
Makefile::Parallel
Dependency Specification Language

Alberto Simões??, Rúben Fonseca, and José João Almeida

Departamento de Informática
Universidade do Minho, Braga, Portugal,
{ambs|rubenfonseca|jj}@di.uminho.pt

Abstract. Some processes are not easy to be programmed from scratch
for parallel machines (clusters), but can be easily split on simple steps.
Makefile::Parallel is a tool which lets users specify how processes depend
on each other.
The language syntax resembles the well known Makefile[1] format, but
instead of specifying files or targets dependencies, Makefile::Parallel spec-
ifies processes (or jobs) dependencies.
The scheduler reads the specification and submits jobs to the cluster
scheduler (in our case, Rocks PBS) waiting them to end. When each
process finishes, dependencies are calculated and direct dependent jobs
are submitted.
Makefile::Parallel language includes features to specify parametric rules,
used to split and join processes dependencies: some tasks can be split
into smaller jobs working on different portions of files, and at the end,
another process can be used to join results.

1 Introduction

More and more, researchers have access to multi-processors machines and, as
well, clusters. The problem is that most researchers do not have time to learn
how to program for parallel machines. Thus, they use their usual programs on
clusters taking advantage just on the processor speeds and the big amount of
available memory.

We propose a tool, Makefile::Parallel, to specify how small processes (or pro-
grams) depend on each other, to create parallelism at the level of the program,
instead of the usual parallelism at the instruction level. Makefile::Parallel main
goals are:

– use a compact language to specify dependencies: in our main case study we
are dealing with more than one hundred jobs. To specify their dependencies
manually is time consuming and error prone;

– reuse a well known language syntax that is being used in related tasks for
years: the Makefile syntax.

?? Partially supported by grant POSI/PLP/43931/2001 from Fundação para a Ciência
e Tecnologia (Portugal), co-financed by POSI.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

– embed other languages to reuse their expressiveness. In our pmakefiles —
the name we gave to the text specification files — we can define actions both
in Bash and Perl.

– support parametric rules: in some situations we want to instantiate rules
with different values, accordingly with results from a previous job. Thus,
these rules need to be instantiated in runtime.

– create information for profiling pmakefiles and create reports.

Next section will present the Makefile::Parallel Domain Specific Language,
showing the language grammar and explaining its versatility. Follows a section
on the scheduler implementation and how it interacts with the main cluster
scheduler. Before the final remarks, there is a section detailing our case study.

2 Makefile::Parallel Language

Makefile::Parallel language syntax is heavily inspired on Makefile’s syntax. The
main difference is that instead of defining dependencies between files or tar-
gets, we define dependencies between jobs. The main idea can be seen as the
formalization of a PERT[2]1 network.

Figure 1 shows a simplified BNF version of the Makefile::Parallel grammar.
The grammar was implemented in YAPP[3], a Perl version of the well known
yacc parser generator.

To explain the language we will use the example shown on figure 2: suppose
we have a program we want to test with a different parameter, an integer ranging
from 3 to 10. We need to create a directory to save the data, and at the end we
want to remove some temporary files.

To solve the problem presented above we defined three rules:

– There is a job to prepare the output directory. This same rule defines a
variable to be used on the next rule, a parametric one, named run (see
section 2.2 for detailed explanation on these rules). The variable is defined
as a set of values that the variable p can have.

– The parametric rule run$p will instantiate with values from 3 to 10, and run
the program being tested with different parameters.

– Finally, the last rule cleanup depends on the run set of rules, and cleanups
some temporary files.

Values between parenthesis indicate the expected walltime. This time is used
by ROCKS[4] to schedule the job in an adequate queue, and to kill the job in
case it is taking too long.

Following the walltime (a required parameter) there is an optional parameter
in square brackets: the number of CPUs needed for the job. Because we are par-
allelizing processes, does not mean we can not have processes that, themselves,
are parallel, thus needing more than one processor.
1 PERT (Program Evaluation and Review Technique) charts were first developed in
the 1950s by the Navy to help manage very large, complex projects with a high
degree of intertask dependency.

jobs → job jobs

→ job

job → jobName ‘:’ deps walltime nrCpus actions

walltime → ‘(’ TIME ‘)’
nrCpus → ‘[’ INT ‘]’

→ ε

jobName → ID
→ ID VAR

deps → jobName deps

→ ε

actions → action

→ actions action

action → shellCommand

→ perlCommand

→ setDefinition

shellCommand → TAB SHELL
perlCommand → TAB ‘sub{’ PERL ‘}’
setDefinition → TAB VAR ‘<-’ SHELL

→ TAB VAR ‘<-’ ‘sub{’ PERL ‘}’

Fig. 1. Makefile::Parallel DSL grammar.

prepare: (5:00)
mkdir OutputData
p <- sub{ print "$_\n" for (3..10) }

run$p: prepare (20:00:00) [2]
runMyProgram -p $p InputData > OutputData/run.$p

cleanup: run$p (5:00)
for a in @p; do rm -f OutputData/run.${a}.tmp; done

Fig. 2. Simple Makefile::Parallel example.

