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“Identification of modulators of ataxin-3 proteotoxicity in animal models of 

Machado-Joseph disease” 

 

Abstract 

At least nine human neurodegenerative diseases are caused by the expansion of CAG repeats 

within otherwise unrelated genes. In these diseases, including Machado-Joseph disease (MJD), 

polyglutamine (polyQ) expansions cause the appearance of misfolded protein species, that ultimately 

lead to the formation of aggregates and neuronal loss. Along with the pathogenic motif, all these 

diseases have in common the fact that the associated gene products are widely expressed but affect 

only specific subsets of neurons. This specificity suggests that protein misfolding and its toxic outcomes 

may be determined by the polyQ-flanking sequences of the specific disease-associated proteins. Ataxin-

3 (ATXN3) is a polyQ protein and expansion of its repetitive glutamine tract causes MJD. MJD is 

characterized by the formation of ubiquitylated intra-neuronal inclusions but the mechanism underlying 

mutant ATXN3-mediated neuronal dysfunction still remains unsolved. 

Caenorhabditis elegans offers unique advantages for examining the aggregation dynamics of 

aggregation-prone proteins and its toxic effects on individual neurons, since the transparency of all 959 

cells allows easy detection of fluorescent proteins in live animals. Despite having relatively few neurons, 

C. elegans display a wide array of complex behaviors and a clear link exists between the behavior and 

the function of neuronal subsets.  

In this study, we established a novel pan-neuronal C. elegans model for the study of ATXN3 

pathogenesis. Pan-neuronal expression of mutant ATXN3 leads to a polyQ-length dependent, neuron 

subtype-specific aggregation and neuronal dysfunction. Analysis of different neurons revealed a pattern 

of dorsal nerve cord and sensory neuron processes susceptibility to mutant ATXN3 that was distinct 

from the aggregation and toxicity profiles of polyQ-alone proteins. This suggests that the sequences 

flanking the polyQ-stretch in ATXN3 have a dominant influence on cell-intrinsic neuronal factors that 

modulate polyQ-mediated pathogenesis. 

We investigated the role of the wild-type (WT) ATXN3 in polyQ-related pathogenesis and found 

that WT ATXN3 is irreversibly recruited into polyQ-containing cellular aggregates, aggravating the 

animals’ motor dysfunction. In contrast, genetic ablation of endogenous C. elegans ATX-3 did not 

modulate MJD pathogenesis. Our findings support the idea that, unlike what happens in other polyQ 

disorders, WT ATXN3 does not seem to display a neuroprotective role in MJD.  
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We have also found that in C. elegans mutations reducing insulin/insulin growth factor (IGF)-1-

like signaling (IIS) pathway partially rescues mutant ATXN3-mediated aggregation and toxicity. 

Strikingly, other longevity-related pathways showed different effects on ATXN3 proteotoxicity: dietary 

restricted animals succumbed to neuronal ATXN3 pathogenesis at similar rates to those of regularly fed 

animals. In turn, mutations leading to altered mitochondrial function and known to lead to increased 

longevity showed heterogeneous effects: clk-1 mutation severely aggravated mutant ATXN3 

pathogenesis, whereas isp-1 mutation caused a significant delay in the appearance of aggregates. 

These results suggest that, in spite of improving global organism survival, aging-related pathways may 

not always show a positive effect on conformational disorders. 

Heat shock factor 1 (HSF-1) plays a neuroprotective role in ATXN3-mediated pathology in C. 

elegans. However, in mice, genetic reduction of Hsf-1 resulted in comparable motor uncoordination 

and pathology, when compared with MJD transgenic mice with two copies of Hsf-1 gene, suggesting 

that one copy of Hsf-1 is sufficient to cope with ATXN3(Q94) proteotoxicity in mice. 

Lastly, we validated our novel C. elegans model as a tool for identification of potential 

therapeutic compounds for MJD and established five compounds, potentially involved in heat shock 

response, autophagy, transcription regulation and longevity, as good candidates to test in higher model 

organisms for MJD. 

In summary, this work provided new clues for the study of ATXN3 pathogenesis and the role of 

the WT protein in disease. It raised new hypotheses regarding the mechanistic link(s) between aging 

determinants and proteotoxicity. It also made available a valuable C. elegans model/tool for drug 

discovery and target identification that can be very useful in future therapy development in MJD.     
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“Identificação de moduladoras da proteotoxicidade da ataxina-3 em 

modelos animais para a doença de Machado-Joseph” 

 

Resumo 

Diferentes doenças neurodegenerativas humanas são causadas por uma expansão de uma 

repeticão CAG em genes que, de outra forma, não estão relacionados. Neste tipo de doenças, 

nomeadamente na doença de Machado-Joseph (DMJ), a expansão de poliglutaminas (poliQ) está associada 

a uma alteração da conformação das proteínas, com consequente formação de agregados e perda de 

células neuronais. Além do domínio patogénico, todas estas doenças têm em comum o facto de as suas 

proteínas causadoras terem uma expressão ubíqua, mas somente afectarem populações específicas de 

neurónios características de cada uma das doenças. Esta especificidade sugere que a agregação proteica e 

os seus efeitos tóxicos podem ser determinados pela sequência aminoacídica de cada proteína. A ataxina-3 

(ATXN3) contém um segmento de poliQ cuja expansão está na origem da DMJ. A DMJ, assim como outras 

doenças de poliQ, é caracterizada pela formação de inclusões intraneuronais ubiquitiladas, mas o 

mecanismo associado à disfunção neuronal causada pela expressão da ATXN3 mutante não é totalmente 

compreendido. 

O nemátode Caenorhabditis elegans proporciona grandes vantagens no estudo dos efeitos tóxicos 

de proteínas poliQ em neurónios, uma vez que a transparência das suas 959 células facilita a detecção de 

proteínas fluorescentes in vivo. Apesar de apresentarem um número reduzido de neurónios, os C. elegans 

apresentam inúmeros comportamentos complexos, existindo uma relação clara entre a função de 

determinados subtipos neuronais e o comportamentos regulados por esses grupos de neurónios. 

Neste estudo, estabelecemos um novo modelo animal com expressão da ATXN3 humana em 

todas as células do sistema nervoso dos C. elegans, para o estudo da patogénese da DMJ. A expressão da 

ATXN3 mutada resulta no aparecimento de agregados e em disfunção neurológica. Ambos os fenótipos 

dependem do tamanho da sequência de poliQ da ATXN3. A análise de neurónios específicos revelou que os 

processos de neurónios sensoriais e do cordão nervoso dorsal são especificamente afectados em animais 

que expressam a ATXN3 mutante e não em animais que expressam proteínas poliQ. Estes resultados 

sugerem que o efeito das sequências flanqueantes da ATXN3 se sobrepõe a factores intrínsecos ao 

ambiente neuronal, modulando a patogénese mediada pelo tracto de poliQ. 

O papel da ATXN3 normal na patogénese da DMJ foi também investigado. Verificámos que a 

proteína normal é irreversivelmente recrutada para agregados de poliQ, provocando um agravamento do 

fenótipo motor destes animais. Em contraste, a deleção da ataxina-3 endógena (ATX-3) não modifica o 
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fenótipo do modelo da DMJ em C. elegans. Estes resultados sugerem que, ao contrário do que acontece 

noutras doenças de poliQ, a ATXN3 WT não parece ter um papel neuroprotector na DMJ.   

 Em C. elegans, mutações que reduzem a sinalização da via da insulina/factor de crescimento da 

insulina 1 (IIS) revertem parcialmente a agregação e toxicidade causada pela ATXN3 mutante. 

Surpreendentemente, outras vias que afectam a longevidade de organismos mostraram efeitos diversos na 

proteotoxicidade da ATXN3: animais em restrição calórica não apresentaram diferenças na patogénese da 

mediada pela ATXN3 mutada relativamente a animais com uma dieta ad libitum. Mutações que alteram a 

função mitocondrial e causam aumento da longevidade em C. elegans apresentaram efeitos heterogéneos: 

a mutação do gene clk-1 agravou o fenótipo de agregação, enquanto que a mutação do gene isp-1 atrasou 

o aparecimento dos agregados. Estes resultados sugerem que as vias da longevidade, embora aumentem a 

sobrevivência global dos organismos, nem sempre têm um impacto positivo no tratamento de doenças 

associadas a conformações proteicas. 

 O factor de choque térmico 1 (HSF-1) desempenha um papel neuro-protector relativamente à 

proteotoxicidade da ATXN3 em C. elegans. Contudo, em ratinhos esse efeito não é claro. A redução dos 

níveis do gene Hsf-1 em ratinho resultou num fenótipo de descoordenação motora semelhante ao de 

ratinhos contendo duas cópias do gene. Este resultado sugere que uma cópia do Hsf-1 é suficiente para 

combater a proteotoxicidade causada pela ATXN3 quando mutada.  

 Finalmente, validámos o nosso modelo em C. elegans como uma ferramenta para a identificação 

de potenciais compostos terapêuticos para a DMJ e identificámos cinco compostos, potencialmente 

envolvidos na regulação da resposta ao choque térmico nas células, na autofagia, na regulação da 

transcrição e na longevidade, como bons candidatos para testar em modelos da DMJ desenvolvidos em 

organismos evolutivamente mais próximos do humano, como é o caso do ratinho. 

 Em resumo, este trabalho trouxe novas pistas para o estudo da patogénese da DMJ e para o papel 

da ATXN3 normal na doença. Também levantou novas possíveis hipóteses no que diz respeito a ligações 

mecanísticas entre factores que determinam a longevidade dos organismos e a proteotoxicidade. Este novo 

modelo passou a estar disponível para a comunidade como uma ferramenta para a potencial descoberta 

de novas drogas e identificação de alvos que podem ser úteis para o desenvolvimento de terapias para a 

DMJ.    
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Thesis Outline 

 Protein folding is an essential cellular process and is recognized as the basis for several human 

diseases, collectively known as conformational disorders. In the cellular context, misfolding of a protein may 

result in aberrant protein interactions, abnormal subcellular localization, degradation and aggregation, ultimately 

leading to a decrease in availability of the functional protein, as in Cystic Fibrosis, or gain-of-toxic function, as in 

many neurodegenerative diseases. These comprise Parkinson’s disease, Alzheimer’s disease, amyotrophic 

lateral sclerosis, and polyglutamine expansion disorders, among others. The polyglutamine diseases constitute a 

class of nine genetically distinct disorders, which include Machado-Joseph disease (MJD), and are caused by 

expansion of a translated CAG repeat. Although the disease causing proteins are widely expressed in the central 

nervous system (CNS), specific populations of neurons are vulnerable in each disease, resulting in characteristic 

patterns of neurodegeneration and clinical features. This specificity suggests that protein misfolding and its toxic 

outcomes may be determined by the amino acid sequence of the particular protein. It still remains poorly 

understood how ATXN3 protein context modifies the phenotypic effect of the expanded polyQ-tract, and therefore 

this was one of the questions that we addressed in this work. 

 

The main goal of the work performed in this thesis was to identify modulators (genetic and 

pharmacologic) of MJD pathogenesis in a multicellular organism. We used the nematode C. elegans to express 

fluorescently tagged ATXN3 specifically in neuronal cells, as a model to study proteostasis in the context of MJD. 

The present dissertation is organized in 7 different chapters. Chapter 1 is the general introduction, the 

chapters concerning the experimental work are presented in Chapter 2 to 6 (in the format of research articles) 

and Chapter 7 is the general discussion of the work. The manuscript presented in Chapter 2 is in press, whereas 

Chapters 4 and 6 are in preparation.   

 

An overview of the literature relevant for the studies described here is given in Chapter 1. It focuses on 

the relevance of protein folding in the cellular environment and the consequences of disruptions in this process. 

A description of diseases caused by protein misfolding and aggregation follows, with particular focus on 

polyglutamine disorders and MJD. The pathogenic mechanisms underlying theses diseases, as well as the role 

played by aging in protein homeostasis and aggregation, are also discussed. Finally, a brief review of C. elegans 

models of polyQ diseases and their contribution to the field is presented.  

 

Chapter 2 describes the generation of a novel C. elegans model of ataxin-3-mediated pathogenesis, as 

well as its extensive characterization regarding expression, aggregation, neuron subtype- specific susceptibility 

and impact on the animals’ behavior. We found that ATXN3 flanking sequences greatly modulate polyQ-mediated 
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aggregation and neuronal dysfunction; the neuronal cell-type-specific susceptibility to expression of mutant 

ATXN3 proteins was not stochastic, and was distinct from that observed by expression of polyQ-alone.  

In spite of having dissimilar clinical presentations, and the identities of proteins involved being distinct, 

polyQ diseases display certain features suggestive of a common underlying mechanism of toxicity. The fact that 

all diseases have delayed onset, with symptoms appearing in late adulthood suggests that aging is a major risk 

factor. Our work shows that mutant ATXN3-related phenotypes in C. elegans are aggravated with aging, and 

pinpoints the protective roles of the DAF-16 and HSF-1 pathways in the suppression of proteotoxicity. 

One of the great advantages of the model here generated is the fact that presents quantifiable 

phenotypes, namely mutant ATXN3-mediated aggregation and motility defects; which can be relevant in 

therapeutic studies (see Appendix 3). Chapter 2.1 describes the details regarding the imaging processing 

application that we have developed specifically to quantify fluorescent protein aggregates in vivo in our model; 

this application is currently under further development and customization. This is the result of a highly 

collaborative work between biology and engineering fields.  

 

An emerging question arising from chapter 2 is how aging-related pathways, other than the 

Insulin/Insulin Growth Factor 1 (IGF-1)-like signaling, can influence proteotoxicity. Chapter 3 reports our 

surprising preliminary observations pointing to opposing effects of distinct aging-related pathways on mutant 

ATXN3-mediated pathogenesis. Mutation in clk-1, which catalyzes the final step of ubiquinone biosynthesis and 

confers a long lived phenotype to the animals, causes an increase in mutant ATXN3 aggregation; whereas 

mutation in isp-1, a subunit of the Complex III of the electron transporter chain that also increases lifespan, 

suppresses it. Dietary restriction-mediated increased lifespan showed no effect in the aggregation and toxicity of 

ataxin-3 in neuronal cells. Differences in proteostasis and folding capacity could underlie these findings. 

However, we are aware that a number of important experiments will be needed to further support or reject our 

hypothesis. 

 

One prominent question in the polyQ field is to understand the influence of the wild-type (WT) proteins 

in the disease context. Chapter 4 gives further insight into the role of normal ATXN3 in polyQ-mediated 

pathogenesis. Here, we found that WT ATXN3 is recruited into neuronal polyQ cellular aggregates and 

aggravates motor neuron dysfunction of a C. elegans model expressing polyQ-alone proteins. Endogenous atx-3 

knock-out has no major influence in mutant ataxin-3-mediated pathogenesis. These findings contradict the idea 

that WT ATXN3 plays a neuroprotective role, as has been suggested for MJD and other polyQ diseases. 

 

Chapter 5, “Searching for therapeutic strategies in a C. elegans model of MJD”, presents a candidate-

based approach for the development of new therapeutic approaches in MJD. The main goal was to validate our 

novel C. elegans model expressing full-length mutant ATXN3 as a good platform for screening of small 
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molecules. Results of the candidate drugs presented here constitute the proof-of-concept for future high 

throughput hypothesis-free testing of compound libraries (see Appendix 3).  

 

Results from our C. elegans model (Chapter 2) indicate HSF-1 as a potent suppressor of mutant ATXN3 

proteotoxicity. Based on this, we have tested the effects of HSF-1 in a higher model organism, namely a mouse 

model of MJD pathogenesis. However, Chapter 6 shows that genetic reduction of HSF-1 in mice had limited 

influence in pathogenesis. 

 

Chapter 7 integrates the results and describes their relevance in the field, as well as future 

perspectives. 

 

Two appendices are included in this thesis; one is a book chapter, written in Portuguese “Doenças de 

expansão de poliglutaminas – o paradigma das doenças de Huntington e de Machado-Joseph”, that will be 

included in the book Neurociências from LIDEL editorial. Appendix 2 shows the outline of the ongoing project 

Screening of therapeutic compounds in a C. elegans model of Machado-Joseph disease. Our specific goal in this 

project is to screen a library of 1200 FDA-approved out-of-patent small molecules for their ability to prevent or 

delay the formation of fluorescent mutant ataxin-3 aggregates (Chapter 2.1) and/or suppress motor neuron 

dysfunction (using automated motility analysis, currently under development in collaboration with Noldus 

Information Technology).  
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General introduction
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1.1 Protein folding, misfolding and conformational disorders 

Proteins are nearly the most abundant molecules in cells and constitute important effectors of cellular 

function. Upon synthesis, the majority of the nascent polypeptide chains does not acquire spontaneously its 

native conformation, but needs to be converted into compact folded structures in order to become functionally 

active. It is now widely accepted that within live cells there are a number of auxiliary factors that assist and 

promote the folding process. Those include folding enzymes and molecular chaperones (reviewed in (3).  

Molecular chaperones are important in the cell’s crowded environment that favors non-specific and 

folding-disruptive intermolecular interactions between hydrophobic amino acids of non-native proteins (4).  

An imbalance in protein homeostasis, whether caused by aging-associated cellular changes, cell stress, 

expression of mutant aggregation-prone proteins or by a combination of these factors results in the appearance 

of proteins with alternative conformations that can self-associate to form cellular aggregates. The cell has 

developed a highly efficient protein folding quality control machinery to regulate protein homeostasis and to avoid 

accumulation of misfolded proteins (5-7). However, under some pathological conditions, the capacity of this 

machinery is exceed and misfolded proteins may accumulate to deleterious levels. In fact, protein misfolding is 

recognized as the basis of numerous human diseases, collectively known as conformational disorders (8). The 

mechanisms underlying the majority of these disorders are yet to be unveiled, but the subsequent lack of proper 

protein folding results in the accumulation of both intra and extra-cellular misfolded proteins and is the cause of 

various neurological and systemic diseases of striking social impact. These include Alzheimer’s disease (AD), 

Parkinson’s disease (PD), Huntington’s disease (HD), spinocerebellar ataxias (SCA), including SCA3/Machado-

Joseph disease (MJD), type II diabetes, amyotrophic lateral sclerosis (ALS) and prion diseases such as 

Creutzfeld-Jakob disease (9, 10).    

 

1.2 Polyglutamine (PolyQ) diseases 

Pathogenic mutations that affect nucleotide repeats were first described in the early 1990s when the 

causative mutations in fragile X syndrome (FRAXA; also known as fragile site mental retardation 1, FMR1) (11) 

and spinal and bulbar muscular atrophy (SBMA) (12) were identified as trinucleotide repeat expansions. In the 

following years, this group of disorders has expanded also to tetra- (13) and pentanucleotide (14) repeat 

disorders.  

Nine disorders are caused by expanded (CAG)n repeats within the coding regions of the related genes, 

producing extended polyQ tracts in the expressed protein. These include: dentatorubral-pallidoluysian atrophy 

(DRPLA), which is caused by mutations in atrophin-1, a transcriptional regulator (15, 16); SBMA or Kennedy 

disease, associated with mutations in the androgen receptor (12), Huntington’s disease (HD), caused by a CAG 

expansion on the N-terminal of huntingtin (Htt) protein (17) and several forms of spinocerebellar ataxias (SCAs): 

SCA1, caused by mutations in ataxin-1 (18), SCA2, mutation in ataxin-2 (19), SCA3 also known as Machado-

Joseph disease (MJD) and caused by CAG-repeat expansion in the C-terminus of ataxin-3 (20), SCA6 caused by 
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a mutation in the α1A calcium channel (21), SCA7 (22) and SCA17 associated with a CAG expansion in TATA-

binding transcription factor (23, 24) (see Table 1.1).  

