
RULE 2007

A Tool for Programming with Interaction
Nets

José Bacelar Almeida,1 Jorge Sousa Pinto2 and Miguel Vilaça3

Informatics Department
University of Minho

Braga, Portugal

Abstract

This paper introduces INblobs, a visual tool developed at Minho for integrated development with Interaction
Nets. Most of the existing tools take as input interaction nets and interaction rules represented in a textual
format. INblobs is first of all a visual editor that allows users to edit interaction systems (both interaction
nets and interaction rules) graphically, and to convert them to textual notation. This can then be used as
input to other tools that implement reduction of nets. INblobs also allows the user to reduce nets within the
tool, and includes a mechanism that automatically selects the next active pair to be reduced, following one
of the given reduction strategies. The paper also describes other features of the tool, such as the creation
of rules from pre-defined templates.

Keywords: Interaction Nets, editor/interpreter.

1 Introduction

Interaction Nets are a formalism based on a local and very restricted form of graph-
rewriting, introduced by Lafont [2] as a generalization of proof-nets for multiplicative
Linear Logic. The formalism has become popular notably as an implementation tool
for λ-calculus. Both standard strategies such as call-by-value or call-by-need [9], or
more sophisticated and efficient strategies [4] can be implemented.

The Interaction Nets formalism can also be used as a visual programming lan-
guage in itself, as shown in the seminal paper by Lafont, but has been less explored
in this context. One reason for this is that, although the formalism is based on
graphs, there is surprisingly little work on graphical tools to support it.

The tool presented in this paper aims at filling this gap. It encompasses the
following functionality:

• Visual, point-and-click editing of Interaction Nets and interaction rules;

1 Email:jba@di.uminho.pt
2 Email:jsp@di.uminho.pt
3 Email:jmvilaca@di.uminho.pt

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55615043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jba@di.uminho.pt
mailto:jsp@di.uminho.pt
mailto:jmvilaca@di.uminho.pt

Bacelar Almeida, Sousa Pinto and Vilaça

• Automatic conversion of nets and systems to textual notation;
• Interactive reduction of nets, using a choice of strategies;
• Editing the interaction with the aid of wizards and rule templates.

Related Work.
S. Lippi [3] has produced an interpreter that reads a textual description of a net

and displays a visual representation of it, and then animates its reduction (the user
can interactively select the next active pair to be reduced). M. de Falco (private
communication) developed a tool that is similar to Lippi’s but allows the user to
edit nets visually.

A number of other evaluators exist (see for instance [6]) that do not visualize
nets at all: they take as input, and produce as output, textual representations.
INblobs can also be used as a complementary editor for this class of tools.

Organization of the Paper.
Section 2 reviews Interaction Nets. In Section 3 an overview of INblobs is given;

Sections 4, 5 and 6 then describe in detail specific functionalities of the tool. Sec-
tion 7 briefly describes the front-end on which INblobs is based. Section 8 concludes
the paper.

2 Interaction Nets

An Interaction Net system [2] is specified by giving a set Σ of symbols, and a set
R of interaction rules. Each symbol α ∈ Σ has an associated (fixed) arity. An
occurrence of a symbol α ∈ Σ will be called an agent. If the arity of α is n, then the
agent has n + 1 ports: a distinguished one called the principal port, and n auxiliary
ports labelled x1, . . . , xn. This is depicted in the following way:

����
α

?

@ �
· · ·

x1 xn

A net built on Σ is a graph which has agents as nodes. The edges of the graph
are connected to ports in the agents, such that there is at most one edge connected
to every port in the net. Edges may be connected to two ports of the same agent.
Principal ports of agents are marked by an arrow.

The ports of agents where there is no edge connected are called the free ports of
the net. The interface of the net is the set of its free ports. There are two special
instances of a net: a wiring (a net containing no agents, only edges between free
ports), and the empty net (containing no agents and no edges).

