
Under consideration for publication in Formal Aspects of Computing

Assertion-based Slicing and Slice
Graphs
José Bernardo Barros, Daniela da Cruz, Pedro Rangel Henriques and Jorge Sousa Pinto
Departamento de Informática / CCTC

Universidade do Minho

Braga, Portugal

Abstract. This paper revisits the idea of slicing programs based on their axiomatic semantics, rather than
using criteria based on control/data dependencies. We show how the forward propagation of preconditions
and the backward propagation of postconditions can be combined in a new slicing algorithm that is more
precise than the existing specification-based algorithms. The algorithm is based on (i) a precise test for
removable statements, and (ii) the construction of a slice graph, a program control flow graph extended with
semantic labels and additional edges that “short-circuit” removable commands. It improves on previous
approaches in two aspects: it does not fail to identify removable commands; and it produces the smallest
possible slice that can be obtained (in a sense that will be made precise). Iteration is handled through the
use of loop invariants and variants to ensure termination.

The paper also discusses in detail applications of these forms of slicing, including the elimination of
(conditionally) unreachable and dead code, and compares them to other related notions.

Keywords: Program slicing; program analysis; verification conditions; control flow graphs.

1. Introduction

Program slicing [Wei81] is a well-established activity in software engineering. It plays an important role in
program comprehension, since it allows software engineers to focus on the relevant portions of code (with
respect to a given criterion). The basic idea is to isolate a subset of program statements that

• either directly or indirectly contribute to the values of a set of variables at a given program location, or
• are influenced by the values of a given set of variables.

Other statements are considered extraneous with respect to the given criterion and can be removed, enabling
engineers to concentrate on the analysis of just the relevant ones. The first approach corresponds to backward
forms of slicing, whereas the second corresponds to forward slicing.

Correspondence and offprint requests to: Daniela da Cruz, Departamento de Informática, Universidade do Minho, Campus de
Gualtar, 4710-057 Braga, Portugal. e-mail: danieladacruz@di.uminho.pt

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55614928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

Work in this area has focused on the development of progressively more effective, useful, and powerful
slicing techniques, and has led to the use of these techniques in many application areas including program
debugging, software maintenance, software reuse, and so on. See for instance [XQZ+05] for a fairly recent
survey of the area.

Program verification is an apparently unrelated activity whose goal is to establish that a program performs
according to some intended specification. Typically, what is meant by this is that the input/output behaviour
of the implementation matches that of the specification (this is usually called the functional behaviour of the
program), and moreover the program does not ‘go wrong’, for instance no errors occur during evaluation of
expressions (the so-called safety behaviour). Modern program verification systems are based on algorithms
that examine a program and generate a set of verification conditions that are sent to an external theorem
prover for checking. If all the conditions generated from a program can be proved, then the program is
guaranteed to be correct with respect to the specification.

In recent years program verification has been closely linked with the so-called Design by Contract (DbC)
approach to software development [Mey92], which facilitates modular verification and certified code reuse.
The contract for a software component can be regarded as a form of enriched software documentation
that fully specifies the behavior of that component. In terms of verification terminology, a contract for a
component is simply a pair consisting of a precondition and a postcondition. It certifies the results that can
be expected after execution of the component, but it also constrains the input values of the component. The
development and broad adoption of annotation languages for the major programming languages reinforces the
importance of using DbC principles in program development. These include for instance the Java Modeling
Language (JML) [BCC+05]; Spec# [BRLS04], a formal language for C# API contracts; and the ANSI/ISO
C Specification Language (ACSL) [BCF+10].

One point of contact that has been identified between slicing and verification is that traditional dependency-
based slicing, applied a priori, facilitates the verification of large programs. In this paper we explore the idea
that it makes sense to slice programs based on semantic, rather than syntactic, criteria – the contracts used
in DbC and program verification are excellent candidates for such criteria.

A typical example of a situation in which one could wish to calculate the slice of a program based on a
specification is the reuse of annotated code. Suppose one is interested in reusing a module whose advertised
contract consists of precondition P and postcondition Q, in situations in which a stronger precondition P ′

is known to hold, or else the desired postcondition Q′ is weaker than the specified Q. Then from a software
engineering perspective it would be desirable to eliminate, at source-level, the code that may be extraneous
with respect to the specification (P ′, Q′).

We use here the expression “assertion-based slicing” to refer to slicing methods based on the axiomatic
semantics of programs, taking as criteria assertions (preconditions and/or postconditions) annotated in the
programs. This includes precondition-based slicing, postcondition-based slicing, and specification-based slicing.
The latter expression has been used in previous work when both a precondition and a postcondition (i.e.
a specification) are given as criteria. Assertion-based slicing is more powerful and flexible than syntactic
slicing, since the criteria can be as expressive as any set of first-order formulas on the initial and final states
of the program. One of the first forms of slicing based on program semantics was conditioned slicing [CCL98],
a form of forward slicing. This was shown to subsume both static and dynamic notions of dependency-based
slicing, since the initial state of execution is constrained by a first-order formula that can be used to restrict
the set of admissible initial states to exactly one (corresponding to dynamic slicing), or simply to identify a
relevant subset of the state to be used as slicing criterion (as in static slicing). The same applies to backward
slicing: using a postcondition as slicing criterion instead of a set of variables is clearly more expressive.
Naturally, this expressiveness comes at a cost, since semantic forms of slicing are harder to compute.

Although the basic ideas have been published for over 10 years now, assertion-based slicing is still not
very popular – in particular we are not aware of working tools that implement the ideas. The widespread
usage of code annotations as explained above is however an additional argument for promoting it. This work
is part of an effort to construct a complete toolset for assertion-based slicing.

The paper reviews (and clarifies aspects of) previous work in this area, sets a basis for slicing programs
annotated with loop invariants and variants, and studies properties and applications of such slices. We
introduce new ideas which allow us to develop an algorithm for specification-based slicing that improves on
previous algorithms in two aspects: the identification of sequences of statements that can be safely removed
from a program (without modifying its semantics), and the selection of the biggest set of such sequences.

Assertion-based Slicing and Slice Graphs 3

Note that removable sequences may overlap, so this is not a trivial problem. We solve it by introducing a
notion of slice graph, which contains as subgraphs the control flow graph of every slice of the program. This
allows us to define a slicing algorithm that can be applied to calculate precondition-, postcondition-, and
specification-based slices, but we concentrate on the latter, since the first two are particular cases.

We claim that our algorithm produces minimal slices. Note that the algorithm is optimal in a relative
sense, since the test for removable subprograms involves first-order formulas whose validity must be estab-
lished externally by some proof tool. Undecidability of first-order logic destroys any hope of being able to
identify every removable subprogram automatically, since some valid formulas may not be proved.

This paper extends [BdCHP10] in a number of ways. An appropriate treatment of loops is given, and
a new notion of termination-sensitive slicing is introduced. More examples have been added, and proofs,
related work, slicing algorithms, and applications (in particular in the elimination of redundant code) are
discussed in much more detail.

Structure of the Paper. Section 2 introduces the simple language considered in the paper, and the
definitions of verification conditions, both based on weak precondition and strong postcondition calculations.
In Section 3 we review the previous work in this area, including a discussion of aspects of the extant algorithms
regarding their precision and minimality of the calculated slices. Section 4 then discusses in detail applications
of assertion-based slicing, illustrated by a number of examples. Sections 5, 6 and 7 contain the main technical
contributions of the paper: we first study properties of specification-based slicing and propose a precise test
for identifying removable blocks of code, as well as a principle for slicing subprograms of a program. Later
we introduce the setting for a graph-based algorithm that computes minimal slices of a program with respect
to a given specification. We conclude the paper in Section 8.

2. Foundations

A Simple Imperative Language. We will illustrate our ideas with programs of a core imperative lan-
guage. Its syntax is given in Figure 1 (the remaining contents of the figure are explained below). Programs
are non-empty sequences of commands. Commands may in turn (in the case of conditional and loop) con-
tain subprograms. We omit here the operational semantics of the language, and give instead an axiomatic
semantics in the form of a Verification Conditions Generator (VCGen), which will now be explained.

We remark that the choice of language is not important; the only crucial requirements are the existence
of an axiomatic semantics, and the availability of a proof tool capable of reasoning about the data structures
that are present in the language. The difficulties involved in extending the ideas presented here to realistic
languages (for instance languages with pointers and dynamic data structures) have to do with the treatment
of verification conditions only.

Weakest Preconditions and Strongest Postconditions. One way to obtain a verification condition for
a program S (i.e. a formula whose validity implies the partial correctness1 of S with respect to a specification
consisting of precondition P and postcondition Q) is to use Dijkstra’s weakest liberal precondition [Dij76]
predicate transformer: wlp.S.Q designates the weakest precondition that will lead to Q being true in the
final state, if the execution of S terminates. The verification condition for S to meet its specification can
then be written as P → wlp.S.Q. In this paper we assume that every loop is annotated with a user-provided
invariant ; in the presence of a loop invariant, the different required conditions (the invariant is initially true,
it is preserved by loop iterations, and together with the condition for exiting the loop it is stronger that the
desired postcondition) are combined in a single formula to give a possible precondition of each loop. This
requires the use of universal quantifiers over state variables, to isolate the different conditions.

In this paper we use a different approach that produces a set of independent verification conditions,
dispensing with the introduction of quantifiers. This approach requires calculating a notion of precondition
that is related to wlp, but differs in that the precondition of a loop is simply defined as being simply
its invariant, regardless of whether termination is guaranteed or not. The figure shows the definition of the
function wprec corresponding to this notion. Throughout the paper whenever we refer to a weak precondition
of a program, we mean a condition calculated by this function.

1 Unlike total correctness, the notion of partial correctness does not require the program to terminate.

4 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

Exp[int] 3 e ::= . . . | −1 | 0 | 1 | . . . | x | −e | e+ e | e− e | e ∗ e | e div e | emod e

Exp[bool] 3 b ::= true | false | e = e | e < e | e ≤ e | e > e | e ≥ e | e 6= e | b ∧ b | b ∨ b | ¬ b

Assert 3 A ::= true | false | e = e | e < e | e ≤ e | e > e | e ≥ e | e 6= e | A ∧A | A ∨A | ¬A |
A→ A | ∀x.A | ∃x.A

Comm 3 C ::= skip | x := e | if b then S else S | while b do {A}S

Prog 3 S ::= C | C ; S

wprec(skip, Q) = Q

wprec(x := e,Q) = Q[e/x]
wprec(if b then St else Sf , Q) = (b→ wprec(St, Q)) ∧ (¬ b→ wprec(Sf , Q))

wprec(while b do {I}S,Q) = I

wprec(C;S,Q) = wprec(C,wprec(S,Q))

VCw(skip, Q) = ∅
VCw(x := e,Q) = ∅

VCw(if b then St else Sf , Q) = VCw(St, Q) ∪ VCw(Sf , Q)
VCw(while b do {I}S,Q) = {I ∧ b→ wprec(S, I), I ∧ ¬b→ Q} ∪ VCw(S, I)

VCw(C;S,Q) = VCw(C,wprec(S,Q)) ∪ VCw(S,Q)

spost(skip, P) = P

spost(x := e, P) = ∃ v. P [v/x] ∧ x = e[v/x]
spost(if b then St else Sf , P) = spost(St, b ∧ P) ∨ spost(Sf , ¬ b ∧ P)

spost(while b do {I}S, P) = I ∧ ¬ b
spost(C;S, P) = spost(S, spost(C,P))

VCs(skip, P) = ∅
VCs(x := e, P) = ∅

VCs(if b then St else Sf , P) = VCs(St, P) ∪ VCs(Sf , P)
VCs(while b do {I}S, P) = {P → I, spost(S, I ∧ b)→ I} ∪ VCs(S, I ∧ b)

VCs(C;S, P) = VCs(C,P) ∪ VCs(S, spost(C,P))

Fig. 1. Language syntax and verification conditions. Q[e/x] denotes the substitutions of e for x in Q; I is a loop invariant

The figure also contains the definition of the function spost, corresponding to the symmetric notion of
a strong postcondition that will be true of the final state of the program S when its execution starts in
a state satisfying P . The syntax of assertions (used as preconditions, postconditions, and loop invariants),
also given in the figure, is obtained as an extension of boolean expressions with implication and first-order
quantification.

Verification Conditions for Partial Correctness. An alternative way to calculate verification condi-
tions is based on Hoare logic [Hoa69]. In this approach the verification conditions required for the partial

Assertion-based Slicing and Slice Graphs 5

correctness of the program S with respect to specification (P,Q) are the side conditions of a derivation (or
proof tree) of the logic. If the verification conditions are all valid, then it is possible to construct a derivation
with the Hoare triple {P}S {Q} as conclusion, in which case S is (partially) correct.

The derivations with a given conclusion are not unique; although they do not need to be explicitly con-
structed in order for the side conditions to be obtained, some strategy is still necessary to direct the process.
In this paper we will use two such strategies, based on weak preconditions and on strong postconditions re-
spectively. Technically, these strategies are responsible for selecting intermediate conditions for the sequence
rule of Hoare logic: when considering a derivation for the triple {P}S1 ; S2 {Q}, this rule states that two
derivations should be recursively considered, for the triples {P}S1 {R} and {R}S2 {Q} for some condition
R. Our first strategy sets R to be wprec(S2, Q); the second strategy sets R to be spost(S1, P).

Each of these strategies results in a different set of verification conditions, defined as follows.