2.1 Support for both Shell and Perl actions

Although most processes are binary programs, sometimes we need some specific
small actions to put files in some special places and to change some file contents.
With that in mind we support Bash (as makefile) and, because we work especially
with Perl (and the scheduler is implemented in Perl), we also support actions
written in Perl.

In the example above all actions are in Bash for simplicity.

2.2 Support for parametric rules

It is quite usual to test some specific programs with different algorithms or
different parameters. In other cases, we need to split a big job on small chunks
to be processed independently.

Both situations need the use of parametric rules: rules where variables get
replaced by a set of values. For instance, on the example above, the variable $p
on the run rule gets replaced by the values of the p set. This set is defined on
the prepare rule with some Perl code. That Perl code returns a text file (in the
stdout) with a value per line. These values are the p set elements.

So, p gets the values from 3 to 10: p = {3, 4, 5, 6, 7, 8, 9, 10}. Then, the rule
run$p is replaced by:

run3: prepare(20:00:00) [2]
runMyProgram -p 3 InputData > OutputData/run.3

run4: prepare(20:00:00) [2]
runMyProgram -p 4 InputData > OutputData/run.4

...

run10: prepare(20:00:00) [2]
runMyProgram -p 10 InputData > OutputData/run.4

In the cleanup rule, something similar happens. The dependency list is ex-
panded with p values, and the special list variable @p in the rule action is also
expanded to all values it can take. Note that @p is expanded correctly accord-
ingly with its context (Bash or Perl). If we did not have parametric rules we
would need to write:

cleanup: run3 run4 run5 run6 run7 run8 run9 run10 (5:00)
for a in run3 run4 run5 run6 run7 run8 run9 run10; do

rm -f OutputData/run.${a}.tmp; done

Note that the variable ${a} is a standard Bash variable that will be instantiated
during run-time.

3 Makefile::Parallel Scheduler

The scheduler — pmake— is written in the Perl language. It takes a specification
file and schedules jobs accordingly with their dependencies.

Since the beginning we had in mind to develop more than one scheduler
subsystem to submit jobs. While most clusters use ROCKS, there are other
scheduler systems. Also, a simple SSH scheduler could be created. Thus, the
code was modularized: an abstract class to represent any scheduler, and a set of
subclasses implementing all the methods for a specific system.

do {
launch_rules_with_satisfied_dependencies()
terminated_processes = gather_terminated_processes()
for(process in terminated_processes) {

if (defines_parameters(process)) {
parameters = calculate_parameters(process)
expand_dependency_graph(parameters)

}
}

save_journal()
sleep(10)

} while(! all_processes_executed())

generate_profiling_information()
print_report()

Fig. 3. Scheduler engine behavior algorithm.

3.1 Scheduler Behavior

The basic scheduler behavior is specified on figure 3. The scheduler visits the
dependency graph specification generated by the parser and, for every job with
fulfilled dependencies, send them to run on the selected subsystem. The scheduler
then waits for any of the running jobs to die or to end, by asking their state to
the subsystem.

When a process ends, the scheduler gets information from the subsystem
(return code, CPU time, memory used). If the return code does not indicate
failure, all variables defined in the rule are instantiated (evaluating the Perl or
Bash definition), and the dependency graph is modified on-the-fly to reflect the
instantiated variables. Then, all processes not yet executed are browsed, and if
any is found with all dependencies fulfilled, it is submitted to the system. The
process continues all over again until no processes need to be executed.

From time to time, the scheduler saves some part of his internal state to
permanent storage (hard disk), in the form of a journal. This is useful in case
the specification is stopped by an error, or some kind of problem exists with the
subsystem (as power shortages). Later, the user can simply pass an option to
pmake, and the scheduler will bypass all processes ended correctly.

Two subsystem implementations were developed for now: a PBS designed for
clusters running mainly ROCKS, and a Local, designed for desktop processing.

3.2 PBS Subsystem

High-performance clusters are the computing tool of choice for a wide range of
scientific disciplines. Yet straightforward software installation, management, and
monitoring for large-scale clusters have been consistent and nagging problems
for non-cluster experts. The free ROCKS cluster distribution takes a fresh per-
spective on cluster installation and management to dramatically simplify version
tracking, cluster management and integration[4]. The toolkit centers around a
Linux distribution based on the Red Hat Enterprise line, and includes work from
many popular cluster and grid specific projects.