Dynamics.
An active pair is any pair of agents (α, β) in a net, with an edge connecting

together their principal ports. An interaction rule ((α, β) =⇒ N) ∈ R replaces an
occurrence of the active pair (α, β) by the net N . Rules must satisfy two conditions:
the interfaces of the left-hand side and right-hand side are equal (the free ports are

2

Bacelar Almeida, Sousa Pinto and Vilaça

preserved by reduction), and there is at most one rule for each pair of agents, so
there is no ambiguity regarding which rule to apply.

Interaction nets are an abstract rewrite system, and their properties are de-
scribed using standard terminology. If a net does not contain any active pairs it is
said to be in normal form. The strong constraints on the definition of interaction
rules imply that reduction is strongly confluent (the one-step diamond property
holds). Consequently, any normalizing Interaction Net is strongly normalizing.

An Example.

S

+

0

S

0

+

a b

x

Fig. 1. Example net, representing the equation a = S(0) + (S(0) + b)

As a very simple example of an Interaction Net system, consider Σ containing
{0, S,+}, with arity 0, 1, 2 respectively. Figure 1 shows an example of a net
built from agents in this system, that can be seen as representing the equation
a = S(0) + (S(0) + b). This net has two active pairs. Observe that the principal
port of 0 needs not be marked, since it is the single port of this agent.

The 0 and S agents are used as constructors, where the principal port corre-
sponds to the constructed term and the auxiliary ports to the constructor argu-
ments. The + agent on the other hand plays the role of a function, which imple-
ments addition by recursion on its first argument (connected to its principal port).
Auxiliary ports correspond to the second argument and to the result.

Formally, all three agents have the same status and there is no distinction be-
tween constructors and functions. It is the programmer’s responsibility to make
this system behave according to the intended interpretation. Figure 2 (top) shows
the two interaction rules that define the behaviour of the + agent.

A Textual Representation for Interaction Nets.
Interaction nets can be represented textually [2]. Here we adopt the notation

used in the Calculus for Interaction Nets [1]. We review here the untyped version of
this calculus. Let
 be the obvious equivalence relation on sequences of equations,
stating that the order of the members in equations is irrelevant, as well as the order
of equations in a sequence, and N the function that returns the set of variables that
occur in a term.

The calculus consists of the following conditional rewrite rules on configurations.
In the Interaction rule, if a variable occurs simultaneously in a rule and in the net
it must first be renamed.

Interaction: (α(t′1, . . . , t
′
n), β(u′

1, . . . , u
′
m)) is an interaction rule ⇒

3

Bacelar Almeida, Sousa Pinto and Vilaça

0

+

S

+ S

+

0

+

S

+ S

+

Fig. 2. Interaction rules for natural number arithmetics (top), and the same rules represented as the nets
(+(x, x), 0) and (+(S(y), x), S(+(y, x))) (bottom)

〈t | α(t1, . . . , tn) = β(u1, . . . , um),Γ〉 −→ 〈t | t1 = t′1, . . . , tn = t′n, u1 = u′
1, . . . , um =

u′
m,Γ〉

Indirection: x ∈ N (u) ⇒ 〈t | x = t, u = v,Γ〉 −→ 〈t | u[t/x] = v,Γ〉

Collect: x ∈ N (t) ⇒ 〈t | x = u, ∆〉 −→ 〈t[u/x] | ∆〉

Multiset: Θ
∗ Θ′, 〈t1 | Θ′〉 −→ 〈t2 | ∆′〉,∆′
∗ ∆ ⇒ 〈t1 | Θ〉 −→ 〈t2 | ∆〉

We remark that each variable occurs exactly once in the term (or list) where it is
substituted, and no two applications of the indirection or collect rules may perform
substitution of the same variable.

Nets in normal form correspond to pairs 〈t | ε〉 or 〈t | C〉, with C a list of cycles,
which are written in this notation as equations x = t, with x ∈ N (t).

