
Challenges in integrating Escherichia coli
molecular biology data
Ana¤ lia Lourenc� o1, So¤ nia Carneiro1, Miguel Rocha2, Euge¤ nio C. Ferreira1and Isabel Rocha1

Submitted: 10th June 2010; Received (in revised form): 5th September 2010

Abstract
One key challenge in Systems Biology is to provide mechanisms to collect and integrate the necessary data to be
able to meet multiple analysis requirements. Typically, biological contents are scattered over multiple data sources
and there is no easy way of comparing heterogeneous data contents. This work discusses ongoing standardisation
and interoperability efforts and exposes integration challenges for the model organism Escherichia coli K-12. The
goal is to analyse the major obstacles faced by integration processes, suggest ways to systematically identify them,
and whenever possible, propose solutions or means to assist manual curation. Integration of gene, protein and com-
pound data was evaluated by performing comparisons over EcoCyc, KEGG, BRENDA, ChEBI, Entrez Gene and
UniProt contents. Cross-links, a number of standard nomenclatures and name information supported the compari-
sons. Except for the gene integration scenario, in no other scenario an element of integration performed well
enough to support the process by itself. Indeed, both the integration of enzyme and compound records imply con-
siderable curation. Results evidenced that, even for a well-studied model organism, source contents are still far
from being as standardized as it would be desired and metadata varies considerably from source to source. Before
designing any data integration pipeline, researchers should decide on the sources that best fit the purpose of analysis
and be aware of existing conflicts/inconsistencies to be able to intervene in their resolution. Moreover, they should
be aware of the limits of automatic integration such that they can define the extent of necessary manual curation
for each application.
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BACKGROUND
Life sciences research has been suffering a methodo-

logical shift with the emergence of high-throughput

techniques [1, 2]. The amount of data generated

by these experimental techniques has created new

demands with respect to data management and ac-

cessibility. New systems biology studies require re-

searchers to understand how interplay among a large

number of biomolecular entities is orchestrated in

order to achieve high-level cellular and physiological

functions. Researchers need to compare and inte-

grate a number of data, such as experimental data,

data provided by different databases and additional

information presented in literature. To do so, re-

searchers face two problems: (i) to find and collect

data scattered through multiple resources and (ii) to

integrate data described in many different formats.

An outstanding number of public repositories of

biological data has been developed to address these

needs [3]. Many repositories engage particular types
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of data, such as biological sequences (e.g. GenBank

[4], UniProt [5]), chemical compounds (e.g.

Chemical Entities of Biological Interest (ChEBI)

[6]), enzymatic information (e.g. BRaunschweig

ENzyme DAtabase (BRENDA) [7] and SABIORK

[8]), regulatory information (e.g. RegulonDB [9]) or

‘omics’ data (e.g. ArrayExpress [10], BioGrid [11],

MINT [12] and IntAct [13]). Others depict the func-

tional interactions of metabolic and regulatory path-

ways (e.g. BioCyc [14], Kyoto Encyclopedia of

Genes and Genomes (KEGG) [15], and Reactome

[16]) and integrate pathway data with high-

throughput data (e.g. EcID [17]).

Data integration, however, is not trivial and

requires data retrieval, parsing and pre-formatting.

Syntactic and structural differences (differences

related to data models such as relational databases,

flat files and spreadsheets) lying in the data schemas

that each source specifies are technical problems

always present in data integration projects. In turn,

semantic differences are expressed in the terminolo-

gies (vocabularies) recognized by the data schemas,

which make it difficult to identify similar biomole-

cular entities across multiple sources.

Currently, to assist in data integration/interchange

efforts, most databases maintain cross-links (also

called cross-references or link-outs), i.e. links be-

tween their records and related records on external

databases. For example, many sources keeping gene

data associate to their records the corresponding

Entrez Gene identifiers and a similar situation

occurs with protein records and UniProt identifiers.

Also, databases usually relate their records with a

number of standard nomenclatures, thus providing

controlled vocabulary. For example, often enzyme

records include Enzyme Commission numbers (EC

numbers) [18] and locus identifiers are associated to

gene records. Notwithstanding, the set of standard

nomenclatures and cross-references maintained by

each source vary considerably from source to

source, and each source has its own production

and update cycles, differing in terms of actual

contents.

Given that data source heterogeneity is unavoid-

able, and a single data model for all biomedical scen-

arios/problems is neither probable nor possible,

much effort has been put on the development of

data integration approaches/frameworks [19–21].

These include, among other, hypertext navigation

and Web Services (e.g. SRS [22], Entrez [23] and

BioMart [24]); data mediation and federation

(e.g. KA-SB [25], TAMBIS [26], and BioMediator

[27]); and data warehouses (e.g. Ondex [28], BNDB

[29], Biowarehouse [30] and Columba [31]). An

evaluation of the abilities of these approaches/frame-

works bears many difficulties and is out of the scope

of this article.