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Besides the polyQ tract, these proteins share no homologies, are unrelated to each other, vary in size 

and contain the polyQ tract at distinct locations of the protein sequence. It is thought that this common 

expanded polyQ tract highly contributes to the toxic properties of the proteins. These proteins are expressed in 

the central nervous system (CNS) as well as in the peripheral tissues. However, each polyQ containing protein 

originates a disease-specific neurodegeneration pattern (24-27). Eight of the nine characterized diseases are 

autosomal dominant (with the exception of SBMA, which is X-linked), completely penetrant and progressive. The 

Q-length is highly polymorphic and expansion of the CAG tract above a certain length threshold confers toxicity. 

In general, the pathological threshold length varies between 35-50 Qs (with the exception of SCA6). Within the 

expanded ranges, there is an inverse correlation between the number of CAG repeats and the age of disease 

onset (1) (Figure 1.1). Finally, for lengths above the threshold there is a striking intergenerational CAG instability. 

The expanded CAG repeats may expand or contract, but more often their instability manifests trough expansion 

of the polyQ tract (28). This causes earlier age at onset in successive generations, a phenomenon that was 

called anticipation (29-31).  

 

 

 

Adapted from (1). 
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Figure 1.1- Correlation between age at onset and CAG-repeat length for polyglutamine disorders. ‘+’ 

represent age at onset associated with various CAG repeats lengths. The age at onset for homozygotes for the various 

disorders is also shown (filled circles), plotted according to the longer of their two expanded CAG repeats. Figure adapted 

from (1). 

 

1.3 PolyQ diseases: specificity and commonalities 

     1.3.1 Protein aggregation is a unifying feature 

The direct evidence for an altered conformation of expanded polyQ-containing proteins comes from the 

fact that certain antibodies specifically recognize expanded, but not normal, polyQ stretches in proteins (27). 

Expanded polyQ proteins are susceptible to misfolding and aggregation. The natural propensity for aggregation is 

conferred by the formation of highly stable β-sheet structures. This β-sheet conformation is further stablilized by 

intermolecular interactions, which may underlie the formation of oligomers and aggregates (27, 32). 

Nuclear inclusions (NIs) or aggregates were first observed in the late 1990s in the brain of mouse 

models of polyQ pathogenesis as well as in post-mortem brain tissue of patients. Davies and colleagues detected 

NIs in the brain of a HD mouse model and suggested that the inclusions were formed through self aggregation of 

the polyQ repeat (33). In 1997, DiFiglia et al reported that the polyQ length influenced the extent of htt 

aggregation and accumulation in the HD cortex and striatum (34). In the same year, Paulson and colleagues 

found intranuclear inclusions in post-mortem brain tissue of MJD patients (35). Since this foundation, several 

studies have confirmed that aggregation occurs in post-mortem tissues (36-41) and in animal models of polyQ 

diseases, such as C. elegans (42-44), flies (45, 46), mice (33, 47-50) and cellular models (40, 51-56).     

  Aggregation of expanded polyQ proteins was therefore established as an unifying feature of polyQ and 

other neurodegenerative diseases such as AD, PD and prion diseases. The aggregates are usually detergent-

insoluble and exhibit several features of amyloids, like reactivity with anti-amyloid antibodies, Congo-red 

birefringence and binding to thioflavine T (51, 57, 58). Aggregates also show reduced mobility in the cell 
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environment, which can be measured using dynamic imaging techniques of fluorescently tagged proteins 

(reviewed in (59). 

  The function of the polyQ repeats in proteins is mostly unknown, however, when the whole human 

genome is considered, Q repeats are more frequent than any other type of amino acid repeats  (60).  

   

  Role of aggregates in disease: toxic or beneficial? 

A causal role for aggregation in polyQ pathology was proposed when different polyQ transgenic mice 

expressing large polyQ expansions were seen to develop progressive degeneration in the presence of inclusion 

bodies. However, aggregate formation could be instead a cellular attempt to trap these toxic species and prevent 

deleterious consequences to cell homeostasis.  

When NIs were initially described, several reports described a significant correlation between the 

presence of aggregates and cellular death (33, 61-64). It has been also observed that soluble polyQ proteins are 

efficiently cleared by the proteasome. However, once captured into aggregates, they become resistant to 

proteolysis and accumulate (65). Moreover, reduction of polyQ aggregation by over-expression of chaperones is 

associated with a decrease in cell death (66, 67). These observations led to a conceptual model in which the 

presence of aggregates was thought to be indicative of disease progression, and aggregation clearance was 

beneficial.     

Although these data suggest a link between aggregation and pathogenesis, the toxic species could be 

either the aggregates themselves, or the intermediates in the aggregation pathway, or there could be a 

contribution from both.  

In support to this idea, some researchers argue that NI may be inert or even protective to cells and 

point the intermediate misfolded oligomeric protein forms, as the pathogenic entity able to disrupt cellular 

function. Saudou and co-workers proposed that the inclusions were neither essential nor sufficient to trigger 

neuronal dysfunction in HD (68); an idea that was advanced also for SMBA (54). Another finding that supports 

this theory is the fact that the NI localization does not always match the disease pathology, namely in SBMA, HD, 

SCA2 and SCA7 (38, 69-73). Similarly in MJD, thalamic neurodegeneration occurs independently from ATXN3 

immunopositive neuronal intranuclear inclusions (74). Recent data has contributed more directly to this 

hypothesis. In a HD cell culture model, it was observed that the presence of inclusion bodies predicted better 

neuronal survival whereas diffuse huntingtin correlated significantly with cell death (75).  

It is possible that the monomers, soluble intermediates and insoluble aggregates have distinct 

deleterious effects upon neuronal function and act in different phases of the disease pathogenesis.  

 

     1.3.2 Gain-of-function in polyQ disorders  

The presence of polyQ expansions in several functionally unrelated genes is a strong clue suggesting 

that expanded polyQ tracts confer by themselves a toxic gain-of-function. Several additional lines of evidence 
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support to this hypothesis. For most of these disorders heterozygous and homozygous individuals display similar 

age at onset and symptoms. In contrast, individuals with loss of a single allele of the HD gene do not show any 

abnormal phenotype (76). Also, it was reported that mice null for huntingtin were embryonic lethal and when 

null for ataxin-1, mice were viable but showed decreased exploratory behavior and pronounced deficits in the 

spatial version of the Morris water maze test, none of which are features of HD or SCA1 (77, 78). ATXN3 knock-

out mice are also viable, and do not show defects in locomotion or major pathological hallmarks (79). In all 

cases, the loss of function of the endogenous protein did not recapitulate the neurodegeneration observed when 

polyQ expansions are present. Furthermore, the expression of mutant huntingtin, ataxin-1 or ataxin-3 causes 

neurodegeneration in mouse (and humans) even in the presence of normal endogenous protein (33, 48, 50, 

80). Finally, expanded polyQ tracts are also toxic when introduced in a gene that does not normally contain 

them. Insertion of 146 glutamines into the mouse hypoxanthine-guanine phosphoribosyl transferase (Hprt) gene 

resulted in neurodegeneration and premature death (81). The expression of a simple polyQ tract, in the absence 

of any additional protein context is also toxic, as shown in cell culture, mouse, Drosophila and C. elegans (49, 

82-84). Taken together, these data suggest that the polyQ expanded tract confers a toxic gain-of-function to the 

protein that bears it, which appears to be sufficient to cause neuropathology. However, the pathogenesis caused 

by the expression of the polyQ-stretch alone does not recapitulate all the disease features, suggesting additional 

determinant factors.  

 

     1.3.3 Contribution of the protein context to polyQ toxicity: role of the wild-type allele 

Although neurodegeneration in CAG-repeat diseases is the result of a toxic gain-of-function, some 

evidences suggest that a partial loss-of-function might also contribute to the overall pathology (85), producing 

disease-specific characteristics.  

Post natal elimination of Htt protein expression yielded striatal degeneration in Htt conditional knock-out 

mice (86). Moreover, in the HD yeast artificial chromosome (YAC) 128 mouse, absence of endogenous Htt 

expression accentuated HD neuropathology (87, 88). Several studies in vitro found that cells with depressed 

levels of Htt showed increased sensitivity to polyQ toxicity (89, 90). 

Absence of endogenous AR protein in AR100Tfm mice (91) (AR YAC transgenic mouse model with 

100Qs (AR100) (92) in an AR null (testicular feminization; Tfm) background) had profound effects upon 

neuromuscular and endocrine-reproductive features of this SBMA mouse model, as AR100Tfm mice displayed 

accelerated neurodegeneration and severe androgen insensitivity in comparison to AR100 littermates. Reduction 

in size and number of androgen-sensitive motor neurons in the spinal cord of AR100Tfm mice underscored the 

importance of AR action for neuronal health and survival (91). These studies suggest that SBMA disease 

pathogenesis involves two simultaneous pathways: gain-of-function misfolded protein toxicity and loss of normal 

protein function. 

 



12 

 

The importance of protein context and also of subcellular localization has been highlighted in SCA1, 

since the presence of the polyQ tract is necessary but not sufficient to explain the neurodegeneration phenotype 

in mice. Overexpression of expanded ATXN1 with a single serine mutated to alanine (S776A) does not lead to 

Punkinje cell degeneration. Moreover, lack of a functional nuclear localization signal or of the AXN domain in 

expanded ATXN1 is not toxic in mice (50, 93, 94). These data suggested that key domains in ATXN1, other that 

the polyQ tract, are critical for SCA1 pathogenesis. 

Furthermore, overexpression of polyQ-alone chains in fly neuronal and non-neuronal tissue causes 

cellular degeneration. However, the presence of other amino acids together with the expanded polyQ tract was 

seen to modify and reduce polyQ toxicity (82). Similar results were obtained in our C. elegans model of ATXN3 

pathogenesis (Capter 2).  

In MJD, it was shown that overexpression of the WT protein in the disease context (in mice and fly 

models) suppressed mutant-ATXN3 mediated pathogenesis (48, 95). Surprisingly, these observations were not 

replicated in other disease models and are still under debate. This issue will be addressed in Chapter 4.   

A model for CAG disorders is emerging in which the presence of polyQ expansions within the disease 

protein causes a change in conformation leading to a proteotoxic state that may be modulated, to a certain 

extent, by protein context. The loss of the normal protein function also contributes to the disease pathogenesis 

and might be involved in the neuronal specificity observed.  

  

     1.3.4 Neuron-specific toxicity  

The CAG-repeat diseases show distinct pathologies in terms of neurodegeneration and symptoms.  In 

HD, for example, neuronal death is most prevalent in the striatum and cerebral cortex, whereas in SCA1 

degeneration of neurons occurs in the inferior olivary nuclei, cerebellar dentate nuclei, red nuclei and Purkinje 

neurons in the cerebellum (reviewed in (2, 24). The cause of neuron-specific toxicity is a major unanswered 

question in the polyQ field. Early studies showed that the distinct neuropathologies of CAG-repeat diseases were 

not due to (i) neuron-specific expression pattern of polyQ proteins, (ii) neuron-specific protein levels or (iii) 

heterogeneity in CAG repeat-length among distinct neurons. 

(i) In fact, all of the proteins associated with CAG-repeat diseases are ubiquitously expressed (2, 24).  In 

patients, both WT and expanded Htt have been found in brain and non-neuronal tissues including skeletal 

muscle, lung, kidney, lymphoblasts, testis and ovary (15, 27, 31, 96, 97).  Similarly, there are (ii) no dramatic 

differences in expression levels of Htt between types of neurons or after disease onset (98). Nor were significant 

differences found between expression levels of WT or expanded polyQ tract Htt in heterozygous patients or 

animals models (96). (iii) A third possibility for neuron-specific pathogenesis was cell-specific heterogeneity of the  

polyQ length resulting in the loss of neurons with expanded polyQ tract and survival of neurons with fewer CAG 

repeats.  Widespread heterogeneity of the CAG-repeat in the brain has been described for SCA1, HD and DRPLA 

but no correlation to selective brain pathology has been found (96, 99-102), in studies using macroscopic brain 
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dissection. Laser-capture microscopy studies in DRPLA have shown that range of CAG repeats in the cerebellar 

granular cells is smaller than those in cerebellar glial cells (103). While there is some evidence of heterogeneity 

in the CAG-repeat length in juvenile HD cases (104) no correlation was observed between the mosaicism pattern 

and pathology (24). All this studies however, made use of post mortem tissue or at advanced ages, increasing 

the possibility that cells holding increased CAG repeats were no longer available for analysis. The use of animal 

models allowed longitudinal studies, but lack of correlation between increased CAG length and affected brain 

regions was also detected in a mouse model for MJD (105).  

Together, these studies show that neuron-specific toxicity in CAG-repeat diseases does not result from 

tissue-specific expression, neuron-specific differences in protein levels, or heterogeneity in polyQ length. 

Additional proposed mechanisms fall into two general classes: cell autonomous and non-autonomous 

mechanisms. Cell autonomous or intracellular mechanisms include any factors that determine sensitivity to 

polyQ-mediated pathology independently of neighboring cells or extracellular signals. PolyQ proteins, such as Htt, 

are known to be expressed ubiquitously in both neuronal and non-neuronal tissues. Given that polyQ 

pathogenesis is only observed in neurons, it seems likely that some ‘intracellular’ characteristic differentiates 

neurons from non-neuronal tissues and increases neuronal susceptibility. Further support for the possibility of 

cell autonomous factors acting in neurons comes from studies showing that a significant proportion of 

mammalian genes are only expressed in the nervous system (106). In contrast, the absence of HSF1 in rat 

hippocampal neurons (affected in AD) and an higher threshold for HSF-1 activation in motor neurons suggests 

the possibility that neurons may be selectively vulnerable to stresses that active the heat shock response in other 

cells (107, 108). Other proteins may be under-represented in brains regions affected in human polyQ-associated 

disorders and perhaps unveiling the neuron-specific proteome could be of great importance.   

Cell non-autonomous mechanisms imply interactions between different groups of cells. In the case of 

CAG repeat diseases, it has been suggested that pathogenesis is affected by interactions between types of 

neurons. For example, brain-derived neurotrophic factor (BDNF) is transported from the cortex to neurons in the 

striatum; a subset of neurons particularly susceptible to degeneration in HD.  It has been shown that WT Htt 

enhances the rate of vesicular transport of BDNF along microtubules and that function is compromised in the 

presence of expanded Htt. This study predicts that polyQ-mediated dysfunction in neurons of the cortex provides 

one of the intercellular signals leading to degeneration of the striatum (109).   

Extensive efforts are ongoing to understand how polyQ tracts, expressed within the context of disease-

associated protein sequences, may mediate neuron-specific degeneration.  

      

1.3.5 Aging as a major risk factor for neurodegenerative diseases 

Advances in medicine, nutrition, and public health have significantly increased the average human 

lifespan in the last century. The average lifespan has increased more than 50% since the early 1900s and today, 

living well into the seventh decade is common. Life expectancy in developed countries is now predicted to 
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exceed 85 years by the year of 2050 (110). In Portugal, life expectancy at birth is of 78.54 years in 2011 

(http://www.indexmundi.com/pt/portugal/expectativa_de_vida_no_nascimento.html).  

In the United States alone 12% of the population, approximately 37 million people, are over the age of 

65 (Agency, 2005). As the number of aged individuals increases, so does the prevalence of age-associated 

diseases. The lifetime risk of developing some form of dementia, one of the most common symptoms of 

neurodegenerative disease, is estimated to be 6-10% for men and 12-19% for women. The prevalence of 

dementia doubles every additional five years after 65, reaching 25-50% in those 85 or older (111). The number 

of deaths due to neurodegenerative disease has risen consistently in the past decades. This trend is expected to 

continue since the population over the age of 75 in the United States is expected to double within the next 50 

years (Statistics, 2005). Because lifespan continues to increase, understanding and treating neurodegenerative 

disease will become even more critical. 

With the discovery in the 1980s that mutations in single genes can significantly extend lifespan in the 

nematode Caenorhabditis elegans (112, 113), aging started to be viewed as a malleable physiologic 

phenomenon that could be modified by methods also used to understand development and disease. At present, 

hundreds of mutant genes are known that can increase longevity in model organisms, like yeast, nematodes, 

fruitflies and mice. Most act in evolutionarily conserved pathways that regulate growth, energy metabolism, food 

sensing and/or reproduction (114). Examples include genes encoding components of the insulin/insulin-like 

growth factor 1 (IGF-1) signaling (IIS) pathway, the target of rapamycin (TOR) pathway, and the mitochondrial 

electron transport chain. Interestingly, lifespan extension occurs when activity of the component is diminished, 

suggesting reduced somatic damage and/or increase in maintenance and repair, as a mechanism for prolonged 

life (114, 115). Increased activity of molecular chaperones and of folding capacity has been associated with 

increased longevity in worms (116).    

Although disrupting/activating conserved aging pathways identified in model organisms seems a 

plausible starting point for human lifespan extension, it must be first determined whether these pathways 

modulate aging and protect against aging-associated diseases in Homo sapiens. An initial approach was to 

identify associations between polymorphisms in or surrounding conserved genes and human longevity, since 

extreme longevity seems to be genetically controlled. Indeed, siblings of centenarians have increased probability 

to survive beyond 100 years, when compared with the regular population (117). However, so far linkage 

analyses have been inconclusive, possibly because studies were underpowered (118). 

Attempts to associate candidate genes with extreme human longevity have mainly identified gene 

variants in lipoprotein metabolism as overrepresented in centenarians (119), and variants in the FOXO1 and 3 

(120) genes; specifically in females, gene variants were found that reduce insulin/IGF-1 signaling (121). 

Recently, heterozygous mutations in the IGF-1R were also shown to be overrepresented in centenarians (122). 

Although these results are promising, growth hormone (GH) and IGF-1 deficiencies in humans are in some cases 

associated with major defects and diseases (reviewed in (123). However, the normal and possible longer 
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lifespan of a few individuals with mutations analogous to those that extend longevity in mice suggest that it may 

be possible to extend human longevity by reducing plasma GH and IGF-1 levels.                

 

1.4 Proteostasis networks and challenges 

Disease-associated aggregation-prone proteins undergo misfolding and cause a disruption in protein 

homeostasis in the cellular environment. In 2008, Balch, Morimoto, Dillin and Kelly introduced the term 

proteostasis as the state of dynamic equilibrium in which protein synthesis and folding are balanced with protein 

degradation. Proteins are maintained functionally active, thus leading to a healthy proteome (124, 125). 

Although the exact players that constitute and help to maintain functional proteostasis networks in cells are not 

yet totally known, they play an important role in the interaction between disease-associated proteins and their 

cellular environment. In several unbiased genetic screens using animal models of proteotoxicity, common factors 

were identified that may be critical to maintain proteostasis. Molecular chaperones and components of the cells 

degradation machinery are the most consistent modifier genes found, suggesting that assistance in folding, 

aggregation prevention and clearance of the non-functional aggregated species are crucial in vivo. Importantly, 

the hits obtained by screening for suppressors of polyQ or SOD1 aggregation in C. elegans showed a significant 

overlap with genes that are involved in the response to osmotic stress-induced protein damage (126-128). 

Moreover, many suppressor genes of ATXN3 neurodegeneration in Drosophila also suppressed toxicity in a 

hypomorphic Hsp70 fly strain (129). The hits of the aforementioned screens include proteins involved in RNA 

processing and protein synthesis in addition to protein folding and degradation hits. The data suggests a core set 

of genes that function both in stress-induced protein damage and in response to the expression of disease-

associated proteins. This core set of proteostasis networks factors may become compromised under disease 

conditions and during aging. Under physiological growth conditions, aging is accompanied by an increase in the 

amount and quality of aggregated proteins (130). Unfortunately, cells are unable to cope with the challenging of 

the proteostasis robustness that occurs during aging. The aging-related decline in the functionality of proteostasis 

networks is well documented at least in HD, with the levels of functional chaperones and the capacity of the 

clearance mechanisms diminished during aging. Increase in protein damage, transcriptional and translational 

dysregulation, aberrant signaling, and other changes also follow this decline. If this is the case cell-type-specific 

differences in the proteostasis networks and the robustness of adaptive stress responses may underlie disease-

specific proteotoxicity.  