Nets can be written as multisets of equations, involving algebraic terms built
with symbols from Σ, used as constructors, and variables taken from a given set.
Variables correspond to edges, but for edges that connect the principal port of an
agent to an auxiliary port of another agent, variables can be dispensed with. An
edge linking two auxiliary ports (two leaves) in two such terms (trees) is represented
by two occurrences of the same variable. Variables are also allowed as members in
equations, to allow for modular descriptions.

In addition to the multiset of equations, a multiset of terms must be given,
corresponding to the interface of the net. To fully describe nets textually, it then
suffices to fix a syntax for representing these two multisets. A net will be written
as a configuration of the form 〈t | ∆〉, with t a sequence of terms (its observable
interface) and ∆ a sequence of equations. Each variable occurs exactly twice in a net.
For instance one possible representation of the net in Figure 1 is the configuration
〈a, b | S(0) = +(a, x), S(0) = +(x, b)〉.

With respect to interaction rules, they may be represented succinctly as nets
with one active pair and empty interface (written simply as a pair of terms) by
adding edges linking together each free port occurring in the left-hand side of the
rule and the corresponding port in its right-hand side (see Figure 2, bottom).

4

Bacelar Almeida, Sousa Pinto and Vilaça

Fig. 3. Main tool window

3 The Tool

INblobs has been designed so that an Interaction Net system and an Interaction
Net can be edited simultaneously. There are natural editing constraints that result
directly from the formalism: the current net can only use agents that are already
defined in the interaction system, and in order for an active pair to be reduced, a
matching interaction rule must be included in the system.

The current state of the tool can be saved to be loaded later; this state comprises
the Interaction Net system (symbols and rules), together with the current (possibly
empty) Interaction Net.

Figure 3 shows the main window of the tool. On the left the symbol palette can
be found, together with the list of interaction rules. The bottom area on the right
shows the current Interaction Net, and on top the currently selected interaction rule
is displayed.

Basic Editing of Nets.
Interaction nets can be edited in the bottom right pane of the main tool window,

and in the top pane as part of an interaction rule.

5

Bacelar Almeida, Sousa Pinto and Vilaça

Agents (including interface agents) are created from the symbol palette (see
Section 5 for information on creating new symbols); edges are then added using
simple point-and-click operations.

Ports in the agents are depicted by small coloured shapes; principal ports are
distinguished in two ways: a different shape and colour is used; and when an edge is
connected to this port, an arrow appears in the edge, as in the standard represen-
tation used in all figures of this paper. Adding an edge to a net implies successively
selecting the source and destination ports of the edge. Nodes and edges may also
be selected (a contextual menu shows editing operations for each such element of a
net). Selected ports are shown in a different colour, and selected nodes and edges
are shown thicker as can be seen in Figure 4.

Fig. 4. Different ports and selection

Recall that the interface of a net is defined as the set of all its free ports, i.e.
ports with no edge connected. The tool uses a slightly different (but equivalent)
formulation of Interaction Nets: A special 0-ary interface symbol is introduced as
part of every Interaction Net system, and the interface of a net consists of a set
of interface agents. Where one had a free port, one now has a port connected by
an edge to an interface agent. Thus there should be exactly one edge connected to
every port of every agent.

See the short User’s Guide in Appendix A for more details.

4 From Visual Nets to Configurations

The tool converts nets to configurations of the calculus using the following straight-
forward algorithm:

(i) Label each edge of the net with a fresh name.

(ii) For each agent α of arity n in the net, write an equation of the form y =
α(x1, . . . , xn), where y is the label of the edge connected to the principal port
of the agent, and x1, . . . , xn are the labels of the edges connected to its auxiliary
ports 1 to n. Let ∆ be the multiset consisting of these equations.

(iii) Let t be the multiset of labels associated with edges connected to interface
agents of the net. One thus obtains an initial configuration 〈t | ∆〉.

(iv) While there exists in ∆ an equation of the form x = u, with x a variable and
x ∈ N (∆\{x = u}), apply the Indirection rule of the calculus to eliminate
that equation (see Section 2).

