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Cork powder (50 wt.%) was mixed with polypropylene (PP) or polyethylene (PE) by pultrusion aiming to
prepare cork-based composites. In a further step, samples were produced by compression moulding
using the compounded composites. Bending strength, impact resistance, hardness, dimensional stability,
thermal and acoustic properties of the developed cork–polymer composites (CPC) were determined and
compared with commercially available products namely medium density fibreboard (MDF) and high den-
sity fibreboard (HDF). It was found that the CPC have good dimensional stability, lower water uptake, a
better acoustic insulation performance and similar behaviour in terms of hardness and fire resistance
when compared with both MDF and HDF. However, the mechanical strength is inferior comparing with
both commercial materials based on fibres. It was also observed that addition of cork improved the flex-
ural modulus, impact resistance and hardness on the developed CPC. Thus, the herein described CPC
materials showed important characteristics to be considered as good candidates to be applied in the
design of flooring and construction systems.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Wood polymer composites (WPC), have successfully proven
their applicability in several fields, particularly in the construction
sector, due to their aesthetics (similar to wood), easy processability
and low maintenance costs [1]. The use of lignocellulosics materi-
als as fillers and reinforcement with thermoplastics has been gain-
ing acceptance in commodity plastic applications [2]. Similar to
wood, cork is a natural, renewable and sustainable raw material
[3–5] with an unexploited potential to be used on the development
of partially or completely natural based composites [6–9].

Cork is the bark of an Oak tree known botanically as Quercus sub-
er L. [10] which is periodically extracted from the tree, usually every
nine to 12 years, depending on the culture region and is of the high-
est importance for the forest economy of the Southern European
countries and China [4,10]. The cork-tree offers the advantage of
being the only tree whose bark can regenerate itself after harvest,
making it a truly renewable material. In terms of morphology, cork
can be described as an anisotropic material with close cellular struc-
ll rights reserved.
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ture and thin-walled cells. Furthermore, cork presents a alveolar
structure similar to a honeycomb according the radial direction
and in the other directions (transversally) is a isotropic material
where the cells are described as rectangular prisms packed base to
base in columns parallel to the radial direction of the tree [11,12].
A thickness of 1 mm corresponds about thirty layers of cells [13].

Cork can be seen as a natural composite constituted by different
groups of compounds. The chemical composition includes [4,10]:
suberin, an aliphatic polyester, usually present in high concentra-
tions 33–50%; lignin, an aromatic polymer, corresponding to the
second most abundant structure in cork with 13–29%; polysaccha-
rides, including cellulose and hemicelluloses, that are usually pres-
ent at concentrations in the range of 6–25%; and the extractable
components at concentrations in the range 8.5–24%.

The structural properties of lignocellulosic materials like cork are
strongly dependent on temperature. Thermal decomposition of cork
has been studied by thermogravimetry [14] and the results have
shown that the mass decreases about 30% upon heating at 300 �C
and less than 10% at 200 �C [15]. It was also observed that the chem-
ical degradation starts at about 250 �C, in air, indicating that cork can
be heated up to 250 �C without inducing irreversible changes in its
composition. Chemical methods [16,17] and scanning electron
microscopy [16] were also applied and the results demonstrated
that waxes and other soluble components of cork begin to
decompose at ca. 150 �C and that cork is transformed into ash for
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temperatures above 450 �C. Polysaccharides are considered the most
heat sensitive component of cork [18]. Mass spectroscopy [19] and
13C solid-state NMR studies [17] reveal that at 400 �C cork has been
transformed into coke with traces of partially decomposed suberin.

The most important sub-products resulting from cork manufac-
turing are different types of cork powders. Part of these powders
are used as fuel on industrial furnaces, while the remaining por-
tions are usually disposed in landfills [20,21]. The strategy of com-
bining cork powder with polymeric matrixes [9,21,22], to produce
composites, has received little attention by the research commu-
nity. However, cork properties can provide several advantages in
the development of composites containing bio-based components.
Among other advantages, cork has a low density (120–240 kg m�3),
can be regarded as a hydrophobic and viscoelastic material, that
possess high thermal and acoustic insulation properties, low ther-
mal conductivity, fire resistance, aesthetic features and resistance
to microbial activity [3,4,13,23]. Moreover, cork powder is widely
available, sustainable, recyclable and of low cost.