The aim of the present work is rather to evaluate

the potential of basic elements of information (com-

monly present in most databases) for these integra-

tion approaches/frameworks (or any new ones) and

thus, contribute to the discussion of (i) how challen-

ging is it to integrate heterogeneous biological data

and (ii) how straightforward is it to cross over similar

contents from multiple data sources. In particular,

the analysis is focused on the integration of data

from the bacterium E. coli K-12 (whenever possible

data were filtered for the sub-strain MG1655), for

which public repositories keep considerable informa-

tion, and which is at the heart of quite diverse studies

(i.e. involving different biomolecular entities and/or

demanding different levels of detail from the data). A

project that requires such efforts in data gathering

and integration is the reconstruction of the metabolic

network of an organism [32] that, after validation,

can be used for instance in metabolic engineering

applications (e.g. [33]) and functional genomics.

Clearly, any study that involves the generation and

analysis of omics data also requires some level of data

integration from public repositories.

In this study, and to facilitate the generalization of

the approaches used, a very general view of the in-

formation flow from gene to protein to function was

considered. In Figure 1 a scheme of that information

flow is shown, together with the most important

elements that were used to integrate the different

biomolecular entities. Genes (identified mainly by

numbers and names) can codify either for regulatory

proteins (transcription factors) or enzymes. A

Boolean rule might be needed to describe gene–

protein encoding, since a single enzyme may be

composed by two or more subunits that are codified

by separate genes. Moreover, different genes can

codify for enzymes with similar biochemical behav-

iour (isoenzymes), conferring redundancy to the sys-

tems. Proteins can be identified either by their CAS

registry numbers or names. Enzymatic activities can

be identified by EC numbers and have information

associated with reaction reactants and products,

among other data.

Commonly available information elements for the

three main biomolecular entities, i.e. genes, proteins
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and compounds, were evaluated by means of pair-

wise source comparison. The circumstances leading

to unsuccessful integration results (i.e. a high number

of unresolved records) are then discussed. Following

up, some strategies for the automatic identification

and (whenever possible) resolution of data ambigu-

ities are suggested. Finally, we outline the advantages

of conciliating automatic data analysis and expert

monitoring towards the maximisation of integration

outcomes, in terms of the number of records and

data quality, and the minimization of manual cur-

ation efforts.

MATERIALSANDMETHODS
Data sources
In this work, different data sources containing infor-

mation on E. coli K-12 (whenever possible for the

sub-strain MG1655) were assessed. Overall, six data

sources were covered by the study, including

broad-scope, domain- and organism-specific data

sources (Supplementary Table S2 provides an

overview of the contents that were extracted from

each source). The Chemical Entities of Biological

Interest (ChEBI), EBI’s freely available dictionary

of chemical compounds, was included as an inde-

pendent source of chemical data, namely termin-

ology recommended by the IUPAC and the

Nomenclature Committee of the International

Union of Biochemistry and Molecular Biology

(NC-IUBMB) [6]. The NCBI’s gene database,

Entrez Gene, on fully-sequenced genomes [34] is a

common database reference. Besides gene record

cross-references, this source may assist on the identi-

fication of gene encoded proteins (the ‘gene descrip-

tion’ field). Likewise, the Universal Protein

Resource (UniProt) Knowledgebase (UniProtKB),

and particularly the UniProtKB/Swiss-Prot,

provided for a fully curated protein sequence

knowledgebase with extensive cross-references [5].

Besides protein details, UniProt records also pro-

vided the names and locus identifiers of the encoding

genes, enabling additional gene integration.

The KEGG consists of several databases that en-

compass knowledge on molecular interaction net-

works (PATHWAY database), genes and proteins,

generated by multiple genome sequencing projects

(GENES databases), and the information about

chemical compounds and chemical reactions that

are relevant to cellular processes (LIGAND databases)

[15]. Here, we inspected the data in: LIGAND/

Compound (the chemical compound structures

‘compound’ file), GENES/Organisms (the

‘E.coli.ent’ file) and LIGAND/Enzyme (filtering

the ‘enzyme’ file based on organism-specific gene

coding information). EcoCyc differentiates from

Figure 1: Information flow from gene to protein to function.The studied biomolecular entities (genes, proteins and
compounds) are characterized by different information elements (in the white boxes on the right). Transitions
between layers show the different interconnections between the entities.
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KEGG since it is focused on the genome and bio-

chemical machinery of Escherichia coli K-12 MG1655

[35]. It was expected that EcoCyc could provide

additional metabolic information as well as extensive

regulatory information (EcoCyc maintains a tight

connection with RegulonDB, a database on tran-

scriptional regulation in E. coli [9, 36]).

Finally, we chose a resource specialized in enzym-

atic data (e.g. kinetics, substrates/products, inhibi-

tors/activators and cofactors). The BRaunschweig

ENzyme DAtabase (BRENDA) is a manually

curated and literature-based database that classifies

reactions according to the EC system of the

IUBMB Enzyme Nomenclature Committee [7].