 

1.5 Polyglutamine pathogenic mechanisms 

 As discussed above, several cellular and molecular mechanisms have been proposed for polyQ 

pathology, which suggest a gain-of-toxic function to the expanded polyQ tract, in some cases associated with 

loss-of-function mechanisms of the disease-specific proteins. Figure 1.2 summarizes the pathogenic 
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mechanisms that have been proposed for polyQ disorders. Nevertheless, it is important to highlight that not all 

the putative pathogenic mechanisms represented in Figure 1.2 were specifically tested for each disorder.  

 

 

 

 

 

 

  

    

 

 

 

 

 

 

 

 

 

Figure 1.2. Mechanisms of polyglutamine pathogenesis. Various pathogenic pathways have been suggested. The pathogenic 

process (blue arrows) begins with the synthesis of a protein with an expanded polyQ tract. The expanded polyQ tract alters the native 

conformation of the protein, modulated by the presence of molecular chaperones and co-chaperones. At least a fraction of the abnormally 

folded protein is subjected to lysosomal-dependent proteolysis, and another portion of the abnormal protein is ubiquitylated (Ub) and 

degraded via the proteasome. Cleavage of the abnormally folded mutant protein produces polyQ-containing fragments that favour the 

aggregation process. The mutant proteins shift, in part, from a monomeric random coil or β-sheet into oligomeric β-sheets and eventually 

into insoluble aggregates. These might contribute to pathology through abnormal interactions with cellular proteins, or might represent a 

mechanism for reducing the toxicity of aggregation intermediates. Aggregation intermediates inhibit proteasomal processing. The 

monomers or oligomers directly activate caspases or disrupt mitochondrial function, leading to indirect activation of caspases. Mutant 

polyQ proteins also bind to inositol-(1,4,5)-tri-phosphate receptor (IP
3
R) and increasing calcium release into the cytoplasm. Aggregation 

intermediates translocate into the nucleus (by an unknown mechanism) and recruit specific nuclear factors, co-activators and co-

repressors, inhibiting their normal activities and resulting in altered gene transcription. As a simplification, mutant proteins are depicted 

as originating in the cytoplasm, although some of them might also be located in the nucleus or cycle between the cytoplasm and nucleus. 

 

1.5.1 Disruption of proteostasis 

 The mutant polyQ-containing proteins undergo ubiquitylation and recruit proteasome subunits and 

molecular chaperones into the aggregates (35, 131, 132). In several cellular and organism models, the 

overexpression of chaperones was found to modify the toxicity phenotype (132-134). This finding suggests the 

involvement of the ubiquitin-proteasome system (UPS) in these pathologies, and of the heat shock response 

machinery in order to either refold or degrade the mutant polyQ proteins. The mislocalization of chaperones and 

proteasome subunits may underlie the progress of the disease. Molecular chaperones were shown to associate 
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with the aggregates only transiently and to move freely (135). In contrast, the proteasome subunits were 

irreversibly recruited into the aggregates, possibly “caught” when attempting to degrade the misfolded proteins 

(136). Furthermore, it was shown that the proteasome is unable to efficiently degrade polyQ proteins due to their 

intrinsic properties (137), and there is a physical blocking of the proteasome by oligomers/aggregates of polyQ 

proteins. Conversely, the accumulation and aggregation of the polyQ proteins was shown to be promoted by 

inhibition of proteasome activity (138). Proteasome activity was also found to decrease both in brains of aged 

rats (139) and mice (140). These observations are particularly relevant since age-dependency is characteristic of 

polyQ disorders. A decline in proteasomal activity associated with both the accumulation of misfolded proteins 

and aging would initiate a deleterious cascade: less free proteasome means a slower clearance of proteins, 

leading to enhancement of protein aggregation (136). 

 In spite of all this compelling data demonstrating the impairment of the UPS in polyQ expansion 

disorders, this topic is controversial since some groups showed an increase in proteasome activity (141, 142) .  

Moreover, impairments in the autophagy process have more recently also been associated with 

neurodegeneration (143). Evidence of the involvement of autophagy in conformational disorders arises mainly 

from the observation that autophagic bodies accumulate in AD (144), PD (145) and MJD (146) brains.   

Autophagy is the process by which intracellular proteins or organelles are degraded through the 

formation of double membrane structures, the autophagosomes. They fuse with primary lysosomes, where their 

contents are degraded, being later disposed or recycled back for cellular use (147-149).  

It is not completely understood which proteins are degraded by the UPS or by autophagy, nor how or 

when the cells decide to use one pathway in detriment of the other. In 2007 Pandey and colleagues described 

autophagy also as a compensatory mechanism in circumstances of proteasome impairment (150). Moreover, 

the size and tridimensional conformation of the aggregates and oligomeric intermediates may also determine the 

chosen degradation pathway: once the mutant proteins are organized in oligomers, they may be degraded by 

certain types of autophagy rather than the by UPS, or by chaperone-mediated autophagy (CMA). In 2004, 

Cuervo et al has shown that only WT α-synuclein was degraded by CMA and that the mutant protein blocked the 

degradation of other CMA substrates and activated macroautophagy (145).    

In summary, impairment of proteasome/autophagy function(s) and reduction of available molecular 

chaperones in the cellular environment may compromise degradation and folding of the disease-associated 

proteins and possibly also of other proteins that play important roles in the cells, causing a general disruption in 

proteostasis.    

 

1.5.2 Perturbations in transcriptional regulation 

Non-specific recruitment of cellular proteins into nascent polyQ aggregates is thought to contribute to 

cellular dysfunction. Co-localization of WT proteins to polyQ aggregates may be transient or may reflect an 
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irreversible sequestration that depletes cellular factors from their normal localization and thus compromises their 

function, and ultimately may lead to toxicity (151).  

In addition to molecular chaperones and proteasome subunits, polyQ aggregates co-localize with critical 

cellular components such as the transcription factors (TFs) TATA-Binding Protein (TBP), CREB (cyclic AMP-

responsive element binding protein) Binding Protein (CBP), Specificity Protein 1 (SP1) and TAFII130 (which 

encodes a TBP-Associated Factor). The recruitment of TFs together with other essential cellular components 

would be expected to have important cellular consequences (152).  

Deletion of CREB or SP1 genes in mice resulted in an HD-like phenotype (153). Also, CBP recruitment 

into the aggregates was shown to be associated with neuronal toxicity, and downregulation of CRE-regulated 

genes was detected in HD patients (154). In addition, levels of soluble CBP are known to be reduced in cells 

expressing expanded polyQ despite increased levels of CBP mRNA. CBP overexpression rescued the reduced 

transcription of CBP-dependent genes and was sufficient to suppress polyQ toxicity (155, 156). Also, histone 

deacetylase inhibitors, which globally increase transcription, ameliorate polyQ-mediated neurodegeneration in 

cell culture, fly and mouse models of HD, presumably by altering gene expression patterns (157).  

Atrophin-1 is known to be involved in transcription regulation by association with the nuclear receptor 

co-repression complex ETO/MTG8 (158) and to act as a member of a co-repressor complex in Drosophila (159). 

ATXN3 also seems to inhibit the acetyltransferase activity of several transcriptional coactivators such as CBP, 

p300 and p300/CBP-Associated Factor (pCAF) (160). Changes in transcriptional regulation activities of these 

proteins induced by the polyQ expanded might be relevant in disease.   

 Either by sequestration of TFs or by aberrant interactions, a common aspect of polyQ disorders is the 

transcriptional de-regulation, which highlights the importance of studying this pathway for the development of 

potential therapies. 

 

1.5.3 Role of proteolysis and other post-translation modifications in polyQ diseases 

One hypothesis concerning the mechanisms of neurotoxicity of polyQ proteins states that this toxicity 

depends on the cleavage of the mutant protein, releasing a toxic polyQ-containing fragment, which is required for 

initiation of the aggregation process and for harmful effects to the neurons. It is suggested that these polyQ-

bearing fragments may translocate into the nucleus, where they exert toxic effects (161-163). Such cleavage- 

and nuclear translocation-dependent toxicity have been demonstrated for atrophin-1 (164). Whether cleavage is 

an important step in disease pathogenesis or is a normal event in degradation of polyQ-containing proteins 

remains in question. Initial evidence for Htt cleavage in human HD brain was obtained using a panel of 

antibodies to different epitopes of the protein (39). Only antibodies specific for the N-terminal of Htt (including 

the CAG-tract) were able to detect NIs. Similarly, in SMBA brain tissue, only antibodies to the N-terminal, which 

includes the Q tract, were able to detect AR NIs (72). According to Schmidt et al. (1998) and to Goti et al. 
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(2004), in MJD/SCA3, only antibodies to the polyQ-bearing C-terminus region of ataxin-3 were able to detect NIs 

(36, 165).   

Extensive evidence has been collected regarding in vitro cleavage of several polyQ proteins, especially 

by caspases. The earliest indication that proteolysis might play a role in HD was the discovery that Htt could be 

cleaved by extracts from apoptotic cells, specifically by caspase-3 (166). A more recent study has also shown 

that inclusions from HD brains contain N-terminal fragments of mutant Htt rather than the full-length protein 

(167). Although these fragments may result from unspecific proteolytic activities, it has been demonstrated that 

specific cleavage of the mutant protein is an early event in HD pathogenesis, supporting the idea that the smaller 

products of specific cleavage may seed the formation of inclusions, being followed by the recruitment of larger 

non-specific fragments (168). Interestingly, nuclear translocation of expanded Htt was delayed in mice 

expressing mutant Htt resistant to caspase-6 cleavage (169).  

In MJD/SCA3, Berke and colleagues showed that ATXN3 is a target for caspase-mediated cleavage in 

cell culture. Full-length ATXN3 is cleaved in staurosporine- induced apoptosis and this leads to the appearance of 

a C-terminal ATXN3 fragment of 28-kDa. This proteolysis may be predominantly mediated by caspase-1 (170). It 

has also been suggested that ATXN3 is cleaved by calpains in cell culture, but in vivo evidence is still lacking 

(171). The putative C-terminal ATXN3 fragment was also found in a transgenic mouse model (165). Brains from 

sick Q71 transgenic mice contained an abundant mutant ATXN3 mjd1a putative cleavage fragment, which was 

scarce in normal Q71 transgenic mice. Reactivity of the fragment with a panel of antibodies and co-migration 

with truncated versions of mutant ataxin-3 revealed that it contained residues C-terminal to amino acid 221, 

which is in accordance with the studies in cell culture. This fragment was more abundant in two affected brain 

regions of MJD patients (165). 

These data support a model in which proteolysis of polyQ expanded proteins, formation of protein 

aggregates and subsequent sequestration of crucial cell proteins (including normal polyQ protein) are required 

for disease onset.   

Besides proteolytic cleavage, other post-translational modifications of mutant polyQ proteins, such as 

phosphorylation, have been shown to play a role in pathogenesis. Phosphorylation of the mutant protein Htt has 

an impact in the proteolytic cleavage, change in conformation and in nuclear transport, which are key steps for 

the disease manifestation (172). It has been demonstrated in vitro, that the toxicity of mutant Htt could be 

decreased or inhibited by phosphorylation of Htt at S421 (173), at S434 (174), and at S536 (175). These 

results suggest a neuroprotective role of this phosphorylation in HD (176).  

A similar effect has been observed in MJD, in which ATXN3 phosphorylation at S256 by glycogen 

synthase kinase 3β reduced mutant ATXN3 aggregation in vitro (177). CK2-dependent phosphorylation of ATXN3 

at S236 and S340/S352 decreased the appearance of NIIs and controlled the nuclear translocation of ATXN3 

providing a reasonable therapeutic approach for MJD (178). In contrast, phosphorylation of mutant ATXN1 at 

S776 is associated with the formation of aggregates and neurodegeneration (179). Together, these observations 
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suggest that post-translational modification play an important role in the manifestation and/or progression of the 

disease, reinforcing the idea that the protein context in which the polyQ-stretch is located influences the 

pathology. 

 

1.5.4 Role of nuclear versus cytoplasmic localization of mutant proteins 

 The presence of polyQ aggregates in the nucleus of cells is thought to play an important role in the 

disease pathogenesis by at least two main mechanisms: (i) by disrupting nuclear organization and function (180) 

and/or (ii) by affecting gene expression (24). In mammalian cells, aggregated polyQ peptides were shown to be 

highly toxic when target to the nuclei and less so in the cytoplasm (163). Some studies revealed that nuclear 

accumulation of mutant proteins are predominant in HD, SCA1, 3, 7 and 17, DRPLA, and SBMA patients (181); 

however, inclusions in the cytoplasm are also found in affected brain regions of HD, SCA2, MJD, DRPLA and 

SBMA patients (182-184). In disease models, the presence of aggregates in the nucleus seems to cause more 

severe phenotypes. Specifically in MJD, studies in mice revealed that nuclear localization of ATXN3 is required 

for the manifestation of symptoms (185). More recently, one putative ATXN3 nuclear localization signal (NLS) 

was proven to be functional in yeast and mammalian cells. The NLS is located at the N-terminus of ATXN3 may 

have implications in pathogenesis (186).  

 

1.5.5 Defects in axonal transport 

 At the axon level, it has also been suggested that defects in the axonal transport may underlie pathology 

of some of the polyQ diseases (reviewed in (187). The exact mechanism is not known but it has been proposed 

that (i) disease-causing proteins may have normal functions in the axonal transport system and cause axonal 

blockages when mutated; and that (ii) protein aggregates may physically block transport within the narrow axonal 

processes. Moreover, Gallarza and collaborators showed that Htt is both anterogradely and retrogradely 

transported in rat sciatic nerve axons (188). It has been suggested Htt may interact with motor proteins (a 

subunit of dynactin) via HAP1 (189). ATXN3 was also shown to interact with dynein intermediate chain 2 (190) 

and to be a microtubule associated protein (191). Pathological evidence for axonal transport problems in HD 

comes from observations in transgenic HD mouse models and human patient brains. Several groups have 

demonstrated that dystrophic striatal and corticostriatal neurites in HD exhibit characteristics of blocked axons, 

namely, accumulations of vesicles and organelles in swollen axonal projections and termini in association with 

Htt aggregates (34, 192). Huntingtin accumulations have been found in axons of striatal projection neurons in 

R6/2 and knock-in mouse models of HD and also in human patient brains (67). 

 

1.5.6 Mitochondrial dysfunction  

 Impairment of mitochondrial function is one of the key events in polyQ diseases leading to cell death via 

activation of apoptotic cascades. The process of mitochondrial dysfunction is accompanied by impaired 
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respiration, stress induced mitochondrial depolarization, increased ROS production leading to oxidative damage, 

and abnormal energy metabolism in polyQ diseases (193, 194). The importance of mitochondria in polyQ 

disease pathogenesis and related cell death had been suggested by mimicking the HD phenotype using the 

complex II respiratory chain inhibitors 3-nitropropionic acid or malonate (195, 196). In toxin models of HD, the 

activities of complex II and III were reduced and energy metabolism was impaired, as observed in human HD 

brains and in cells derived from HD model mice, respectively (197, 198). Electron microcopy studies localized 

mutant Htt into membranes and the incubation of normal mitochondria with the purified expanded polyQ protein 

reduced their Ca2+ retention capacity (194). It has been demonstrated that recombinant mutant htt directly 

induced mitochondrial permeability transition (MPT) pore opening in isolated mouse liver mitochondria. Mutant 

Htt decreased the Ca2+ threshold necessary to trigger MPT pore opening accompanied by a significant release of 

cytochrome c (199). In a cellular and a Caenorhabditis elegans HD model, it has been shown that the over-

expression of mutant htt diminished the normal dynamics of mitochondria fusion and fission interfering with 

mitochondrial ATP generation (200).  

The expression of mutant AR caused mitochondrial abnormalities leading to caspase activation. 

Surprisingly, a polyQ-dependent decrease in mitochondrial number and impaired mitochondrial membrane 

potential was observed with increased ROS. Mutant AR also altered the expression of genes important for 

mitochondrial function including one of the key regulators of mitochondrial biogenesis and function, peroxisome 

proliferator-activated receptor c coactivator-1 (PGC-1b), and its target genes peroxisome proliferator-activated 

receptor c, and mitochondrial transcription factor A. The mitochondrial genes regulated by mitochondrial 

transcription factor A and several cellular antioxidant genes were also down-regulated suggesting a profound role 

of mitochondrial dysfunction in SBMA pathogenesis (201). 

Similarly to previously cited studies, PGC-1a, another member of PGC-1 complex, is a mitochondrial 

biogenesis and function co-activator, which regulates mitochondria response to oxidative stress (202). Mutant htt 

was reported to directly bind to PGC-1a and interfere with its function (203), supporting the connection between 

oxidative stress and mitochondrial dysfunction in HD. Moreover, PGC-1a is regulated by cAMP response element 

(CRE)-binding protein (CREB), a transcription factor down-regulated by expanded polyQ htt (152) and mutant htt 

was shown to interfere with transcription of PGC-1a (204). 

Mutant ataxin-3 has been recently reported to decrease the activities of antioxidant enzyme causing 

increased damage of mitochondrial DNA (205). Oxidative stress also induces nuclear localization of mutant 

ATXN3 proteins (206), which has been associated to pathology. Moreover, mutant ATXN3 expressing cells are 

more sensitive to treatment with the apoptosis inducer staurosporin, probably because the cells present lower 

levels of bcl-2. Mitochondria from MJD patients were also found to release increased levels of cytochrome c  

(207). Based on a number of studies, it can be suggested that mitochondrial impairment is also a common 

feature in the pathogenesis of polyQ diseases. 
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1.6 Therapeutic approaches 

 Potential treatments of polyQ diseases could be divided into two classes: (i) those targeting the mutant 

proteins directly or indirectly; and into (ii) those targeting downstream cellular deterioration caused by the 

mutant proteins.  

 (i)Therapies aimed at the polyQ proteins themselves include: 

 (a) gene silencing. Down-regulating the expression of the abnormal gene has been demonstrated to 

be an effective approach to therapy in Tet-Off mice systems of HD (208) and MJD (209), and in a doxycycline-

regulated SCA1 mouse model (210). The amount of nuclear inclusions was reduced and the behavioral 

phenotype was ameliorated upon shutting-down of mutant Htt and ATXN3 protein expression, respectively. 

Several techniques targeting polyQ protein expression have been explored including small interference RNA or 

short hairpin RNA (211). In particular cases, this strategy makes use of single nucleotide polymorphisms 

allowing the siRNA to specifically target the mutant allele, sparing the RNA of the normal copy of the gene (212-

214).  The gene silencing approach is very suitable for diseases with pathology at limited localizations such as 

the retina in SCA7, however targeting wide CNS pathology in other polyQ diseases is currently still very 

challenging.  

(b) attempts to enhance protein degradation through autophagic clearance of the mutant proteins. 

This strategy resulted in reduced toxicity in N171-82Q Htt, in ATXN3 transgenic mice and in Drosophila and 

zebrafish models of HD treated with lithium, calpain inhibitors or rapamacyn analog CCI-779 (215-217). 

Increased degradation of polyQ proteins through increased UPS activity has not been achieved yet because less 

compounds are available to manipulate this system. Amiloride and benzamil have been reported to reduce polyQ 

aggregation and toxicity in HD models (218). Y-27632, a rho-associated kinase inhibitor, seems to have a unique 

double effect since it has been shown to modulate both main cellular degradation pathways. The small molecule 

increases both UPS activity and activates macroautophagy and led to reduced levels and aggregation of mutant 

Htt, ATXN3, AR and atrophin-1 in cell models (219).  

(c) inhibition/prevention of aggregation. This was one of the fist therapeutic strategies used in 

the polyQ field. Certain small molecules like Congo red and trehalose can bind directly to and prevent the 

formation of aggregated species. In the R6/2 mice, these compounds significantly increased survival (220, 221). 