The development of appropriated methodologies for the valori-
sation of this bio-based resource is of high interest [9]. In this work
two melt based technologies were used to produce cork–polymer
composites (CPC) materials: pultrusion to compound and obtain
pellets of two different composites (cork powder + PP and cork
powder + PE, in both cases a 50/50 wt.% ratio was used) and com-
pression moulding to produce boards with adequate characteris-
tics to be applied as core in flooring systems, furniture and
building applications. The use of a core based on CPC in alternative
to the MDF could be regarded as a new type of flooring able to
compete in the field of the floating floor coverings. For instance,
wood–plastic composites have shown distinctly better behaviour
than the MDF and natural wood after moisture exposure [24].
The growing of environmental awareness has resulted in a re-
newed interest in the use of natural materials with environmen-
tally friendly characteristics [25]. Formaldehyde-based adhesives
are currently used for fibreboard manufacture where the major
drawback of using this resin is the presence of volatile organic
compounds harmful to human health [26,27].

In this study, different boards – produced using the CPC com-
posites, the MDF and the HDF – were submitted to extensive char-
acterization tests and the obtained results compared. The main
goal was to prove and validate the potential of using the cork-
based composites on the production of boards as core for floating
floor coverings application. We selected to test MDF and HDF
boards as control since they are the most widely used wood com-
posites applied as building material, housing furniture and in lam-
inated flooring [26–28].
2. Materials and methods

2.1. Cork powder and fibreboard materials

The cork powder resulting from cork processing stages such as,
sanding and external operations, was collected at Amorim Revesti-
mentos S.A. (Oleiros, Portugal) industrial facilities. The cork
powder presents a particle size of 6250 lm, bulk density of
157 ± 2 kg m�3 and a humidity of �5.4%. It was also used two dif-
ferent types of fibreboard materials as control: HDF with density of
920.3 ± 6.7 kg m�3 and MDF with density of 822.7 ± 2.7 kg m�3

both of them with a resin content of 8 wt.% and supplied by Sonae
Industria SGPS, S.A. (Maia, Portugal).

2.2. Polymeric materials

A commercially available high density polyethylene (HMA –
025), HDPE, containing a thermal stabilizer and with a MFI of 8 g
10 min�1 and a polypropylene homopolymer (1374 E2), PP, with
a MFI of 21 g 10 min�1 were used on composites preparation. Both
polymers were supplied by Exxon Mobil (Germany). More details
on the properties of these polymers are reported in Table 1.

2.3. Composites processing

Before compounding all raw materials were dried (at 70 �C)
over night in a vacuum oven (Binder, Germany). Before compound-
ing the moisture content on the cork powder was 63%. Two differ-
ent cork-based composites – one consisting of cork powder with PE
and other consisting of cork powder with PP (in both cases 50–
50 wt.% ratio was maintained) – were compounded using an indus-
trial pultrusion system (Palltruder PFV 250, Germany). The CPC
consisting of HDPE with cork powder will be referred as PE/Cork
and the one from PP and cork powder as PP/Cork.

The composites, as pellets, were further compression-moulded
using a Moore hydraulic press (UK) to produce rectangular boards
of 220 � 220 � 6 mm3. The principal processing conditions are re-
ported in Table 2 and are similar to the ones used in previous work
[9]. Flexural, impact and tensile bars were cut from these boards
using a CNC machine (Roland 3D Plotter MDX-20, UK).

2.4. Dimensional stability tests

Aiming to study the dimensional stability of the different mate-
rials, water absorption and thickness swelling tests were con-
ducted according the ASTM D 570 [29]. To determine the water
absorption, specimens (measuring 6 mm in thickness, 60 mm wide
and 90 mm long) from the different materials were immersed in
distilled water, at 23 ± 1 �C and atmospheric pressure, for different
time periods (up to 11 days). In the end of each time period, five
specimens of each material were removed, gently blotted with tis-
sue paper to remove the excess water on the surface and immedi-
ately weighed. The water absorption was calculated according to:

Water absorption ð%Þ ¼Wa �Wb

Wb
� 100 ð1Þ

where Wa = weight of the specimen after being immersed for a cer-
tain period of time and Wb = weight of the same specimen before
immersion (g).

To determine thickness swelling after immersion, the thickness
of each immersed specimen was measured in two different points
using a digital micrometre (±0.01 mm). The thickness swelling was
calculated as follows:

Thickness swelling ð%Þ ¼ T2 � T1

T1
� 100 ð2Þ

where T2 = thickness of the specimen after immersion and
T1 = thickness of the same specimen before immersion. Three spec-
imens per each condition were measured.