6

Bacelar Almeida, Sousa Pinto and Vilaça

agents
Z 0;
S 1;
A 2;

rules
A(x,x) >< Z;
A(S(y),x) >< S(A(y,x));

net
S(Z) = A(a,x);
S(Z) = A(x,b);

interface
a;
b;

end

Table 1
Textual description generated by INblobs

(v) While there exists in ∆ an equation of the form x = u, with x a variable and
x ∈ N (t), apply the Collect rule of the calculus to eliminate that equation.

The resulting configuration is minimal in the sense that it contains exactly one
equation for each active pair in the net. Alternatively the tool can also output the
configuration 〈t | ∆〉 obtained after step (iii) of the algorithm.

As an example, the net in Figure 1 would give rise, after step (iii), to

〈a, b | y = 0, z = S(y), z = +(a, x), u = 0, v = S(u), v = +(x, b)〉

and simplified in steps 4 and 5 to 〈a, b | S(0) = +(a, x), S(0) = +(x, b)〉.
A slightly modified version of the same algorithm is used to convert interaction

rules to their textual description. In this case it is compulsory to use the minimal
version, since rules are written as single equations.

The usefulness of the conversion of nets to textual configurations lies of course in
the possibility of using the tool as a visual Interaction Net editor, which may then
be exported in text files to other tools. The tool uses the concrete syntax described
in [6], but other concrete representations can be used.

The tool generates textual descriptions directly in the editor window, or alter-
natively writes them to a file specified by the user. Both options are accessible from
the “Operations” menu. A choice is offered of generating a joint description of the
net and system, or else a description of just the system or the configuration. Table 1
shows a file generated by the tool, for our example net and system.

5 Editing the Interaction Net System

Defining new symbols is straightforward. The user must give a name and a list
of ports. This operation has effects at the level of the interaction system (corre-
sponding to including in it a new symbol declaration), but also at the geometric
level, since the coordinates of the ports in the corresponding agents must also be
given. The representation of the agent is an oval object whose length extends to
accommodate its name inside. All this is done in Create new symbol wizard
which is accessible from the main window through a bottom and looks like Figure 5.

The user can also load a different shape palette, allowing for an alternative visual
representation of agents (palettes can be designed and programmed with wxHaskell
code).

A problem that arises when designing a visual editor for interaction rules is the
identification of free ports in the left and right-hand sides. One solution would be
to make the user draw rules as closed nets with one active pair, as in Figure 2. An
alternative solution is used in INblobs, which we find much better from the point

7

Bacelar Almeida, Sousa Pinto and Vilaça

Fig. 5. Create new symbol wizard

of view of usability. Since the interfaces of the nets in both sides of each equation
are represented by interface agents (see Section 3), it suffices to associate indexes
to these agents when they occur in rules. The geometric placement of the agents is
thus irrelevant.

A rule is well-formed if the sets of indexed interface agents are the same on the
left and right-hand sides of each rule, and moreover there are no free ports (interface
ports must be explicitly connected to interface agents).

The tool provides two ways of creating new interaction rules (both available as
buttons in the main tool window). The first is to create a blank rule and manually
edit the left and right-hand sides. The second is by using a wizard (see Figure 6) that
allows the user to select a pair of agents from the agent palette, and automatically
creates the left-hand side of the rule. In either case the user has a choice of copying
the interface agents to the right-hand side, or else copy the entire left-hand side
net (this can be useful since often some of the agents in the LHS are reused in the
RHS). Interface agents can of course also be added manually, in which case the user
must explicitly match them in both sides.

Rule Templates.
A very useful feature of the rule creation wizard is the ability to define rules from

pre-defined templates. Certain agents have fixed patterns of interaction; examples
of these include the eraser and duplicator agents. For instance, a step of interaction
between a duplicator agent and any other agent α with n auxiliary ports generates
two agents α and n duplicators. This pattern is encoded as a template that can be
used in the wizard: it suffices to select α and the duplicator for the expected rule
to be created, whatever the arity of α may be. Figure 7 shows a rule created by the
referred template.