VCGw(P, S, Q) = {P → wprec(S,Q)} ∪ VCw(S,Q)
and

VCGs(P, S, Q) = VCs(S, P) ∪ {spost(S, P)→ Q}
where the functions VCw and VCs are also defined in the figure. These auxiliary functions are responsible for
traversing the implicit derivations and collecting the side conditions along the way. The traversals are based
uniquely on one of the conditions given in the specification (the postcondition and precondition respectively);
the additional formula P → wprec(S,Q) (resp. spost(S, P)→ Q) added to this set is the principal verification
condition of the program, stating that the specification’s precondition is stronger than the calculated pre-
condition (resp. the specification’s postcondition is weaker than the calculated postcondition). For programs
not containing loops, this is the single verification condition.

The generation of verification conditions should of course be sound with respect to the operational se-
mantics of the language: if they are all valid then this should constitute a guarantee that the program is
indeed correct with respect to its specification (P,Q):

If either |= VCGw(P, S, Q) or |= VCGs(P, S, Q) and S is run in a state that satisfies P , then if S terminates
the final state satisfies Q.

This is easy to prove for such a simple language, with respect to a standard evaluation semantics. The reader
is directed to [FP11] for a proof, and also for more details on verification conditions and their relation to
Hoare logic and Dijkstra’s predicate transformers.

We can state a correspondence result between both strategies as follows. Let |= A, with A a set of
first-order formulas, denote the fact that |= Ai for every Ai ∈ A (set union will be denoted by commas).

Lemma 1. For every precondition P , postcondition Q, and program S,

|= VCGw(P, S, Q) iff |= VCGs(P, S, Q)

Proof. By induction on the structure of S. For the case where S is while b do {I}Sb the following is used
as induction hypothesis: |= VCGw(I ∧ b, Sb, I) iff |= VCGs(I ∧ b, Sb, I).

Since our language has integer variables only, verifying the correctness of programs can be achieved by
applying the VCGen and exporting the resulting proof obligations to a proof tool capable of reasoning with
integer arithmetics. The result is a framework for the verification of programs with annotated loop invariants.

Observe that this is not a fully automated method since it requires users to provide the annotations.
Furthermore, undecidability of first-order logic means that interactive proof is often necessary, but it must
also be noted that the power of automatic proof has progressed significantly in recent years. Real-language
implementations of many standard algorithms can now be proved fully automatically, which is certainly
a great advance with respect to what could be achieved, say, ten years ago. Recent approaches build in
particular on advances in SMT solvers (that combine useful programming theories), and also on combinations
of automatic provers (for the easy proofs) and interactive proof assistants (for the hard parts).

In the scope of program verification, failure of automatic proof does not mean a program is not correct,
it just means that interactive proof should be used instead to clarify whether a given proof obligation is
indeed invalid or not. In the scope of the slicing techniques considered in this paper, proof obligations are
generated to authorize the removal of a given set of statements. Slicing should be conservative, so failure of

6 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

an attempt to discharge a particular obligation implies that the set of statements being considered should
not be removed.

Verification Conditions for Total Correctness. In a total correctness setting the verification conditions
are further required to guarantee termination of programs. In our language no procedures or functions are
present and expression evaluation always terminates, so what is required is that every loop in a given program
terminates. For this we require each loop to contain an additional annotation, an integer expression ev called
a loop variant :

Comm 3 C ::= . . . | while b do {A, ev}S
If for every loop in the program the value of the respective variant is initially non-negative and strictly
decreases with each iteration while remaining nonnegative until the last iteration, the program is guaranteed
to terminate. The VCGens of Figure 1 can be extended to cope with total correctness by simply modifying
the verification conditions of loops. The function VCw

t (resp. VCs
t) has the same definition as VCw (resp. VCs)

except for the case of loops, which is given as follows for a loop annotated with invariant I and variant ev:

VCw
t (while b do {I, ev}S,Q) = {I ∧ b→ ev ≥ 0, I ∧ b ∧ ev = x0 → wprec(S, I ∧ ev < x0), I ∧ ¬b→ Q}

∪ VCw
t (S, I ∧ ev < x0)

VCs
t (while b do {I, ev}S, P) = {I ∧ b→ ev ≥ 0, P → I, spost(S, I ∧ b ∧ ev = x0)→ I ∧ ev < x0}

∪ VCs
t (S, I ∧ b ∧ ev = x0)

Note that the weak precondition and strong postcondition functions wprec and spost are still defined as
before. Note also the use of an auxiliary variable x0 to store the initial value of the variant (regarding an
arbitrary loop iteration), which then allows us to force the postcondition ev < x0.2 Now we let

VCGw
t (P, S,Q) = {P → wprec(S,Q)} ∪ VCw

t (S,Q)
and

VCGs
t (P, S,Q) = VCs

t (S, P) ∪ {spost(S, P)→ Q}

The resulting VCGens are sound with respect to total correctness, i.e.

If either |= VCGw
t (P, S,Q) or |= VCGs

t (P, S,Q) and S is executed in a state that satisfies P , then S termi-
nates, and moreover the final state satisfies Q.

Note that it is immediate from the definitions of VCw
t and VCw (resp. VCs

t and VCs) that

|= VCGw
t (P, S,Q) implies |= VCGw(P, S, Q), and

|= VCGs
t (P, S,Q) implies |= VCGs(P, S, Q)

which is in accordance with the fact that total correctness is a stronger notion than partial correctness. In
fact, in practice the total correctness of a program is often established by first proving its partial correctness
and then additionally checking that it terminates on initial states satisfying the precondition.

Finally, the following lemma states that the weak precondition and the strong postcondition strategies
are equivalent for calculating total correctness verification conditions:

Lemma 2. For every precondition P , postcondition Q, and program S,

|= VCGw
t (P, S,Q) iff |= VCGs

t (P, S,Q)

Proof. By induction on the structure of S. For the case where S is while b do {I, ev}Sb, the following is used
as induction hypothesis: |= VCGw

t (I∧b∧ev = x0, Sb, I∧ev < x0) iff |= VCGs
t (I∧b∧ev = x0, Sb, I∧ev < x0).

2 Auxiliary variables are used at the logical level only, and not as program variables.

Assertion-based Slicing and Slice Graphs 7

skip � C1 ; . . . ; Cn

C1 ; . . . ; Ci−1 ; Cj+1 ; . . . ; Cn � C1 ; . . . ; Ci ; . . . ; Cj ; . . . ; Cn

(1 < i ≤ j ≤ n or 1 ≤ i ≤ j < n)

C ′i � Ci
(i ≤ i ≤ n)

C1 ; . . . ; C ′i ; . . . ; Cn � C1 ; . . . ; Ci ; . . . ; Cn

S′1 � S1 S′2 � S2

if b then S′1 else S′2 � if b then S1 else S2

S′ � S

while b do {I}S′ � while b do {I}S

Fig. 2. Definition of relation “is portion of”

Notation and Auxiliary Definitions. Let S = C1 ; . . . ; Cn, 1 ≤ k ≤ n. We will use dedicated notation
for the weak precondition of a suffix of S and the strong postcondition of a prefix of S, as well as for the
(partial correctness) verification conditions of both, as follows.

wpreck(S,Q) = wprec(Ck ; Ck+1 ; . . . ; Cn, Q) VC
w

[k](S,Q) = VCw(Ck ; Ck+1 ; . . . ; Cn, Q)

wprecn+1(S,Q) = Q VC
w

[n+ 1](S,Q) = {}

spost0(S, P) = P VC
s
[0](S, P) = {}

spostk(S, P) = spost(C1 ; . . . ; Ck−1 ; Ck, P) VC
s
[k](S, P) = VCs(C1 ; . . . ; Ck−1 ; Ck, P)

VC
w

t and VC
s

t will also be used with the obvious meaning. We will additionally employ the following
notation for the sequence obtained by removing a subsequence of S. For 1 ≤ i ≤ j ≤ n,

remove(i, j, S) =
{

skip if i = 1 and j = n,
C1 ; . . . ; Ci−1 ; Cj+1 ; . . . ; Cn otherwise.

Finally, we will write S′ � S with the meaning that program S′ results from S by removing some
statements. S′ is said to be a portion or a reduction of S.

Definition 1 (Portion-of relation). The · � · relation is the reflexive transitive closure of the relation
generated by the set of axioms and rules given in Figure 2.

Note that since Figure 2 defines an anti-symmetric relation, · � · is a partial-order. As will be shortly seen,
slices of a program S are portions of S that satisfy additional constraints.

8 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

�
1 x := x+100;
2 x := x+50;
3 x := x−100� �

Program 1: Example for postcondition-based slicing

3. Assertion-based Slicing: A Review

In this section we discuss the existent notions of slicing based on preconditions and postconditions, as well
as algorithms for calculating them. Other related approaches are discussed in Section 3.5, in particular the
notions of forward and backward conditioned slice.

We use the expression assertion-based slicing to encompass postcondition-based, precondition-based, and
specification-based forms of slicing, which will be considered in turn in what follows. It is important to keep
in mind the distinction between the definition of some form of slicing (which states when a program is a slice
of another based on a given criterion), and algorithms for computing such slices. The fact that definitions
and algorithms have often been introduced simultaneously in the same papers may cause some confusion
between the two. Typically a definition admits more than one slice based on the same criterion, and an
algorithm computes one particular slice in accordance with the definition.

This section is intended to introduce the reader to the key concepts of slicing based on assertions, but
also to identify some limitations in the published work, which we then go on to solve in the rest of the paper.

3.1. Postcondition-based Slicing

The idea of slicing programs based on their specifications was introduced by Comuzzi et al. [CH96] with the
notion of predicate slice (p-slice), also known as postcondition-based slice. To understand the idea of p-slices,
consider a program S and a given postcondition Q. It may well be the case that some of the commands
in the program do not contribute to the truth of Q in the final state of the program, i.e. their presence is
not required in order for the postcondition to hold. In this case, the commands may be removed. A crucial
point here is that the considered set of executions of the program is restricted to those that will result in the
postcondition being satisfied upon termination. In other words, not every initial state is admissible – only
those for which the weak precondition of the program with respect to Q holds.

Consider for instance Program 1. The postcondition Q = x ≥ 0 yields the weak precondition x ≥ −50. If
the program is executed in a state in which this precondition holds and the commands in lines 2 and 3 are
removed from it, the postcondition Q will still hold. To convince ourselves of this, it suffices to notice that
after execution of the instruction in line 1 in a state in which the weak precondition is true, the condition
x ≥ 50 will hold, which is in fact stronger than Q.

To be more systematic, for a program of the form C1 ; . . . ; Cn with postcondition Q, if |= wpreci(S,Q)→
wprecj(S,Q), with i < j, the sequence Ci ; . . . ; Cj−1 can be removed. In particular, if |= wpreci(S,Q)→ Q,
the sequence Ci ; . . . ; Cn can be removed. For the previous example we have

wprec3(S,Q) = x ≥ 100,
wprec2(S,Q) = x ≥ 50,
wprec1(S,Q) = x ≥ −50.

Now observe that |= wprec2(S,Q) → Q, which means that the instructions in lines 2 to 3 can in fact be
removed: the postcondition Q will still hold for the sliced program when it is executed in a state satisfying
x ≥ −50.

P-slices are of course not unique. For instance since |= wprec3(S,Q)→ Q as well, we could have chosen to
remove only the instruction in line 3. Informally we can say that given a set of slices of a program with respect
to the same postcondition, the best slice is the one in which the largest number of instructions is removed. It
is also important to understand that not only suffixes of a sequence of commands may be removed. Consider

Assertion-based Slicing and Slice Graphs 9

�
1 x := x−150;
2 x := x+100;
3 x := x+100� �

Program 2: Example for postcondition-based slicing

the postcondition Q = x ≥ 0 for Program 2, which yields the following weak preconditions

wprec3(S,Q) = x ≥ −100,
wprec2(S,Q) = x ≥ −200,
wprec1(S,Q) = x ≥ −50

Note that although 6|= wprec1(S,Q) → Q, the commands in lines 1 and 2 can be removed because |=
wprec1(S,Q) → wprec3(S,Q). If the statement in line 3 is executed in a state in which x ≥ −50 then the
postcondition x ≥ 0 will hold.

We remark that in the limit, the set of executions that lead to the postcondition being satisfied may be
empty (if the weak precondition of the program is a contradiction, say x < 0 ∧ x > 10), in which case there
exist no slices – the formal definition to be given below will clarify this point. Another extreme situation
occurs when the postcondition is a valid assertion, say x < 0∨ x > −10, in which case the entire program is
seen as irrelevant, and admits as a slice the trivial program skip.

Calculating p-slices

It is easy to see how p-slices of a sequence of commands S = C1 ; . . . ; Cn can be computed with respect to
a postcondition Q. The first step is of course to calculate the weak preconditions wpreci(S,Q), for 1 ≤ i ≤ n,
and to store this information, say in the abstract syntax tree of S.

The next step is to iterate the following basic procedure that attempts to remove the subsequence
Ci ; . . . ; Cj−1, with 1 ≤ i < j ≤ n:

• If |= wpreci(S,Q)→ wprecj(S,Q) then slice S to remove(i, j − 1, S)

This involves a trade-off between the number of proof obligations generated (each of which results in
a call to the prover) and the potential number of lines that will be removed from the program. Suppose
for instance that we limit ourselves to removing suffixes of the initial program. The smallest such slice can
be calculated with a linear number of calls to the prover (on the length of S), by fixing j = n + 1 (thus
wprecj(S,Q) = Q). It suffices, in the second step above, to initialize i = 1, and then execute the following
loop: the prover is invoked with the formula wpreci(S,Q) → Q; if unsuccessful then i is incremented and a
new iteration of the loop takes place; otherwise the algorithm stops. The resulting slice is C1 ; . . . ; Ci−1.