2.5. Warping and density

Warping can result from an inferior product construction,
wrong choice of materials or inadequate processing routes. Other
reason that can cause this effect is the high moisture content in
the air. After processing, CPC boards (220 � 220 � 6 mm3) ob-
tained by compression moulding were submitted to a specific test
to access the possible occurrence of warping effect. The obtained
results were compared with the commercial fibreboard composites
cut with the same dimensions. In Fig. 1 is shown a schematic illus-
tration of the performed test. Fig. 1a shows the used system with a
pointer p with precision capability of 0.01 mm of displacement.
Two perpendicular measurements in each board were performed
according the indicated directions a and b. At least 15 boards (in



Table 1
Properties of the polymeric matrixes.

Polymer matrix Property Value

HDPE Melting temperature (�C) obtained by differential scanning calorimetry (DSC) 136.6
Melt flow index (g 10 min�1) at (T = 190 �C, load = 2.16 kg) 8.27
Densitya (kg m�3) 960.3

PP Melting temperature (�C) obtained by differential scanning calorimetry (DSC) 153.5
Melt flow index (g 10 min�1) at (T = 200 �C, load = 2.16 kg) 20.86
Densitya (kg m�3) 900.9

a Density according to the standard ASTM D 792.

Table 2
Processing conditions of the cork based composite boards of 6 mm thickness.

Specimens Pultrusion Compression moulding

Temperature (�C) Output (kg/h) Temperature (�C) Pressure (MPa) Time (min)

PE/Cork (50–50 wt.%) 150 350 150 1.42 14
PP/Cork (50–50 wt.%) 170 350 170 1.42 14

Fig. 1. Scheme of the specimen’s geometry: (a) with the measuring system and (b) board with warping.
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dry state) of each condition were analysed to evaluate the warping
effect.

The density of the materials was determined according the
ASTM D 792-00 [30], using an analytical balance equipped with a
stationary support for the immersion vessel. Five specimens were
weighted per each sample.

2.6. Mechanical tests

The mechanical properties of the developed cork-based com-
posites were determined performing flexural and impact tests. In
more detail, three point static flexural tests were carried out in
accordance with standard ISO 178 [31]. The dimensions of the
specimens used were 120 mm length, 15 mm width and 6 mm
thick. The load was placed midway between the supports with a
span (L) of 80 mm. The crosshead speed was 2.56 mm/min. These
tested were performed in an Instron 4505 Universal Machine
(USA) equipped with a 1 kN cell load. For each condition, the spec-
imens were loaded until the core break. The Charpy impact tests
were performed according the standard ISO 179-1 [32] on a Ceast
Fractovis (Pianezza, Italy) instrumented falling weight impact tes-
ter with a pendulum energy of 2 J. The notched specimens were
rectangular bars with 120 mm length, 12 mm width and 6 mm
thick. The hardness was determined by Shore-D Hardnes Tester
(model bareiss – Prüfgeräte, Germany). For each sample, the value
of Shore-D was calculated as the average of 10 indentations. All
performed tests were carried out in a standard laboratory atmo-
sphere of 23 �C and 50% of relative humidity and seven specimens
of each material were tested.

2.7. Morphology

To investigate cork distribution on the composite matrix and
the fibreboard specimens, the fracture surface was analysed using
a stereoscopic lens microscope Olympus SZ-PT (Tokyo, Japan)
equipped with a light source Olympus Europe Highlight 2000,
(Germany) and an Olympus DP11 (Japan), digital camera.

For more detailed analysis of the microstructure of the cork–
polymer phases, fracture surfaces of the different specimens were
examined using a NanoSEM 200 FEI (The Netherlands) scanning
electron microscope (SEM). Before being analysed all the samples
were coated by ion sputtering with an Au/Pd alloy (80–20 wt.%) in
a high resolution sputter coater of Cressington 208HR (Watford, UK).

2.8. Thermal properties

The thermal stability studies, determined by thermogravimetric
analysis (TGA) were performed to understand the degradation
characteristics of the specimens using a TGA Q500 series thermo-
gravimetric analyser (TA Instruments, USA). Experiments were
performed in platinum pan, at a heating rate of 10 �C min�1 from
50 �C to 600 �C in air atmosphere. Analyses were performed in
two samples of each condition.