Cystamine may also reduce expanded polyQ aggregation by inhibition of transglutaminases that are thought to 

crosslink expanded polyQ proteins and to facilitate their aggregation. Cystamine treatment was effective, by 

decreasing Htt aggregation and improving survival in mice (222). Moreover, cysteamine, the FDA-approved 

reduced form of cystamine, was shown to be neuroprotective in HD mice by increasing BDNF levels in the brain 

(223), since experimental evidence derived from both clinical as well as basic research suggests a close 

association between BDNF deficiency and HD pathogenesis (reviewed in (224). Another approach to reduce 

misfolding and aggregation is to increase the cellular levels of molecular chaperones. Oral administration of 

geranylgeranylacetone enhanced expression of Hsp70, Hsp90 and Hsp105 through induction of Heat-shock 
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factor-1 (HSF-1) in the CNS, where it inhibited nuclear accumulation of mutant AR, leading to an improved motor 

behavior and increased survival of transgenic SBMA mice (225). An Hsp90 inhibitor, 17-(allylamino)-17-

demethoxigeldanamycin (17-AAG) has also been demonstrated to reduce neurodegeneration in SBMA mice 

(226). Treatment with 17-AAG increased proteasomal degradation of mutant AR and sustained the cellular heat 

shock response (HSR). 17-AAG has also an effect for other polyQ-induced types of degeneration, whose proteins 

are not direct Hsp90-client proteins. Recently, has been shown that in Drosophila models of MJD and HD, 17-

AAG suppressed polyQ-induced pathogenesis via activation of HSF-1 (227). 

  

(ii)Therapies aimed at the downstream effects of the mutant polyQ proteins include: 

(a) modulation of transcription.  Normalization of transcription, in particular by targeting histone 

methylation and acetylation using different compounds, has been tested in different models of polyQ diseases. 

Histone deacetylase inhibitors such as suberoylanilide hydroxamic acid (SAHA), sodium butyrate (SB) and 

phenylbutyrate have been demonstrated to improve the motor phenotype in mouse models of HD, DRPLA and 

SBMA (228-232). On the other hand, inhibition of histone H3 methylation by mithramycin led to an increase of 

the lifespan, improvement in motor performance and striatal pathology in R6/2 mice (233). Rolipram also 

alleviated transcriptional dysregulation by increasing the phosphorylation and activity of CREB. R6/2 HD mice 

treated with rolipram presented an increase in lifespan as well as an improvement of the neuropathology and a 

slower progression of neurological phenotype. Interestingly, the expression of BDNF, which is impaired in HD 

(234), was induced in treated mice via restored function of CREB (235). In a C. elegans model, resveratrol-

mediated Sir2 activation specifically rescued early neuronal function phenotypes induced by the expression of 

mutant Htt proteins (236).    

(b) mitochondrial stabilization and reduction of oxidative stress. Reduced concentration of 

creatine and phosphocreatine have been observed in the brain of HD patients, reinforcing the idea that 

mitochondrial dysfunction and energy depletion could be implicated in polyQ pathogenesis (237). Creatine 

treatment stabilized the MPT, prevented ATP depletion and increased protein synthesis. Creatine treatment also 

ameliorated brain pathology and motor symptoms in mouse models of HD (238, 239). Moreover, antioxidants 

such as α-lipoic acid, coenzyme Q10, clioquinol, tauroursodeoxycholic acid or BN82451 have proven to be 

effective in R6/2 mouse lines (240). Specifically, coenzyme Q10, a cofactor of mitochondrial electron transport 

chain and inhibitor of MPT, extended survival of R6/2 mice, improved motor performance and reduced 

inclusions (241). Clioquinol treatment reduced striatal atrophy, decreased nuclear inclusions formation, 

improved development delay and enhanced lifespan in R6/2 mice (242). 

(c) excitotoxicity blockage. Excessive activation of N-methyl D-aspartate (NMDA) glutamate 

receptors and the subsequent excitotoxicity in striatum neurons, has been implicated in HD pathogenesis (243). 

Interestingly, the use of compounds that block the excessive glutamate release, like riluzole, has proven to be 

effective in a HD mouse model (244). Similar to riluzole, two drugs affecting the levels of glutamate in the 
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synaptic cleft, LY379268 and 2- methyl-6-(phenylethynyl)-pyridine, have significantly increased the lifespan of 

R6/2 mice (245). Administration of remacemide (NMDA antagonist) and/or coenzyme Q10 significantly 

prolonged the survival rates of the mice (246). However, the clinical trial using these drugs individually or in 

combination, displayed no significant effects in HD patients (Huntington Study Group, 2001). 

(d) apoptosis inhibition. Minocycline, an antiapoptotic drug, was shown to inhibit the mitochondrial 

release of apoptosis inducing factor, proapoptotic protein Smac/Diablo, and cytochrome c, while decreasing the 

cleavage of proapoptotic factor Bid and activating certain caspases (247).  Minocycline treatment extended the 

lifespan of R6/2 mice and the combination of minocycline and coenzyme Q10 has further improved survival, 

neuropathology and motor phenotype when compared with any of the treatments alone (248, 249). Although the 

results of the clinical studies using minocycline produced promising data, a long-term clinical trial should be 

conducted to clearly evaluate the benefits of minocycline in HD patients. Another strategy for apoptosis blockade 

is the inhibition of caspases that could have a second beneficial effect by decreased generation of caspase-

cleaved fragments of mutant proteins. Indeed, a broad caspase inhibitor, z-Val-Ala-Asp-fluoromethylketone, was 

shown to improve the rotarod performance of R6/2 mice and extended the lifespan by 25% (250). 

 

1.7 Machado-Joseph disease (MJD) 

 The official history of MJD started is the 1970s with the description of three families originally from 

Azores living in the United States of America. The disease was first described in a patient with Portuguese 

ancestors, William Machado, by Nakano and collaborators, as an autosomal dominant ataxia and they named it 

as Machado disease (251). The Thomas family was reported in 1972 by Woods and Schaumburg, and displayed 

similar characteristics to those described previously but with some particular clinical features. The disease was 

entitled Nigro-spino-dentatal degeneration with nuclear ophthalmoplegia (252). Later on, Rosenberg and 

colleagues described a particular type of autosomal dominant hereditary ataxia in the family of Antone Joseph, 

which was designated as Joseph disease (253). The authors described the diseases as distinct clinical entities 

and the controversy lasted for several years. In 1978, Andrade and Coutinho traveled to the Azores islands, 

where they undertook extensive studies in a large number of families (254-256). In the 1980, Coutinho e 

Sequeiros proposed for the first time the name Machado-Joseph disease (MJD) for a clinical entity 

encompassing many of the previously described phenotypes, and some clinical criteria for diagnosis were 

introduced (257). They defined MJD as a single disorder characterized by high clinical variability, proposing the 

clinical classification of patients into three types that accommodated variability. The ultimately disease unification 

was achieved in 1983-84, when Rosenberg and Barbeau examined several patients and found siblings that 

presented characteristics of different types of MJD (258, 259).  

In our days, MJD is also known as spinocerebellar ataxia type 3 (SCA3), and is known to be the most 

common autosomal dominant ataxia worldwide (15-45% of all forms in distinct populations) (181, 260, 261). In 

Portugal, the disease prevalence is of 3.1:100.000 habitants, including a total of 108 MJD families (262). 
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1.7.1 MJD clinical symptoms and sub-types      

 Motor function is highly affected in MJD. This progressive disease is characterized by ataxia, weakness 

in the arms and legs, spasticity, difficulty with speech articulation and with swallowing, imapaired involuntary eye 

movements and dystonia. Some patients have twitchings of the face or tongue, or bulging eyes (255, 257, 259, 

263).   

The difficulty to accommodate all disease presentations in a unique identity could be partially justified 

by the phenotypic variability of MJD that lead to the organization of the disease sub-types, sorted by the age of 

clinical onset and major symptoms of the disorder (257). MJD type I includes the MJD forms with early age at 

onset (10-30 years of age), faster progression and more severe pyramidal and extra-pyramidal signs. MJD type II 

is the most frequent, and is characterized by intermediate age-at-onset (20-50 years of age) and a moderate 

progression rate, with patients exhibiting mainly ataxia and ophthalmoplegia. MJD patients with MJD type III 

present the latest age at onset (40-70 years of age), slow disease progression and more peripheral signs. In 

1983, Rosenberg added a fourth type, which is the rarest and includes MJD patients exhibiting Parkinsonic 

symptoms associated with the most representative symptoms of MJD (258, 260). 

 

1.7.2 MJD pathology 

 Pathological examination of post-mortem brains from MJD patients revealed neuronal degeneration of 

specific brain regions, such as the cerebellar dentate nucleus, pallidum, substantia nigra, subthalamic, red and 

pontine nuclei, select cranial nerve nuclei and the anterior horn and Clarke’s column of the spinal cord (Fig. 1.3) 

(36, 264-268). 

 The majority of the brains of MJD patients with disease duration of more than 15 years presented 

reduced weight when compared with individuals without medical histories of neurological or psychiatric diseases 

(265).  

     

 

 

 

 

  

  

 

 

 

 

Figure 1.3. Classical brain regions affected 

in MJD are showed in orange. Adapted from (2). 

STN: subtalamic nucleus, GP: globus pallidus, RN: red 

nucleus, SN: substantia nigra, PN: pontine nucleus, DN: 

dentate nucleus, LCN: lateral cuneate nucleus, CB: 

cerebellar cortex.  
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Later on, pathoanatomical investigations using thicker tissue sections (which allow observation of an 

increased number of neural cells per section) demonstrated widespread damage to the cerebellum, thalamus, 

midbrain, pons, medulla oblongata and spinal cord in MJD (74, 269-275). Recently, a systematic 

immunohistochemical study of serial thick sections of MJD patients revealed axonal ATXN3 aggregates in fiber 

tracts known to undergo neurodegeneration in MJD (276).  

 MJD, as other polyQ diseases, is characterized by the presence of neuronal ubiquitylated inclusions; 

within the inclusions other proteins have been found, such as molecular chaperones, proteasomal components, 

TFs and both normal and pathogenic ATXN3 (35, 45, 277). As in the neuronal cell bodies, the axonal aggregates 

in MJD were ubiquitylated and immunopositive for the proteasome- and autophagy-associated protein p62 (276).  

 

1.7.3 MJD genetics 

 Like other polyQ diseases, MJD is transmitted in an autosomal dominant manner and is characterized 

by intergenerational instability of the expanded CAG repeat. The expanded repeats may expand or retract, but 

often during paternal transmissions, expansion is more common. As a result, there is an early age-at-onset in 

successive generations (anticipation) (29, 278). In general, longer CAG tracts underlie more severe symptoms 

and premature disease onset (29).  

 MJD is caused by a mutation in the MJD1/ATXN3 gene, mapped to the long arm of chromosome 14 

(14q24.3-q32) in 1993 (279). Cloning of the gene was achieved one year later by Kawaguchi and collaborators 

(20). Molecular diagnosis of MJD became possible, and the mutation was then confirmed in families of diverse 

origins (29, 280-282). As expected, the presence of mutation (expansion) of the CAG tract was verified only in 

patients.  

 The MJD1/ATXN3 gene is composed by 11 exons, spanning a genomic region of about 48 kb, the 

(CAG)n tract being located at exon 10 (283). In the WT alleles, the CAG repeat ranges between 12-44; the 

expanded alleles, with full penetrance, range between 52-86 repeats (284, 285). Individuals carrying 

intermediate CAG repeats length (45-51) may or may not manifest the disease (284-286). 

 Northern blot analysis revealed ubiquitous ATXN3 expression and the existence of four different 

transcripts (1.4, 1.8, 4.5 and 7.5 Kb), probably arising from differential splicing and polyadenylation signals 

(283). Five cDNA variants were described: MJD1a, MJD1-1, MJD5-1, MJD2-1 and H2 (20, 287). The MJD1-1 

and MJD5-1 variants only differ in the size of their 3’ UTR, and employ exon 11 as 3’-terminal sequence. MJD1a 

was the first one to be described and uses exon 10 to provide the 3’-terminal sequence. MJD2-1 is identical to 

MJD1a except for the single nucleotide substitution in the exon 10 stop codon (287). In H2, exon 2 is absent 

(283).   

 Recently, the occurrence of additional alternative splicing at the MJD1/ATXN3 gene was investigated. 

Two novel exons and 50 additional alternative splicing variants were described (288). However, the physiological 

and clinical relevance of these variants remains to be determined. 
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1.7.4 MJD protein: ataxin-3 (ATXN3) 

 Protein homology. The ATXN3 gene encodes for a 42 KDa protein, ataxin-3 (ATXN3). ATXN3 is 

evolutionarily conserved in mice (289), rat (290), chicken (291), C. elegans (292) and other organisms. 

Interestingly, the long polyQ tract is specific to humans, since it is nearly absent in other species such as mouse 

(6 Q) and C. elegans (1 Q).  

 Domains. The human ATXN3 protein has a conserved N-terminal Josephin domain, containing the 

putative catalytic triad of aminoacids: cysteine (C14), histidine (H119) and asparagine (N134). This domain is 

followed by two or three ubiquitin-interacting motifs (UIMs), depending on the protein isoform. ATXN3 also 

contains a conserved nuclear-localization signal (NLS) (293). The polyQ stretch of variable length is located at 

the C-terminus of the protein (294, 295).    

Isoforms. Until now, at least four ATXN3 isoforms were described: isoform 1 (NP_004984) has 361 

aa, with a hydrophilic C-terminal and corresponds to the clones MJD1-1 and MJD5-1; isoform 2 (P54252) has a 

distinct C-terminal region when comparing with the first one and it has a hydrophobic nature. It is formed by 365 

aa and matches the MJD2-1 clone (287); the third isoform, MJD1a (S50830), contains 349 aa (it lacks 16 aa 

within the C- terminus region comparatively to isoform 2, due to a premature stop codon) (20). Finally, the 

isoform 4 (NP_1093376) contains less 55 aa than isoform 1 due to the lack of exon 2 in the H2 clone (283). 

This ATXN3 variant lacks the catalytic aminoacid (C14), essential for ATXN3 deubiquitylating in vitro activity 

against poly-ubiquitin chains (see Function). 

Expression and subcellular localization. Ataxin-3 is highly present in the cytoplasm of most cells, 

but may be present also in the nucleus and has been associated with the nuclear matrix, endoplasmic reticulum 

(ER) and mitochondria (35, 36, 293, 296, 297). As in other CAG repeat diseases, the abnormal and normal 

allele products were shown to be similarly expressed in lymphoblastoid cells and in the brain of MJD patients 

(35, 298). Isoform 1 (3 UIMs) is the most abundant ATXN3 isoform in brain of patients and transgenic mice 

(299). Paulson et al demonstrated that in patients, both the normal and mutant ataxin-3 proteins were expressed 

throughout the body and in all regions of the brain examined, including areas generally spared by the disease. In 

C. elegans and mouse, the homologous ataxin-3 proteins are also widely expressed since embryonic life stages 

(289, 292). 

Molecular partners. The ATXN3 interactome includes proteins involved in (i) transcriptional 

regulation, (ii) cell structure and motility, and (iii) in the ubiquitin-proteasome pathway (UPP) and molecular 

chaperones (reviewed in (300).  

(i) The interaction of ATXN3 with transcriptional repressors, activators and HDACs suggests a 

putative role in transcription regulation (160, 301), however the relevance of these 

interactions in vivo are still not clear; 

(ii) ATXN3 binds to alpha- and beta-tubulin and also to dynein (190, 302, 303). ATXN3 plays a 

role in muscle cell differentiation by interacting with and regulating the levels of alpha5 
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integrin and other proteins (300, 304). Moreover, the absence of ATXN3 causes 

cytoskeleton disorganization (191), suggesting a role for ATXN3 in cytoskeleton and 

maintenance of cell structure; 

(iii) A significant number of ATXN3 molecular partners are components or regulators of UPP 

and cell surveillance: ATXN3 binds to ubiquitin, proteasomal subunits, parkin (E3 ubiquitin 

ligase), C-terminus of Hsp70-interacting protein (CHIP), Valosin-containing protein (VCP), 

UBXN5, ubiquitin-like proteins such as HHR23A/B, NEDD8 and components of the SCF 

(Skp1, Cullin, F-box) complex (190, 294, 295, 302, 305-309). ATXN3 also binds to Hsp90 

and Hsp60 (300). 

Function.  A crucial breakthrough in the understanding of ataxin-3 function was the discovery of its 

deubiquitylating (DUB) activity in vitro (294, 295, 310). There are five main classes of DUBs, and ATXN3 is 

included in the MJD domain group (311). The primary role of DUB proteins is to deubiquitylate the substrate 

facilitating its degradation. However, some authors have suggested that DUBs can also have a polyubiquitin 

proof reading activity (E4) or even rescue off-target proteins from the proteasome (312).  

Expression of WT ATXN3 and not of the catalytic inactive form (C14A) in cells diminishes the 

ubiquitylation level of VCP substrates, suggesting that ATXN3 is capable of removing ubiquitin from proteins in 

vivo (302). Even though DUBs are often promiscuous, specific substrates have been suggested for ATXN3, 

namely proteins involved in endoplasmic reticulum-associated degradation (ERAD). ATXN3 increases the level of 

CD3delta by decreasing its degradation, but does not alter the levels of several non-ERAD substrates (302). 

Recently, Alpha5 integrin subunit (304) and parkin (313, 314) were also found to be specific substrates of 

ATXN3. Of note, the putative role in transcriptional regulation suggested for ATXN3 can also be related to its 

DUB activity, since removal of ubiquitin molecules from TFs and/or histones can modulate transcription. 

Nevertheless, this hypothesis remains to be tested.   

 

1.7.5 Animal models of MJD pathogenesis 

 Since the description of the disease-causing gene in MJD, several in vitro and in vivo models were 

generated in order to gain insight into the pathogenic mechanism(s) and to assess therapeutic approaches. So 

far, there are MJD models in cell culture, C. elegans, Drosophila, mouse and rat. A brief description of these 

models will follow (Table 1.2).   

Cell culture. Studies in cell lines brought new insights to the study of MJD (35, 45, 49, 56, 155, 277, 

315, 316), some of which were then tested in animals models of the disease. In general, it was found that (i) 

mutant ATXN3 toxicity is influenced by the length of the polyQ tract; (ii) the polyQ-containing truncated form of 

the protein displays higher toxicity than its full-length counterpart; (iii) causes increased cell death; (iv) mutant 

ATXN3 recruits non-pathological ATXN3 into the aggregates; (v) the aggregates are an early event in disease and 
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finally (vi) relevant cell function components like proteasome subunits, molecular chaperones and TFs are find 

sequestered into ATXN3 aggregates.    

 C. elegans. In a model developed by Khan et al using unc-119 promoter, animals expressing full-

length ATXN3 (variant MJD1a) with 130 glutamines (and not with 17Q or 91Q) in all neuronal cells did not 

present significant aggregation or toxicity phenotype (only in 7 day-old or older animals) (44). In contrast, 

expression of a truncated form of ATXN3 (containing only the polyQ domain and C-terminal region) caused polyQ 

length-dependent aggregation and toxicity. Also, expanded polyQ proteins caused interruption of the synaptic 

transmission and induced swelling and abnormal branching of neuronal processes. In this model all neurons 

showed equal susceptibility to the expression of expanded polyQ proteins. 

Drosophila. The majority of the work in MJD using flies as a model system comes from the lab of N. 

Bonini. Initially, Warrick and collaborators recreated glutamine repeat disease by expressing a segment of ATXN3 

containing the polyQ tract. The wide expression of the truncated form of ATXN3 revealed that the neurons were 

the most affected cell types; it caused the formation of nuclear inclusions (NI) and late-onset cellular 

degeneration (46). The authors also showed that overexpression of Hsp70 suppressed polyQ-induced 

neurodegeneration in vivo, without major effects on NI formation (133). In 2005, they found that human WT 

ATXN3 is a striking suppressor of polyQ neurodegeneration in vivo, and that this suppressor activity of ATXN3 

was dependent upon its ubiquitin-associated activities (DUB) and on proteasome function (95). Later on, a 

genome-wide screen for modifiers of ataxin-3 neurodegeneration was performed in this model. The authors 

found 25 modifiers encoding 18 genes, most of which affected protein misfolding. The modifiers affected ATXN3 

accumulation in cells in a proteasome- or autophagy-dependent manner (129). MicroRNA pathways were also 

found to modulate MJD induced neurodegeneration downstream of ATXN3 toxicity (317).   