Notice that this is of course a conservative approach: failure of the prover to establish the validity of
the first-order formula wpreci(S,Q) → Q does not mean that the formula is not valid, but this uncertainty
implies that removing the sequence Ci ; . . . ; Cn might result in a program that is not a slice of S, so the
algorithm proceeds to the next candidate suffix.

It is easy to understand that the same program may contain several removable subsequences, including
prefixes, suffixes, and sequences that are neither prefixes nor suffixes. Moreover, these removable sequences
may well overlap. Thus it is clear that no linear-time algorithm can possibly detect all removable sequences,
let alone select the smallest slice.

The Original Quadratic Time Algorithm

The algorithm proposed by Comuzzi runs in quadratic time on the length of the sequence.3 The algorithm
first tries to slice the entire program by removing its longest removable suffix, and then repeats this task,

3 We remark that when an algorithm is said to run in quadratic time, we are referring to a count of the proof obligations
generated to check whether a particular sequence of statements can be eliminated. In order for this to be reflected in an
algorithm that actually runs in quadratic time, it is necessary to place a time-out limit for the external automated proof tool;
this allows us to consider that proof obligations are discharged in constant time. We leave concrete provers and their usage out
of the discussion.

10 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

�
1 x := x+100;
2 x := x−200;
3 x := x+200� �

Program 3: Example for precondition-based slicing

considering successively shorter prefixes of the resulting program, and removing their longest removable
suffixes. Schematically:

for j = n+ 1, n, . . . , 2
for i = 1, . . . , j − 1

if valid
(
wpreci(S,Q)→ wprecj(S,Q)

)
then S ← remove(i, j − 1, S)

For instance in a program with 999 statements the following pairs (i, j) would be considered in this order:

(1, 1000), (2, 1000), . . . , (999, 1000), (1, 999), (2, 999), . . . , (998, 999), (1, 998), . . .

This algorithm may fail to remove the longest sequence. Consider that |= wprec1(S,Q)→ wprec800(S,Q)
and |= wprec700(S,Q) → wprec900(S,Q). Two subsequences may be sliced off, consisting respectively of
commands 1 to 799 and 700 to 899. The algorithm will consider (and remove) the shorter sequence first,
and in doing so will eliminate the possibility of the longer sequence being considered, since line 800 will
be removed (and it may happen that wprec1(S,Q) is not stronger than any remaining wpreck(S,Q)). The
resulting slice is thus not minimal.

An Improved Quadratic Algorithm

An alternative to Comuzzi’s algorithm can be described as follows. We start with the entire program and con-
sider in turn successively shorter sequences as candidates to be removed. Thus in the 999 statements program
one would consider sequences in the order (1, 1000), (1, 999), (2, 1000), (1, 998), (2, 999), (3, 1000), (1, 997), . . .
This would certainly remove the longest removable sequence.

This algorithm is however not optimal either. Consider the case in which |= wprec1(S,Q)→ wprec400(S,Q),
|= wprec600(S,Q) → wprec1000(S,Q), and |= wprec200(S,Q) → wprec800(S,Q). The longest sequence will be
sliced off (600 program lines), but this will preclude the possibility of eliminating two shorter sequences that
would together consist of 800 program lines: removing the larger contiguous sequence does not necessar-
ily result in the smallest slice. In fact it should now be clear that considering all sequences in any given
order cannot guarantee that the minimal slice is computed. The same is true for precondition-based and
specification-based slices, discussed below. In Section 7 we will show that this problem can in general be
formulated as a graph problem, which is one of the contributions of the present paper.

3.2. Precondition-based Slicing

Chung and colleagues [CLYK01] later introduced precondition-based slicing as the dual notion of postcondition-
based slicing. The idea is still to remove statements whose presence does not affect properties of the final
state of a program. The difference is that the considered set of executions of the program is now restricted
directly through a first-order condition on the initial state. Statements whose absence does not violate any
property of the final state of any such execution can be removed. This is the same as saying that the as-
sertion calculated as the strong postcondition of the program (resulting from propagating forward the given
precondition) is not weakened in the computed slice.

As an example of a precondition-based slice, consider now Program 3, and the precondition P = x ≥ 0.
The effect of the first two instructions is to weaken the precondition. If these instructions are sliced off and
the resulting program is executed in a state in which P holds, whatever postcondition held for the initial
program will still hold for the sliced program.

To be systematic, for a program of the form C1 ; . . . ; Cn with precondition P , if |= sposti(S, P) →
spostj(S, P), with i < j, the sequence Ci+1 ; . . . ; Cj can be removed. In particular, if |= P → spostj(S, P),

Assertion-based Slicing and Slice Graphs 11

�
1 i f (x >= 0) then
2 x := x+100;
3 x := x−200;
4 x := x+200
5 else
6 x := x−150;
7 x := x−100;
8 x := x+100
9

10 −−−−−−−−−−−−−−−−−
11

12 i f (x >= 0) then
13 x := x+200
14 else
15 skip� �

Program 4: Example for precondition-based slicing

the sequence C1 ; . . . ; Cj can be removed. For the previous example we have

spost1(S, P) = ∃v.v ≥ 0 ∧ x = v + 100 ≡ x ≥ 100,
spost2(S, P) = ∃v.v ≥ 100 ∧ x = v − 200 ≡ x ≥ −100,
spost3(S, P) = ∃v.v ≥ −100 ∧ x = v + 200 ≡ x ≥ 100

We see that |= P → spost2(S, P), thus the first two commands can be sliced off. Similarly to postcondition-
based slicing, we are not limited to removing prefixes (even though only prefixes are considered by the
linear time algorithm proposed in [CLYK01]). In the same example program, since in fact |= spost1(S, P)→
spost3(S, P), we could alternatively slice off lines 2 and 3 of the program, which shows that removable
sequences may overlap.

As a final example, consider a program containing branching, Program 4 (top). Again slicing the program
involves computing its strong postcondition with respect to a given precondition P . Both branches consist of
sequences of commands; even if the conditional command itself cannot be sliced off, it may well be the case
that the branch subprograms can be sliced. To this effect, we strengthen the precondition with the boolean
condition and its negation respectively, and slice each branch with respect to these strengthened precondi-
tions. Let S1 be x :=x+100; x := x−200; x := x+200 and S2 be x := x−150; x := x−100; x := x+100. S1

will be sliced with respect to P1 = P ∧ x ≥ 0 and S2 with respect to P2 = P ∧ x 6≥ 0.
Now let P be x ≥ 0. Then P1 ≡ x ≥ 0 and P2 is a contradiction, which means that |= P2 → spost(S2, P2).

Consequently, S2 will be sliced to skip. This makes sense, since the precondition eliminates the possibility
of execution of the else branch of the conditional. On the other hand the then branch is just the previous
example (Program 3). Thus Program 4 can be precondition-sliced with respect to x ≥ 0 as shown at the
bottom.

3.3. Specification-based Slicing

A specification-based slice can be calculated when both a precondition P and a postcondition Q are given for
a program S. The set of relevant executions is restricted to those for which Q holds upon termination when
the program is executed in a state satisfying P . Programs resulting from S by removing a set of statements,
and which are still correct regarding (P,Q), are said to be specification-based slices of S with respect to
(P,Q).

The method proposed in [CLYK01] to compute such slices is based on a theorem proved by the authors,
which states that the composition, in any order, of postcondition-based slicing (with respect to postcondition
Q) and precondition-based slicing (with respect to precondition P) produces a specification-based slice with
respect to (P,Q). As an example consider Program 5 and the specification (y > 10, x ≥ 0). Precondition-
based slicing will slice both sequences inside the conditional by strengthening the precondition y > 10 with

12 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

�
1 i f (y > 0) then
2 x := 100 ;
3 x := x+50;
4 x := x−100
5 else
6 x := x−150;
7 x := x−100;
8 x := x+100
9

10 −−−−−−−−−−−−−−−−
11

12 i f (y > 0) then
13 x := 100
14 else
15 skip� �

Program 5: Example for specification-based slicing

�
1 x := x∗x ;
2 x := x+100;
3 x := x+50� �

Program 6: Example for specification-based slicing

the condition y > 0 and its negation respectively. In the second case this yields a contradiction, which will
result in the else branch sequence being completely sliced off. The then sequence branch is not affected.
Postcondition-based slicing with respect to x ≥ 0 will then produce the sliced program shown at the bottom
of the listing.4

Although this method does compute specification-based slices, it does not compute minimal slices, as can
be seen by looking at Program 6 with specification (true, x ≥ 100). We have:

spost0(S, P) = true

spost1(S, P) = ∃v.x = v ∗ v
spost2(S, P) = ∃w.(∃v.w = v ∗ v) ∧ x = w + 100 ≡ ∃v.x = v ∗ v + 100
spost3(S, P) = ∃w.(∃v.w = v ∗ v + 100) ∧ x = w + 50 ≡ ∃v.x = v ∗ v + 150

and

wprec4(S,Q) = x ≥ 100 = Q

wprec3(S,Q) = x ≥ 50
wprec2(S,Q) = x ≥ −50
wprec1(S,Q) = true

It is obvious that the postcondition is satisfied after execution of the instruction in line 2, which means that if
line 3 is removed the sliced program will still be correct with respect to (true, x ≥ 100). However, precondition-
based and postcondition-based slicing both fail in removing this instruction, since no forward implications
are valid among the sposti(S, P) or the wpreci(S,Q). Composing precondition-based and postcondition-based
slicing will of course not solve this fundamental flaw. In Section 5 we show that the precise identification
of removable statements requires the simultaneous use of both preconditions and postconditions; trying to
identify removable statements using only preconditions or only postconditions may fail.

4 in fact [CLYK01] advocates replacing the entire conditional command by one of the branches when the other branch is sliced
to skip, but it is debatable whether this transformation can still be considered as a form of slicing.

Assertion-based Slicing and Slice Graphs 13

3.4. Formalization

We now formalize the notions of slicing reviewed in this section. A program S′ is a specification-based slice of
S if it is a portion of S and moreover S can be refined to S′ with respect to a given specification (a semantic
notion). The notions of precondition-based and postcondition-based slice can be defined as special cases of
this notion.

Definition 2 (Assertion-based slices). Let S be a program and (P,Q) a specification consisting of pre-
condition P and postcondition Q. The program S′ is said to be

• a specification-based slice of S with respect to (P,Q), written S′ /(P,Q) S, if S′ � S and

|= VCGw(P, S, Q) implies |= VCGw(P, S′, Q)

• a precondition-based slice of S with respect to P , if S′ /(P,spost(S,P)) S;
• a postcondition-based slice of S with respect to postcondition Q if S′ /(wprec(S,Q),Q) S.

Observe that it only makes sense to calculate specification-based slices of correct programs; if S is not
correct with respect to (P,Q) then any portion of it is a slice with respect to (P,Q). This does not however
mean that techniques based on these forms of slicing cannot be applied to incorrect programs: they can
be used on subprograms (proved correct) of incorrect programs. For instance in Section 4 we will see how
postcondition-based slicing can be used for debugging purposes.

Note also that the definitions of precondition-based and postcondition-based slicing are very strong, as
the following lemma shows.

Lemma 3.

1. If S′ is a precondition-based slice of S with respect to P , then for any assertion Q, S′ /(P,Q) S

2. If S′ is a postcondition-based slice of S with respect to Q, then for any assertion P , S′ /(P,Q) S

Proof. We prove 1 (the proof of 2 is similar). We assume |= VCGw(P, S, Q), and thus by Lemma 1 |=
spost(S, P) → Q, VCs(S, P), and have to prove that |= VCGw(P, S′, Q). Since S′ is a precondition-based
slice of S with respect to P , by Lemma 1 we have that

|= spost(S, P)→ spost(S, P), VCs(S, P) implies |= spost(S′, P)→ spost(S, P), VCs(S′, P)

The left-hand side follows from our assumptions, and thus

|= spost(S′, P)→ Q, VCs(S′, P)

which by the same lemma is equivalent to |= VCGw(P, S′, Q).

We must remark at this point that there are several differences between our definitions and those used
in [CH96, CLYK01]. A first difference concerns all the above notions of slicing: previous notions require the
weak precondition (resp. strong postcondition) to be exactly the same in the sliced program as in the original
program, whereas we allow for it to be weaker (resp. stronger), which is more coherent with the idea of the
slice refining the behaviour of the original program.

A second difference concerns specifically the definitions of precondition-based and postcondition-based
slicing only. While the definitions given in [CLYK01] are based on implicative assertions relating the strong
postconditions (resp. weak preconditions) of both programs, we explicitly define them as particular cases
of specification-based slices, which is more convenient given our treatment of iteration through the use of
annotated invariants. The following lemma makes the relation between both definitions explicit, for the case
of programs without iteration.

Lemma 4. Let S′ be a program containing no loops. Then

1. If S′ � S and |= spost(S′, P)→ spost(S, P), then S′ /(P,spost(S,P)) S.
2. if S′ � S and |= wprec(S,Q)→ wprec(S′, Q), then S′ /(wprec(S,Q),Q) S

Proof.