2.9. Fire resistance

In designing building materials, fire resistance classification of
the product is one of the most important features. Single flame fire
tests were carried out according to the standard ISO 11925-2 [33].
The single flame source test was performed in specimens with
dimensions of 188 � 119 mm2 and 6 mm thick. The specimen
was held vertically and a flame was applied from the bottom edge
of the specimen becoming more aggressive effect on the materials.
According to the standard a burning time of 15–20 s was applied
and the burning dimensions after the test were registered. Three
specimens were tested for each composite. The fire resistance clas-
sification was attributed according of the standard fire test of
building materials EN ISO 13501-1 [34].



Fig. 2. Water absorption behaviour for the tested specimens during the immersion time (a) and detail of the water absorption for the cork based composites (b).

Fig. 3. Thickness swelling of the fibreboard materials and the cork based compos-
ites during the immersion tests.

Table 3
Density and warping measurements of the tested specimens.

Board MDF HDF

Densitya (kg m�3) 822.7 ± 2.7 920.3 ± 6.7
Warping mean (mm) 0.03 ± 0.02 0.04 ± 0.03
Board warping (%) 0.14 ± 0.09 0.18 ± 0.14

a Density according to the standard ASTM D 792; ±standard deviation values.
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2.10. Acoustic tests

The building elements for acoustic tests consisted on a superior
element from CPC or fibreboard with dimensions of
220 � 220 � 6 mm3 and an agglomerated cork underlay with
thickness of 1.8 mm thick. Commercially available silicone glue
(thickness of 0.5–0.6 mm) was used to fix the agglomerated cork
underlay to the previously produced boards (CPC, HDF and MDF
boards). The aim of including this agglomerated cork underlay
was to avoid reverberation sound and fix the boards. The pavement
was submitted to a uniformly distributed load (20–25 kg m�2). The
tests were conduct in a reverberant chamber with a 7.25 m length,
5.88 m width, 4.65 m height and a volume of 202 m3. The tests oc-
cur at atmospheric conditions 22 �C and 66% of humidity. The
equipment used for the measurements was a tapping machine
Brüel & Kjaer (B&K, Germany) Type 3204; B&K 2260 dual channel
real-time frequency analyser and B&K 13 mm microphone model
4189. The microphone height was about 1.4 m. The measurements
of sound insulation were performed according the standard EN ISO
140-8 [35] and 717-2 [36]. The measurements were taken at three
locations of the tapping machine relative to the floor sample area
PE/Cork (50–50 wt.%) PP/Cork (50–50 wt.%)

1060.6 ± 5.8 1017.5 ± 3.3
0.27 ± 0.16 0.31 ± 0.11
1.26 ± 0.74 1.44 ± 0.51



Fig. 4. Flexural stress–strain curves of the developed cork based composites and
the fibreboard materials.

3124 E.M. Fernandes et al. / Composite Structures 93 (2011) 3120–3129
of 2 m2 and five positions of microphone with to different lectures
using one-third-octave bands, 100–4200 Hz. The reduction of im-
pact noise by floor covering on standard floor was determined
according the equation:

DL ¼ Ln;0 � Ln ð3Þ

where DL is the reduction of impact sound pressure level, Ln,0 is the
normalized impact sound pressure level in the absence of floor cov-
ering and Ln is the normalized impact sound pressure level with
floor covering. The impact sound improvement index (DLw) was
determined according to the standard EN ISO 717-2 [36].

3. Results and discussion

3.1. Dimensional stability tests

The results from the water absorption and thickness swelling
tests are shown in Figs. 2 and 3 respectively. In the first 6 h of
immersion, the fibreboards samples absorbed 10.8 ± 0.4% (HDF
boards) and 14.8 ± 0.8% (MDF boards). In the first 48 h of immer-
sion the CPC samples absorbed less than 1% of water while the
HDF and MDF ones absorbed 32.7 ± 1.5% and 49.7 ± 0.7% respec-
tively. Moreover, after 11 days of immersion the maximum water
absorption percentage of the developed CPC boards was
3.7 ± 0.6% (for the PP/Cork) whereas the HDF and MDF boards ab-
sorbed, respectively, 77.9 ± 2.4% and 125.6 ± 0.9%. These differ-
ences (more than 70%) can be explained by the high amount of
polyolefin (50 wt.%) present in the CPC composition since, the
non-polar polyolefin absorbs no or little water amount [25,37]
and the inner volume accessible for water and oxygen is essentially
zero [38]. Moreover, cork can also be considered a hydrophobic
material. These results clearly indicate that CPC boards are more
hydrophobic and absorb much less moisture than the hydrophilic
MDF or HDF ones. These results also point out that CPC boards
are more suitable to be used on environments where the materials
are exposed to high moisture content than the control samples.
Similar behaviour was observed for wood polyolefin composites
developed using melt based technologies [39,40]. Like in wood
composites, the water absorption in CPC materials occurs due to
the presence of fine pores or lenticels in the cork particles (capil-
lary absorption) and hydrogen bonding sites, or by some micro-
cracks or gaps in the interface between cork particles and the poly-
meric matrix.