For now templates are hardwired in the tool and cannot be edited by users.

Once a rule has been created it can be viewed or edited in the top pane of the
application window, by simply selecting it in the rule list, as shown in Figure 3.

8

Bacelar Almeida, Sousa Pinto and Vilaça

Fig. 6. Rule creation wizard

Fig. 7. Rule created by a Rule Template

The policy regarding the consistency of the Interaction Net system is as liberal
as possible. The tool does not force the existence of a rule for every pair of symbols,
and there may be more than one rule for the same pair; moreover the system
may contain rules that are not well-formed. All these situations give rise to run-
time errors during reduction. The rationale behind this choice is that the editing
process may naturally contain inconsistent states that will later be eliminated by
the user. This is the appropriate choice since the focus of the tool is on interactive
development of programs consisting of both an interaction system and Interaction
Nets.

6 Reducing Interaction Nets

The most obvious way of implementing Interaction Net reduction is to keep a list
of active pairs. Each reduction step corresponds to picking a pair from this list
and searching the list of interaction rules for a matching rule. Alternatively, one
can keep a list of equations (as in the calculus for Interaction Nets), which allows

9

Bacelar Almeida, Sousa Pinto and Vilaça

for a closer control on the bureaucratic “rewiring” operations. In any case, the
appropriate data structure for representing a net is a list of pairs of trees, where
each tree corresponds to a term in the calculus. See [5] for details.

INblobs is an integrated development environment: it is possible to alternate
reduction steps with editing steps (on both the Interaction Net system and the net
being reduced itself). This alternate is extremely useful for fast prototyping of
new Interaction Net systems. To facilitate this, reduction works directly on the
underlying representation of the net used by the visual editor (see Section 3).

We outline the steps involved in a reduction step. We assume the active pair has
been selected either by the user or by the tool; it is identified by an integer index
n, corresponding to the edge that connects the pair of agents.

(i) Get from the edge intmap (see Section 7) the information concerning the agents
x, y where the edge n is connected, and also the ports of x, y where it is con-
nected.

(ii) Consult the node intmap (with arguments x and y) to check that the two ports
are principal; get the corresponding symbols from the agents.

(iii) Search the list of interaction rules for the rule matching the two relevant sym-
bols, represented by a pair of intmaps for its nodes and edges.

(iv) Integrate in the current net N a copy R of the right-hand side of the rule. This
is done by adding to the two intmaps of N the information of the intmaps of
R, after updating the indexes of the nodes and edges in R (all indexes should
be fresh with respect to the current net). This copy is for now disconnected
from the net.

(v) Replace the active pair by R: for each edge that was connected to the active
pair in the net (except n), connect it instead to the corresponding port in
R. This is a series of operations on the intmaps, which involves matching the
interface agents on the left- and right-hand sides of the rule.

(vi) Clean up: remove from the intmaps the information concerning the active pair
just reduced, the interface agents in R, and the edges connected to them.

Several modes of reduction are available as buttons in the main window (see
Figure 8). The user can choose to reduce the currently selected active pair; a random
active pair; or else the active pair corresponding to one of the strategies implemented
in the tool, in which case, those strategies will be listed in the Reduction area of the
main window. For the moment strategies are hard coded in the tool but such coding
is relatively easy and so new IN strategies, for example that archive canonical forms
faster or keep the nets smaller, can be added to INblobs by request to its maintainers.
The weak reduction to interface normal form strategy [1,7] is such a case. The user
may alternatively reduce the net, accordingly to any of the available strategies, in
many steps to normal form, having the possibility of stopping evaluation at any
time.

Net Layout.
After reduction the tool does not attempt to draw the net in an intelligent way.