1. Note that VCGs(P, S, spost(S, P)) = spost(S, P)→ spost(S, P), which is valid, and VCGs(P, S′, spost(S, P)) =
spost(S′, P) → spost(S, P). Thus |= VCGs(P, S, spost(S, P)) implies |= VCGs(P, S′, spost(S, P)) and by
Lemma 1 we have that |= VCGw(P, S, spost(S, P)) implies |= VCGw(P, S′, spost(S, P))

14 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

2. Similar to 1.

The above definitions are formulated in a partial correctness setting, which means that terminating
programs admit non-terminating programs as specification-based slices, and vice versa (it is easy to see
that removing a single instruction from the body of a terminating loop may make it non-terminating,
and vice versa). We will now introduce termination-sensitive notions of slicing, by shifting from a partial
correctness to a total correctness setting. A terminating program does not admit non-terminating programs
as termination-sensitive slices.

Definition 3 (Termination-sensitive assertion-based slices). Let S be a program and (P,Q) a spec-
ification consisting of precondition P and postcondition Q. The program S′ is said to be

• a termination-sensitive specification-based slice of S with respect to (P,Q), written S′ J(P,Q) S, if S′ � S
and moreover

|= VCGw
t (P, S,Q) implies |= VCGw

t (P, S′, Q)
• a termination-sensitive precondition-based slice of S with respect to P if S′ J(P,spost(S,P)) S;
• a termination-sensitive postcondition-based slice of S with respect to Q if S′ J(wprec(S,Q),Q) S.

In the same way that, when verifying a program, one may proceed by first checking its partial correctness
and then its termination to ensure total correctness, one may assert that S′ is a termination-sensitive slice
of the totally correct program S by checking that S′ /(P,Q) S and additionally checking that S′ terminates.

3.5. Related Approaches

In this section we review other forms of slicing that have some points in common with assertion-based slicing.

Semantic Slicing

One of the most successful lines of work in the area of slicing has been conducted by Ward and colleagues.
This line has focused on semantic forms of slicing, in the sense that slices are obtained by combining syntactic
operations with classic semantics-preserving program transformations such as loop unrolling and constant
propagation. The results are both practical (a commercially-available workbench has been developed) and
theoretical. In particular, the recent paper [War09] provides a clarifying analysis of slicing properties and
definitions proposed by different authors (both syntactic and semantic). Our work in this paper clearly stands
on the semantic side, but a fundamental difference with respect to other work on semantic slicing is that we
focus on code annotated with assertions. Our slicing criteria are exclusively provided by such assertions.

Conditioned Slicing

Shortly after the definition of postcondition-based slicing by Comuzzi and Hart, Canfora et al. [CCL98] intro-
duced the notion of conditioned slicing, together with a tool to calculate such slices. Similarly to precondition-
based slicing, conditioned slicing uses preconditions as a means to specify a set of initial states for computing
a forward slice. The main points to understand about conditioned slicing are

1. The precondition is used in combination with traditional slicing techniques based on dependency analysis.
Code will be removed either because it is unreachable (not executed when the program is started in a
state in which the precondition holds), or because it is dead (the precondition eliminates dependencies
involving it). Consider the following example from Canfora’s paper:�

1 x := y+2;
2 i f (a > 0)
3 x := y ∗2 ;
4 z := x+1� �

A conditioned slice of this program based on any precondition P such that |= P → a > 0 results in line

Assertion-based Slicing and Slice Graphs 15

1 being eliminated, since line 3 will certainly be executed and cancel the effect of line 1. This example
shows a fundamental difference between conditioned slicing and earlier notions of slicing exclusively
based on control and data dependencies. Clearly static dependencies alone cannot be used to implement
conditioned slicing, since the instruction in line 4 depends on all previous instructions. The algorithm
proposed by the authors is based on symbolic execution, which allows for the relevant dependency paths
to be identified. A theorem prover is called externally to guide the symbolic execution.

2. In the context of traditional, dependency-based slicing, there are two standard types of forward slicing:
static, which considers every possible execution (i.e. all initial states), and dynamic, which is concerned
with a single execution (a concrete initial state) of the program. The latter can be generalized to cope
with a set of concrete executions, but an interesting aspect of conditioned slicing is that it subsumes
all these notions, since a characterization of the set of initial states by a first-order condition can be
used to admit any initial state (if the condition is true), or just a concrete initial state (if the condition
is a conjunction of equality formulas, each equating a program variable to a constant), or any other
intermediate set of initial states.

3. The similarities between precondition-based slicing and conditioned slicing should be clear: even though
the latter is based on dependencies and the former on weak preconditions and strong postconditions, both
are capable of eliminating conditionally unreachable and conditionally dead code. These are examples
of code that is redundant with respect to a given precondition, but note that the notion of redundancy
is different in both cases: whereas in precondition-based slicing this is code that, if removed, results
in a program whose strong postcondition will not be weakened with respect to the initial program,
in conditioned slicing this is code that does not contribute to the values of a given set of variables.
Precondition-based slicing removes other forms of redundancy that conditioned slicing cannot remove,
since they can only be detected at a semantic level. Program 4 is a good example to illustrate this
point: while conditioned slicing with x ≥ 0 would eliminate the else branch, it would not remove the two
assignment commands inside the then branch, which are removed by precondition-based slicing.

4. Conditioned slicing criteria are not however limited to a precondition P : a slicing criterion consists
additionally of a subset X of the program variables, as well as a specific program line k. The program
statements eliminated are those that do not affect the value of any variable in X at line k, for executions
starting in states satisfying P . Precondition-based slicing does not subsume conditioned slicing, since it
does not take into account these criteria, inherited from standard dependency-based forms of slicing (see
also Section 8 below).

5. For conditioned slicing criteria that focus on the final state of the program (i.e. k is the last line),
precondition-based slicing can be said to be a stronger form of slicing than conditioned slicing, since it
eliminates code using semantic criteria that cannot be expressed in terms of dependencies.

Backward Conditioned Slicing

Backward conditioning was introduced by Fox and colleagues [FDHH01] as the symmetric notion of condi-
tioned slicing. A slicing criterion includes a postcond Q that is used in the following way: statements whose
presence forces ¬Q to hold in the final state (i.e. if they are present ¬Q will hold after every execution) are
removed.

The technique is intended as the dual of conditioned slicing: whereas (forward) conditioned slicing elim-
inates the code that will surely not be executed when the given precondition holds, backward conditioned
slicing eliminates the code that cannot be executed if the given postcondition is to be satisfied in the final
state, i.e. it eliminates statements that prevent the given postcondition from being true. The technique is
introduced with program comprehension as main application. The authors also propose an algorithm for
implementing backward conditioned slicing, based on symbolic execution and an external theorem prover.

A second paper [HHF+01] combines forward and backward conditioned slicing, based on a precondition
P and a postcondition Q: it eliminates code that leads to Q being false when the program is executed in
states satisfying P . The motivation of the latter work is the application to program verification. The idea
here is that to check if a program is correct w.r.t. a specification (P,Q), one may compute its conditioned
slice w.r.t. (P,¬Q). If the program is correct this slice will be empty, since all execution paths lead to Q
being true, and all instructions will thus be removed. If the program is not correct, the instructions that
remain in the slice are those that may for some initial states lead to ¬Q being true. Such instructions should
carefully be considered since they are directly contributing to the program being incorrect.

16 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

This forward/backward form of conditioned slicing cannot be formulated as specification-based slicing
with respect to a specification. While a specification-based slice S′ of program S with respect to (P,Q) is
correct with respect to (P,Q), a conditioned slice S′′ with respect to (P,Q) is characterized by not being
correct with respect to (P,¬Q). Another way to put this is that while we require VCGw(P, S′, Q) to be
valid, VCGw(P, S′′, Q) must instead be satisfiable. For instance the command x := x+ 10 with precondition
x > 10 and postcondition x ≤ 20 should be sliced to skip, since |= VCGw(x > 10, x := x + 10, ¬(x ≤ 20))
and 6|= VCGw(x > 10, skip, ¬(x ≤ 20)), i.e. the formulas VCGw(x > 10, skip, x ≤ 20) are satisfiable.

We speculate that the graph-based algorithms studied in this paper could be adapted to the purpose of
computing forward/backward conditioned slices by using satisfiability checks instead of validity checks.

In the next section, before focusing on the core contributions of the paper, we will briefly consider some
applications of slicing based on assertions.

4. Applications of Assertion-based Slices

Postcondition-based and precondition-based slicing can both be seen as program specialization techniques
regarding a restricted set of executions of a program. A postcondition-based slice of a program S may
have a weaker weak precondition than S, and a precondition-based slice of S may have a stronger strong
postcondition than S. We start by considering applications of these forms of slicing and then turn to
specification-based slicing.

Postcondition-based Slicing

In their paper Comuzzi and Hart give a number of examples of the usefulness of postcondition-based slicing,
based on their experience as software developers and maintainers. Their emphasis is on applying slicing to
relatively small fragments of big programs, using postconditions corresponding to properties that should be
preserved by these fragments. Suppose one suspects that a problem was caused by some property Q being
false at line k of a program S with n lines of code. We can take the subprogram Sk consisting of the first
k lines of S and slice it with respect to the postcondition Q. This may result in a suffix of Sk being sliced
off, say from lines i to k, which means that in order for Q to hold at line k, it must also hold at line i. The
resulting slice is where the software engineers should now concentrate in order to find the problem (a similar
reasoning applies if the sequence of lines removed is not a suffix of Sk).

A related situation occurs when the property must deliberately be violated in some part of the code.
This is typical for instance of code running as a thread of a concurrent program, with Q being true outside a
critical section executed by the thread at some point, and false inside that section. Q is true before entering
the said critical section and will be true after leaving it, so postcondition-based slicing can be used to study
the correct behaviour of the code with respect to that section. Similarly, the property may correspond to
some invariant of a data structure, say a balanced binary search tree that will temporarily be unbalanced
(or even inconsistent) while a new element is being inserted.

Safety properties may also be studied in this way. Examples include for instance

• array accesses u[e], with safety property “the value of expression e stands between 0 and N − 1”, with
N the allocated size of the array;

• pointer dereferencing accesses ∗p with safety property “p points to a properly allocated memory region”;
• procedure invocations, with safety property “the precondition of the invoked procedure is satisfied”.

Precondition-based Slicing

Redundant code is code that does not produce any effect: removing it results in a program that behaves
in the same way as the original. Note that we say “the code does not produce any effect” in the sense of
observable effects on the final state. Removing redundant code may of course result in code that is different
regarding the execution traces; in particular the resulting code may be faster to execute. A major application
of precondition-based slicing is the removal of conditionally redundant code, i.e. code that is redundant for
executions of the program specified by a given precondition. Naturally, redundant code is a special case of
conditionally redundant code.

Assertion-based Slicing and Slice Graphs 17

�
1 x := y + 2 ;
2 x := y ∗ 2 ;� �

Program 7: Example for dead code elimination by precondition-based slicing

Examples of redundancies include sequences of instructions like x := x − 200 ; x := x + 200, as in
Program 3. Previously in Section 3 we saw how precondition-based slicing with respect to the precondition
x ≥ 0 indeed removed these two instructions. It is however clear that the instructions should be removable
also for executions not allowed by this precondition. Let us now consider how this can be done.

A first attempt could be to slice the program with respect to the precondition true. For Program 3 we
would have

spost1(S, true) = ∃v.x = v + 100 ≡ true,

spost2(S, true) = ∃v.x = v − 200 ≡ true,

spost3(S, true) = ∃v.x = v + 200 ≡ true

the entire program can now be sliced off, since its calculated postcondition is a valid assertion – not what
we had in mind. What is missing here is a way to record the initial state, to be able to compare the values
of variables in different states using the initial values as a reference. For this purpose we resort to auxiliary
variables, that are used in assertions only, not in the code. The use of these variables makes postcondition
calculations resemble a symbolic execution of the code, in which the values of the variables after the execution
of each command are related to the initial values through equality formulas.

Let us slice the same program with respect to the precondition x = x0, where the auxiliary variable x0

is used to record the initial value of x:

spost1(S, x = x0) = ∃v.v = x0 ∧ x = v + 100 ≡ x = x0 + 100,
spost2(S, x = x0) = ∃v.v = x0 + 100 ∧ x = v − 200 ≡ x = x0 − 100,
spost3(S, x = x0) = ∃v.v = x0 − 100 ∧ x = v + 200 ≡ x = x0 + 100

Notice that the precondition does not restrict the set of executions, since x0 is not a program variable. Since
|= spost1(S, true)→ spost3(S, true), the statements in lines 2 and 3 of the program can be sliced off, because
they are redundant and unnecessary in any execution of the program.

Two particular forms of redundant code are unreachable code, which is not executed, and dead code,
which is executed but produces no effect, because the final values of variables do not depend on its results.
An example of unreachable code is the block S2 in if 10 > 5 then S1 else S2; an example of dead code
is the first instruction in Program 7. Unreachable code and dead code elimination are typically part of the
optimizations performed by compilers, using control flow and data flow analyses. Specification-base slicing
allows for conditional versions of these notions, eliminating code that is unreachable or dead for a given set of
executions. Conditional unreachable code elimination was already exemplified with Program 4 in Section 3.2
– unreachable code is eliminated because (for the given initial states) its presence does not influence the final
state of the program. Precondition-based slicing can thus be used to study the control flow of a program.