One utility found in any cluster toolkit is a Portable Batch System (PBS).
Basically, scheduling software let the cluster run like a batch system, allowing
the allocation of cluster resources, such as CPU time and memory, on a job-by-
job basis. Jobs are queued and run as resources become available, subject to the
priorities established[5]. PBS is a powerful and versatile system.

When the scheduler emits a process to run on this subsystem, a PBS script
is generated and sent to the cluster queue using the command qsub. To check
if a process is still running Makefile::Parallel uses the qstat program with the
appropriate parameters.

Eventually some processes finish. When the scheduler detects that (using the
previous call to this subsystem), it asks for additional information about the
dead process using the output of the tracejob program. This program returns
detailed information, including (real) CPU time, return code, and memory usage
of the process.

If the scheduler needs to stop a running process, the subsystem can call qdel
to kill the process if it already running or to remove it from the queue otherwise.

While ROCKS supports dependencies between jobs (you can specify jobs
dependency when submitting a job) it is not versatile enough for most users
needs.

3.3 Local Scheduler Subsystem

Since most of modern computers are becoming multiprocessor by nature, a local
scheduler is a good way of exploring parallelization on small to medium work-
flows.

With this in mind, a local scheduler subsystem was implemented. Running
jobs on the development desktop machine allowed faster bug tracking and less

time of coding. At the same time, one could not have access to a multicomputer
cluster so this subsystem can be used in a variety of situations.

pmake local scheduler operation resembles the GNU make program on many
aspects. First of all, if invoked with no parameters, pmake takes the specification
and run it sequentially — the jobs are run as if a single pipeline exists. This
could be optimal on a desktop machine.

However, as the level of multiprocessors rises the user may want to use the ad-
ditional processor power available. For this reason, this subsystem was designed
to accept a parameter that specifies how many parallel pipelines the scheduler
must support on this execution.

This subsystem uses the fork-exec-perror paradigm and trust the operating
system the correct map of the job to a free processor (both logical or physical).

4 Case Study

We have at our disposal a multicomputer cluster formed by approximately 140
CPUs and 50 nodes. The cluster runs Linux and ROCKS. This means that we
can use the TORQUE Resource Manager to schedule our jobs.

Although we are using Makefile::Parallel on two different research fields (Bio
Informatics and Natural Language Processing) we just present here the later,
because it is the most interesting and was the real motivation for this work.

The code shown on figure 4 is part of a bigger pmakefile, working in produc-
tion for the word-alignment[6] of big parallel texts (bitexts: texts and respective
translations) and extraction of translation examples[7]. The word-alignment task
needs to create big sparse matrixes in memory and for big texts (with more than
300 MBytes of text files) this matrix does not fit on main memory. Thus the so-
lution is to split the big text in smaller pieces, and process them independently.
At the end the processing result is merged up.

Figure 6 shows graphically this process. Important to note that this graph
is generated by Graphviz[8] at run time with times for each task, and their
dependencies. In fact we are getting 25% to 15% of the time needed in sequential
mode in our tasks (this value highly depends on the current cluster load, as
expected).

During process pmake will output progress information to a log file as shown
in figure 5. This log shows the processes being launched and finishing, as well as
the time spent for each one. Together with the graph shown in figure 6, pmake
generates also a file with timing information for easy profiling as can be seen on
figure 7.

5 Conclusions

Makefile::Parallel proven to be a useful tool to specify jobs dependencies and to
schedule them efficiently.

Being able to perform a concise description makes it easier to define depen-
dencies correctly than defining them by hand.

codify: (20:00:00)
nat-codify -id=EurLex EurLex-PT EurLex-EN
i <- sub{ $nr = ‘cat EurLex/nat.cnf |grep nr-chunks|cut -f 2 -d "="‘;

printf("%03d\n",$_) for (1..$nr); }

initmat$i: codify (20:00:00)
nat-initmat EurLex/source.$i.crp EurLex/target.$i.crp EurLex/mat.$i.in

ipfp$i: initmat$i (20:00:00)
nat-ipfp 5 EurLex/source.$i.crp EurLex/target.$i.crp \

EurLex/mat.$i.in EurLex/mat.$i.out
rm -f EurLex/mat.$i.in

postipfp$i: ipfp$i (20:00:00)
nat-mat2dic EurLex/mat.$i.out EurLex/dict.$i
rm -f EurLex/mat.$i.out

postbin$i: postipfp$i (20:00:00)
nat-postbin EurLex/dict.$i \

EurLex/source.$i.crp.partials EurLex/target.$i.crp.partials \
EurLex/source.lex EurLex/target.lex \
EurLex/source-target.$i.bin EurLex/target-source.$i.bin

rm -f EurLex/dict.$i

dicA: postbin$i (20:00:00)
for a in @i; do \

nat-dict add EurLex/source-target.bin EurLex/source-target.${a}.bin; \
done
for a in @i; do rm -f EurLex/source-target.${a}.bin; done

dicB: postbin$i (20:00:00)
for a in @i; do \

nat-dict add EurLex/target-source.bin EurLex/target-source.${a}.bin; \
done
for a in @i; do rm -f EurLex/target-source.${a}.bin; done

dump: dicA dicB (20:00:00)
nat-dumpDicts -self EurLex

Fig. 4. Subset of NATools pmakefile.