Mouse. Eight mouse models have been generated since 1996 (48, 49, 105, 165, 185, 209, 318, 

319), all of which show expression of mutant ATXN3 in the mouse brain, however displaying considerable 

differences regarding affected brain regions and neuronal sub-types, as well as distinct rates of disease 

progression. Table 1.2 summarizes the features of the models generated so far. These dissimilarities may arise 

from the use of different promoters to drive the expression of mutant ATXN3 proteins, and from variations in the 

transgene copy number. Moreover, mice have reduced lifespan and increased metabolic activity when compared 

to humans. Although no model has yet completely reproduced the pathological and clinical symptoms observed 

in MJD patients, these mouse models have provided important insights into the mechanisms involved in MJD 

pathogenesis.  

 Rat. Overexpression of mutant ATXN3 in the rat brain using lentiviral vectors (LV) led to 

neuropathological abnormalities: formation of ubiquitylated ATXN3 aggregates, alpha-synuclein immunoreactivity 

and loss of dopaminergic markers (TH and VMAT2). Alves and collaborators suggested striatal pathology as 

contributing factors for the dystonia and chorea observed in some MJD patients (320).  
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1.7.6 ATXN3 loss-of-function models  

 The first knockout (KO) models for ATXN3 were generated in C. elegans by the Caenorhabditis Genetics 

Center (CGC) and by National Bioresource Project (NBRP) for the Experimental Animal “Nematode C. elegans”; 

and the characterization of these animals was performed by our group (292). No overt phenotype was observed 

at 20ºC in the KO animals, which were viable and showed no obvious abnormalities. Nevertheless, gene 

expression analysis uncovered a molecular phenotype with significant dysregulation of genes involved in the 

UPP, structure/motility and signal transduction (292). More recently, our group has found that at 25ºC ataxin-3 

KOs do present an uncoordination phenotype (321). Surprisingly, these animals also show an increased 

resistance to heat stress, which was further enhanced by pre-exposure to a mild heat shock. At a molecular 

level, ATX-3 mutants have a distinct transcriptomic and proteomic profile with several molecular chaperones 

abnormally up-regulated during heat shock and recovery. The improved thermotolerance in atx-3 mutants is 

dependent on DAF-16, a critical stress responsive transcription factor involved in longevity and stress resistance 

(300). 

ATXN3 null mice are also viable, fertile and display normal development and lifespan, with no major 

coordination problems (79). Although no morphological signs of pathogenesis were found in several areas of the 

CNS of mice lacking ATXN3, there were increased levels of ubiquitylated proteins in Atxn3 KO tissues, providing 

the first in vivo cue of the deubiquitylating function of ataxin-3.  

These observations support the idea that MJD is not solely caused by the loss-of-function of ATXN3, and 

constitute important tools to investigate the contribution of WT ATXN3 in MJD pathogenesis. 
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Tabela 1.2- Animal models for the pathogenesis of MJD.

Model organism Transgene Promoter CAG-repeat length Expression pattern Aggregation Neurodegeneration/Pathology Disease onset Phenotype

C. elegans

e.g. Khan et al. , 2006
Full-length and C-

terminal truncated 

MJD1a cDNA 

unc-119 17, 19, 63, 127 and 130 pan-neuronal yes no/inclusions ND uncoordination

Drosophila

e.g. Warrick et al., 2005
Full-length and C-

terminal truncated 

MJD1a cDNA 

gmr-/ elav-GAL4 27,78 and 84 eye and nervous system yes yes ND
eye morphology and photoreceptor 

disrupted; premature death

Mus musculus

Ikeda et al., 1996
Full-length and C-

terminal truncated 

MJD1a cDNA 

L7 79 Purkinje cells no yes (three layers of the cerebellum) 4 W ataxia; gait disturbance; absence of rearings

Cemal et al., 2002 ATXN3 YAC ATXN3 64, 67, 72, 76 and 84 ubíquitous yes pontine and dentate nuclei 4 W

weight loss; lowered pelvis and limb 

clasping; hypotonia; tremor; negative 

geotaxis deficit

Goti et al., 2004
Full-length MJD1a 

cDNA 
PrP 71 ubíquitous yes

↓ number of TH-positive neurons in the 

SN
8 W

weight loss and progressive impaired grip 

strength by forelimbs and hindlimbs; deficit 

to remain on an accelerating rod 

Bichelmeier U et al., 2007
Full-length MJD1-1 

cDNA 
PrP 15, 70 and 148 ubíquitous yes ATXN3 and Ub-positive inclusions 6 W

weight loss, increased base-width of the 

posterior pons; reduced activity and 

grooming; tremor; premature death

Chou et al., 2008
Full-length and C-

terminal truncated 

MJD1a cDNA 

PrP 79 ubíquitous yes
neuronal loss in the 

cerebellum/intranuclear inclusions in 

pontine and dentate nuclei and SN 

5 W

motor uncoordination; hypoactivity; ataxia; 

weight loss;  deficit in the ability to correct 

body posture

Boy J et al.,  2009
Full-length MJD1-1 

cDNA 
PrP/Tet-Off 77 ubíquitous yes Purkinje cells 9 W

reduced ansiety, hyperactivity, motor 

uncoordination, reduced weight gain

Boy et al., 2010
Full-length MJD1-1 

cDNA 
rat huntingtin 148 ubíquitous no Purkinje cells 48 W

hyperactivity at early disease stages, motor 

uncoordination and motor learning 

impairment in old mice

Silva-Fernandes et al., 2010
Full-length MJD1-1 

cDNA 
CMV 83 and 94 ubíquitous yes

astrogliosis (SN and vestibular) and 

neuronal atrophy (pontine and dentate 

nuclei)

16 W motor uncoordination

Rattus norvegicus

e.g. Alves et al., 2008 full-length MJD1a cDNA Lentivirus (PGK) 27 and 72
Cortex, striatum or SN 

(injection)
yes

↓ number of TH-positive neurons in the 

SN, striatal degeneration, cellular death
ND ND

Legend: ND- Not Determined; W- weeks; CMV-cytomegalovirus; PrP-Prion promoter; SN- Substantia Nigra; Ub-ubiquitin
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1.8 Caenorhabditis elegans as a model system 

 

As a model system, C. elegans provides a good compromise between the complexity of vertebrates (e.g. 

mouse) and the simplicity of yeast models. It has many useful characteristics for lab use. In particular, a 2,5-day 

life cycle (when animals are grown at 25°C) and ~2 week lifespan are very convenient in studying diseases of 

aging (Fig. 1.4). It is economic and easy to maintain, allowing long term storage as glycerol stocks. In a normal 

population, C. elegans are more than 99% self-fertilizing hermaphrodites making it possible to maintain and 

study large clonal populations. Males do arise spontaneously, though infrequently, due to meiotic chromosomal 

non-disjunction, which facilitates genetic studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. C. elegans life cycle. C. elegans proceed through their complete life cycle, from egg to reproductive adult stage, in about 

two and a half days at 25°C. The times indicated in blue are the duration of each stage of development. C. elegans can enter in dauer 

stage, an alternate developmental step in which they are extremely resistant to environmental stresses such as starvation. Upon entering 

in this stage, C. elegans life span is significantly extended from weeks to months. Figure adapted from Wormatlas 

(www.wormatlas.org/handbook/fig.s/IntroFIG6.jpg). 
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C. elegans constitutes a great model for investigating how polyQ proteins cause neuron-specific 

pathogenesis because is a multicellular organism with multiple tissue types that can be examined noninvasively 

as the animal aged. It has a fully functioning nervous system of 302 neurons, with multiple neuron sub-types in 

which polyQ proteins can be conditionally expressed either in all neurons or in subsets. Moreover, it is possible 

to identify and assay the function of individual neurons while they remain part of the functioning nervous system 

and organism. Although the nervous system of C. elegans is small, animals display complex behaviors that are 

good indicators of neuronal function (322). Examples of behaviors that can be measured in C. elegans, most of 

which are neuron-regulated, are given in Table 1.3 (323).  

The developmental lineage of neurons and that of the remaining 687 cells in the hermaphrodite animal 

have been mapped (324, 325). The morphology of all 302 neurons has been defined by electron microscopy 

and much is known about their synaptic connectivity (326, 327). Behavioral analyses of C. elegans with laser-

ablated neurons have provided data about the function of small groups or even individual neurons such as 

chemosensory, mechanosensory, and motor neurons (322, 328). Fig. 1.5 shows the C. elegans ventral nerve 

cord neurons and locomotory circuit.    

Since C. elegans are transparent animals, behavioral analysis can be combined with in vivo imaging 

and biophysical assays to examine protein solubility and protein interactions in neurons of interest (84, 126). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. VNC motor neurons and locomotory circuit. A. The A motor neurons control backward locomotion and B motor neurons control forward locomotion. D motor neurons, 

which receive synapses from A and B motor neurons and function as cross-inhibitory on the body wall muscles, are required for both forward and backward locomotion. On the dorsal side, VDs 

are exclusively post-synaptic, receiving input from DA, DB, and AS neurons as co-recipients at neuromuscular junctions (NMJs) (dyadic synapse). On the ventral side, VD neurons are 

presynaptic to body wall muscle. DDs are exclusively post-synaptic on the ventral side, where they receive input from VA, VB, and VC neurons as corecipients at NMJs (dyadic synapse). DDs 

are predominantly presynaptic to body wall muscle on the dorsal side. The synaptic zones for the members of each class do not overlap, creating a clearly defined fate map of neuromuscular 

activity for each class (327). VC neurons are an exception to this rule. Active zones of members of different classes overlap; however, the transition regions among members are not generally 

the same for every class (White et al., 1976; Von Stetina et al., 2006). Neurons of a given class, except for VA, are electrically coupled to one another via gap junctions in both the VNC and DC. 

Similarly, muscle cells in each row of a muscle quadrant are also electrically coupled to their neighbors. The boxed model shows how reciprocal inhibitors (DD, VD) receive inputs diametrically 

opposite to their zone of innervation, so that contracting muscle quadrants (+) are matched by relaxing quadrants (–) on the opposite side of the body. (S) Synapse-free stretch-sensitive 

regions; (vm) vulval muscle; (green ovals) muscle; (red lines) interneurons; (black arrows and arrowheads) excitatory chemical synapses; (T-shaped lines) inhibitory chemical synapses; (straight 

lines with bars on each side) gap junctions. B. Schematic representation of positions of motor neurons between RVG and PAG along the VNC (Adapted from Wormatlas, based on (327). 

B 

A 
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Table 1.3- Examples of behaviors that can be measured in C. elegans.

Behavior Assay
Mechanosensation Gentle touch to the body 

Harsh touch to the body 

Precipice response

Nictation 

Head withdrawal and foraging 

Tap reflex and habituation to tap (including tap reflex)

Nose touch

Osmotic avoidance Osmotic ring assay

Chemosensation Chemotaxis, chemoaversion and plasticity-quadrant plate

Drop assay

Chemotaxis to volatile point source

Distinguishing between odorants during cross-saturation

Decreased response after chronic exposure to attractant

Oxygen sensing

Polyunsaturated fatty acids avoidance; liquid drop assay

Males attraction to hermaphrodites

Interaction of two chemosensory stimuli (interaction assay)

Learning, adaptation and habituation Learning, habituation and adaptation to tap 

State-dependent adaptation to volatile odorants

Ethanol intoxication

Attraction to chemicals previously paired with attractive stimuli and avoidance of chemicals

previously paired with starvation

Chemotaxis to soluble point source

Plasticity in chemotaxis using NaCl

Context dependency in olfactory adaptation

Thermal responses Thermotaxis-tracking themoclines 

Microdroplet assay for thermotaxis

Linear thermal gradient assay for thermotaxis assay

Point source heat avoidance

Locomotion Quantitation of locomotion rate by counting body bends/Thrashing

Motility

Decreased locomotion on food

Bordering at edges of bacterial lawns

Spontaneous reversals 

Ivermectin sensitivity assays

Pirouettes

Dauer lethargy and molting lethargy

Duration and velocity of spontaneous forward or backward locomotion

Suppression of head oscillations during backwards locomotion

Immobilization in serotonin (liquid)

Feeding Electropharyngeogram recordings

Pharyngeal pumping rate

Foraging

Egg-laying, males and mating Assessing defective or constitutive egg-laying

Quantitation of constitutive egg-laying 

Modulation of egg-laying in response by bacteria

Stimulation of egg-laying with serotonin and other drugs

Quantification of egg-laying with chitinase assays

Analyzing the temporal dynamics of egg-laying

Male mating behaviors

Nicotine adaptation with or without levamisole induction

Assays of C. elegans reproductive behavior Hermaphrodite sexual behavior

Sprinting assay

Sperm expulsion assay

Male sexual behavior

Defecation Assaying the defecation motor program (DMP)
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Major outcomes of research using C. elegans 

The genes regulating programmed cell death (ced) were initially identified and the pathway 

characterized in C. elegans (329). In humans, caspases, which play a major role in regulating programmed cell 

death, were identified on the basis of their similarity to the C. elegans ced genes. The discovery of these genes 

was of such significance that the three scientists who worked to establish the model, mapped the cell lineage, 

identified cells undergoing programmed cell death and the genes regulating the process, were awarded the 

Nobel prize in 2002. 

Interest in C. elegans as a genetic model led to another scientific milestone in 1996 when C. elegans 

was the first multicellular organism to have a completely sequenced genome (330). Researchers have taken full 

advantage of the available genome and developed numerous forward and reverse genetics techniques. Andrew 

Fire and Craig Mello were also awarded with the Nobel Prize in Medicine (2006) for their discovery and use of 

RNA interference (RNAi), gene silencing by double stranded RNA in C. elegans.  

Today’s studies in C. elegans continue to influence and direct studies in mammalian models as well as 

in humans due to their relative speed and simplicity. The benefits of C. elegans as a model has led to the 

development of multiple C. elegans systems designed for studying the effect of aggregation-prone proteins. The 

following sections summarize the most important findings using C. elegans as a model system for the study of 

polyQ diseases.  

 

1.8.1 C. elegans models of polyglutamine expansions 

Consistent with observations in human disorders, polyQ proteins expressed in the C. elegans body wall 

muscle cells exhibited a polyQ length-dependent aggregate formation and cellular toxicity (43, 83). Furthermore, 

the threshold of Q35-Q40 for aggregation and motility defects observed in the C. elegans muscle cells was within 

the Q-length range observed in human neurons. For each polyQ length tested, the development of a motility 

defect correlated with the rate of aggregate accumulation. Near the threshold, animals showed a high degree of 

variation in the appearance of aggregates and this correlated with toxicity. Like in human polyQ-associated 

diseases, which shows a progressive exacerbation of the disease symptoms with age, the phenotypes observed 

in the animals expressing expanded polyQ tracts (and not normal polyQ-lengths) aggravated as the animals aged 

(83). A link between aggregation onset and age-associated cellular changes was established for the first time in 

polyQ C. elegans models (83, 116, 331). Q82 proteins in the background of the long lived age-1(hx546) mutant 

exhibit reduced aggregate formation in embryos relatively to the WT background (83).  

In order to identify the protein factors that protect cells against the formation of protein aggregates, 

besides proteins involved in the aging pathway, Nollen and collaborators tested transgenic C. elegans strains 

expressing Q35::YFP, the Q-length threshold associated with the age-dependent appearance of protein 

aggregation. From a genome-wide RNAi screening 186 genes were identified that, when suppressed, resulted in 

the premature appearance of protein aggregates. Those genes were classified into five principal groups of polyQ 
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regulators: genes involved in RNA metabolism, protein synthesis, protein folding, and protein degradation; and 

those involved in protein trafficking (126). 

In order to study the effect of polyQ pathogenic motifs in neuronal cells and to determine if the 

expression of the same toxic species would affect differently distinct neuronal subtypes, Brignull and colleagues 

expressed polyQ expanded proteins throughout the C. elegans nervous system (84). By the expression of a range 

of polyQ lengths, the authors showed, similarly to the polyQ C. elegans body wall muscle cells model, a polyQ 

length dependent threshold of Q40 for the formation of protein aggregates (Fig. 1.6). Moreover, at the threshold 

Q-length, distinct neuronal subtypes were differently susceptible to the expression of expanded polyQ protein. 

Specifically, ventral nerve cord (VNC) neurons showed aggregated Q40-proteins, whereas certain lateral neurons 

such as the HSN, CAN and BDU neurons were resistant to aggregation. This model provided a basis for the 

present work and will be further used and discussed in Chapters 2, 3 and 4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Pan-neuronal expression of polyQ proteins results in length-dependent foci formation. Pan-neuronal Q19::CFP 

has a soluble distribution pattern (A,B), whereas Q86::CFP is distributed into neuronal foci (C,D). Scale bar, 100 µm. Flatenned z-stacks 

of C. elegans head expressiong YFP-alone protein (Q0) (E). Expression of a range of polyQ lengths reveals that proteins with tracts less 

than that of Q40 maintain a soluble distribution pattern, whereas those expressing Q40 proteins contain aggregates. Scale bar, 50 µm. 

All animals depicted are young adults (4 days post hatch). Image adapted from (84). 

 

1.8.2 C. elegans models of polyglutamine expansions in a protein context 

At least three C. elegans model systems were generated in which polyQ expansions were expressed in 

the context of Htt protein fragments (42, 332, 333).  

C. elegans lines expressing GFP-Htt fusion proteins in body wall muscle displayed a polyQ repeat-length 

dependent decrease in body movement compared with WT animals (332). In this model, expression of a normal 

repeat-length within Htt flanking sequences (GFP-Htt(Q28) already results in a significant loss in motility, 

suggesting that Htt protein is toxic to the nematodes. Increases in Q-length to pathogenic sizes worsened the 

phenotype. RNAi of the C. elegans ubiquilin gene (implicated in autophagy), exacerbated the motility defect, 

whereas overexpression rescued loss of worm movement induced by overexpression of GFP-Htt(Q55) (332).  
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Truncated Htt proteins with different Q-lengths were also expressed in distinct neuronal subsets (42, 

333). Two different types of constructs were built: (1) Parker model - chimeras containing the first 57 amino 

acids of Htt, the polyQ stretch and GFP under regulation of the mec-3 gene promoter, used to drive the 

expression of the GFP fusion protein in a group of 10 neurons, including six of the touch receptor neurons (333, 

334). In this model, neuronal dysfunction was assessed by the analysis of touch sensitivity in the tail, mediated 

by the PLM mechanosensory neurons. These neurons showed a polyQ length-dependent dysfunction, although 

this phenotype was not 100% penetrant. In fact, a fraction of the population of transgenic animals expressing 

expanded polyQ proteins, 88 or 128 Qs, showed touch insensitivity. Consistently with the body wall muscle cell 

model, the PML neurons exhibited protein deposits for all polyQ lengths expressed, from short to long Qs. For 

the longer expansions, both protein deposits as well as morphological abnormalities were detected in the PLM 

cell axons. The cellular dysfunction and morphological abnormalities were not accompanied by cell death in this 

strain. These data suggested that significant polyQ-associated dysfunction may occur without cell death.  

 (2) Faber model - proteins containing the first 171 amino acids of Htt followed by the polyQ stretch, 

under regulation of the osm-10 promoter, driving expression of the 171Htt::polyQ proteins in sensory neurons 

(42, 335, 336). A polyQ length-dependent cellular degeneration was observed in the two ASH neurons in strains 

containing the longest polyQ expansion, 150 Qs but not for shorter Q-lengths. However, co-expression of a 

subthreshold toxic OSM::GFP was necessary for apoptotic cell death to occur. The presence of discrete foci of 

Htt, reminiscent of protein aggregates, was detected for the Htt::150Qs, but not for shorter polyQ lengths. Also, 

the number of foci in this strain increased as the animals aged. Interestingly, the ASH sensory neurons 

expressing 171Htt150Qs were functionally impaired before neurodegeneration, foci formation or cell death was 

detected. 