Let us now consider an example of (unconditional) dead code elimination. So far we have been identifying
slices by checking the validity of implicative formulas involving propagated strong postconditions. As hinted
in the previous section, this technique cannot eliminate all types of redundant code, which this example
will also illustrate. Let S be Program 7. Clearly, in every execution of this program, the first statement
is dead since its effect is cancelled by the second statement. To slice this program using the precondition
x = x0 ∧ y = y0 we compute the strong postconditions as follows:

spost0(S, x = x0 ∧ y = y0) = x = x0 ∧ y = y0

spost1(S, x = x0 ∧ y = y0) = ∃v.v = x0 ∧ y = y0 ∧ x = y + 2 ≡ x = y0 + 2 ∧ y = y0,

spost2(S, x = x0 ∧ y = y0) = ∃v.v = y0 + 2 ∧ y = y0 ∧ x = y ∗ 2 ≡ x = y0 ∗ 2 ∧ y = y0

Since 6|= spost0(S, x = x0 ∧ y = y0) → spost1(S, x = x0 ∧ y = y0), the first statement cannot be sliced off.
Clearly, it would be impossible to reach the conclusion that this statement is dead by relating the calculated

18 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

�
1 x := y+2;
2 i f (a > 0)
3 then x := y ∗2 ;
4 else skip ;
5 z := x+1� �

Program 8: Example for redundant code elimination by specification-based slicing

strong postconditions only, since spost0(S, x = x0 ∧ y = y0) and spost1(S, x = x0 ∧ y = y0) are calculated
without even looking at subsequent commands. Below we will see that using a specification-based slicing
technique to compute precondition-based slices will allow for commands like these to be removed as expected.

Specification-based Slicing

A first application of this form of slicing concerns the removal of redundant code. We saw above that the
traditional precondition-based slicing algorithm is unable to remove all such code, specifically when a “look
ahead” would be required to reach the conclusion that a given statement can be removed. Specification-based
slicing combines strong postcondition with weak precondition computations, and can be used to properly
eliminate redundant code. Let S be a program with variables x1, . . . , xn. In order to remove unnecessary
code taking into account every execution of S, it suffices to slice S with respect to the following specification
(the xi

0 are auxiliary variables).

(x1 = x1
0, . . . , x

n = xn
0 , spost(S, x1 = x1

0, . . . , x
n = xn

0))

Note that, following Definition 2 (2), the result will still be a precondition-based slice – the problem of our
previous attempt was not in the definition of precondition-based slice, but in the method used to compute
these slices.

To illustrate this we consider again Program 7, and compute a precondition-based slice with respect to
x = x0∧y = y0, followed by a postcondition-based slice with respect to the strong postcondition spost(S, x =
x0 ∧ y = y0). We saw before that the first step is unable to remove any statements in this example. The
calculated postcondition is

Q = spost(S, x = x0 ∧ y = y0) ≡ x = y0 ∗ 2 ∧ y = y0

We now calculate weak preconditions using the above as postcondition:

wprec2(S,Q) = y ∗ 2 = y0 ∗ 2 ∧ y = y0,

wprec1(S,Q) = y ∗ 2 = y0 ∗ 2 ∧ y = y0

Now since |= wprec1(S,Q) → wprec2(S,Q), the statement in line 1 can indeed be removed, as would be
expected.

This example motivates the following: henceforth in this paper we will concentrate on methods for calcu-
lating specification-based slices. Whenever the specification consists of a precondition (resp. postcondition)
only, it will be completed by computing the strong postcondition (resp. weak precondition) of the program
with respect to it. Computing precondition or postcondition-based slices as special cases of specification-
based slices allows for a more precise identification of removable statements.

Program 8 is a further example of a precondition-based slice that will be calculated as a specification-
based slice, following the ideas outlined above (it is taken from [CCL98], see Section 3.5). The idea is to
slice this program with respect to the precondition a > 0. Clearly the else branch is dead, and if it was
not already skip it would be replaced by skip in the computed slice, since it will not be executed with this
precondition. The goal here is to illustrate something else: since the then branch will be executed, the first
statement in the program will not produce any effect, since the final value of x will be given by the statement
in line 3. It is thus a dead statement that should be eliminated.

Let S be the above program and P be x = x0 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0. In order to eliminate
redundant code we will calculate a slice of this program with respect to the specification (P, spost(S, P)). We
start by propagating the precondition forward using strong postcondition calculations, and then propagate

Assertion-based Slicing and Slice Graphs 19

backward the strong postcondition, using weak precondition calculations. This is shown in Figure 3, in which
we also simplify the calculated assertions to equivalent formulas. Clearly 6|= spost0(S, P)→ spost1(S, P), but
|= wprec1(S, P)→ wprec2(S, P), thus the first command in the program can be eliminated.

Design by Contract and Specification-based Slicing. It may be useful to apply specification-based
slicing to code already annotated with specifications, following the principles of design by contract – a
software development approach that advocates specifying the behavior of program routines through the use
of annotations, and checking them individually (either statically or dynamically) to obtain globally correct
programs. For code that has been developed in this way, it is cheap to apply specification-based slicing
techniques, based on the specification information that is already present in the code.

A first application in this context is again the elimination of unnecessary code. A piece of software that
has already been proven correct with respect to a specification may well contain code that is not actually
playing any useful role regarding that specification. This unnecessary code that may have been introduced
during development is not detected by the verification process itself, but slicing the program with respect to
the proven specification will hopefully remove such code.

A different application is concerned with code that has been verified but is now being used in a specialized
context, i.e. the specification that is required for a given use of the code is actually weaker (because a stronger
precondition is present, and/or a weaker postcondition is required) than the proven specification. A typical
situation is software reuse. Think for instance of a library containing a procedure that implements a traversal
of some data structure, and collects a substantial amount of information in that traversal. It may be the case
that for a given project one wants to reuse this procedure without requiring all the information collected
in the traversal. In this case the procedure will be invoked with a weaker specification, and it makes sense
to produce a specialized version to be included in the current project. A specification-based slice can be
computed to this effect.

5. Properties of Assertion-based Slicing

In abstract terms, given a program S = C1 ; . . . ; Cn with specification (P,Q), an assertion-based slicing
algorithm must be able to

1. Identify subprograms that could be removed from the program being sliced, while preserving its correct-
ness with respect to a given specification. More concretely, the algorithm must decide for every i, j if
remove(i, j, S)/(P,Q) S holds, and then proceed recursively to identify removable subprograms of each Ci.

2. Select, among the set of statements identified as removable, the combination (or one of the combinations)
that results in the best slice according to some criterion (the most obvious is the smallest number of
program lines). Although this has been considered more seriously in the work of Comuzzi and colleagues
on postcondition-based slicing, it applies to all three forms of slicing we have considered.

This section is devoted to point 1; the second point will be considered in Section 7.
The currently available algorithms for precondition-based and postcondition-based slicing check the va-

lidity of a formula relating the propagated conditions near the statements i and j. This seemed to be a good
test of whether the sequence of commands between i and j could be removed, but in Section 4 it was shown
that for precondition-based slicing the method used in previous work fails to identify statements that should
be removed because they do not contribute to the final state of the program, in any of the executions spec-
ified by the precondition. The failure occurs when the commands are made irrelevant by other instructions
that occur later in the program, and thus cannot be detected by the prescribed method. The bottom line is
that using Lemma 4 to design precondition or postcondition-based slicing algorithms is in fact misleading.
The problem can be solved by simply observing our definition of these slices (Definition 2), which are given
as particular cases of specification-based slices. For instance given a precondition P , it suffices to calculate
the strong postcondition of the program with respect to P and then calculate a specification-based slice of
S with respect to (P, spost(S, P)).

For specification-based slicing, the algorithm of [CLYK01] considers sequentially the propagation of pre-
conditions and postconditions. But in Section 3.3 we have already shown that first slicing with preconditions
and later with postconditions (or vice versa) may fail to remove statements which can be removed, according

20 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

Forward propagation of precondition P :
spost0(S, P) = x = x0 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0

spost1(S, P) = x = y0 + 2 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0

spost(x := y ∗ 2, a > 0 ∧ spost1(S, P)) = a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0

spost(skip,¬a > 0 ∧ spost1(S, P)) = ¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0

spost2(S, P) = (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0)

spost3(S, P) = (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ z = y0 + 2 + 1 ∧ a = a0 ∧ a > 0)

Backward propagation of postcondition spost3(S, P):
wprec4(S, P) = spost3(S, P) = (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ z = y0 + 2 + 1 ∧ a = a0 ∧ a > 0)

wprec3(S, P) = (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ x + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ x + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0)

wprec(x := y ∗ 2, wprec3(S, P)) = (a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0 ∧ y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ y ∗ 2 = y0 + 2 ∧ y = y0 ∧ y ∗ 2 + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0)

wprec(skip, wprec3(S, P)) = (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ x + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ x + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0)

wprec2(S, P) = (a > 0→ (a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0 ∧ y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ y ∗ 2 = y0 + 2 ∧ y = y0 ∧ y ∗ 2 + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0))

∧ (¬a > 0→ (a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ x + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ x = y0 + 2 ∧ y = y0 ∧ x + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0))

wprec1(S, P) = (a > 0→ (a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0 ∧ y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ y ∗ 2 = y0 + 2 ∧ y = y0 ∧ y ∗ 2 + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0))

∧ (¬a > 0→ (a > 0 ∧ y + 2 = y0 ∗ 2 ∧ y = y0 ∧ y + 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0 ∧ a > 0)

∨ (¬a > 0 ∧ y + 2 = y0 + 2 ∧ y = y0 ∧ y + 2 + 1 = y0 + 2 + 1 ∧ a = a0 ∧ a > 0))

Simplified conditions:
spost0(S, P) ≡ x = x0 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0

spost1(S, P) ≡ x = y0 + 2 ∧ y = y0 ∧ z = z0 ∧ a = a0 ∧ a > 0

spost(x := y ∗ 2, a > 0 ∧ spost1(S, P)) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = z0 ∧ a = a0

spost(skip,¬a > 0 ∧ spost1(S, P)) ≡ false

spost2(S, P) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = z0 ∧ a = a0

spost3(S, P) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = y0 ∗ 2 + 1 ∧ a = a0

wprec4(S, P) = spost3(S, P) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ z = y0 ∗ 2 + 1 ∧ a = a0

wprec3(S, P) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ x + 1 = y0 ∗ 2 + 1 ∧ a = a0

wprec(x := y ∗ 2, wprec3(S, P)) ≡ a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0 ∧ y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0

wprec(skip, wprec3(S, P)) ≡ a > 0 ∧ x = y0 ∗ 2 ∧ y = y0 ∧ x + 1 = y0 ∗ 2 + 1 ∧ a = a0

wprec2(S, P) = = a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0 ∧ y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0

wprec1(S, P) = = a > 0 ∧ y ∗ 2 = y0 ∗ 2 ∧ y = y0 ∧ y ∗ 2 + 1 = y0 ∗ 2 + 1 ∧ a = a0

Fig. 3. Propagated conditions for Program 8

Assertion-based Slicing and Slice Graphs 21

to the definition. We will now see that using preconditions and postconditions simultaneously allows for a
precise identification of removable statements.

5.1. Removable Commands

We start by generalizing Lemma 1. This lemma states that there exist two equivalent ways to calculate
verification conditions for a given program and specification: one based on weak preconditions and another
based on strong postconditions. We will now see that for a given program this can be generalized: one can
equally generate verification conditions by breaking the sequence of commands at any point, resulting in a
prefix and a suffix of the initial command. The set of verification conditions is given as the union of the
verification conditions of the suffix (computed using weak preconditions) and of the prefix (using strong
postconditions). An additional verification condition relates the strong postcondition of the prefix and the
weak precondition of the suffix. The first point in the following lemma formalizes this idea:

Lemma 5. Let (P,Q) be a specification and S = C1 ; . . . ; Cn a program.