The thickness swelling results are shown in Fig. 3. The values
observed for both fibreboards are considerably higher than the
ones observed for the CPC boards. After an immersion period of
264 h, the values of thickness swelling were, respectively,
0.5 ± 0.2% and 0.8 ± 0.3% for the PP/Cork and PE/Cork based com-
posites, indicating good dimensional stability. On the contrary,
for the same time period, the thickness swelling values of MDF
and HDF were 85.3 ± 1.5 and 44.1 ± 1.0, respectively. Moreover,
Table 4
Flexural, impact and hardness properties of the cork based composites (50–50 wt.%) and t

Specimens Flexural

Strengtha (MPa) Modulus (GPa)

MDF 49.6 ± 0.9 4.35 ± 0.10
HDF 58.9 ± 3.7 5.27 ± 0.14
PP 29.0 ± 1.0 1.03 ± 0.03
PP/Cork 19.1 ± 0.5 1.75 ± 0.10
HDPE 19.5 ± 1.2 0.90 ± 0.08
PE/Cork 17.1 ± 0.7 1.29 ± 0.07

±Standard deviation values.
a Maximum stress.
b Notched Charpy impact strength (kJ/m2).
for the fibreboard specimens, thickness swelling values followed
a similar trend to water absorption behaviour: thickness swelling
values increased with the immersion time (Fig. 3). The CPC mate-
rials had a different behaviour: the thickness swelling was very
low and the variation between the different immersion periods is
almost insignificant. As in the water absorption behaviour, the
low thickness swelling values of CPC materials can be an advantage
for its application on the development and construction of several
products, including its application as core material for laminated
floor applications.

3.2. Warping and density

The density and warping values for the different materials are
shown in Table 3. The warping of the control fibreboards was near
zero, with the mean value of 0.14% for MDF and 0.18% for the HDF.
The developed CPC materials registered warping values of 1.26%
for PE/Cork and 1.44% for PP/Cork. These values, although higher
than ones registered for the fibreboards, can be considered small
enough to classify the developed composites of high dimensional
stability. The warping values were reduced with the addition of
cork powder and are probably related with the crystallinity of
the polymeric matrices (PP and PE) [38] where the presence of
50 wt.% of cork powder noticeably reduced the warping when it
was applied the compression moulded process. Additionally, thick-
er areas cooled slower and part distortion could occur [41]. In this
last case the warping can be reduced by increasing the cooling time
during the compression moulding process.

The density of the composites ranges from 1017.5 ± 3.3 kg m�3

for the PP/Cork composites to 1060.6 ± 5.8 kg m�3 for the PE/Cork
he commercial fibreboard materials.

Impactb Hardness

Strain at breaka (%) Strength (kJ/m2) Shore D

2.30 ± 0.14 21.38 ± 2.71 50.8 ± 0.6
1.96 ± 0.20 9.73 ± 2.51 50.2 ± 0.6
>10 2.84 ± 0.21 45.9 ± 1.4
1.68 ± 0.04 5.53 ± 0.24 49.5 ± 0.7
>10 4.44 ± 0.20 44.6 ± 2.1
2.46 ± 0.10 6.49 ± 0.15 47.9 ± 1.3
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composites. These values are higher than the ones observed for the
fibreboards. To understand this effect is important to note that the
cork cell wall density has been estimated to be 1200 kg m–3 [3,4].
Previous work using similar cork–polyolefin formulations [9] indi-
cates a bulk density of the CPC pellets after pultrusion of around
590 ± 11.4 kg m�3 to 602 ± 13.4 kg m�3. The densification occurs
in the compression moulding step due to the high applied com-
pression force of 1.42 MPa. Studies on wood–polyolefin (50–
50 wt.%) composites regarding thermal and photo-oxidative stabil-
ity indicate that the composite density controls the amount of air
oxygen flowing into the pores of the composite matrix [38]. The
higher density of a composite material blocks the access of oxygen
and slows the oxidative degradation process.