All the models described the presence of protein aggregation and a toxic phenotype associated to the 

expression of polyQ repeats. The different cells tested however, seemed to have different sensitivities to polyQ 

toxicity; these data would support the neuron-specific toxicity described for polyQ disorders.  

When comparing and interpreting the results of these models, it should be considered that the distinct 

phenotypes and sensitivities found may be explained based on (i) differences in protein expression levels as a 

result of the distinct promoters used and protein the stability of the different proteins; or (ii) differences 

associated to protein context, as it has been suggested that longer protein sequences, surrounding the polyQ 

stretch, are associated to a decreased toxicity (82). Also relevant are the aggregation and toxicity thresholds 

described for these models that do not always mimic what is known for humans or for other model systems. 

 

When we first started this work, C. elegans models expressing polyQ tracts under the regulation of a 

pan-neuronal promoter (F25B3.3 promoter) had been recently characterized (84). In these strains, similarly to 

what was seen by Morley and colleagues (2002), a length-dependent aggregation was observed, similar to the 

described for humans. Furthermore, using this promoter, distinct neurons displayed different sensitivities to 
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polyQ expression. As such, we thought that it would be interesting to test in this pan-neuronal model system the 

effect of protein context in polyQ-mediated toxicity. We chose ATXN3, the protein involved in MJD. 
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1.9 Aims of the Study  

Bearing in mind (i) the impact of neurodegenerative diseases in the society, (ii) that the mechanisms by 

which the expansion of the CAG-repeat of ATXN3 cause neurological dysfunction and disease are still unclear 

and (iii) taking into account the advantages of C. elegans as a model for the study of neurodegenerative 

diseases, we aimed:  

  

1. To establish a novel C. elegans model for the in vivo study of the misfolding and 

aggregation of ATXN3, the protein involved in Machado-Joseph disease (Chapters 2, 4); 

 

2. To characterize the C. elegans models at the biochemical, cellular and phenotypic level (Chapters 

2, 2.1, 4); 

 

3. To understand how the protein sequence flanking the polyQ tract modulates aggregation 

and animals’ behavior (Chapter 2); 

 

4. To validate our novel C. elegans model as a tool for the identification of potential new 

therapies for MJD (Chapter 5); 

 

5. To understand how aging-related pathways modify MJD pathogenesis (Chapters 2, 3); 

 

6. To test heat shock factor-1 (HSF-1), the major regulator of the heat shock response in cells, as a 

candidate modifier of mutant ATXN3-mediated pathogenesis in a mouse model (Chapter 6).  
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The risk of developing neurodegenerative diseases increases with age. Although many of the molecular path-
ways regulating proteotoxic stress and longevity are well characterized, their contribution to disease suscep-
tibility remains unclear. In this study, we describe a new Caenorhabditis elegans model of Machado–Joseph
disease pathogenesis. Pan-neuronal expression of mutant ATXN3 leads to a polyQ-length dependent, neuron
subtype-specific aggregation and neuronal dysfunction. Analysis of different neurons revealed a pattern of
dorsal nerve cord and sensory neuron susceptibility to mutant ataxin-3 that was distinct from the aggregation
and toxicity profiles of polyQ-alone proteins. This reveals that the sequences flanking the polyQ-stretch in
ATXN3 have a dominant influence on cell-intrinsic neuronal factors that modulate polyQ-mediated pathogen-
esis. Aging influences the ATXN3 phenotypes which can be suppressed by the downregulation of the insulin/
insulin growth factor-1-like signaling pathway and activation of heat shock factor-1.

INTRODUCTION

Machado–Joseph disease (MJD) (or spinocerebellar ataxia
type 3) is the most common dominantly inherited ataxia
worldwide (1,2). This adult-onset neurodegenerative disorder
is characterized by ataxia, ophthalmoplegia and pyramidal
signs, associated in variable degree with dystonia, spasticity,
peripheral neuropathy and amyotrophy (3), but with no cogni-
tive decline. Pathologically, the disorder is associated with the
degeneration of the deep nuclei of the cerebellum, pontine and
subthalamic nuclei, substantia nigra and spinocerebellar
nuclei. Similar to Huntington’s disease (HD), spinobulbar
muscular atrophy and other ataxias, MJD is caused by a trans-
lated unstable CAG trinucleotide-repeat expansion. The

resulting polyglutamine (polyQ) expansions render the
affected proteins susceptible to abnormal conformations that
promote the formation of neuronal inclusions (4–6). Despite
this unifying feature, specific populations of neurons are
affected in different polyQ disorders, suggesting that protein
domains outside the polyQ tract contribute to the pathological
signature of each disease. In MJD, it is known that this neuron-
specific susceptibility is not the result of the mutant ataxin-3
(ATXN3) expression pattern, as this protein, like all the
other polyQ-containing proteins, is widely expressed from
very early stages of development (7,8). ATXN3 is a small
protein that contains a cysteine protease-like domain, the Jose-
phin domain and two or three ubiquitin-interacting motifs
(UIMs). Among the polyQ-containing proteins, ATXN3 is
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unique because it has been implicated in cellular protein
degradation pathways, through its deubiquitylase (9–12) and
deneddylase (13) activities.
The mean age at onset of MJD is 37 years (14) and corre-

lates significantly with the number of CAG/polyQ repeats,
with earlier onset in individuals with larger repeat sizes.
However, there is considerable individual variation of age at
onset within a given repeat-length range (reviewed in 15, high-
lighting the role of other genetic and environmental factors.
Correlative evidence suggests aging as a major risk factor
for the development of many neurodegenerative diseases
(16). Typically, individuals that carry neurodegeneration-
linked mutations develop the disease during their fifth
decade, whereas sporadic cases appear during the seventh
decade or later (17). It is still unclear why distinct neurodegen-
erative diseases occur late in life with overlapping temporal
inceptions. One likely possibility is that the aging process
interferes with the cellular proteostasis machinery, enabling
misfolding, aggregation and initiating neurodegeneration
(18,19). Recent studies point to the insulin/insulin growth
factor (IGF)-1-like signaling (IIS) pathway, facilitated by
heat shock factor-1 (HSF-1), as major candidates that link
aging, proteotoxicity and neurodegenerative diseases (20–22).
MJD pathogenesis has been recapitulated in vivo in a variety

of invertebrate and rodent model systems (23–29). Caenor-
habditis elegans has been successfully used to model neurode-
generation in vivo, mainly due to the conservation of basic
cellular mechanisms, such as those coupled with neuronal sig-
naling, cell death/survival and the maintenance of proteostasis
and aging. The morphology of all 302 neurons has been
defined by electron microscopy, and much is known about
their synaptic connectivity and functional properties (30,31).
Despite having relatively few neurons, C. elegans exhibit
complex behaviors that can be assayed to monitor neuronal
dysfunction, which can be combined with biophysical assays
to examine protein solubility in neurons of interest (32). Pre-
vious studies using C. elegans to investigate polyQ pathology,
in subsets of neurons or in body-wall muscle cells, have found
a polyQ length-dependent aggregation and toxicity (33–36).
Recent studies have introduced the possibility of studying
the impact of the expression of a single species of a misfolded
polyQ protein on the C. elegans nervous system and its toxic
behavioral outcome. These studies have shown neuronal
subtype-specific vulnerability to the expression of polyQ seg-
ments at the threshold Q-length for aggregation and neuronal
dysfunction (32).
Here, we have established a new C. elegans model of MJD

in which ataxin-3 was expressed throughout the nervous
system. The comparison of these ATXN3 models with the pre-
viously characterized polyQ-alone models (32) should also
shed light on the modulatory effects of protein context in
pathogenesis. In our model, the expression of both full-length
and truncated forms of ataxin-3, with different Q-lengths,
results in a consistent pattern of neuronal cell-type-specific
aggregation, with the ventral and dorsal nerve-cord neurons
being highly affected, while some lateral interneuron cell
bodies are resistant. Certain sensory processes in the head
contain aggregated foci, but only when the polyQ stretch is
within the ATXN3 protein-flanking sequences, and not when
expressed alone. We have also studied the impact of aging

and of reprogramming animals’ survival in our model, and
we found that reducing IIS and activating HSF-1 pathways
(genetically or pharmacologically) reduced pathogenesis, sup-
porting the mechanistic links between the aging process and
neuronal toxic-protein aggregation, which are common hall-
marks of many neurodegenerative disorders.

RESULTS

Expression of full-length ataxin-3 in live neuronal cells
causes polyQ length-dependent aggregation

The pathogenesis of ATXN3 was studied in transgenic
C. elegans strains expressing human wild-type (WT) or patho-
logical full-length ATXN3 throughout the nervous system.
Normal-length (q14) and mutant (q75 and q130) ATXN3
were tagged at the C-terminus with YFP and expressed in
neuronal cells under the control of the promoter of the
F25B3.3 gene (Supplementary Material, Fig. S1A). This
gene encodes a C. elegans ortholog of the Ca2+-regulated
Ras nucleotide exchange factor, RasGRP, that is expressed
widely throughout the nervous system. The F25B3.3 gene pro-
moter (PF25B3.3) becomes active in the comma stage of embry-
ogenesis and expression persists after the terminal division of
neurons (37). Expression of YFP-alone (Q0) and Q(n)::YFP
(Qn, n ¼ number of glutamines) under the control of the
F25B3.3 promoter occurs throughout the nervous system
(32), demonstrating that PF25B3.3 is an appropriate tool to
evaluate the response of different neurons to pathological
ATXN3.
We verified that the levels of WT or mutant ATXN3 mRNA

and protein expressed in transgenic lines were equivalent and
at the expected molecular size (Supplementary Material,
Fig. S2A and B). Only transgenic lines expressing levels of
ATXN3 mutant proteins similar to or lower than the WT
ATXN3 were selected for further study, as higher expression
levels could influence aggregation and toxicity (Supplemen-
tary Material, Fig. S2A).
Analysis of the transgenic animals expressing ATXN3 pro-

teins revealed that pan-neuronal expression of WT AT3q14
resulted in diffuse neuronal distribution (Fig. 1, panel 1),
similar to that observed for Q0 animals (32). Uniform
diffuse expression of AT3q14 was detected in the nucleus
and the cytoplasm of neuronal cell bodies and processes
along the entire length of the ventral nerve cord (VNC)
(Fig. 1, panel 1, thin arrow) and the dorsal nerve cord
(DNC) (Fig. 1, panel 1, thick arrow). Likewise, animals
expressing AT3q75 also showed diffuse YFP fluorescence,
similar to WT AT3q14 animals in the cell bodies and pro-
cesses throughout the nervous system (Fig. 1, panel 2).
However, AT3q130 animals show heterogeneity with discrete
foci detected in some neurons and diffuse protein in other
neurons. Foci formation was clearly evident in both the
nucleus and the cytoplasm of cell bodies and in neuronal pro-
cesses of VNC (Fig. 1, panel 3, thin arrow and Supplementary
Material, Fig. S3A, C and D, respectively), DNC (Fig. 1, panel
3, thick arrow), commissures (Supplementary Material,
Fig. S3B) and certain nerve ring cells (Fig. 1, panel 3, arrow
head). AT3q130 foci were observed in the first larval stage

2 Human Molecular Genetics, 2011

 a
t U

B
 L

e
ip

z
ig

 o
n
 M

a
y
 2

5
, 2

0
1
1

h
m

g
.o

x
fo

rd
jo

u
rn

a
ls

.o
rg

D
o

w
n
lo

a
d
e
d
 fro

m
 



(L1) (Supplementary Material, Fig. S4A) and persisted
throughout the lifespan.
We further characterized the AT3q130 foci by dynamic

imaging and fluorescence recovery after photobleaching
(FRAP) techniques to distinguish between foci of soluble or
aggregated protein. As shown in Figure 2, the recovery rate
after photobleaching observed for WT ATXN3 (AT3q14)
and AT3q75 proteins in neurons was indistinguishable from
the soluble Q0 control. In contrast, the AT3q130 foci exhibited
only partial recovery (30% recovery over 150 s) [AT3q130
(A)], consistent with the properties of an immobile aggregated
species and similar to that observed for the well-characterized
Q67::YFP (Q67) aggregates (Fig. 2A and B) (32). We there-
fore employed the FRAP analysis to examine the foci in dis-
crete neurons located in the head and tail of the animals, as
well as in the VNC (adjoining the vulva) and DNC (opposing
the vulva). The diffuse AT3q130 expressed in certain VNC,
DNC and lateral neurons by comparison showed rapid
FRAP recovery indicating that proteins in these neurons
[AT3q130(S)] were soluble. Consistent with this, all soluble
proteins analyzed by FRAP showed significant recovery
rates at the first time point measured (2.27 s) (Fig. 2).
Phenotypic characterization of ATXN3-expressing animals

showed that AT3q14 or AT3q75 animals were similar to
WT N2 animals for lifespan and movement, whereas
AT3q130 animals were lethargic and had slightly reduced life-
span (Supplementary Material, Fig. S5). Nevertheless,
AT3q130 animals developed to adulthood and had similar
brood sizes (data not shown).

Expression of a C-terminal cleavage fragment of ataxin-3
forms polyQ length-dependent aggregates in C. elegans
neurons

A common feature of many proteins associated with neurode-
generative disease is proteolytic fragmentation. Likewise,
there is evidence to support the proteolysis of ATXN3 in
mammalian cells, transgenic mice and MJD brain tissue
(25,38–40). To gain additional insight into the biochemical
and cell biological properties of truncated ATXN3, we
expressed a C-terminal fragment of ATXN3 lacking the
amino terminal 257 amino acids of the protein (257cAT3)
and retaining the polyQ expansion (q14, q75, q80 and q128)
and the UIM3 domain of ATXN3 (Supplementary Material,
Fig. S1B) (41). For each of these lines, the neuronal
expression of 257cAT3 was at the expected molecular size
for mRNA and protein, and at comparable or lower levels
than WT controls, indicating that this C-terminal ATXN3
fragment is stably expressed (Supplementary Material, Fig.
S2A and B).

In young adult animals (day 4, post-hatching), expression of
257cAT3q14 resulted in a diffuse neuronal pattern, as
observed for full-length AT3q14 and YFP-alone expressing
animals. However, animals expressing 128 polyQs
(257cAT3q128) formed discrete foci throughout different
cells of the nervous system (Fig. 3A). These animals were
smaller in size and more lethargic than AT3q130 expressing
animals and WT controls, yet they developed to the adult
stage and had progeny, delayed by 1 day when compared
with 257cAT3q14 animals. We then examined transgenic
lines expressing intermediate polyQ lengths of 257cAT3q75
and 257cAT3q80 and observed the appearance of some
neurons with discrete puncta, whereas in other cells only
diffuse protein was detected (Fig. 3A). Protein aggregates
were detected in day 2 animals (Supplementary Material,
Fig. S4B). The appearance of foci in 257cAT3q75, but not
in full-length AT3q75, reveals that the C-terminal truncated
protein is more aggregation-prone. Animals expressing
257cAT3q75/80 also exhibited similar rates of development
to adulthood as animals expressing full-length AT3q14/75
and WT truncated ATXN3 (257cAT3q14) (data not shown).

The biophysical properties of 257cAT3q75 were compared
with 257cAT3q14 using FRAP analysis and showed that
257cAT3q14 exhibited rapid recovery after photobleaching
(Fig. 3B), whereas foci in 257cAT3q75 neurons did not
recover [Fig. 3B, 257cAT3q75(A)]. We observed heterogen-
eity among 257cAT3q75 expressing neurons; FRAP analysis
of multiple VNC neurons showed differences in
257cAT3q75 protein solubility, ranging from completely
soluble [Fig. 3B, 257cAT3q75(S)] to completely insoluble
[Fig. 3B, 257cAT3q75(A)]. Molecular heterogeneity was
also observed in neurons of the head and tail ganglia of the
same animals and from independent transgenic lines (data
not shown). By comparison, 257cAT3q128 foci formed
immobile aggregates in all neurons tested (Fig. 3B). These
results demonstrate that the presence of soluble or aggregated
C-terminal ATXN3 protein can vary among different neurons
and that this aggregation phenotype is strongly influenced by
polyQ length.

Figure 1. Pan-neuronal expression of full-length ATXN3 in C. elegans causes
polyQ length-dependent changes in protein distribution. Expression of
AT3q14 and AT3q75 proteins displayed a smooth and diffuse distribution
pattern (left and middle panels, respectively), whereas AT3q130 proteins are
found in discrete foci in certain neurons and are soluble in others (right
panel). In the left panel, AT3q14 protein expression could be visualized in
cell bodies (thin arrow) and in neuronal processes (thick arrow). In panel 3,
the distribution of AT3q130 proteins was strikingly different: foci formation
was clearly evident in VNC (thin arrow), DNC (thick arrow) and in certain
cells of the circumpharyngeal nerve ring (arrow head). All animals depicted
are young adults (4 days post-hatching). Scale bar, 100 mm. White boxes indi-
cate magnified regions. The images were obtained using a Zeiss LSM 510 con-
focal microscope.
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In summary, the aggregation profiles in C. elegans neurons
for the C-terminal ATXN3 proteins were similar to that
observed for the full-length ATXN3 model. The transition
from soluble to aggregate states was observed only with the
mutant polyQ expansion and exhibited neuron-to-neuron vari-
ation. Sequence context also has a role because the expression
of 75Qs caused aggregation only in the context of C-terminal
ataxin-3 and not of the full-length ATXN3 protein.

Aggregation of mutant ataxin-3 in specific neuronal cells
is not stochastic

Previous studies on aggregation of Q40-alone proteins in the
nervous system of C. elegans showed that aggregation is
cell-type-specific and not stochastic, suggesting that polyQ
solubility is modulated by the intrinsic properties of the neur-
onal cell environment (32).
We examined the properties of AT3q130 and 257cAT3q75

in specific neurons of at least two independent transgenic
lines. Using the FRAP analysis, both mutant ATXN3 proteins
were detected only in a soluble state in HSN neurons
(Fig. 4A), whereas in the VNC and DNC neurons both
soluble and immobile AT3q130 and 257cAT3q75 were
detected (Figs 2 and 3B). Protein aggregates were also
detected in certain neuronal processes in the head (Fig. 4B,
square), but this occurred only in animals expressing mutant
ATXN3-flanking sequences, and not in animals expressing
polyQ-alone tracts (32). Many of these processes correspond
to sensory neurons. To further examine the expression of
mutant ATXN3 in sensory neurons, we co-expressed
AT3q130 with mCherry under the regulation of the CHE-13
promoter (PCHE-13::mCherry) that is expressed in nearly all
ciliated sensory neurons. Aggregates were not detected in
the cell bodies of ASJ, ASI, ADL, ASK, ASE and ASH
neurons (data not shown). However, in 88% of the animals
analyzed (N ¼ 50), CHE-13-positive processes contained
aggregated mutant ATXN3 proteins (Fig. 4C). Despite the
occasional appearance of aggregates, all six dye-stainable che-
mosensory amphid neurons in the anterior region (as well as
the phasmid tail neurons) exhibited normal DiD staining
(data not shown), suggesting that they were functional and
not undergoing degeneration.
To confirm that this aggregation pattern was specific rather

than stochastic, we co-expressed Q40 (fused to CFP) (32)
together with full-length ataxin-3 with polyQ75 (AT3q75)
fused to YFP. Whereas AT3q75 does not aggregate in
C. elegans neuronal cells, co-expression with Q40 resulted in
aggregate formation in certain VNC neurons. Analysis of
these double-transgenic animals revealed that AT3q75 and
Q40 proteins had a synergistic effect in the C. elegans nervous

Figure 2. Expression of full-length ATXN3 in live neuronal cells causes
polyQ length-dependent aggregation. For FRAP of neurons expressing Q0
proteins, the RFI of the photobleached area (red box), recovers rapidly
(A and B ‘Q0’). Similar results were obtained in neurons expressing WT
AT3q14 and AT3q75 (A and B ‘AT3q14’ and ‘AT3q75’), indicating the

presence of soluble proteins, whereas bleached Q67 foci did not recover
(A and B ‘Q67’). Q67 proteins are insoluble and were used as an aggregated
experimental control. FRAP experiments on AT3q130 animals revealed that
some areas display fast FRAP [A and B ‘AT3q130 (S)’], whereas others, con-
taining protein foci, did not recover, indicating the presence of a highly
immobile aggregated protein [A and B ‘AT3q130 (A)’]. Quantification
(B) was performed in six or more experiments and is represented as the
mean+SEM. Scale bar, 5 mm. The images and FRAP measures were
obtained using a Zeiss LSM 510 confocal microscope.