We processed the available flat file to get E. coli
related information. Also, given that no compound

catalogue is publicly accessible, we collected com-

pound names from substrate, product and cofactor

fields in BRENDA records.

Source contents evaluation
We evaluated the data integration ability of

cross-links and some standard nomenclatures, com-

monly present in most data sources (Supplementary

Table S3), namely: the EC numbers [18] and the

CAS registry numbers [37] for enzymes; the

Blattner locus identifiers (commonly referred to as

bnumbers) [38] for genes; and, the CAS registry

numbers, the chemical formulas and the chemical

structure specifications IUPAC International

Chemical Identifiers (InChI) [39], and Simplified

Molecular Input Line Entry Specification

(SMILES) strings [40] for small molecules.

Additionally, we also considered existing names,

i.e. common names, synonyms, acronyms and abbre-

viations associated with biomolecular entity records.

In particular, we evaluated a wide variety of names

ranging from full systematic names and names

following current recommendations of the IUPAC

body on chemical nomenclature, conventional E. coli
gene naming [41], and non-standard names com-

monly used by the biological community.

Gene, protein and compound data were analysed

separately, classifying the elements of integration on

the basis of their ability to unequivocally match bio-

molecular entity records across the different data

sources. Specifically, the number of unmatched re-

cords was indicative of the degree of data discrepancy

between sources, whereas the number of multiple

match candidates evidenced the need for manual

curation even when sources apparently have similar

contents.

We tested the ability of each integration element

by pairwise data source comparison, i.e. each data

source was matched one-on-one with each of the

other data sources. Given the comparison among

two sources A and B, results were characterized as

follows: (i) unique matches identified those elements

that unambiguously related a record of source A
with a record of source B and thus, can be automat-

ically integrated; (ii) multiple matches indicated that

the element used for integration could not un-

equivocally pair a record of source A with a record

of source B, i.e. one record in source A was matched

against more than one record in source B or one

record in source B was matched against more than

one record in source A; and (iii) non matches ac-

counted for all records in A that could not be inte-

grated. Two-way comparisons, i.e. matching records

of source A to records of source B and records of

source B to records of source A, evidenced that

sources may keep similar but not exactly the same

contents, highlighting the source matching direction

that enhances data integration.

Furthermore, we complemented this evaluation

by combining the elements that performed best.

The idea was to assess if pairwise comparisons were

able not only to characterize the interoperability of

data sources, but also to support the design of

the most adequate integration strategies. So, we

followed a very simple procedure: (i) ranking the

available elements by their integration ability,

namely the number of unique matches, and (ii)

applying element by element until there were not

any more data to integrate or elements to support

integration.

RESULTS
We considered a general systems-oriented scenario

for E. coli K-12 MG1655, which requires the inte-

gration of gene, protein and compound data, across

six data sources: an organism-specific data source

keeping both metabolic and regulatory informa-

tion—EcoCyc [35]; a data source that maintains

metabolic information for multiple organisms—

KEGG; and four domain-specific data sources—

BRENDA for enzymatic activity, ChEBI for small

molecule characterization, Entrez Gene [34] for

genome data and UniProt for protein information.

Several integration elements were explored. First, we

page 4 of 13 Lourenc� o et al.
 by guest on N

ovem
ber 9, 2010

bib.oxfordjournals.org
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


evaluated the integration ability of the cross-links

and then we assessed the ability of information elem-

ents coming from standard nomenclatures. Finally,

we compared several alternative names, i.e.

common names, synonyms, acronyms and abbrevi-

ations. Source contents are characterized in terms of

the number of records, the type and extent of stand-

ard nomenclatures, the total and average number of

name variants and the diversity and number of

cross-links. A summary (Supplementary Table S1)

and a detailed description of the contents of the

data sources (at the section ‘Data Sources’ in the

Web report) can be found in Supplementary Data.

The number of records per biomolecular entity is

only indicative of the amount of source contents and

should not determine integration outcomes by itself.

For example, EcoCyc only keeps record of small

molecules related to the metabolism and regulation

of E. coli (1610 records) whereas ChEBI keeps a gen-

eral (non-organism-dependent) repository of 17 445

small molecules. Likewise, KEGG is focused on

enzyme information while UniProt and EcoCyc

keep records of both regulatory and metabolic

proteins. Still, as long as researchers are aware of

the nature of source contents, they should easily in-

terpret results and decide on the best strategy for a

particular analysis.

In the next subsections, we outline the results of

source pairwise comparison for the three types of

biomolecular entities. The complete workflow is

detailed in the Materials and methods section.

Source cross-linking
As illustrated in Table 1 and, in detail at the section

‘Data Sources’ in the Web report in Supplementary

Data, even between major repositories, cross-linking

varies considerably and it is often not bidirectional.