3.3. Mechanical tests

Flexural, impact and hardness properties of the different mate-
rials were determined and the results are shown in Table 4. All re-
sults are expressed as means ± standard deviation. The flexural
strength obtained for the fibreboard samples were higher than
the results obtained with the CPC materials (Fig. 4). The flexural
strength and modulus of the control materials based on fibres
where, respectively, �58.9 MPa and �5.3 GPa for the HDF and
�49.6 MPa and �4.4 GPa for the MDF. The CPC materials presented
Fig. 5. Fracture surfaces of the specimens after Charpy notched impact tests wit
modulus in the interval [1.8–1.3] GPa and strengths in the interval
[19.1–17.1] MPa. The better mechanical performance of the CPC
prepared with PP as matrix was expected since this polyolefin
has better mechanical properties than the used PE. The lower val-
ues observed for the CPC samples can be related with the lack of
interfacial adhesion and bonding between the matrix and the cork
powder. Due to this, no stress transfer occurs during deformation
resulting in low mechanical performance.

Regarding the flexural strain, the differences between the mate-
rials are not so evident. The samples from PE/Cork are the most
ductile of the tested materials with 2.46% deformation, where
the MDF presents a close value of 2.30%. The high capacity of defor-
mation of polyolefin is well known from the literature [42]. How-
ever, the addition of high percentages of cork (50 wt.%) reduced the
maximum strain to less than 3%. The results are in accordance with
other composite materials like wood–thermoplastic composites,
where the increase of wood content increases the flexural modulus
and decreases the flexural strength and maximum strain values of
the composites [1,43].

The purpose of the impact tests was to measure and compare
the resilience, i.e. the energy absorption capacity of the different
materials. As expected, the Charpy notched impact strength of
fibreboard samples, mainly the ones from MDF, exhibited better
mechanical properties when compared with the developed CPC
h (a) PP/Cork (50–50 wt.%), (b) PE/Cork (50–50 wt.%), (c) HDF and (d) MDF.
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materials. The neat polymers present the lower value of impact
strength of 4.4 kJ m�2 for HDPE and of 2.8 kJ m�2 for the PP. Never-
theless, the addition of 50 wt.% of cork powder to the HDPE and PP
matrices increased, respectively, �31% and �51% the impact
strength, indicating that the presence of cork in the composite
reinforces the energy absorption capacity. The cellular and elastic
structure of cork [3,4] can be an explanation for these results.
Regarding the CPC materials, the energy absorption capacity of
PP/Cork composite was 20% higher than in the PE/Cork composite.
Since it was used the same amount of cork powder (50 wt.%) and
the processing conditions were similar, the higher MFI of PP con-
tributed to a better dispersion of cork powder in the matrix and
consequently increase in the absorption capacity. In terms of hard-
ness, the specimens present similar values, around 49–51 Shore D,
being the lower value corresponding to PE/cork and the high value
to MDF material. When cork powder was added, hardness and the
flexural modulus increased for both cases, probably due to the pul-
trusion process and the applied pressure of 1.42 MPa during the
compression moulding process.

3.4. Morphology

The fracture surface, after Charpy notched impact tests, of the
studied materials was analysed by optical microscopy and the re-
sults presented in Fig. 5. For both CPC materials, it was observed
a good dispersion of the cork powder particles in the polymeric
matrix. In the case of the CPC with PP matrix it seems that cork dis-
tribution is more homogeneous. A possible explanation is the high-
er MFI value of the PP when compared with the MFI of HDPE (see
Table 1). The fibreboard materials illustrate the well known fibrous
aspect where the fibres are stacked like rows. This fibrous mor-
phology is consistent with the previously reported results, namely
Fig. 6. Micrographs of the impact fracture surfaces of the (a and c) PE/
the higher flexural mechanical performance and the ability of
water to penetrate on these structures, inducing higher thickness
swelling variations.

SEM micrographs from the same fracture surfaces are presented
in Fig. 6. At low magnification (Fig. 6a and b) it is visible the high vol-
ume content of cork powder in the CPC materials. The cork powder/
polymer weight ratio used for the composites preparation was 50%,
but the volume this ratio is respectively, 86–14%, respectively. In
Fig. 6c is shown the morphology of the PE/Cork (50–50 wt.%) mate-
rial, where is possible to see the stretching of the PE between the
cork cell walls. The same effect was observed for the CPC with PP ma-
trix (Fig. 6d). Both images suggest that the surface of the cork parti-
cles interacted well with the polymeric matrix since voids or empty
spaces between the two phases were not detected.