1. |= VCGw(P, S, Q) iff |= VC
s
[k](S, P), spostk(S, P) → wpreck+1(S,Q), VC

w
[k + 1](S,Q), for k ∈

{0, . . . , n}

2. If Ck = if b then St else Sf for some k ∈ {1, . . . , n}, then

|= VCGw(P, S, Q) iff |= VC
s
[k − 1](S, P), VCGw(spostk−1(S, P) ∧ b, St, wpreck+1(S,Q)),

VCGw(spostk−1(S, P) ∧ ¬b, Sf , wpreck+1(S,Q)), VC
w

[k + 1](S,Q)

3. If Ck = while b do {I}Sb for some k ∈ {1, . . . , n}, then

|= VCGw(P, S, Q) iff |= VC
s
[k − 1](S, P), spostk−1(S, P)→ I, VCGw(I ∧ b, Sb, I),

I ∧ ¬b→ wpreck+1(S,Q), VC
w

[k + 1](S,Q)

Proof. 1. Applying repeatedly the definitions of wprec, VCw, spost, VCs, and Lemma 1:

|= P → wprec(S,Q), VCw(S,Q)
iff |= P → wprec(C1,wprec(C2 ; . . . ; Cn, Q)), VCw(C1,wprec(C2 ; . . . ; Cn, Q)), VCw(C2 ; . . . ; Cn, Q)
iff |= VCs(C1, P), spost(C1, P)→ wprec(C2 ; . . . ; Cn, Q), VCw(C2 ; . . . ; Cn, Q)
iff |= VCs(C1, P), spost(C1, P)→ wprec(C2,wprec(C3 ; . . . ; Cn, Q)), VCw(C2,wprec(C3 ; . . . ; Cn, Q)),

VCw(C3 ; . . . ; Cn, Q)
iff |= VCs(C1, P), VCs(C2, spost(C1, P)), spost(C2, spost(C1, P))→ wprec(C3 ; . . . ; Cn, Q),

VCw(C3 ; . . . ; Cn, Q)
iff |= VCs(C1 ; C2, P), spost(C1 ; C2, P)→ wprec(C3 ; . . . ; Cn, Q), VCw(C3 ; . . . ; Cn, Q)
. . .

iff |= VCs(C1 ; . . . ; Ck, P), spost(C1 ; . . . ; Ck, P)→ wprec(Ck+1 ; . . . ; Cn, Q), VCw(Ck+1 ; . . . ; Cn, Q)

22 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

2. Using the definition of the VCGen and Lemma 5 (1), one has the following

|= VCGw(P, S, Q)

iff |= VC
s
[k − 1](S, P), spostk−1(S, P)→ wpreck(S,Q), VC

w
[k](S,Q)

iff |= VC
s
[k − 1](S, P),

spostk−1(S, P)→ (b→ wprec(St,wpreck+1(S,Q))) ∧ (¬b→ wprec(Sf ,wpreck+1(S,Q))),

VCw(St,wpreck+1(S,Q)), VCw(Sf ,wpreck+1(S,Q)), VC
w

[k + 1](S,Q)

iff |= VC
s
[k − 1](S, P), spostk−1(S, P) ∧ b→ wprec(St,wpreck+1(S,Q)), VCw(St,wpreck+1(S,Q)),

spostk−1(S, P) ∧ ¬b→ wprec(Sf ,wpreck+1(S,Q)), VCw(Sf ,wpreck+1(S,Q)), VC
w

[k + 1](S,Q)

iff |= VC
s
[k − 1](S, P), VCGw(spostk−1(S, P) ∧ b, St, wpreck+1(S,Q)),

VCGw(spostk−1(S, P) ∧ ¬b, Sf , wpreck+1(S,Q)), VC
w

[k + 1](S,Q)

3. We reason as follows, again using the definition of the VCGen and Lemma 5 (1)

|= VCGw(P, S, Q)

iff |= VC
s
[k − 1](S, P), spostk−1(S, P)→ wpreck(S,Q), VC

w
[k](S,Q)

iff |= VC
s
[k − 1](S, P), spostk−1(S, P)→ I, I ∧ b→ wprec(Sb, I), I ∧ ¬b→ wpreck+1(S,Q),

VCw(Sb, I), VC
w

[k + 1](S,Q)

iff |= VC
s
[k − 1](S, P), spostk−1(S, P)→ I, VCGw(I ∧ b, Sb, I), I ∧ ¬b→ wpreck+1(S,Q),

VC
w

[k + 1](S,Q)

The significance of the first point of this lemma is that, according to the following proposition, it can
be decided when the sequence Ci ; . . . ; Cj can be removed by considering the prefix C1 ; . . . ; Ci−1 and the
suffix Cj+1 ; . . . ; Cn.

Proposition 1. Let (P,Q) be a specification, S = C1 ; . . . ; Cn a program, and i, j, integers such that
1 ≤ i ≤ j ≤ n.

If |= sposti−1(S, P)→ wprecj+1(S,Q) then remove(i, j, S) /(P,Q) S

Proof. remove(i, j, S) is clearly a portion of S. Now let us assume that |= VCGw(P, S, Q); we need to prove
that |= VCGw(P, remove(i, j, S), Q). Applying Lemma 5 (1) to S with k = i−1 and k = j we get respectively:

|= VCGw(P, S, Q) iff |= VC
s
[i− 1](S, P), sposti−1(S, P)→ wpreci(S,Q), VC

w
[i](S,Q)

|= VCGw(P, S, Q) iff |= VC
s
[j](S, P), spostj(S, P)→ wprecj+1(S,Q), VC

w
[j + 1](S,Q)

Thus |= VC
s
[i − 1](S, P) and |= VC

w
[j + 1](S,Q). Now it suffices to apply Lemma 5 (1) to the program

remove(i, j, S) with k = i−1. Since remove(i, j, S) = C1 ; . . . ; Ci−1 ; Cj+1 ; . . . ; Cn, this yields the following,
which we apply from right to left.

|= VCGw(P, remove(i, j, S), Q) iff |= VC
s
[i−1](S, P), sposti−1(S, P)→ wprecj+1(S,Q), VC

w
[j+1](S,Q)

We remark that since |= VCGw(P, S, Q) implies |= sposti−1(S, P)→ wpreci(S,Q) and |= spostj(S, P)→
wprecj+1(S,Q), the following also hold:

If |= wpreci(S,Q)→ wprecj+1(S,Q) then remove(i, j, S) /(P,Q) S (1)

If |= sposti−1(S, P)→ spostj(S, P) then remove(i, j, S) /(P,Q) S (2)

However, note that the latter conditions are both stronger than the one in the proposition, which means
that using them as tests could fail to identify some removable subprograms. This is in accordance with the

Assertion-based Slicing and Slice Graphs 23

examples in Section 3, which have shown that simply propagating P forward and Q backward, and checking
for implications between the propagated spostk(S, P) and then for implications between the propagated
wpreck(S,Q), while sound, might result in slices that are not minimal. The method proposed in the literature
calculates slices using these stronger tests, and this is the reason why they fail, for instance in Program 6.
To illustrate our point with the latter program it suffices to note that since |= spost2(S, P)→ wprec4(S,Q),
the command C3 can be removed according to the test of Proposition 1.

Proposition 1 in fact provides us with the weakest condition for slicing programs, since if we assume the
initial program to be correct with respect to the given specification the reverse implication also holds:

Proposition 2. Let (P,Q) be a specification, S = C1 ; . . . ; Cn a program such that |= VCGw(P, S, Q), and
i, j, integers such that 1 ≤ i ≤ j ≤ n.

If remove(i, j, S) /(P,Q) S then |= sposti−1(S, P)→ wprecj+1(S,Q)

Proof. It suffices to prove that VCGw(P, remove(i, j, S), Q) implies |= sposti−1(S, P) → wprecj+1(S,Q).
Again applying Lemma 5 (1) to remove(i, j, S) with k = i− 1 yields the following, which we now apply from
left to right.

|= VCGw(P, remove(i, j, S), Q) iff |= VC
s
[i−1](S, P), sposti−1(S, P)→ wprecj+1(S,Q), VC

w
[j+1](S,Q)

This is a guarantee that our test identifies all removable subsequences of commands of a correct program –
note that implications (1) and (2) cannot be reversed in this way.

Finally, note that the results in this section apply equally in the scope of total correctness and termination-
sensitive slicing (the proofs are similar, using Lemma 2 instead of Lemma 1). In particular, Lemma 5 (1)
and (2) hold with VCGw

t (resp. VC
w

t , VC
s

t) substituted for VCGw (resp. VC
w

, VC
s
). (3) is stated as follows:

if Ck = while b do {I, ev}Sb for some k ∈ {1, . . . , n}, then

|= VCGw
t (P, S,Q) iff |= VC

s

t [k − 1](S, P), spostk−1(S, P)→ I, I ∧ b→ ev ≥ 0,

VCGw
t (I ∧ b ∧ ev = x0, Sb, I ∧ ev < x0), I ∧ ¬b→ wpreck+1(S,Q), VC

w

t [k + 1](S,Q)

Proposition 1 applies with · J(P,Q) · substituted for · /(P,Q) · (note that removing any subsequence from a
terminating sequence of commands cannot result in a non-terminating sequence, so this is not surprising).
Proposition 2 also applies, with VCGw

t substituted for VCGw.

5.2. Slicing Subprograms

The conditional branching and loop commands are structurally composed of sequences of commands. We will
call these sequences (but not their subsequences) subprograms of the program under consideration. Given
a specification (P,Q) for a program, we associate to each of its subprograms a local specification, which is
obtained by propagating P and Q.

Definition 4 (Subprogram and Local Specification). Let S be a program and (P,Q) a specification
for it. We will write (P̂ , Ŝ, Q̂) b (P, S,Q) with the meaning that Ŝ is a subprogram of S, and moreover given
the specification (P,Q) for S the corresponding local specification of Ŝ is (P̂ , Q̂). The b relation is defined
inductively as follows.

• (P, S,Q) b (P, S,Q);

• If (P1, S1, Q1) b (P, S,Q) and (P2, S2, Q2) b (P1, S1, Q1) then (P2, S2, Q2) b (P, S,Q).

• If S = C1 ; . . . ; Cn and Ci = if b then St else Sf for some i with 1 ≤ i ≤ n, then

– (sposti−1(S, P) ∧ b, St,wpreci+1(S,Q)) b (P, S,Q)
– (sposti−1(S, P) ∧ ¬b, Sf ,wpreci+1(S,Q)) b (P, S,Q)

24 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

• If S = C1 ; . . . ; Cn and Ci = while b do {I}Sb for some i with 1 ≤ i ≤ n, then (I ∧ b, Sb, I) b (P, S,Q).

As expected, subprograms of a correct program are correct with respect to their local specifications.

Lemma 6. Let S, Ŝ be programs and (P,Q) a specification such that (P̂ , Ŝ, Q̂) b (P, S,Q), i.e. Ŝ is a
subprogram of S with local specification (P̂ , Q̂). If |= VCGw(P, S, Q) then |= VCGw(P̂ , Ŝ, Q̂).

Proof. By induction on the definition of the b relation. The first two cases are trivial. If S = C1 ; . . . ; Cn

and Ci = if b then St else Sf for some i ∈ {1, . . . , n}, Lemma 5 (2) yields |= VCGw(sposti−1(S, P) ∧
b, St, wpreci+1(S,Q)) and |= VCGw(sposti−1(S, P) ∧ ¬b, Sf , wpreci+1(S,Q)), as desired. Finally, if S =
C1 ; . . . ; Cn and Ci = while b do {I}Sb for some i ∈ {1, . . . , n}, Lemma 5 (3) yields |= VCGw(I ∧ b, Sb, I).

Let us now consider how the subprograms of S can be sliced with respect to a specification. The following
proposition states that slicing a subprogram of a program with respect to its local specification results in a
slice of the program.

Proposition 3. Let S, Ŝ be programs such that (P̂ , Ŝ, Q̂) b (P, S,Q). Moreover let Ŝ′ be a portion of Ŝ,
i.e. Ŝ′ � Ŝ, and S′ the program that results from replacing Ŝ by Ŝ′ in S.

1. If Ŝ′ /(P̂ ,Q̂) Ŝ then S′ /(P,Q) S

2. If |= VCGw(P, S, Q) and S′ /(P,Q) S then Ŝ′ /(P̂ ,Q̂) Ŝ

Proof. (1) Clearly S′ must be a portion of S. The refinement aspect is proved by induction on the definition
of b as follows.

• If Ŝ = S the result holds trivially, with S′ = Ŝ′.
• Let (P1, S1, Q1) b (P, S,Q) and (P̂ , Ŝ, Q̂) b (P1, S1, Q1). Moreover let S′1 be the program that results

from replacing Ŝ by Ŝ′ in S1. Then by induction hypothesis one has that Ŝ′/(P̂ ,Q̂) Ŝ implies S′1/(P1,Q1)S1.
Now let S′ denote the result of replacing S1 by S′1 in S. Then again by induction hypothesis one has that
S′1 /(P1,Q1) S1 implies S′ /(P,Q) S. Note that S′ can also be seen as the result of replacing Ŝ by Ŝ′ in S,
thus we are done since Ŝ′ /(P̂ ,Q̂) Ŝ implies S′ /(P,Q) S.

• Let S = C1 ; . . . ; Ci−1 ; if b then Ŝ else Sf ; Ci+1 ; . . . ; Cn. We assume |= VCGw(P, S, Q); using
Lemma 5 (2), this implies

|= VC
s
[i− 1](S, P), VCGw(sposti−1(S, P) ∧ b, Ŝ, wpreci+1(S,Q)),

VCGw(sposti−1(S, P) ∧ ¬b, Sf , wpreci+1(S,Q)), VC
w

[i+ 1](S,Q)

and since Ŝ′ /(sposti−1(S,P)∧b,wpreci+1(S,Q)) Ŝ, this in turn implies

|= VC
s
[i− 1](S, P), VCGw(sposti−1(S, P) ∧ b, Ŝ′, wpreci+1(S,Q)),

VCGw(sposti−1(S, P) ∧ ¬b, Sf , wpreci+1(S,Q)), VC
w

[i+ 1](S,Q)

Now observe that since S′ = C1 ; . . . ; Ci−1 ; if b then Ŝ′ else Sf ; Ci+1 ; . . . ; Cn, again by Lemma 5 (2)
one has |= VCGw(P, S′, Q). The case when Ŝ is the else branch is similar.

• Let S = C1 ; . . . ; Ci−1 ; while b do {I} Ŝ ; Ci+1 ; . . . ; Cn. We assume |= VCGw(P, S, Q); using Lemma 5
(3), this implies

|= VC
s
[i− 1](S, P), sposti−1(S, P)→ I, VCGw(I ∧ b, Ŝ, I), I ∧ ¬b→ wpreci+1(S,Q), VC

w
[i+ 1](S,Q)

and since Ŝ′ /(I∧b,I) Ŝ, this in turn implies

|= VC
s
[i− 1](S, P), sposti−1(S, P)→ I, VCGw(I ∧ b, Ŝ′, I), I ∧ ¬b→ wpreci+1(S,Q), VC

w
[i+ 1](S,Q)

Now observe that since S′ = C1 ; . . . ; Ci−1 ; while b do {I} Ŝ′ ; Ci+1 ; . . . ; Cn, again by Lemma 5 (3)
one has |= VCGw(P, S′, Q).