In terms of gene records, KEGG supports extensive

cross-linking to EcoCyc (98%), Entrez Gene (100%)

and UniProt (94.76%), but only UniProt keeps links

to KEGG (97%). Likewise, Entrez Gene is heavily

linked (�98% of the records) to EcoCyc but EcoCyc

linking to Entrez Gene is insignificant. In terms of

proteins, KEGG records are fully linked to

BRENDA and >95% of UniProt records are

linked to EcoCyc records. Yet, there are no links

(in any direction) between KEGG and UniProt,

BRENDA and EcoCyc, or BRENDA and

UniProt. In terms of compounds, KEGG and

ChEBI organism-independent chemical repositories

sustain similar low linking rates among them-

selves (�30%), EcoCyc is barely linked to

ChEBI and 40% of EcoCyc records have no link

to KEGG.

By only considering record cross-linking, we con-

cluded that it is possible to almost fully (>98% of the

records) integrate KEGG and EcoCyc gene informa-

tion, KEGG and BRENDA enzyme information,

and EcoCyc and UniProt protein information.

However, metabolic data integration is hampered

by the lack of an adequate number of cross-links

between KEGG and EcoCyc for enzyme and com-

pound information. Indeed, compound cross-linking

was found insufficient for any of the analysed

sources.

Gene and protein-specific elements
We considered Blattner standard identifiers (bnum-

bers), a special locus tag for E. coli genes, and gene

names as information elements that might help in the

integration of gene records. Gene integration results

are presented in Figure 2 (first column) and, in detail,

at the section ‘Pairwise Evaluation->Genes’ in the

Web report and in Supplementary Figure S1. In

most scenarios, locus tag identifiers performed ex-

tremely well, yielding >94% of unique matches, no

Table 1: Database cross-links for genes, proteins and compounds

BRENDA ChEBI EcoCyc Entrez Gene KEGG UniProt

BRENDA 1063 (E) n.a.(E) 68% (E) n.a. (E) 0 (E) 0 (E)
ChEBI n.a. (C) 17445 (C) 0 (C) n.a. (C) 32% (C) n.a. (C)
EcoCyc n.a.(G) 0 (E) 3% (C) 4477 (G) 5446 (P) 1610 (C) 13% (G) 0 (G) 0.09% (P) 52% (C) 0 (G) 78% (P)
Entrez Gene n.a. (G) n.a. (G) 98% (G) 4466 (G) 0 (G) 0 (G)
KEGG 100% (E) 34% (C) 98% (G) 0 (E) 0 (C) 100% (G) n.a. (E) 4466 (G) 726 (E) 15 403 (C) 95% (G) 0 (E)
UniProt n.a. (G) 0 (E) n.a. (C) 0 (G) 96% (P) 0 (G) n.a. (P) 97% (G) 0 (E) 4341 (G) 4342 (P)

Thepercentage of recordswith cross-links of a given source to the other sourcesunder analysis are indicated.Eachnumber represents pairwiseper-
centagematches of sources {A, B}, i.e. the percentage of cross-links that each source in theX-axismaintains to the other sources per biomolecular
entity type available (indicated in parenthesis as follows: C-compound, E-enzyme,G-gene and P-protein).
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multiple match candidates (i.e. they unequivocally

identify the genes) and <6% of non matches

(mainly regulatory or predicted protein/pseudogene

information).

Record matching based on gene names also pre-

sents good results with >90% of unique record

matches. However, when compared to common

names, the comparison of all name variants does

not bring significant improvements (2–4% additional

record matches) and depicts a higher number of

elements to be curated. Indeed, genes often share

synonyms and thus, multiple candidates are pre-

sented for record match (e.g. in EcoCyc and

KEGG, the genes argA and argD share the name

variant Arg1).

Next, we evaluated the concordance of the

sources in terms of EC numbers, CAS registry num-

bers and different variants of protein names.

Outcomes are reported in Figure 2 (second

column) and, in detail, at the section ‘Pairwise

Evaluation->Proteins’ in the Web report and in

Supplementary Figure S2. Considering EC numbers,

results suggest some discrepancy in terms of enzyme

information. Over 15% of EC numbers are unfamil-

iar in most scenarios, either because one of the

sources has not associated them to E. coli or they

are incomplete (usual for predicted protein functions,

e.g. 1.1.-.-). Additionally, since often EC numbers

qualify the enzymatic activity of more than one pro-

tein, there is a considerable number of multiple

matches (e.g. in EcoCyc-related scenarios,

�50% of the EC numbers under evaluation). Any

attempt to automatically resolve these multiple

matches would be recurring to gene coding infor-

mation, but not always enzyme-related contents are

associated with such information (e.g. there is no

gene information associated with KEGG and

BRENDA records).

Even though only two sources in the study,

BRENDA and KEGG, keep record of CAS registry

numbers for proteins, results show that this might be

a valid element of integration. There is a good

number of CAS-based matches (>57% and 75% of

records respectively) and almost no multiple matches.