Each reduction step results in a net where nodes may be superposed and edges may

10

Bacelar Almeida, Sousa Pinto and Vilaça

Fig. 8. Reduction controls

cross. The user is completely responsible for “tidying up” the output after each
reduction step (or a series of steps). Since interaction steps are local, the amount of
work involved is minimal for each step. It seems to us that this option is appropriate
since the initial net is also drawn by the user, and usually the layout corresponds
to some application-dependent interpretation of the net, which only the user is able
to restore. This stands in opposition to the tool reported in [3], where a standard
representation (nets as lists of pairs of trees) is used at the visual level, and cannot
be modified interactively.

7 Implementation Details

Blobs is a (visual) editor for directed graphs, implemented in Haskell using the wx-
Haskell library. Blobs was produced by a team integrating the authors of Dazzle [8],
a Bayesian network editor, who realized that its front-end could be helpful to other
completely different Haskell projects. This front-end has been extracted from Daz-
zle, and made available (with some added features) to the functional programming
community.

Quoting the authors, “Blobs is a front-end for drawing and editing graph di-
agrams.” The editor described in the present paper is built on top of Blobs and
provides additional functionality concerning the editing of Interaction Nets (in par-
ticular the presence of ports in the nodes), the creation of new symbols and interac-
tion rules, rule templates, generation of textual descriptions (configurations), and
reduction of Interaction Nets.

INblobs inherits (with modifications) its editing capabilities from Blobs, in par-
ticular point-and-click placement of nodes and edges; the possibility of selecting a
sub-graph with the mouse and performing actions on it; undo/redo actions; and
saving/loading the current application state to/from a file.

Data Structures.
A graph is represented as a pair of integer maps (intmaps for short). An intmap

is a mapping (a partial function) from natural numbers to some type – the functional
equivalent of indexed arrays. In Blobs all nodes and edges in a graph are indexed by
integers. The node intmap associates to each node the relevant information about
it, in particular its label and shape. The edge intmap associates to each edge (the
indexes of) its source and destination nodes. The latter map effectively represents
the structure of the graph.

The representation of graphs inherited from Blobs is adapted to contain informa-
tion specific to Interaction Nets. The agent intmap associates to each node, apart
from the same information as in Blobs, information relative to its ports (such as

11

Bacelar Almeida, Sousa Pinto and Vilaça

whether the port is the principal port or not, and geometric information regarding
the placement of the ports in the node). The edge intmap also associates to each
edge new information, namely the ports to which it is connected in each agent.

8 Conclusions and Future Work

The current version of the tool is available for download from

http://haskell.di.uminho.pt/jmvilaca/INblobs/

Blobs, and consequently INblobs, is multi-platform to the extent that wxHaskell is.
A precompiled file is available for MS Windows, which is the preferred platform for
running the tool. In Mac OSX installation is straightforward. On Linux INblobs
must be installed from sources and requires a few libraries (see details on webpage).

Possible future developments include

• The possibility to have multiple active nets. Nets would be selected from a list,
in the same way as rules are.

• A layout algorithm for interaction steps. The goal here is to try to minimize the
“damage” inflicted by the reduction steps (in terms of agent superpositions and
edge crossings) on the visual presentation of the net.

• User-editable rule templates.
• Some form of modularity construction (external to the IN formalism) such as a

macro mechanism, in the form of special expandable “box” nodes.
• A compilation mechanism for functional programs, that would read a program

and encode it as an Interaction Net, using the existing translations.

References

[1] Maribel Fernández and Ian Mackie. A calculus for Interaction Nets. In G. Nadathur, editor, Proceedings
of the International Conference on Principles and Practice of Declarative Programming (PPDP’99),
number 1702 in Lecture Notes in Computer Science, pages 170–187. Springer-Verlag, September 1999.

[2] Yves Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Principles of
Programming Languages (POPL’90), pages 95–108. ACM Press, January 1990.

[3] Sylvain Lippi. in2 : A Graphical Interpreter for Interaction Nets. In S. Tison, editor, Proceedings of
the 13th International Conference on Rewriting Techniques and Applications (RTA’02), number 2378
in Lecture Notes in Computer Science, pages 380–386. Springer-Verlag, 2002.