Assertion-based Slicing and Slice Graphs 25

(2) Ŝ′ is a portion of Ŝ; for the refinement aspect it suffices to prove that |= VCGw(P, S′, Q) implies
VCGw(P̂ , Ŝ′, Q̂). Again this is proved by induction on the definition of b. We illustrate this for the conditional
case, with S = C1 ; . . . ; Ci−1 ; if b then Ŝ else Sf ; Ci+1 ; . . . ; Cn. We have by Lemma 5 (2) that

|= VC
s
[i− 1](S, P), VCGw(sposti−1(S, P) ∧ b, Ŝ′, wpreci+1(S,Q)),

VCGw(sposti−1(S, P) ∧ ¬b, Sf , wpreci+1(S,Q)), VC
w

[i+ 1](S,Q)

and thus |= VCGw(sposti−1(S, P) ∧ b, Ŝ′, wpreci+1(S,Q)).

Recall that terminating programs admit non-terminating programs as specification-based slices, since
termination-insensitive slicing merely forces the preservation of the loop invariants. In particular, since
skip/(I∧b,I)S always holds (because |= I∧b→ I), for any P , Q, and I one has that while b do {I} skip /(P,Q)

while b do {I}S. Consequently, any program admits as a slice the program that results from removing the
body of every loop.

Of course, this does not apply in a total correctness setting. Again, if one substitutes · J(P,Q) · for ·/(P,Q) ·
and VCGw

t for VCGw, the previous results are valid also in the context of termination-sensitive slicing (the
proofs are similar). It suffices to consider an extra case in the definition of subprogram, for loops annotated
with variants, as follows:

• If S = C1 ; . . . ; Cn and Ci = while b do {I, ev}Sb for some i with 1 ≤ i ≤ n, then (I ∧ b ∧ ev =
x0, Sb, I ∧ ev < x0) b (P, S,Q).

The proposition can be used to further slice a program by slicing its subprograms with respect to their
local specifications. Conditional branches are sliced by propagating the postcondition inside both branches,
as well as the precondition strengthened with the boolean condition and its negation, respectively. In the
case of a loop with invariant I and condition b, it suffices to use as specification for the body of the loop the
assertions (I ∧ b, I), or (I ∧ b ∧ ev = x0, I ∧ ev < x0) for termination-sensitive slicing.

This can be of use in two scenarios mentioned in Section 4. If the program is being sliced to remove
redundant code, using a specification with respect to which it has been proved correct, then the loop an-
notations were adequate to prove correctness, and the proposition allows the removal of redundant code to
proceed inside loops (each loop body can be sliced with respect to the preservation of its invariant and the
strict decrease of its variant).

In a specialization / reuse scenario, the program is being sliced based on a weaker specification than
the one with respect to which it was originally proved correct. In this scenario, it may well be the case
that the loop invariants annotated in the program are stronger than they need to be – they have been used
to establish correctness with respect to a stronger specification than the one now being used. In order to
allow the slicing process to proceed usefully inside loop bodies, the user should first replace the invariants
by weaker versions that are sufficient for proving correctness with respect to the new specification, and only
then use Proposition 3 to slice the loop bodies with these weaker invariants.

Slicing Criterion. The above discussion raises a question concerning the criterion to be used for comparing
the quality of different slices of the same program. The criterion that was implicit in Section 3 considered
the total number of commands or lines of code in a slice. Note that for programs consisting only of atomic
commands (i.e. for sequences of skip and assignment commands) the number of commands and lines (as-
suming one command per line) are the same. In the presence of commands containing subprograms however,
this is not so, since our program syntax dictates that a loop or a conditional is a single command, regardless
of the length of their body / branch subprograms. A more appropriate measure (i.e. closer to the notion of
“lines of code”) is the number of atomic commands and boolean conditions.

Based on this criterion, selecting the minimal slice of a given program S = C1 ; . . . ; Cn implies taking
into consideration the number of commands and boolean conditions of each subprogram Ŝ of S – it makes
no sense to just count the number (between 1 and n) of top-level commands in each slice of S. Moreover,
since each Ŝ can be sliced with respect to its local specification following Proposition 3, the general structure
of a slicing algorithm should be to slice S only after slicing each of its subprograms with respect to its local
specification. Only then can the minimal slice of S be selected.

26 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

5.3. Intermediate Conditions

A major difference between the notions of slicing based on assertions and traditional notions based on
dependencies is that in the latter the slicing criterion always includes a line number k; in forward slicing
one asks for instructions not dependent on the values at line k of a given set of variables to be removed; in
backward slicing it is the instructions on which the values of the variables at line k do not depend that are
removed.

This can be mimicked in our context by introducing an intermediate assertion to be taken into account
for calculating a slice. We briefly explain here how our framework can be extended in this direction.

Definition 5 (Specification-based Slice with Intermediate Condition). Let S = C1 ; . . . ; Cn be a
program, (P,Q) a specification, and R an assertion such that |= spost(C1 ; . . . ; Ck, P) → R and |= R →
wprec(Ck+1 ; . . . ; Cn, Q). We say that the program S′ = S′1 ; S′2 is a slice of S with respect to the specification
(P,Q) and intermediate condition R at position k, written S′ /(P,R,k,Q) S, if

S′1 /(P,R) C1 ; . . . ; Ck and S′2 /(R,Q) Ck+1 ; . . . ; Cn

Although Definition 5 is sufficient to illustrate the idea, it can be generalized so that the intermediate
condition regards some subprogram of S. Multiple intermediate conditions can also be admitted.

Naturally, such slices are particular cases of specification-based slices – the intermediate assertion simply
restricts the definition further with respect to the specification. The following lemma is straightforward to
prove using Lemma 5 (1).

Lemma 7. If S′ /(P,R,k,Q) S then S′ /(P,Q) S.

Intermediate assertions can be used with the practical goal of facilitating automatic proofs by inserting
conditions that are obviously true at the given line, which may allow more commands to be sliced off. But they
also enrich the power of specification-based slicing, allowing one to slice fragments of the code with respect
to local conditions, possibly even omitting part of the global specification. An extreme case is to compute a
slice consisting of a postcondition-based slice of a prefix of a program, followed by a precondition-based slice
of a suffix, as in S′ /(wprec(C1 ; ... ; Ck,R),R,k,spost(Ck+1 ; ... ; Cn,R)) S. In this case the intermediate condition is the
only slicing criterion considered.

6. Labeled Control Flow Graphs

In Section 3 we have shown that the quadratic time algorithms – even our improved version, which always
eliminates the longest contiguous subsequence of S – do not produce minimal slices. In Section 7 we will
show that the problem of selecting commands to be removed from a program in order to produce a minimal
slice can be formulated as a graph problem, and solved using standard graph algorithms. In this section we
set up a basis for this, by defining a notion of assertion-labeled control flow graph of a program with respect
to a given specification.

Definition 6 (Labeled Control Flow Graph). Given a program S, precondition P and postcondition
Q such that S = C1 ; . . . ; Cn, the labeled control flow graph LCFG(S, P,Q) of S with respect to (P,Q) is a
labeled directed acyclic graph (WDAG) whose edge labels are pairs of logical assertions on program states.
To each command C in program S we associate its input node IN (C) and its ouput node OUT (C) in the
graph LCFG(S, P,Q). The graph is constructed as follows:

1. Each command Ci in S will be represented by one (in the case of skip and assignment commands) or
two nodes (for conditional and loop commands).

• If Ci is skip or an assignment command, let there be a new node Ci in the graph.
We set IN (Ci) = OUT (Ci) = Ci.

• If Ci = if b then St else Sf , let there be two new nodes if (b) and fi in the graph.
We set IN (Ci) = if(b) and OUT (Ci) = fi .

• If Ci = while b do {I}S or Ci = while b do {I, ev}S, let there be two new nodes do(b) and od in
the graph. We set IN (Ci) = do(b) and OUT (Ci) = od .

Assertion-based Slicing and Slice Graphs 27

2. Let LCFG(S, P,Q) also contain two additional nodes START and END .

3. Let LCFG(S, P,Q) contain an edge (OUT (Ci), IN (Ci+1)) for i ∈ {1, . . . , n−1}, and two additional edges
(START , IN (C1)) and (OUT (Cn),END). The labels of these edges are set as follows

label (START , IN (C1)) = (spost0(S, P),wprec1(S,Q)) = (P,wprec1(S,Q));
label (OUT (Ci), IN (Ci+1)) = (sposti(S, P),wpreci+1(S,Q)) for i ∈ {1, . . . , n− 1};

label (OUT (Cn),END) = (spostn(S, P),wprecn+1(S,Q)) = (spostn(S, P), Q).

4. For i ∈ {1, . . . , n}, if Ci = if b then St else Sf , we recursively construct the graphs

LCFG(St, b ∧ sposti−1(S, P),wpreci+1(S,Q)) and LCFG(Sf , ¬ b ∧ sposti−1(S, P),wpreci+1(S,Q))

These graphs are grafted into the present graph by removing their START nodes and setting the origin
of the dangling edges to be in both cases the node IN (Ci), and similarly removing their END nodes and
setting the destination of the dangling edges to be the node OUT (Ci).

5. For i ∈ {1, . . . , n}, if Ci = while b do {I}S, we recursively construct the graph

LCFG(S, I ∧ b, I)

If a loop variant is present, with Ci = while b do {I, ev}S, we construct instead the graph

LCFG(S, I ∧ b ∧ ev = x0, I ∧ ev < x0)

This graph is grafted into the present graph by removing its START node and setting the origin of the
dangling edge to be the node IN (Ci), and similarly removing its END node and setting the destination
of the dangling edge to be the node OUT (Ci).

Clearly every subprogram Ŝ of S is represented by a subgraph of LCFG(S, P,Q) delimited by a pair
of nodes START/END , if /fi , or do/od . Let us denote these nodes respectively by IN (Ŝ) and OUT (Ŝ).
The basic intuition of labeled CFGs is that for every pair of consecutive commands Ĉi, Ĉi+1 in Ŝ, there
exists an edge (Ĉi, Ĉi+1) in LCFG(S, P,Q) whose label consists of the strong postcondition of the prefix of
Ŝ ending with Ĉi, and the weak precondition of the suffix of Ŝ beginning with Ĉi+1, with respect to the
local specification (P̂ , Q̂) of Ŝ propagated from (P,Q). If |= VCGw(P̂ , Ŝ, Q̂) then every edge in the subgraph
representing Ŝ has a label (φ, ψ) such that |= φ → ψ, as a consequence of Lemma 5 (1). Moreover, by
Lemma 6, if |= VCGw(P, S, Q) then this must be true for every subprogram Ŝ of S, and thus every edge in
the graph LCFG(S, P,Q) has a label (φ, ψ) such that |= φ→ ψ.

If loops are annotated with variants, this is taken into account when constructing the subgraph cor-
responding to the loop’s body (point 5 of the definition). So we now have that |= VCGw

t (P, S,Q) implies
|= φ→ ψ for every label (φ, ψ) in the graph.

Finally, we remark that the LCFG of a program can be constructed in three steps by first building
the unlabeled CFG from the syntax tree of the program; then assigning the first component of the labels
by traversing the graph from START to END ; and finally assigning the second component by travers-
ing the graph in the reverse direction. In each of these traversals the label of each edge can be calcu-
lated locally from the labels of the (one or two) previous edges. In particular, for 1 ≤ k ≤ n we have
spostk(S, P) = spost(Ck, spostk−1(S, P)) and wpreck(S,Q) = wprec(Ck,wpreck+1(S,Q)). Note however that
the cost of constructing the graph is not linear on the program size, since weak preconditions are potentially
of exponential size on the length of the program (but this can be corrected to quadratic, see Section 8).

In this paper, labeled control flow graphs are used as a basis for the definition of slice graphs in the
next section. We observe however that they are interesting entities on their own; in [dCHP] we explore their
application for the interactive generation of verification conditions.

28 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

7. Slice Graphs

We will now define a notion of slice graph, in which removable sequences of commands are associated with
edges added to the initial control flow graph.

Definition 7 (Slice Graph). Consider a program S and a specification (P,Q) such that |= VCGw(P, S, Q)
(in which case we assume loops are not annotated with variants) or |= VCGw

t (P, S,Q). The slice graph
SLCG(S, P,Q) of S with respect to (P,Q) is obtained from the labeled control flow graph LCFG(S, P,Q)
by inserting additional edges as follows.

For every subprogram Ŝ = Ĉ1 ; . . . ; Ĉn, with (P̂ , Ŝ, Q̂) b (P, S,Q),

• If |= P̂ → Q̂, a new skip node is inserted in the graph, together with two edges (IN (Ŝ), skip) and
(skip,OUT (Ŝ)), both with label (P̂ , Q̂).