In fact, the difference of record matches when inte-

grating BRENDA and KEGG by CAS identifiers or

EC numbers is �6%. Thus, when available, CAS

indexing might be considered an alternative to EC

numbers. On the other hand, in most cases, record

matching based on common protein names and

name variants performed poorly (>95% of record

non-matches). Names containing special characters,

such as Greek letters, apostrophes, slashes and super/

subscripts, are often encoded differently. For

example, ‘�70’ in ‘EcoCyc:RPOD-MONOMER’

and ‘Sigma-70’ in ‘UniProt:P00579’, and ‘aminobu-

tyraldehyde dehydrogenase’ in ‘BRENDA: 1.2.1.19’

and ‘g-aminobutyraldehyde dehydrogenase’ in

‘EcoCyc: G6755-MONOMER’. Similarly,

‘DsbCoxidized’ and ‘disulfide interchange protein

dsbC’ (DSBCOX-MONOMER record in EcoCyc

and P0AEG6 record in UniProt, respectively)

and ‘EntS MFS transporter’ and ‘Enterobactin

exporter entS’ (DSBCOX-MONOMER record

in EcoCyc and P24077 record in UniProt, respect-

ively) correspond to the same proteins. Also, there is

the frequent use of general names for ‘similar’ pro-

teins. For instance, in EcoCyc, it is common that a

given complex and some of its monomers share

names (e.g. ‘Alanyl-tRNA synthetase’ stands for

both ALAS-CPLX and ALAS-MONOMER

records).

Compound-specific elements
In terms of compound data integration, we inspected

chemical formulas, SMILES and InChI chemical

structure representations, CAS registry numbers

and, once again, available biomolecular entity

names. Outcomes are reported in Figure 2 (third

column) and, in detail, at the section ‘Pairwise

Evaluation->Compounds’ in the Web report and

in Supplementary Figure S3.

Chemical formulas (>52% of record

non-matches), SMILES and InChI-based record

matching perform quite poorly (>96% and 75% of

EcoCyc record non-matches, respectively).

Similarly, we observed false positive matches in

CAS-based matching scenarios. For example,

the CAS number ‘2009-24-7’ is associated with the

compound ‘xanthotoxol’ in CHEBI:15709 and the

compound dTDP-glucose in ‘EcoCyc: DTDP-

D-GLUCOSE’.

In most cases, we observed that the inclusion of

name variants increases the number of record

matches. Indeed, the number of unique matches is

raised 20% in the EcoCyc-KEGG scenario (resolving

almost 57% of the records) and improvements of

>7% were achieved in BRENDA-KEGG and

BRENDA-EcoCyc scenarios. However, the inclu-

sion of a specialized repository such as ChEBI seems

to be of value only when integrating KEGG data. In

the case of BRENDA or EcoCyc, the number of
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unique matches is not greater than in the rest of

scenarios, making this resource of little assistance in

such cases.

Combining elements and enhancing
integration
Based on pairwise source comparisons, practitioners

could easily identify the most adequate elements for

integration and the main issues affecting automatic

matching. Except for the gene scenario, in no other

case an element of integration performs well enough

to support the process by itself.

KEGG gene records are closely connected to

Entrez Gene records (100% of the records) and

thus, there is no apparent gain in their integration.

In turn, the integration of KEGG and EcoCyc may

be considered of interest since EcoCyc complements

metabolic pathway data with regulatory data. By

cross-linking, most gene records were resolved

(4374 records), leaving 179 records to be matched.

Locus identifiers could not provide additional

matches, since all possible locus-based matches had

already been solved by cross-linking. Unique gene

names were used to resolve records (19 records) that

either do not present link or locus data or do not

agree on these elements, as it is the case of pseudo-

genes (e.g. EcoCyc: G6211 and KEGG: b4579).

Such strategy resulted in an overall of 4393 record

matches, leaving 73 KEGG records and 87 EcoCyc

records to be manually curated (Figure 3, left upper

corner).

In the integration of protein records, data were

divided in two sub-sets: enzymes (involving the

EcoCyc, KEGG and BRENDA data sources) and

other proteins involved in processes like gene regu-

lation and cell signalling (included in EcoCyc and

UniProt data sources). Data on non-enzymatic pro-

teins was quite successful, relying basically on

cross-linking (3252 record matches by cross-linking

and 36 record names by unique name) (Figure 3,

right bottom corner). All records in UniProt found

a match whereas 666 EcoCyc records require manual

curation (namely records reporting the presence of

two component systems, lipoproteins and transport-

ers in E. coli).
Enzyme data integration, however, represented a

challenge. Available elements could not unequivo-

cally identify enzyme entities, and therefore gene

coding information was privileged in order to

integrate these records. This information enabled

845 unique matches between KEGG and EcoCyc.

Unique EC number information in EcoCyc (i.e.