[...]
2006/12/12 10:49:22 The job "ipfp005" is ready to run. Launching
2006/12/12 10:49:22 Launched "ipfp005" (23996)
2006/12/12 10:49:52 Process 23996 (ipfp005) has terminated [30s]
2006/12/12 10:49:52 The job "postipfp005" is ready to run. Launching
2006/12/12 10:49:52 Launched "postipfp005" (23997)
2006/12/12 10:50:02 Process 23997 (postipfp005) has terminated [10s]
[...]

Fig. 5. Makefile::Parallel log output.

example100000
6h 28m 13s

cleanExamples
1m 2s

ipfp002
19m 27s

postipfp002
4s

example200000
6h 26m 51s

postipfp005
3m 12s

postbin005
1m 46s

postipfp001
3s

postbin001
2s

ngramsB
2m 37s

examples
57s

example150000
6h 16m 40s

example0
5h 54m 49s

example50000
6h 7m 57s

example250000
4h 7m 3s

postipfp003
5s

postbin003
2s

ipfp001
17m 59s

dicB
1m 34s

dump
43s

ngramsA2
6m

ngramsA
5m 45s

ngramsB4
11m 2s

dicA
1m 35s

postipfp004
15s

postbin004
2s

ngramsB2
5m 56s

ipfp004
21m 34s

postbin002
2s

initmat002
4m 36s

filter
32s

ipfp005
32s

initmat004
4m 34s

initmat005
8s

ngramsA4
11m 54s

initmat003
2m 27s

ipfp003
19m 28s

codify
9m 17s

ngramsA3
9m 23s

initmat001
1m 39s

ngramsB3
7m 51s

Fig. 6. Process dependency graph.

ID Start Time End Time Elapsed
codify 2006-12-12T10:41:10 2006-12-12T10:49:11 8m 1s
ngramsA 2006-12-12T10:49:11 2006-12-12T11:07:46 18m 34s
ngramsB 2006-12-12T10:49:11 2006-12-12T11:05:44 16m 33s
initmat001 2006-12-12T10:49:11 2006-12-12T10:50:12 1m
initmat002 2006-12-12T10:49:11 2006-12-12T10:50:43 1m 31s
initmat003 2006-12-12T10:49:11 2006-12-12T10:51:03 1m 51s
[...]

Fig. 7. Makefile::Parallel report output.

The syntax is versatile enough to be applied in more than one research area.
The parser is quite simple, and the fact of supporting the embed of external
languages makes it yet more powerful.

Report facilities and graph generation are useful for week report generation
about cluster usage and project evolution. The generated graphs are useful to
explain how software works, how the different jobs interact together, and what
are the critical jobs (and paths).

Worth saying thatMakefile::Parallel has almost no running cost since it spends
most of the time sleeping, waiting for events to happen.

References

1. Campbell, D., Grevstad, C.: A tutorial for make. In: ACM’85: Proceedings of the
1985 ACM annual conference on The range of computing : mid-80’s perspective,
New York, NY, USA, ACM Press (1985) 374–380

2. Douglas, D.E.: Pert and simulation. In: WSC ’78: Proceedings of the 10th conference
on Winter simulation, Piscataway, NJ, USA, IEEE Press (1978) 89–98

3. Desarmenien, F.: Parse::Yapp — perl extension for generating and using lalr parsers.
Perl module (2001) http://search.cpan.org/dist/Parse-Yapp/.

4. Sacerdoti, F.D., Chandrai, S., Bhatia, K.: Grid systems deployment & manage-
ment using rocks. IEEE International Conference on Cluster Computing, San Diego
(September 2004)

5. Sloan, J.D.: High Performance Linux Clusters with OSCAR, Rocks, OpenMosix,
and MPI. O’Reilly (2004)

6. Simões, A.M., Almeida, J.J.: Natools – a statistical word aligner workbench. SEPLN
(Sep. 2003)

7. Simões, A., Almeida, J.J.: Combinatory examples extraction for machine transla-
tion. In Lønning, J.T., Oepen, S., eds.: 11th Annual Conference of the European
Association for Machine Translation, Oslo, Norway (19–20, June 2006)

8. Gansner, E.R., North, S.C.: An open graph visualization system and its applications
to software engineering. Software — Practice and Experience 30(11) (2000) 1203–
1233