• For all j ∈ {1, . . . , n} if |= P̂ → wprecj+1(Ŝ, Q̂), an edge (IN (Ŝ), IN (Ĉj+1)) with label (P̂ ,wprecj+1(Ŝ, Q̂))
is inserted;

• For all i ∈ {1, . . . , n}, if |= sposti−1(Ŝ, P̂)→ Q̂, an edge (OUT (Ĉi−1),OUT (Ŝ)) with label (sposti−1(Ŝ, P̂), Q̂)
is inserted;

• For all i, j ∈ {1, . . . , n} such that i < j, if |= sposti−1(Ŝ, P̂)→ wprecj+1(Ŝ, Q̂), an edge (OUT (Ĉi−1), IN (Ĉj+1))
with label (sposti−1(Ŝ, P̂),wprecj+1(Ŝ, Q̂)) is inserted;

Note that this construction is purely based on the LCFG of S: P̂ , Q̂, sposti−1(Ŝ, P̂), and wprecj+1(Ŝ, Q̂)
can be read from labels of edges in the subgraph corresponding to the subprogram being considered. For
each subprogram, first-order conditions are generated for every pair of edges such that the first precedes the
second in the graph (the order in which this is done is irrelevant). If the validity of some condition cannot
be established, the corresponding edge will not be added to the graph, in accordance with the requirement
that slicing must be conservative.

As an example, Figure 4 partially shows the slice graph for program 5 with respect to the specification
(y > 10, x ≥ 0). Removable sequences are signaled by the thick edges (and one skip node) that are added
to the initial labeled CFG. Many edges are omitted to lighten the presentation of the graph; two edges are
missing in the then branch (from x := 100 to x := x−100 and from x := x+50 to fi), and in the else branch
five edges are missing – note that since the first component of every label in this path is a contradiction, an
edge is inserted from each node to every reachable node in the else branch).

For any given subprogram Ŝ of S, the slice graph contains as subgraph the LCFG of every slice of Ŝ with
respect to its local specification, and consequently also the LCFG of the program that results from replacing
in S any subprogram by one if its slices. The following result formalizes this fact.

Lemma 8. In the conditions of Definition 7, let i, j be integers such that 1 ≤ i ≤ j ≤ n, and S′ the program
resulting from replacing Ŝ by remove(i, j, Ŝ). Then

1. If |= VCGw(P, S, Q),

remove(i, j, Ŝ) /(P̂ ,Q̂) Ŝ iff the graph LCFG(S′, P,Q) is a subgraph of SLCG(S, P,Q).

2. If |= VCGw
t (P, S,Q),

remove(i, j, Ŝ) J(P̂ ,Q̂) Ŝ iff the graph LCFG(S′, P,Q) is a subgraph of SLCG(S, P,Q).

Proof. We prove 1 (the proof of 2 is similar, since propositions 1 and 2 also apply for termination-sensitive
slicing, as explained at the end of Section 5.1).
(Only if part) By Proposition 2, |= sposti−1(Ŝ, P̂) → wprecj+1(Ŝ, Q̂). Clearly the graph LCFG(S′, P,Q) is
equal to LCFG(S, P,Q), with the exception of a subgraph that is no longer present, and is replaced by an
edge (or two edges and a skip node). Moreover these new edges are present in the graph SLCG(S, P,Q),
following Definition 7.

(If part) We prove that |= VCGw(P̂ , remove(i, j, Ŝ), Q̂) (note that |= VCGw(P̂ , Ŝ, Q̂) must hold, following
Lemma 6). The graph LCFG(S′, P,Q) is the same as LCFG(S, P,Q), except for the subgraphs corresponding

Assertion-based Slicing and Slice Graphs 29

Fig. 4. Example slice graph (extract). Thick lines represent edges that were added to the initial CFG, corresponding to
“shortcut” subprograms that do not modify the semantics of the program. These paths have the same origin and destination
nodes as other longer paths corresponding to removable sequences

to the commands removed inside Ŝ. If LCFG(S′, P,Q) is a subgraph of SLCG(S, P,Q) then the edge or edges
that short-circuit the subgraph corresponding to the removed commands can only have been introduced (by
Definition 7) because |= sposti−1(Ŝ, P̂)→ wprecj+1(Ŝ, Q̂), and Proposition 1 allows us to conclude the proof.

A consequence of the previous result is that all slices of a program are represented in its slice graph, and
no other portions of S are.

Proposition 4. Let S, S′ be programs such that S′ � S. Then

1. If |= VCGw(P, S, Q),

S′ /(P,Q) S iff the control flow graph LCFG(S′, P,Q) is a subgraph of SLCG(S, P,Q).

2. If |= VCGw
t (P, S,Q),

S′ J(P,Q) S iff the control flow graph LCFG(S′, P,Q) is a subgraph of SLCG(S, P,Q).

Proof. We prove 1 (the proof of 2 is similar, since Proposition 3 also applies for termination-sensitive slicing,
as explained in Section 5.2).
(Only if part) The slice S′ is a portion of S, which is obtained by removing some top-level commands of
S and doing this recursively for some of the subprograms of S. By Proposition 3 (2), all the commands
removed in every subprogram of S must result in slices regarding the local specification of the corresponding

30 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

Fig. 5. Example slice graphs

subprogram. Consider any sequencing of these subprogram slicing operations; the proof proceeds by induction
on the length of this sequence using Lemma 8 (from left to right).
(If part) It is clear that in any control-flow graph that is a subgraph of SLCG(S, P,Q), each edge (or pair of
edges with a skip node) that is not present in the initial graph LCFG(S, P,Q) has been added relative to a
certain subprogram of S and short-circuits some commands in that subprogram. We consider any sequencing
of these extra edges; the proof proceeds by induction on the length of this sequence, using Lemma 8 (from
right to left) and Proposition 3 (1).

The slice graph then represents the entire set of specification-based slices of S, and obtaining the minimal
slice is simply a matter of selecting the shortest subsequences using the information in the graph.

Slicing Algorithms. A consequence of the previous result is that the problem of determining the minimal
slice of a given program S with respect to the specification (P,Q) can be reduced to determining the minimal
control flow graph contained in the slice graph G = SLCG(S, P,Q).

Consider the case of programs without loops or conditionals, consisting only of atomic commands. Figure 5
shows the slice graphs for the two problematic examples presented in Section 3. It is clear that for such
programs the control flow graph of the minimal slice (i.e. the slice containing the smallest number of atomic
commands) can be determined by a standard (unweighted) shortest paths algorithm (basically a breadth-first
traversal, linear on the size of the graph). This CFG contains of course a single path from START to END .

For programs containing loops, the same algorithm can be used. Following our remarks on slicing sub-
programs in Section 5, determining a minimal slice of a program implies determining the minimal slices of
its subprograms, but from the point of view of slice graphs this is irrelevant: when facing a while loop, the
shortest path algorithm will have to cross from the do node to the od node, and will naturally determine
the minimal slice of the loop body subprogram.

Conditional commands pose a more substantial problem. Simply applying a shortest paths algorithm
would select one of the branches of the conditional; what is required is to slice both branches with respect
to their local specifications, and then take into account the total number of lines of code of both branches,

Assertion-based Slicing and Slice Graphs 31

when slicing the sequence of commands containing this conditional. We sketch one way to do this combining
a weighted shortest paths algorithm with graph rewriting, as follows:

1. Assign a weight of 1 to every edge of the slice graph G.
2. For all conditional commands that do not contain any conditional commands as subprograms,

(i) run a shortest paths algorithm on the subgraphs of G corresponding to both branches of the condi-
tional, and let x = 1 + l + r, where l and r are the sum of the weights of the resulting paths in the
then and else branch respectively;

(ii) replace both these subgraphs by a single edge with origin if and destination fi , with weight x;

3. More conditional commands containing no branching in their subprogram graphs may now have been
created; repeat from step 2.

Some mechanism must additionally be used to keep track of the rewritten subgraphs, to allow the slice to
be read back from the final graph.

Finally, note that the notion of minimality implicit in this discussion is relative, since it is meant with
respect to a slice graph: the proof tool may have failed or timed out in checking some valid condition, and
thus an edge that should have been included in the graph is missing; the resulting slice will only be as good
as the graph.

Intermediate Assertions. Computing slices in the presence of intermediate assertions as introduced in
Section 5.3 requires no major modifications in our setting. It suffices to locate in the slice graph the edge
(Ck, Ck+1) with label (φ, ψ), and replace it by two new edges (Ck,New) and (New , Ck+1) with labels (φ,R)
and (R,ψ) respectively, where New is a new node inserted in the graph. The standard algorithm will then
compute a slice taking the intermediate condition into consideration.

8. Conclusion

Our online laboratory [dCHP10] incorporates all the slicing algorithms discussed in Section 3, as well as our
algorithm based on slice graphs.5 The laboratory can also be used for program verification; in particular it
allows the user to generate verification conditions in an interactive way and includes visualization capabil-
ities, see [dCHP]. The latter paper also shows that the notion of control flow graph labeled with semantic
information is of independent interest for program verification.

While the front-end is meant to allow for experimentation and comparison of different algorithms, one
obligatory step will be to calculate weak preconditions using Flanagan and Saxe’s algorithm [FS01], which
avoids the potential exponential explosion in the size of the conditions generated, keeping our algorithm
within quadratic time. We intend also to explore alternatives to strong postcondition calculations, to elimi-
nate the use of existential quantifiers. One such alternative is the notion of update, as used prominently in
the dynamic logic of the KeY system [ABB+05].

In future work we intend to construct a slicer for an intermediate verification language like BoogiePL [BCD+05].
This is a language used by a number of different verification tools for realistic languages, which are first trans-
lated into the intermediate language to take advantage of a common VCGen. We foresee that a slicer for
this language could very easily cope with code of the different high-level languages that can be translated
into it.

Acknowledgment. This work was supported by the projects RESCUE (PTDC/EIA/65862/2006), FAVAS
(PTDC/EIA-CCO/105034/2008), and CROSS (PTDC/EIA-CCO/108995/2008), all funded by Fundação
para a Ciência e Tecnologia (FCT).

5 Available from http://gamaepl.di.uminho.pt/gamaslicer.

32 J. B. Barros, D. da Cruz, P. R. Henriques and J. S. Pinto

References

[ABB+05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese, Reiner Hähnle, Wolfram Menzel,
Wojciech Mostowski, Andreas Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool. Software and System
Modeling, 4(1):32–54, 2005.

[BCC+05] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rustan M.
Leino, and Erik Poll. An overview of JML tools and applications. Int. J. Softw. Tools Technol. Transf., 7(3):212–
232, 2005.

[BCD+05] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and
Willem P. de Roever, editors, FMCO, volume 4111 of Lecture Notes in Computer Science, pages 364–387. Springer,
2005.

[BCF+10] Patrick Baudin, Pascal Cuoq, Jean-Christophe Filliâtre, Claude Marché, Benjamin Monate, Yannick Moy, and
Virgile Prevosto. ACSL: ANSI/ISO C Specification Language. CEA LIST and INRIA, 2010.

[BdCHP10] José Barros, Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto. Assertion-based Slicing and Slice
Graphs. In José Luis Fiadeiro and Stefania Gnesi, editors, Proceedings of the 8th IEEE International Conference
on Software Engineering and Formal Methods (SEFM’10), pages 93–102. IEEE Computer Society, 2010.

[BRLS04] Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The Spec# programming system: An overview. In
CASSIS : construction and analysis of safe, secure, and interoperable smart devices, volume 3362, pages 49–69.
Springer, Berlin, March 2004.

[CCL98] Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Conditioned program slicing. Information and Software
Technology, 40(11-12):595–608, November 1998. Special issue on program slicing.

[CH96] Joseph J. Comuzzi and Johnson M. Hart. Program slicing using weakest preconditions. In FME ’96: Proceedings
of the Third International Symposium of Formal Methods Europe on Industrial Benefit and Advances in Formal
Methods, pages 557–575, London, UK, 1996. Springer-Verlag.

[CLYK01] I. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon. Program slicing based on specification. In SAC ’01:
Proceedings of the 2001 ACM symposium on Applied computing, pages 605–609, New York, NY, USA, 2001. ACM.

[dCHP] Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto. Verification graphs for programs with contracts.
Submitted for publication.

[dCHP10] Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto. Gamaslicer: an Online Laboratory for Program
Verification and Analysis. In LDTA ’10: Proceedings of the Tenth Workshop on Language Descriptions, Tools and
Applications, pages 1–8, New York, NY, USA, 2010. ACM.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New Jersey, 1976.
[FDHH01] Chris Fox, Sebastian Danicic, Mark Harman, and Robert M. Hierons. Backward conditioning: A new program

specialisation technique and its application to program comprehension. In Proceedings of the 9th International
Workshop on Program Comprehension (IWPC’01), pages 89–97. IEEE Computer Society, 2001.

[FP11] Maria João Frade and Jorge Sousa Pinto. Verification Conditions for Source-level Imperative Programs. Computer
Science Review, 5:252–277, 2011.

[FS01] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion: generating compact verification condi-
tions. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 193–205, New York, NY, USA, 2001. ACM.

[HHF+01] Mark Harman, Robert M. Hierons, Chris Fox, Sebastian Danicic, and John Howroyd. Pre/post conditioned slicing.
In Proceedings of the IEEE International Conference on Software Maintenance (ICSM’01), pages 138–147. IEEE
Computer Society, 2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12:576–580, 1969.
[Mey92] Bertrand Meyer. Applying “Design by Contract”. IEEE Computer, 25(10), 1992.
[War09] Martin Ward. Properties of slicing definitions. In SCAM ’09: Proceedings of the 2009 Ninth IEEE International

Working Conference on Source Code Analysis and Manipulation, pages 23–32, Washington, DC, USA, 2009. IEEE
Computer Society.

[Wei81] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international conference on Software engi-
neering, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

[XQZ+05] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief survey of program slicing. SIGSOFT
Softw. Eng. Notes, 30(2):1–36, 2005.