EC numbers relating to one enzyme acting on

one particular reaction) resolved 21 records

more and enzyme names contributed with 48 add-

itional matches. The integration of BRENDA re-

cords was devised to enrich KEGG and EcoCyc

characterisation of enzymatic activities (e.g. informa-

tion on kinetic parameters, metabolic regulators or

cofactors). It was possible to extend the data for 633

records out of the 914 records previously integrated

(Figure 3, left bottom corner). The 430 BRENDA

records left to be manually curated are associated

with more than one reaction record in EcoCyc or

relate to activities not yet documented in EcoCyc or

KEGG.

By far, compound integration was the most chal-

lenging process. None of the inspected elements per-

formed well enough (>50% of non-matches in any

scenario) and there are major discrepancies in terms

of the nomenclatures in use. Besides, the inclusion of

ChEBI, a source rich in standard nomenclatures,

does not improve results. Even when combining

cross-links (830 records), CAS registry numbers

(28 records) and unique names (142 records),

which provide the best pairwise results, significant

manual curation is required (>600 EcoCyc and 700

KEGG records) (Figure 3, right upper corner).

Figure 3: Comparison of source identities and specifi-
cities when combining elements to enhance integration.
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DISCUSSION
Given the diversity of source contents, the structural

and semantic differences, it is not feasible to devise a

single integration approach that will work for every

possible scenario. Therefore, specific requirements

and accomplishments need to be defined a priori for

a particular problem before any integration attempts

are initiated. In this work, we analysed the problem

of integrating data on the bacterium E. coli K-12

using commonly used sources and biological entities.

Although for some applications a complete analysis

of unmatched records may not be necessary, this

study provides some clues on the losses and gains

of information obtained by including specific data

sources and using different integration elements,

helping in decision making when devising an

integration strategy for a particular problem.

Even though existing data integration projects had

certainly required substantial interaction between

computer scientists and biology practitioners, there

is little information on how they proceeded and

what they have learned. In most cases, data integra-

tion papers are focused on discussing the strategies

technologically (e.g. virtual versus physical integra-

tion, distributed versus centralized repository) and

the benefits that the new repository will bring to

the domain (e.g. access to new kinds of data or ability

to query across multiple sources of data).

Although the proposed scenario is necessarily a

simplification of systems-level scenarios (e.g. for

genome-scale reconstruction or biological network

modelling), we could still appreciate how data inte-

gration processes are hampered by structural incon-

sistencies and the lack of adequate means of

standardisation. Regardless the biomolecular entity

under evaluation, cross-links are considered the

most reliable element of integration since they are

maintained by database curators. Yet, cross-linking is

not enforced by any organisation, body or initiative,

i.e. database managers decide whether or not to

support this effort and, if so, to which sources.

Moreover, cross-link update is dependent of

source-specific production cycles and release sched-

ules and may be compromised when external repo-

sitories eliminate or recycle record identifiers as

means of internal refactoring. Indeed, data interoper-

ability is tighter between collaborating projects. For

example, it is well-known that EcoCyc [35] and

RegulonDB [9], two resources specialized on

E. coli, sustain periodic cross-loads [9, 42]. In turn,

the pairwise comparison of EcoCyc and KEGG

contents has exposed significant discrepancies whilst

the two resources aim to provide comprehensive

metabolic pathway information on E. coli.
In the present study, the selected elements pro-

duced a high number of unique matches in gene

scenarios, but in the rest of the scenarios no element

performed well enough by itself and even the com-

bination of several elements could not reduce

manual curation reasonably. In particular, enzyme

and compound data, i.e. the ground basis of the

metabolic machinery, required the curation of

>50% of the records.

Challenges at gene, protein and
compound levels in E. coli
Regarding gene information, sources are quite con-

sistent in terms of locus identifier information.

However, it is important to bear in mind that this

is not necessarily the case for all organisms or data

sources. Locus tags are assigned to particular zones/

genes in a genome and the same locus tag is used for

all components of a single gene (e.g. all of the exons,

mRNA and gene features for a particular gene share

the same locus tag). While studying the machinery of

an organism, locus tags can be modified and thus,

some confusion may arise from the (temporary) use

of deprecated tags. Furthermore, locus tag format

may vary between different strains of the same or-

ganism (e.g. in E. coli the gene relA has 504 the locus

tags ECK2778, b2784 and JW2755 for strains K-12,

MG1655 and W3110, 505 respectively). Not to

mention the fact that the nomenclature used for

the genetics of eukaryotic organisms has not yet

been as well formalized as that for bacteria and bac-

teriophages. On the other hand, the good perform-

ance of name matching (in many cases common

name matching is almost as good as locus tag match-

ing) is justified by the consistent use of the Demerec

name format [41, 43], which uses a unique three-

letter abbreviation intended to suggest a function,

followed by a capital letter to distinguish different

genes related to the same function.

Regarding compounds, the widespread use of

non-standard complex nomenclature represents a

major challenge to the integration. So, we investi-

gated the potential of chemical structure representa-

tions and chemical formulas, which do not

unequivocally identify compounds in the first

place, to work around this lack of standardisation.

Likewise, we considered the use of an additional

broad-scope chemical source such as ChEBI as a
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means to enhance nomenclature mapping.