4 Human Molecular Genetics, 2011

 a
t U

B
 L

e
ip

z
ig

 o
n
 M

a
y
 2

5
, 2

0
1
1

h
m

g
.o

x
fo

rd
jo

u
rn

a
ls

.o
rg

D
o

w
n
lo

a
d
e
d
 fro

m
 



system, as we observed the formation of protein foci in certain
processes in the head (Fig. 4D, arrows), but not when either
Q40 or AT3q75 proteins were expressed alone, nor when WT
AT3q14 and Q40 (Supplementary Material, Fig. S6A) or
Q40::CFP and Q40YFP proteins were co-expressed (Sup-
plementary Material, Fig. S6B). Figure 4E shows the quantifi-
cation of aggregates (42) of the processes of AT3q75;Q40
animals head (∗P, 0.05). Even in this example of polyQ
synergy, aggregates were not detected in the HSN neurons.
These data support a neuron-subtype-specific aggregation
pattern in our ATXN3 pathogenesis model that reflects the con-
sequences of ataxin-3 protein context and neuronal cell intrinsic
factors.

Ataxin-3 aggregation is highly associated with motor
dysfunction

To test whether ataxin-3 expression results in neuronal dys-
function, we performed a series of behavioral assays. Inner-
vation of muscle cells requires more than 60 neurons in
C. elegans and neuronal dysfunction often results in reduced
motility due to a lack of coordination (31,43). In addition to
the formation of protein aggregates, expression of mutant
ATXN3 (AT3q130) resulted in reduced movement compared
with age-matched WT ATXN3-expressing animals

(Supplementary Material, Video S1). The motility of the
ATXN3-expressing animals was quantified by scoring
animals that remained within a 1 cm circle after being trans-
ferred into the centre of a freshly seeded plate (44). Animals
expressing full-length WT AT3q14 and AT3q75 proteins did
not exhibit any impairment at adulthood (day 4), whereas
AT3q130 animals exhibited a significant reduction in motility
(∗P , 0.05) (Fig. 5). In animals expressing the truncated
ATXN3, 257cAT3, the effect on motility was even more
severe, and we observed a polyQ length-dependent motor dys-
function that correlated with aggregation (Figs 3 and 5). For
comparison, we also assessed animals expressing polyQ-alone,
and in accordance with what was observed previously, animals
expressing Q40 and Q67 had dramatic deficits in motility (32)
(Fig. 5). Because protein aggregates were detected in sensory
processes in the head, we tested for effects on chemosensation
(45) in animals expressing full-length and truncated ATXN3.
AT3q130 animals showed a slight reduction in chemotaxis
index (Ci) to isoamyl alcohol (1021 dilution) relative to WT
animals (Supplementary Material, Fig. S7), and
257cAT3q75, but not Q40 animals showed a significant
decrease in Ci (Supplementary Material, Fig. S7; ∗P , 0.05).

Taken together, these results suggest that the presence of
aggregates is associated with neuronal dysfunction in our
C. elegans model of ATXN3 pathogenesis. Moreover, the

Figure 3. Expression of C-terminal ataxin-3 forms polyQ length-dependent aggregates in C. elegans neurons. Flattened z-stacks of C. elegans heads revealed that
the expression of a range of polyQ lengths within the context of C-terminal ATXN3 flanking regions caused polyQ length-dependent aggregation (A and B). We
observed that 257cAT3q14 proteins displayed a smooth and diffuse distribution pattern, whereas 257cAT3q128 proteins were distributed into discrete foci. The
257cAT3q75 and 257cAT3q80 animals contained protein foci in certain neurons and soluble protein in others (A). Neurons expressing Q0 and 257cAT3q14
proteins recovered rapidly after photobleaching (B, ‘Q0’ and ‘257cAT3q14’), indicating the presence of soluble proteins. Bleached Q67 and 257cAT3q128
foci did not recover (B, ‘Q67’ and ‘257cAT3q128’). FRAP experiments on 257cAT3q75 animals revealed that some neurons displayed fast FRAP
[B, ‘257cAT3q75 (S)’] whereas others, containing protein foci, did not recover, indicating the presence of insoluble protein (B- ‘257cAT3q75 (A)’). Quantifi-
cation (B) was performed in eight or more experiments and is represented as the mean+SEM. All animals depicted are young adults (4 days post-hatching).
Scale bar, 50 mm. The images and FRAP measures were obtained using a Zeiss LSM 510 confocal microscope.
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expression of full-length AT3q130, C-terminal 257cAT3q80
and Q40 proteins caused the same level of toxicity (Fig. 5,
dashed line) highlighting the modulatory effects of flanking
protein regions in polyQ-containing proteins on motor dys-
function.

Age-dependent changes in mutant ataxin-3 aggregation
dynamics

The risk of developing a neurodegenerative disease increases
with age. Previous work has shown that polyQ aggregation
progresses in an age-dependent manner in muscle cells (36)
and in specific neurons (23,33). Therefore, we analyzed the
aggregation profile of ATXN3 transgenic animals during
aging. In AT3q130 animals, aggregation (initially detected at
day 1 post-hatching; Supplementary Material, Fig. S4) was
observed to increase during aging. This was particularly
clear in the anterior and ventral ganglia neurons in the nerve
ring (Fig. 6A). Heterogeneity in protein solubility and aggre-
gation persisted in the nerve cords during aging (data not
shown). Of the C-terminal fragments, 257cAT3q75- and
257cAT3q80-expressing animals showed age-dependent
aggregation (Fig. 6B). For both the full-length and C-terminal

ATXN3 proteins, aggregates were not detected in HSN
neurons of old animals. In comparison, AT3q75 did not
form aggregates during aging; however in some animals, we
observed large foci in day 10 of adulthood that corresponded
to a soluble protein (Fig. 6A, arrows) by FRAP analysis
(data not shown). Likewise, animals expressing WT (full-
length and truncated) ATXN3 did not form aggregates
during their lifespan. These results reveal that aging contrib-
utes to the onset and progression of ATXN3 polyQ aggrega-
tion, as has been reported for other model systems and
humans. However, our ability to monitor the aggregation phe-
notypes across multiple subclasses of neurons reveals differen-
tial susceptibility, with certain neurons such as the HSN more
resistant to aggregation compared with the VNC and DNC
neurons that are more sensitive to aggregation during aging.

IIS and HSF-1 pathways modify mutant ataxin-3-mediated
pathogenesis in C. elegans

Aggregation and toxicity of polyQ are strongly affected by the
IIS pathway and the activities of transcription factors DAF-16
and HSF-1 (21,36). To test whether ataxin-3 proteotoxicity is
influenced by these pathways, we examined the effects of

Figure 4. The aggregation pattern of mutant ATXN3 in specific neuronal cells is not stochastic. FRAP analysis of the HSN neuron on the left side (A) of
AT3q130 and 257cAT3q75 animals revealed that both proteins were consistently soluble (at least 80% FRAP) in the two or three independent lines that
were tested for each genotype. Quantification was performed in 10 or more experiments and is represented as the mean+SEM. (A) Flattened z-series of
C. elegans heads expressing mutant ataxin-3 proteins showed the presence of aggregates in certain neuronal processes [a 257cAT3q75 day 4 animal is
shown as an example in (B)]. White box indicates the magnified region. The aggregates co-localized with mCherry proteins that were expressed under the regu-
lation of the CHE-13 promoter (C). (C) depicts a z-stack (first panel) and a single slice (second panel), showing one aggregate co-localizing with the sensory
neuron process (red) (C, arrows). Flattened z-stacks of day 4 animals co-expressing AT3q75::YFP with Q40::CFP proteins, showing protein aggregates in certain
sensory processes of the head (D, arrows). The first panel shows the head of one animal expressing AT3q75 proteins; the second panel shows one animal expres-
sing Q40 proteins; third and fourth panels show the expression of AT3q75 or Q40 proteins of a AT3q75; Q40 animal; fifth panel displays a merged image.
(E) Quantification of the aggregates of the sensory processes of AT3q75;Q40 in comparison with AT3q14;Q40 animals (Supplementary Material, Fig. S6A).
In all images, scale bar ¼ 50 mm. The images were obtained using either an Olympus (A and C) or a Zeiss LSM 510 (B and D) confocal microscope.
FRAP measurements (A) were performed using the Olympus FV100 confocal.
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mutations in the insulin/IGF-1 receptor DAF-2 (46) on the
properties of AT3q130. In the background of the
daf-2(e1370) mutation, which confers a long-lived phenotype,
animals expressing AT3q130 (daf-2; AT3q130) showed a ten-
dency for decreased aggregation (Fig. 7A, squares, and F) with

foci barely detected. Likewise, motor function improved
2-fold (from 46.8 to 25.6%) in daf-2; AT3q130 animals
(Fig. 7G). Similar results were obtained with a
loss-of-function allele (hx546) in age-1 (47) that restored the
motility of AT3q130 animals from 40% reduction to 14.7%
(Fig. 7G). These results support the role of DAF-16 (48,49)
in protection against proteotoxicity. Consistent with this, the
daf-16 null (mu86) allele had a major effect on motor dysfunc-
tion in C. elegans daf-16; AT3q130 animals (from 40.1 to
74.4%) (Fig. 7H). We further demonstrated a protective role
for DAF-16 with valproic acid (VA) that stimulates the trans-
location of DAF-16 into the nucleus (50). VA partially rescued
the motor dysfunction induced by AT3q130 expression, at day
10 of adulthood (a reduction in motility impairment from 71.8
to 37.9%), an effect that was suppressed in daf-16(mu86)
mutants, suggesting that the mode of action for the rescue of
mutant-ATXN3 toxicity was in part through the IIS pathway
(Fig. 8A). Moreover, day 10 AT3q130 VA-treated animals
showed the same locomotion defect as day 4 untreated
animals. In contrast to the significant phenotype effect, and
as for daf-16(mu86) mutation (Fig. 7D and F), VA treatment
had only a mild effect on AT3q130 protein aggregation
(Fig. 8B), which was not due to changes in AT3q130 protein
levels (Supplementary Material, Fig. S8). In all cases, the
effects of mutations in DAF-2, AGE-1 and DAF-16 genes in
ATXN3 pathogenesis were not due to effects on AT3q130
expression (Supplementary Material, Fig. S9).

Recent studies have also implicated HSF-1 in lifespan
extension caused by reduced DAF-2 activity, with cross-talk
between the DAF-2 and HSF-1 pathways (20,21). Therefore,
we tested the effect of the hsf-1(sy441) (51) mutation on
ATXN3 pathogenesis. The loss of hsf-1 was deleterious to
transgenic animals, with mutant ataxin-3 proteins becoming
fully aggregated in neuronal cells and detected in early
embryos (Fig. 7E, arrow). Moreover, hsf-1; AT3q130
animals were completely paralyzed at day 4 (Fig. 7H). Con-
sistent with these results, exposure of AT3q130 animals to
the small-molecule Hsp90 inhibitor, 17-(dimethylaminoethy-
lamino)-17-demethoxygeldanamycin (17-DMAG), that
induces the heat shock response (HSR), improved motility
when compared with untreated controls (Fig. 8C). The effect
of 17-DMAG was dependent on hsf-1 (Fig. 8C). Treatment
with 17-DMAG also reduced the aggregation of AT3q130
animals (Fig. 8D), with no effect on ATXN3 steady-state

Figure 5. Increases in polyQ-length associated with neuronal dysfunction in ataxin-3 C. elegans model. Percentage of locomotion defective of age-synchronized
young adult animals (day 4, post-hatching). There was a polyQ length-dependent increase in motor dysfunction in both full-length and C-terminal
ATXN3-expressing animals. Q(n) lines were used as an experimental control. ATXN3 protein-flanking sequences modulate the animals’ motor phenotype.
Dashed line shows that the expression of AT3q130, 257cAT3q80 and Q40 proteins in all neurons caused similar percentages of defect in locomotion. Data
are the mean+SD, at least 150 animals per data point. Student’s t-test, ∗P, 0.05.

Figure 6. Influence of age on mutant ATXN3 aggregation dynamics. Flattened
z-stacks of C. elegans heads of days 4 and 10 animals (post-hatching). The
aggregation phenotype of AT3q130 (A) and 257cAT3q75/80 (B) animals
was aggravated with age. The increase in aggregation was particularly
evident in the circumpharyngeal nerve ring of the animals. Arrows in the
AT3q75 panel indicate protein foci that did not correspond to aggregates, as
assessed by FRAP (data not shown). Scale bar, 50 mm. All pictures were
obtained using a Zeiss LSM 510 confocal microscope.
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protein levels (Supplementary Material, Fig. S8). 17-DMAG
treatment still decreased the locomotion impairment of
AT3q130 animals in the absence of DAF-16 (Supplemental
Material, Fig. S10).
Interestingly, at early disease stages, mutation in hsf-1

caused a more severe effect on AT3q130 aggregation, when
compared with daf-16. Quantification of the aggregates (42)
at day 1 revealed that the absence of HSF-1 significantly
increased the percentage number of aggregates per total area
when compared with daf-16; AT3q130 and AT3q130
animals (#P, 0.05, Fig. 7F). Moreover, quantification of the
aggregates in specific areas of the nervous system revealed
that total body aggregation correlates with aggregation in the
animals head (nerve ring and head processes) and in the
VNC (Supplemental Material, Fig. S11). Both total body
aggregation (Fig. 7F) and neuron-specific aggregation (Sup-
plemental Material, Fig. S12) are modified by IIS and HSF-1.
Taken together, these results demonstrate that ATXN3 pro-

teotoxicity is strongly modulated by aging-related cellular
changes, associated with the IIS pathway and the HSR.

DISCUSSION

We describe a new model system for human ATXN3 proteo-
toxicity in C. elegans neuronal cells, in which the use of
tissue-specific promoters and the ability to monitor the fluor-
escence of reporter proteins in different neurons of live
animals (by microscopy and dynamic imaging analysis) pro-
vides an effective means to continuously evaluate mutant
ATXN3 aggregation and pathogenesis. We have taken advan-
tage of the single-cell resolution of the FRAP analysis to scru-
tinize the solubility of ATXN3 in specific neuronal subtypes.
In C. elegans, ATXN3-flanking sequences greatly modulate
polyQ-mediated aggregation and neuronal dysfunction. The
neuronal cell-type-specific susceptibility to expression of
mutant ATXN3 proteins is not stochastic and differs signifi-
cantly from that of polyQ-alone. We also show that mutant
ATXN3 phenotypes are severely aggravated during aging
and demonstrate the protective roles of the DAF-16 and
HSF-1 pathways to suppress proteotoxicity.

Caenorhabditis elegans model for ATXN3 aggregation
and neuronal dysfunction

In our C. elegans model, we observed the polyQ length-
dependent aggregation of both full-length and C-terminal ver-
sions of mutant ATXN3 proteins expressed in C. elegans.
Although ataxin-3 cleavage-fragment formation has not been

unequivocally shown in vivo, many laboratories have proposed
that smaller fragments containing the expanded polyQ
sequence exhibit enhanced toxicity (25,38,40,41,52). Like-
wise, we show the importance of sequence context in that
expression of 75 Qs leads to the formation of protein aggre-
gates in the C. elegans nervous system within C-terminal
ATXN3 flanking regions, but not in the full-length protein.
This is likely due to the increased exposure of the polyQ
tract in the truncated version of the protein, which eventually
facilitates (i) misfolding and (ii) abnormal toxic interactions in
the cellular environment of the affected neurons. There are
several lines of evidence that support this hypothesis,
namely that Q40 has been described as the Q-length threshold
for aggregation and toxicity (32). Moreover, the majority of
studies using cell lines, Drosophila and mouse models of
MJD showed stronger phenotypes with truncated
polyQ-containing versions of ATXN3 (24,41,53); in some
cases, the full-length mutant ATXN3 did not cause pathogen-
esis (41,53). Regarding potential abnormal toxic interactions
in the affected cellular environment, it has been reported
that the presence of an expanded polyQ tract facilitates and
strengthens the interaction between the C-terminal of
ATXN3 and VCP (54), CBP and the transcriptional
co-activators p300 and pCAF (55). These abnormal inter-
actions may affect basic cellular maintenance mechanisms
such as endoplasmic reticulum-associated protein degradation
(56) and transcriptional regulation (55,57).

ATXN3-flanking sequences and cell-intrinsic factors may
direct neuronal cell-type-specific susceptibility

Each of the polyQ disorders involves the loss of selected popu-
lations of neurons, leading to a characteristic clinical presen-
tation, even though the mutant proteins are ubiquitously
expressed (6). As in the human disease, we found that the
neuronal cell-type susceptibility to mutant ATXN3 protein
aggregation and toxicity in the C. elegans nervous system
was not stochastic, but was rather neuron-type-specific and
observed in multiple animals and transgenic lines.

A key finding here is that the aggregation pattern of
ATXN3- and polyQ-expressing animals is quite distinct.
Mutant ataxin-3 aggregates in several neuronal processes,
including commissures, the DNC and sensory processes. In
particular, the processes of certain CHE-13-positive sensory
neurons contain protein foci only when the polyQ tract is
expressed within ATXN3-flanking sequences and not when
expressed alone (32). Although the cell bodies of lateral
neurons contained soluble ataxin-3 proteins, even in very old
animals, their processes often presented aggregates as

Figure 7. IIS andHSF-1 pathways regulatedmutant ataxin-3-mediated proteotoxicity inC. elegans neurons. (A) Flattened z-series of AT3q130 and daf-2; AT3q130
animals thatwere grown at 158Cfor 4 days and transferred to 208Cfor 24 h. (B–E)Animalswere grownat 208Cduring their lifespan.White squares highlight the area
where the decrease in aggregation is most clear. (A, B andF) daf-2(e1370) and age-1(hx546)mutations tend to reduce AT3q130-mediated aggregation. The absence
of DAF-16 (D) and HSF-1 (E) increased aggregation of mutant ATXN3 (F). The daf-16(mu86) mutation caused a mild aggravation of the aggregation phenotype,
visible at day 3 (post-hatching) (D, square). hsf-1(sy441) (E) mutation had a great impact on aggregation, with some aggregates visible already in embryos (arrow).
Scale bar, 50 mm.All pictureswere obtained using anOlympus FV1000 confocalmicroscope. (F)Quantification of the number of aggregates per area of animal of all
strains. Data show the mean+SD of eight or more animals. Asterisk indicates the significant mean difference between either hsf-1; AT3q130 or daf-16; AT3q130
andAT3q130 animals; hash symbol indicates the significant difference between hsf-1; AT3q130 and daf-16; AT3q130 (ANOVA, applyingBonferroni correctionwith
95% confidence intervals; ∗ ,#P , 0.05). (G and H) daf-2 and age-1 mutations reduced the percentage of motor dysfunction (from 46.8 to 25.6% and 40 to 14.7%
reduction, respectively). daf-16 and hsf-1mutations caused an increase in the%of locomotion defective animals (from40.1 to 74.4%and40.1 to 100%, respectively).
Data are the mean+SD, at least 102 animals per data point. Student’s t-test, ∗P, 0.05.
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determined by FRAP. By comparison, these processes were
unaffected in Q40 animals (32). In agreement with these
observations, a recent systematic immunohistochemical analy-
sis of serial thick brain sections of MJD patients revealed the
widespread presence of axonal aggregates in fiber tracts
known to undergo neurodegeneration (58). This may be
related to the protein cellular function since the josephin
domain of ATXN3 was found to bind to alpha- and beta-
tubulin in human cells and rat brain extracts (59,60) and that
ATXN3 knock-down led to cytoskeletal disorganization
(59). These results imply that ATXN3-flanking sequences,
other than the polyQ stretch, in conjunction with cell-specific
factors, may modulate neuronal vulnerability.
Recent studies have suggested that the specific symptoms of

a given misfolding disorder, namely amyotrophic lateral scler-
osis, may not be due solely to aggregation-mediated toxicity of
SOD1 mutations, but also to their genetic interactions with
mildly destabilizing missense temperature-sensitive alleles
within a variety of cellular pathways (61). Studies in HD
have also identified the small G protein Rhes, which is
expressed and localized very selectively to the striatum, as
an interactor of mutant huntingtin, contributing to cytotoxicity
(62). These studies, together with our results, emphasize the
importance of understanding the role of protein context in dis-
eases characterized by protein aggregation.
Intriguingly, in both full-length and truncated ATXN3

models, the same neurons were affected, although at different
ages or polyQ lengths. The fact that we have observed similar
neuropathology in animals expressing the ATXN3 cleavage
fragment lends support to the relevance of ataxin-3 fragment
formation in MJD pathogenesis. However, additional exper-
iments are required to determine the protein domain(s) of
ATXN3 that determine the neuronal specificity of
polyQ-mediated pathogenesis.