3.5. Thermal properties

The results of the termogravimetric analysis (TGA), conducted
under air atmosphere, and the respective derivate (DTG) are shown
in Fig. 7. Relevant data from all materials are summarized in Table
5. The cork powder showed an initial region of mass loss between
room temperature and 100 �C that is more significant for the two
fibreboard materials corresponding to the elimination of water.
In the case of the fibreboards the moisture content was higher, pre-
senting at 100 �C values of around 6% comparing with 3.4% in cork.
Nevertheless, as described in the literature, at 100 �C the moisture
present in cork is not totally eliminated [14]. As expected, the cur-
rent thermoplastics did not present residual moisture and, when
combined with cork powder the CPC materials presented a weight
loss in this region of 0.6–0.7%.

Considering the data presented on Table 5, the chemical degra-
dation of cork starts at 258 �C. This result suggests that the cork
Cork (50–50 wt.%) and (b and d) PP/Cork (50–50 wt.%) composites.



Fig. 7. TGA thermograms of the CPC composites with PP matrix and their
components (a) and DTG curves of the thermograms (b) under air atmosphere.
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powder can be processed with polymers having melting tempera-
tures lower than this value, such as the used polyolefin’s. However,
other effects like colour change of cork, promoted by the tempera-
Table 5
Thermal degradation characteristics of the tested specimens under air atmosphere.

Specimens TGA

Onset temp. (�C) Weight loss (%)

Cork Powder 258 5.71
PP 265 3.88
HDPE 274 0.76
HDF 275 13.80
MDF 265 10.29
PP/Cork 289 12.21
PE/Cork 282 5.81

Table 6
Fire resistance test results for the tested specimens.

Specimen Inflammability time (s) Burning dimensions

Length (mm)

MDF 15–20 17.0 ± 1.4
HDF 15–20 20.0 ± 0.1
PE/Cork 15–20 37.3 ± 4.0
PP/Cork 15–20 39.3 ± 1.9

a Fire resistance classification according the standard fire test of building materials BS
ture and the processing time, must be considered. Additionally, re-
sults from Fig. 7 have shown that when cork powder is mixed with
PP through melt-based technologies the thermal stability of the
polymer increases.

Analysing DTG curve from cork powder, two maximum peaks
were detected, one at 348 �C and other at 458 �C, being the first
one of large intensity. The first peak corresponds to the two major
constituents of cork (lignin and suberin fractions) and the second
one can be attributed to suberin, the most thermal resistant com-
ponent in cork. The polysaccharides composed by cellulose and
hemicellulose have degradation temperatures in the range be-
tween 300 �C and 400 �C [44].

The small values of weight loss (0.76%) and the high onset tem-
perature (274 �C) (see Table 5) obtained for HDPE are consistent
with the presence of the thermal stabilizer. Other effect can be
identified if the DTG values from both CPC are compared. In the
case of PE/Cork the decomposition temperature peak (Tmax1) oc-
curred at 341 �C with a weight loss of 28%. For PP/Cork the Tmax1

occurred earlier, at 313 �C with higher weight loss of 59%.
Both fibreboard materials showed multi-stepped degradation

processes due to the presence of different species on their compo-
sition (data not shown). Literature described that the pyrolysis of
wood begins with an early decomposition of hemicelluloses, fol-
lowed by an early stage of pyrolysis of lignin, where the major
decomposition temperature is normally attributed to the degrada-
tion of the cellulose [45].

Comparing all the tested materials, the most resistant is HDPE
and PE/cork composite, since the used thermoplastic composition
includes a thermal stabilizer. The fraction of the inorganic compo-
nents, remaining from cork powder or from fibreboards, after ex-
posed to 600 �C, is minimal being 1% for cork powder and less
than 0.6% for the fibreboards.

3.6. Fire resistance

The burning rates of the two different CPC and fibreboard mate-
rials were determined by single flame fire test (Table 6). The set-up
procedure for testing the fire resistance is illustrated in Fig. 8a. In
this test the flame takes contact at the edges of the specimen
and start to burn in the vertical direction. When the neat HDPE
was submitted to the flame (Fig. 8b) the material started dripping
DTG

Residual mass (%) Tmax1 (�C) Tmax2 (�C)

1.04 348 458
0.12 322 –
0.11 358 451
0.59 318 455
0.23 319 446
0.70 313 464
0.70 341 416/482

Fire resistance

Width (mm) Depth (mm) Euroclassea

20.3 ± 0.5 0 E
18.3 ± 0.5 0 E
38.3 ± 3.3 0 E
38.7 ± 3.5 0 E

EN 13501-1.