However, none of the inspected elements performed

well enough (>50% of non-matches in any scenario)

showing that there are major discrepancies in terms

of the nomenclatures in use.

SMILES and InChI specifications describe the

structure of chemical molecules differently, but pre-

sent a number of similar problems to data integra-

tion: (i) SMILES is unique for each structure, but it is

dependent on the canonicalisation algorithm used

(e.g. ethanol is represented as C(O)C in

EcoCyc:ETOH and CCO in CHEBI:16236, and

water is represented as ‘O’ in EcoCyc:WATER

and ‘[H]O[H]’ in CHEBI:15377); (ii) the flexible

number of layers of information (e.g. the atoms

and their bond connectivity) of the InChI represen-

tation may vary from source to source (e.g. the rep-

resentation of xanthosine molecule in EcoCyc:

XANTHOSINE and ChEBI:18107 records);

(iii) compounds having akin structure share

SMILES (e.g. the singlet diooxygen and dioxygen

molecules in ChEBI, CHEBI:26689 and

CHEBI:15379 records respectively) and InChI (e.g.

L-RIBULOSE-5-P, RIBULOSE-5P and

XYLULOSE-5-PHOSPHATE records in EcoCyc).

Chemical formulas identify the constituent elem-

ents (by the corresponding chemical symbol) and

indicate the number of atoms of each element

found in each molecule of a compound.

Apparently, the sources that we analysed, i.e.

ChEBI, EcoCyc, KEGG and BRENDA, use the

same empirical formula representation, i.e. a simple

expression of the relative number of each type

of atom or ratio of the elements in the

compound. Yet, at a closer look, formula conven-

tions are quite different: the chemical formula of

the compound ‘nitrite’ on ‘KEGG:C00088’ and

‘EcoCyc:NITRITE’ differs on the number of hydro-

gen atoms (HNO2 and NO2, respectively); and, the

formula of ‘Copper Sulfate’ is ‘O4S’ in ‘EcoCyc:

CUO4S’ and ‘CuO4S’ in ChEBI (ChEBI:23414).

Moreover, poor name-based record matching was

expected given that it is widely recognized that com-

pounds exhibit a proficiency of often non-standard

names [6, 44, 45].

Regarding proteins, repositories usually include

different elements of function/activity and structure

characterisation as well as a number of alternative

names. Here, it is of paramount importance to realize

that EC numbers are a standard numerical classifica-

tion for enzyme catalysed reactions, i.e. strictly

speaking they do not specify enzymes, but rather

the chemical reactions they catalyse. KEGG and

BRENDA are quite consistent in terms of EC num-

bers, because these repositories index enzymatic

activities rather than individual enzymes. However,

EcoCyc keeps record of both reactions (with an EC

number associated) and enzymes (with the corres-

ponding gene coding) establishing their association

at an intermediate level where an enzyme may be

related to a number of reactions and a reaction may

encompass the activity of several enzymes (isoen-

zymes). As such, to integrate both levels of informa-

tion and unequivocally identify the interplaying

enzymes, researchers must look for gene coding

information, i.e. link the enzymatic reactions to the

genetic coding.

Reaction stoichiometry and, in particular, the list

of involved reagents and products represent another

challenge to data integration. In some cases, an

official EC reaction equation is attributed to various

chemical reactions with alternative substrates

(e.g. EcoCyc: GDPPYPHOSKIN-RXN). Also,

some equations identify compound classes/families

rather than actual compounds and may use the

‘n/m’ convention to show an unknown quantity.

For instance, the equation ‘an alcoholþNADþ

¼ an aldehyde or ketone þ NADH þ Hþ’ is asso-

ciated to the alcohol dehydrogenase (EC number

1.1.1.1) and ‘NADþ þ (deoxyribonucleotide)n þ

(deoxyribonucleotide)m¼AMPþ nicotinamide nu-

cleotide þ (deoxyribonucleotide)nþm’ is associated

to the DNA ligase (NADþ) (EC number 6.5.1.2).

On top of all this, there is the identification of each

of the compounds. Often enough, sources keep a

descriptive field, where the reaction is described in

terms of the common names of the involved

compounds, and/or a detailed field that breaks

down the equation into compounds fully linked

to the corresponding records. This linkage is an in-

ternal procedure, i.e. source identifiers are in use

rather than any standard, which implies that it is ab-

solutely necessary to map compounds between

sources before integrating reactions. However,

none of the evaluated standards seems to perform

adequately enough for this purpose. Chemical struc-

ture representations and formulas may provide intui-

tive support to human curation but they are unable

to unequivocally identify compounds in automatic

processes.

In general, biomolecular entity names may not be

considered a reliable element for data integration due
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to the proficiency in synonyms and homonyms and

the coding of special characters. Genes/proteins

closely related usually share a number of common

names (e.g. the name ‘arg1’ is common to two genes

in both EcoCyc and KEGG), and a similar situation

happens with compounds belonging to the same

chemical family (e.g. the name ‘alanine’ is shared

by three compounds in ChEBI). Furthermore, pro-

tein and compound names are often composed by

hyphen- and apostrophe-based long-forms and/or

special characters, such as Greek letters, italics and

superscripts/subscripts. Their encoding varies from

source to source, ranging from plain ‘flat’ text (e.g.

