,
and J. Gibbons, editors, Algebraic and Coalgebraic Methods in the Mathematics of
Program Construction, volume 2297 of LNCS, chapter 5, pages 148–203. Springer-
Verlag, 2002.

9. Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylomor-
phisms from recursive definitions. In Proceedings of the ACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’96), pages 73–82. ACM
Press, 1996.

10. Mark Jones. Type classes with functional dependencies. In Proceedings of the 9th
European Symposium on Programming, volume 1782 of LNCS. Springer-Verlag,
2000.

11. Ralf Laemmel and Joost Visser. Typed combinators for generic traversal. In
PADL ’02: Proceedings of the 4th International Symposium on Practical Aspects
of Declarative Languages, pages 137–154, London, UK, 2002. Springer-Verlag.

12. Joachim Lambek. From lambda calculus to cartesian closed categories. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
pages 375–402. Academic Press, 1980.

13. Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings of
the 5th ACM Conference on Functional Programming Languages and Computer
Architecture (FPCA’91), volume 523 of LNCS. Springer-Verlag, 1991.

14. Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold to
exponential types. In Proceedings of the 7th ACM Conference on Functional Pro-
gramming Languages and Computer Architecture (FPCA’95). ACM Press, 1995.

15. Ulf Norell and Patrik Jansson. Polytypic programming in haskell. In Draft pro-
ceedings of the 15th International Workshop on the Implementation of Functional
Languages (IFL’03), 2003.

16. José Proença. Point-free simplification. Technical Report DI-PURe-05.06.01, Uni-
versidade do Minho, 2005.

A Laws of the Calculus

π1 M π2 = id ×-Reflex

fst ◦ (f M g) = f ∧ snd ◦ (f M g) = g ×-Cancel

(f M g) ◦ h = f ◦ h M g ◦ h ×-Fusion

(f × g) ◦ (h M i) = f ◦ h M g ◦ i ×-Absor

(f × g) ◦ (h× i) = f ◦ h× g ◦ i ×-Functor

f M g = h M i ⇔ f = h ∧ g = i ×-Equal

f M g strict ⇔ f strict ∧ g strict ×-Strict

inl O inr = id +-Reflex

(f O g) ◦ inl = f ∧ (f O g) ◦ inr = g +-Cancel

f ◦ (g O h) = f ◦ g O f ◦ h ⇐ f strict +-Fusion

(f O g) ◦ (h + i) = f ◦ h O g ◦ i +-Absor

(f + g) ◦ (h + i) = f ◦ h + g ◦ i +-Functor

f O g = h O i ⇔ f = h ∧ g = i +-Equal

f O g strict +-Strict

ap = id ∧-Reflex

f = ap ◦ (f × id) ∧-Cancel

f ◦ (g × id) = f ◦ g ∧-Fusion

fA ◦ g = f ◦ g ∧-Absor

(f ◦ g)A = fA ◦ gA ∧-Functor

f = g ⇔ f = g ∧-Equal

f strict ⇔ f left-strict ∧-Strict

f = f ◦ π2 const-Def

f ◦ g = f const-Fusion