Fig. 8. System for testing the fire resistance (a) behaviour of PE to the flame (b) and CPC behaviour after fire test of the PE/Cork (50–50 wt.%) specimen (c).
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after a few seconds and the integrity of the material was com-
pletely lost. The addition of 50 wt.% of cork powder to the poly-
meric matrix improved such behaviour and the composites
maintained the integrity during the whole test. The presence of
cork powder sustained the polymeric phase and acted as a fire
retardant improving the performance of the composites. This
behaviour reinforces and agrees with the results obtained with
the TGA analysis. The fire resistance tests conducted on the fibre-
boards revealed that these materials possess a self-extinguishing
behaviour after removing the flame. This behaviour was not ob-
served for the composite materials since the flame does not extin-
guish eventually (Fig. 8c). Small differences in the burnt area were
found, being the fibreboard materials the ones with lower values.
Between the two CPC composites no relevant differences were
found. In our opinion, the effect of the cork powder is higher and
overlaps with the thermal stabilizer in HDPE.

The results from the fire resistance tests (Table 6) indicated that
all tested specimens possess a good behaviour regarding fire resis-
tance since all the tested materials had a classification of E.

3.7. Acoustic tests

By measuring the impact sound pressure level reduction, DL, of
the different board materials (Fig. 9), it was possible to compare, as
a function of the frequency, the behaviour of the different board
systems. As expected, the sound pressure level reduction increased
as the frequency increased. Moreover, it was found that, at high
Fig. 9. Impact sound reduction DL vs. frequency due to installation of the tested
materials: (s) MDF; (N) HDF and (j) PE/Cork (50–50 wt.%). Experimental results in
the 1/3 octave band frequency domain.
frequencies, the cork-based composite showed better behaviour
when compared with the commercially fibreboard materials.

The impact sound attenuation index (DLw), is useful for a direct
comparison of the reduction in impact noise transmission by the
floor coverings. The DLw values ranged from 18 dB (for MDF and
HDF floor covering) to 20 dB for the (PE/Cork) floor covering. The
obtained values are in the same range of values in the literature
[46,47]. The cellular and corrugated structure of cork together with
the high volume percentage of this natural material (�86%) can be
the key for the superior DLw value of 20 dB.

The board density, which is described as a parameter affecting
the sound transmission properties, can explain the improved
behaviour of the MDF compared with HDF in terms of impact
sound reduction especially for medium and high frequencies. In
the literature is also pointed that the use of urea–formaldehyde
(UF) resin in the fibre based materials can also contribute to addi-
tional improvement on the acoustic properties [28].

In the present work the DLw of the all tested floor coverings was
influenced by the use of silicon glue to fix the cork underlay to the
boards. The silicon might also improve the soundproof properties
providing a small increase on the impact sound attenuation index
values for all tested boards. The commercial fibreboard tested
materials also present a small percentage of UF resin.

4. Conclusions

The purpose of this study was to compare two different CPC
materials with two commercially available fibreboard materials
and detect its advantages and drawbacks. The obtained results
showed the potential of this natural-based product on the develop-
ment of composites with improved characteristics namely, low
water absorption, fire resistance, impact resistance and insulation
properties.

Both CPC materials compounded by pultrusion and further pro-
cessed by compression moulding presented a good dispersion and
distribution of the cork powder particles in the thermoplastic ma-
trix. Moreover, the CPCs reveal good dimensional stability with low
water absorption in comparison with fibreboard materials.

The mechanical properties of the fibre-based materials were
considerably superior compared with the ones from the CPCs. With
the addition of cork (50 wt.%), the flexural strength and strain were
considerably reduced and the modulus was improved in both
cases. The impact resistance tests confirm that the addition of cork
powder improved the energy absorption capacity of the used
polyolefin’s.

The presence of cork presents the advantage to act as fire retar-
dant in the thermoplastic composite materials. The acoustic behav-
iour revealed that CPC materials possess improved impact sound



E.M. Fernandes et al. / Composite Structures 93 (2011) 3120–3129 3129
insulation properties, low water absorption and reduced thickness
swelling. These materials proved to be good candidates to be used
as underlay materials on floor applications. The developed cork
composite materials present some promising properties, although
reinforcement strategies to reach to higher stiffness and strength
could be needed for specific applications.
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