‘NADþ’ and ‘UDP-alpha-D-glucose’ in KEGG:

C00003 and KEGG: C00029, respectively) to

HTML-alike formatting (e.g. ‘L-&alpha;-alanine’

and ‘NAD<sup>þ</sup>‘in EcoCyc:

L-ALPHA-ALANINE and EcoCyc: NAD,

respectively).

The need for systematic approaches to
source comparison
Usually, the development of a data integration

framework is motivated by a particular problem

that, for some reason, cannot be addressed conveni-

ently by existing approaches. Technological options

are varied, ranging from source record mapping to a

common data model (i.e. data is not dissociated from

original sources) or to full record integration.

Frameworks such as Biowarehouse [30] (currently

supporting EcoliHub repository), BNDB [29] or

Ondex [46] are freely available to anyone in need

of data integration. However, it is not easy for biolo-

gists that are not familiar with integration approaches

to assess the implications of using a given frame-

work/approach to meet their analysis. Framework

development is focused on implementing novel in-

tegration heuristics (e.g. using cross-links, processing

names or comparing sequence similarity) and provid-

ing enhanced means of visualisation. It is unusual for

frameworks to interact with biologists towards the

examination of challenges and the assessment of al-

ternative strategies. So, often biologists end up pick-

ing the most familiar data sources without

considering whether they are in fact the best for

their particular analysis.

The proposed systematic pairwise source compari-

sons are a very simple, yet quite practical and highly

extensible means of bridging this gap.

Computationally speaking, the approach is inexpen-

sive and can be easily integrated in any framework.

Available integration frameworks deal with several

source metadata (implementing specific loaders) and

they are able to identify the elements shared by the

data sources. Therefore, it is feasible for those frame-

works to evaluate different integration scenarios

before committing with a particular strategy.

Regarding the analysis of data, results expressed in

terms of unique, candidate and inexistent matches

provide immediate insights, without requiring any

computational abilities or technological knowledge

from biologists. By pointing out the number of

record matches and, in particular, differentiating be-

tween unique and multiple match candidates, biolo-

gists will become aware of structural heterogeneity

and nomenclature challenges. Also, they will be able

to estimate the information losses/inaccuracies and

integration costs (automatic integration versus

manual curation) associated to each potential elem-

ent of integration.

CONCLUSIONS
Considering the wide scope of applications that

benefit from the analysis of large amounts of data,

many have been the efforts focused on developing

new and comprehensible ways of data integration.

Currently, a number of general purpose frameworks

are available to support the design and implementa-

tion of workflows for the integration and visualiza-

tion of complex datasets. Yet, most works fail to

debate a previous, crucial step of the process: the

selection of the most adequate data sources for the

analysis and the elements of integration across

sources.

The purpose of this work has not been to review

all the available technologies and strategies for inte-

gration, but to illustrate, using a familiar set of data

sources, why the selection and integration of the

most adequate data sources are not trivial tasks, as

well as to raise awareness of some of the challenges

involved. We explored the automatic integration of

contents from several well-known repositories that

keep genome and biochemical information for the

bacterium E. coli K-12. Our aim was to present what

we see as a systematic discussion of the strengths and

weaknesses of common integration elements, many

of which have not been discussed previously. Our

results reflect the lack of standardisation of common

biological contents even for well-studied organisms.

It is acknowledged that data standardisation and

interoperability efforts are in action, but they lag
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behind what is expected from them. For some enti-

ties (enzymes and compounds), none of the elements

of integration performed well enough by itself and

even the combination of several elements could not

be considered satisfactory.

Besides the clear problems for systems biology ap-

plications such as metabolic and regulatory recon-

structions, the challenges exposed in this article are

already posing significant difficulties when analysing

data originated from the several omics technologies.

In fact, being non-biased techniques, the results ob-

tained need to be analysed in the scope of the cor-

responding metabolic or regulatory pathways. While

transcriptomic and proteomic experiments are easily

linked with existing databases, data originated from

the emergent field of metabolomics face the prob-

lems discussed above for metabolic compounds. For

example, in GC-MS experiments, compound iden-

tification is performed using dedicated commercial

databases in which non-standard complex nomencla-

ture is used, making it quite difficult to integrate

these results with data available in databases such as

KEGG.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� We explored the automatic integration of contents from several
well-known repositories that keep genome and biochemical
information for the bacterium E. coli K-12.

� Our aimwas 2-fold: to present what we see as a systematic dis-
cussion of the strengths andweaknesses of common integration
elements, many of which have not been discussed previously
and to suggest some integration measures that would enable
biologists to have an active intervention in the definition of new
pipelines.
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