[4] Ian Mackie. Efficient λ-evaluation with Interaction Nets. In Vincent van Oostrom, editor, Proceedings
of Rewriting Techniques and Applications: 15th International Conference (RTA’04), volume 3091 of
Lecture Notes in Computer Science. Springer-Verlag, 2004.

[5] Jorge Sousa Pinto. Sequential and Concurrent Abstract Machines for Interaction Nets. In Jerzy Tiuryn,
editor, Proceedings of Foundations of Software Science and Computation Structures (FOSSACS),
number 1784 in Lecture Notes in Computer Science, pages 267–282. Springer-Verlag, 2000.

[6] Jorge Sousa Pinto. Parallel Evaluation of Interaction Nets with MPINE. In Aart Middeldorp, editor,
Proceedings of Rewriting Techniques and Applications (RTA’01), number 2051 in Lecture Notes in
Computer Science, pages 353–356. Springer-Verlag, 2001.

[7] Jorge Sousa Pinto. Weak Reduction and Garbage Collection in Interaction Nets. In B. Gramlich and
S. Lucas, editors, Final Proceedings of the 3rd Int’l Workshop on Reduction Strategies in Rewriting and
Programming, volume 86 of Electronic Notes in Theoretical Computer Science, 2003.

[8] Martijn M. Schrage and Arjan van IJzendoorn and Linda C. van der Gaag. Haskell Ready to Dazzle
the Real World. In Proceedings of the 2005 ACM SIGPLAN workshop on Haskell (Haskell ’05). ACM
Press, 2005.

12

Bacelar Almeida, Sousa Pinto and Vilaça

[9] François-Régis Sinot. Token-passing Nets: Call-by-need for Free. In volume 135 of Electronic Notes in
Theoretical Computer Science, 2006.

13

Bacelar Almeida, Sousa Pinto and Vilaça

A Short User’s Guide

• Select an agent symbol by pressing its button on the left panel (symbol palette).
• Right click (or ctrl-click) on a canvas, node, or edge for a context menu.
• To create a node, first select its symbol from the palette and then shift -click on

some blank canvas.
• To create an edge, select (click) the source port, then shift-click the target port.
• To delete a node or edge, select it and press backspace, or else use the context

menu.
• To rearrange the diagram, click and drag nodes to where you want them.
• To make an edge look tidier, add a control-point from its context menu, and drag

the point to where you want it.
• You can add multiple items into the current selection by meta-clicking the extra

nodes and control points. (Meta = Apple key or Alt key.) A multiple selection
can be dragged just like a single selection.

• The interface of a net or a rule is explicitly defined by means of special interface
agents.

• The net on the bottom is the net to be reduced or converted to a textual config-
uration.

• The two nets on the top are the left-hand side and right-hand side of the inter-
action rule currently selected (from the list of rules on the left).

• To add a new rule press button “Add new rule” or else do mouse right-click in
Rules (the root of the tree of rules). Then add agents to the canvas on the top.

• Alternatively, use the rule creation wizard. Pressing this button will make a
dialog appear where the two agents that will interact can be chosen. The wizard
will automatically generate the left-hand side of the rule. It is also possible to
choose what is generated in the right-hand side of the rule:
· a copy of the left-hand side to be manually edited (useful for rules with similar

sides);
· the interface agents from the left-hand side;
· nothing (generates a blank right-hand side, not recommended).

• Match interface agents in a rule by selecting the desired interface agent in the left-
hand side and shift-clicking the corresponding interface agent in the right-hand
side. A box with the same number will appear in both agents.

• Edge and node labels can be made visible by selecting the appropriate command
from the View menu. Edge labels are useful since they make the selection of edges
easier: to select an edge just click on its label.

14

	Introduction
	Interaction Nets
	The Tool
	From Visual Nets to Configurations
	Editing the Interaction Net System
	Reducing Interaction Nets
	Implementation Details
	Conclusions and Future Work
	References
	Short User's Guide