IIS- and HSF-1-mediated improved proteostasis protect
against mutant ataxin-3 pathogenesis

Aging is a prominent determinant of the structural and func-
tional changes that may contribute to the decline in brain func-
tion and susceptibility to neurodegenerative disease (63). The
age-related IIS and HSF-1 pathway(s) are known to modulate
many forms of toxic protein aggregation in C. elegans and
other model organisms, including the aggregation of Ab
(22,64), a-synuclein (65,66), polyQ and huntingtin
(20,36,67), suggesting that these pathways correspond to a
common mechanism of detoxification. However, for MJD,
the roles of the IIS and HSF-1 pathways had not been pre-
viously examined. In this study, we have shown that aging
intensifies mutant ATXN3 aggregation and motor dysfunction.
Moreover, neuronal toxicity was significantly affected by
altering the aging/survival program. Specifically, DAF-16
and HSF-1 were found to be potent suppressors of mutant
ataxin-3 aggregation and neuronal dysfunction in C. elegans.
The absence of HSF-1 accelerated aggregation at early
stages of development (embryos), whereas in a daf-16
mutant, increased aggregation was more pronounced in adult
animals. In agreement, VA-treated animals showed reduced
aggregation and motor dysfunction later in life (day 10),
which was dependent upon DAF-16. Aggregate quantification
in day 1 animals further supported this finding, as we also
showed that mutant ATXN3 aggregation was greatly enhanced
by the hsf-1 mutation compared with daf-16. This supports the
proposal that HSF-1 and DAF-16 have different developmen-
tal requirements—early embryonic for HSF-1 versus adult for
DAF-16—in protection against proteotoxicity as observed pre-
viously in a C. elegans model for Alzheimer’s disease (68). In
future studies, we aim to test whether the effects of DAF-16
and HSF-1 loss of function in mutant ATXN3-mediated patho-
genesis are due to neuronal effects.

Figure 8. Pharmacological activation of DAF-16 and HSF-1 reduced mutant ataxin-3-mediated pathogenesis. VA-treated AT3q130 animals showed a reduction
both in motor dysfunction (71.75% to 37.9% reduction in locomotion defective animals) (A) and in the aggregation phenotype at day 10 of adulthood (B).
Despite the broad actions of VA, the effect on ATXN3 pathogenesis seemed to be highly dependent on DAF-16 (A). Day 4 animals treated with two concen-
trations of 17-DMAG also improved their motility performance. The effect of 17-DMAG on motor function was dependent on hsf-1 (C). Animals also showed a
reduction in aggregation (D). Motility data are the mean+SD, at least 152 animals per data point. Student’s t-test, ∗P, 0.05. Quantification of number of
aggregates per area is the mean+SD of eight or more animals per group. ANOVA, ∗P , 0.05.
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Transcriptomes regulated by DAF-16 and HSF-1 include
mRNAs for many chaperones (20,21). In this sense, our
results are in agreement with studies showing that, in the
brain tissue of MJD patients, Hsp40 and Hsp70 localize to
intranuclear aggregates (possibly causing a depletion of
these chaperones) and that overexpression of the human
DnaJ homolog (Hdj)-1 suppressed ATXN3 aggregation and
toxicity in neuronal cell cultures (69). Moreover, knocking
out the co-chaperone C-terminus of Hsp70-interacting
protein enhanced ataxin-3 aggregation-mediated toxicity
(70). Consistent with our results using a genetic approach,
pharmacological treatment with 17-DMAG reduced
mutant-ATXN3 proteotoxicity in C. elegans, probably by acti-
vating the disaggregation capacity of HSF-1 at early stages of
the disease (22,68).
In conclusion, our study supports a link between lifespan

determinants, integrity of protein folding and amelioration of
aggregation-associated proteotoxicity in MJD. Our novel C.
elegans ATXN3 pathogenesis model may constitute a useful
tool for high-throughput testing of therapeutic strategies in
age-related conformational disorders. Additionally, compari-
son of our system with the previously established polyQ
protein-alone models and with C. elegans models for the
pathogenesis of the different disease-associated proteins (hun-
tingtin, androgen receptor or ataxin-1) could allow the clarifi-
cation of both common and protein-specific mechanism(s) of
aggregation, neuronal dysfunction and neurodegeneration.

MATERIALS AND METHODS

Plasmid constructs

Pan-neuronal ATXN3 expression was achieved by cloning
AT3var1–1 cDNA into the PF25B3.3Q0::YFP plasmid (32).
F25B3.3::GFP is a post-mitotic pan-neuronal marker; its
expression is observed after the terminal division of neurons
and not in neuroblasts (37). Full-length ATXN3 cDNA with
different polyQ lengths was generated by PCR using oligonu-
cleotides containing restriction sites for BamHI and
pBluescriptIISK(+)::MJD1–1q14 or pGEM-7Zf(+)::MJD1–
1q75 (kindly provided by Dr Jun Goto) as templates.
ATXN3 amplicons were then digested and ligated into the
BamHI sites of PF25B3.3Q0::YFP, generating PF25B3.3AT3v1–
1q(n)::YFP. Regarding the cloning of PF25B3.3AT3v1–
1q(130)::YFP, the first step was to subclone the tract of
130Qs from pPD95.77::Punc119::MJD1–130Q (kindly pro-
vided by Dr N. Nukina) into the BglII and Eco0109I restriction
sites of pGEM-7Zf(+)::MJD1–1q75 vector. ATXN3 C-
terminal YFP-tagged expression constructs were generated
by PCR (using full-length constructs as a template) and
cloned into the BamHI sites of PF25B3.3Q0::YFP, forming
PF25B3.3257cAT3q(n)::YFP. Sequencing confirmed the
ATXN3 sequence (full-length and truncated forms), including
the Q-length and YFP sequences, as well as the promoter
region.

Nematode strains and general methods

For a list of strains used in this work and name abbreviations,
see Supplementary Material, Table S1. Standard methods were

used for culturing and observing C. elegans, unless otherwise
noted (71). Nematodes were grown on NGM plates seeded
with Escherichia coli OP50 strain at 208C. All strains carrying
the daf-2 mutation (e1370 allele) were grown at 158C until the
L4 stage and were then transferred to 208C for 24 h. For the
generation of transgenic neuronal animals, 50 ng/ml of DNA
encoding PF25B3.3AT3q(n)::YFP and PF25B3.3257-
cAT3q(n)::YFP was microinjected into the gonads of adult
hermaphrodite N2 animals, as previously reported (32). Trans-
genic F1 progeny were selected on the basis of neuronal fluor-
escence. At least three independent stable lines for each
transgene were isolated and analyzed, with similar results.
Transgenic lines were frozen immediately after they were gen-
erated, as it has been previously reported that animals kept in
continuous culture, particularly those expressing expanded
polyQ tracts, eventually adapt to the transgene (72). Integrated
lines were generated by gamma irradiation of transgenic
animals expressing AT3q(n)::YFP and 257cAT3q(n)::YFP
fusion proteins, allowing uniform expression of transgenes.
Two or three independent lines were isolated and backcrossed
at least five times with N2. PCHE-13::mCherry DNA (PS431,
kindly provided by Peter Swoboda, Karolinska Institute) was
microinjected into adult hermaphrodite AT3q130 animals at
10 ng/ml. Populations were synchronized either by treating
young adult animals with alkaline hypochlorite solution
(0.5 M NaOH, ≏2.6% NaClO) for 7 min (73) or by collecting
embryos laid by adult animals within a 3 h period. All animals
were scored at the same chronological age, unless stated other-
wise. During the reproductive period, animals were moved
every day to avoid progeny contamination. Experiments
were repeated at least three times. All assays were performed
blind.

Confocal imaging

All images were captured either on a Zeiss LSM510 META
(Oberkochen, Germany) or on an Olympus FV1000 (Japan)
confocal microscope, under a 63× water or 60× oil objective,
respectively. Animals were immobilized with 2 mM levami-
sole and mounted on a 3% agarose pad. Z-series imaging
was taken of all the C. elegans lines generated, using 514/
515 nm laser excitation for YFP, 458 nm for CFP and
593 nm for mCherry fusion proteins. The pinhole was adjusted
to 1.0 Airy unit of optical slice, and a scan was taken every
≏0.5 mm along the Z-axis. Immobilized 4- or 10-day-old
animals were subjected to FRAP as previously described
(74) with the following modifications: imaging of full-length,
C-terminal ATXN3 and ATXN3;Q40 animals was performed
at 5% power of a 514 nm laser line with the bleaching power
of 100% for 25 iterations. Relative fluorescence intensity
(RFI) was determined using the following equation: RFI ¼
(Tt/Ct)/(T0/C0), in which T0 is the total intensity of the
region of interest (ROI) prior to photobleaching and Tt is
the intensity of the same area at a given time after bleaching.
The intensities were normalized against a non-bleached ROI
within the same cell (C0, intensity of the control area prior
to bleaching and Ct at any time after) as a control for
general photobleaching and background fluorescence (74).
FRAP analysis was consistently performed in all animals in
at least six VNC (adjoining the vulva), DNC (opposing the
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vulva) cells, head neurons and tail neurons (cell bodies and/or
processes). FRAP of HSN neurons was performed on an
Olympus FV1000 confocal microscope (1% power of a
515 nm laser line with bleaching power of 50%, using the
Tornado scanning mode).

Quantification of the aggregates

Caenorhabditis elegans fluorescent images were acquired
using the Olympus FV1000 confocal microscope. Confocal
microscope parameters were set using Hi-Lo pallet, such
that protein foci and not diffuse fluorescent areas of the
animals nervous system presented pixel intensity higher than
255. The z-stack was collapsed and the aggregate load of
each animal (per area unit) was calculated on an image-
processing application using MeVisLab as a platform.
Details on the application and on the segmentation algorithms
were described elsewhere (42). At least eight images were
analyzed per genotype and statistical assessment was per-
formed using the Origin software (OriginLab) (ANOVA and
Bonferroni mean correction tests for multiple comparisons).

Motility assay

All assays were performed at room temperature (≏208C)
using synchronized animals grown at 158C or 208C. Five
animals (4-, 5- or 10-day-old) were placed simultaneously in
the middle of a freshly seeded plate, equilibrated at 208C.
Animals remaining inside a 1 cm circle after 1 min were
scored as locomotion-defective. A total of 150 animals were
scored in at least three independent assays for each strain,
and the statistical significance was assessed by Student’s
t-test, as described previously (44).

VA treatment

VA treatment was performed according to the protocol
described by Evason et al. (50). VA sodium salt was obtained
from Sigma (St Louis, MO, USA). Animals were always
grown in 6 mM VA plates at least one generation prior to the
beginning of the assay and were kept in the dark. After 10
days (post-hatching), animals were scored for motility
defects and alteration in the aggregation profile, using confo-
cal imaging.

17-DMAG treatment

Drug assays were performed in 96-well plates in liquid
culture, as previously described (43,75). Each well contained
a final volume of 60 ml, including 20–25 animals in egg
stage, drug at the appropriate concentration and OP50 bacteria
to a final OD of 0.8 in the microtiter plate (Bio-Rad). Animals
and bacteria were resuspended in S-medium supplemented
with streptomycin, penicillin and nystatin (Sigma). Worms
were grown with continuous shaking at 180 rpm at 208C.
Compound preparation: a stock solution of 16.2 mM

17-DMAG (NCS707545, InvivoGen) was prepared in water.
On the indicated days, animals were imaged using a confocal
microscope (Olympus FV1000) and tested for motility defects.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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Figure S1: Scheme of the full-length and C-terminal ataxin-3::YFP fusion proteins expressed 

throughout the C. elegans nervous system. Graphic representation of the protein domains that constitute 

full-length ATXN3: the N-terminal Josephin domain, three ubiquitin interacting motifs (UIM) and the polyQ tract 

(QQQn), in which n represents the number of glutamine (Q) repeats. A value of n equal to 14 refers to wild-type 

(WT) ATXN3, whereas n equal to 75 or 130 corresponds to mutant ATXN3 forms (A). C-terminal ATXN3 proteins, 

containing the polyQ tract and the UIM3, were expressed in the C. elegans nervous system under the regulation 

of the F25B3.3 promoter. Here, too, n represents the number of Q: n equal to 14 represents WT C-terminal 

ATXN3, whereas n equal to 75, 80 or 128 refers to mutant 257cAT3 forms (B). 
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Figure S2: Steady-state protein levels and mRNA relative levels of ATXN3 transgenic lines. 

Representative Western-blot of ATXN3-expressing animals. AT3q75 and AT3q130 proteins are expressed at 

similar levels to WT full-length ATXN3. 257cAT3q75 is expressed at a level similar to 257cAT3q14 proteins, 

while 257cAT3q80 and 257cAT3q128 are expressed at lower levels (A). The upper panel shows an immunoblot 

with anti-ATXN3 antibody, the bottom panel with anti-tubulin antibody. Twenty-five individual young adult animals 

were picked from the indicated strains, boiled (15 min) in SDS sample buffer and resolved on 10% SDS gel. 

Immunoblots were scanned and quantified using Image J software. The numbers below the gel represent the 

quantification of ATXN3 signal normalized to tubulin. The symbol * may correspond to non-specific bands, 

present in animals expressing Q67 proteins. Amounts of mRNA were measured by quantitative real-time 

polymerase chain reaction (qRT-PCR) and normalized to Q0 values (B). Results show no significant differences 

among all ATXN3 transgenic lines. Each graph data point represents three independent biological replicates for 

each strain. 
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Figure S3: AT3q130 protein aggregates are found in cell bodies and neuronal processes, 

showing nuclear and cytoplasmic localisation as revealed by DAPI staining. Cells located in the VNC 

near the vulva show aggregates in the cell bodies (cb, thick arrow) and in neuronal processes (p, thin arrow) (A). 

Image from the posterior body shows aggregates in commissures (c, arrows) (B). AT3q130 proteins co-localise 

with DAPI in some neurons (C, arrow) and not in others (D, arrow), indicating both nuclear and cytoplasmic 

distribution within the neuronal cells. Animals imaged are young adults 4 days post-hatching, expressing 

AT3q130::YFP proteins (A-D); images C, D show AT3q130 animals fixed for DAPI staining. In all images, scale 

bar= 20 µm. The images were obtained using an Olympus FV1000 confocal microscope. 
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Figure S4: Protein foci are first detected at the initial stages of the animals’ development in the 

full-length and C-terminal ATXN3 models. Flattened Z-stacks of animals expressing AT3q130 proteins 

show protein foci starting on day 1 (A) (post-hatching) (note the arrows). The punctate structures are first 

observed in animals expressing 257cAT3q75 proteins on day 2 (post-hatching) (arrows) (B). Scale bar= 20 µm, 

for the panels showing embryos; scale bar= 40 µm for all other panels. The images were obtained using an 

Olympus FV1000 confocal microscope.  
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Figure S5: Mutant ATXN3- expressing animals have reduced lifespan. Lifespan measurements of WT 

N2 and transgenic animals that express YFP (Q0), WT AT3q14 and mutant ATXN3 (AT3q75 and AT3q130) 

proteins, in the C. elegans nervous system. Animals were grown on OP50 bacteria at 20⁰C. The daf-16(mu86) 

and daf-2(e1368) animals were used as controls. AT3q130 animals show reduced survival when compared to 

N2 and AT3q14 animals (p<0.0001 and p<0.0001, respectively; Kaplan-Meyer analysis). Two independent trials 

gave similar results (N>86, per experiment). 
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Figure S6: Co- expression of WT ATXN3::YFP with Q40::CFP or of Q40::YFP with Q40::CFP 

proteins did not cause overt foci formation in C. elegans processes of the head. Flattened Z-stacks of 

day-4 animals co-expressing AT3q14::YFP with Q40::CFP (A) or Q40::YFP with Q40::CFP (B) proteins did not 

contain protein aggregates in the sensory processes of the head. Q40 protein blobs (arrow) did not correspond 

to insoluble protein, as assessed by FRAP analysis (data not shown). Scale bars= 50 µm. The images were 

obtained using a Zeiss LSM 510 (A) or an Olympus FV1000 (B) confocal microscope. 
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Figure S7: Mutant ATXN3 and not polyQ-alone expressing animals have slightly reduced 

chemotaxis index (Ci) to isoamyl alcohol (IAA). AT3q130-expressing animals show a tendency towards a 

reduction in chemosensation when exposed to a 10-1 dilution of the attractant IAA, compared to the WT controls 

(N2) and WT AT3q14 transgenics. Some AT3q130 animals failed to reach the attractant area, whereas others 

were attracted to it. 257cAT3q75 animals showed a significant reduction in Ci when compared to N2 

(p=0.0074) and 257cAT3q14 animals (p=0.0085). Q40 animals are attracted to IAA. The osm-6 (p811) 

mutants, which failed to show chemotactic behaviour to IAA, were used as a positive internal control.  IAA stock 

was freshly diluted in ethanol, which was used as the counter-attractant. Each data point represents at least 

three independents trials, and error bars show standard deviation of the mean. 
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Figure S8: Mutant ATXN3 protein levels are not altered by VA or 17-DMAG treatment. Western-blot 

analysis indicates that VA (A) or 17-DMAG (B) treatment did not significantly change AT3q130 protein levels, 

compared to the AT3q130 animals. (A) Animals treated with VA were grown for 10 days on NGM plates 

containing 6 mM of the drug, whereas in (B) AT3q130 animals were treated for 4 days in liquid medium 

containing 1 µM or 10 µM of 17-DMAG. Upper panels show representative western-blots, and each graph data 

point represents three independent biological replicates per treatment. Error bars show standard deviation of the 

mean. 
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Figure S9: Mutant ATXN3 steady-state levels in the absence of IIS and HSF-1 genes. Western-blot 

analysis indicates that mutations in age-1(hx546), daf-16(mu86) and daf-2(e1370) did not significantly change 

AT3q130 protein levels, compared to AT3q130 controls. Mutation in HSF-1 (sy441 allele) increases protein 

aggregation and slightly decreases AT3q130 expression (*, p=0.042). Upper panel shows representative 

Western-blots, and each graph data point represents three independent biological replicates for each strain.   
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Figure S10: 17-DMAG treatment of mutant ataxin-3 animals reduced locomotion impairment in 

the absence of DAF-16. Day-4 daf-16; AT3q130 animals treated with two concentrations of 17-DMAG 

improved their motility performance. The effect of 17-DMAG on motor function was independent of DAF-16. 

Motility data are the mean ± SD, at least 147 animals per data point. Student’s t-test, *, p<0.05. 
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Figure S11. Quantification of the number of aggregates per area unit in specific regions of the 

nervous system revealed that total body aggregation is related to aggregation in specific regions. 

Neurons of the C. elegans head, nerve ring, processes of the head and VNC neurons show high correlation 

coefficient with total body aggregation (Pearson Correlation Coefficients of 0.99271, 0.98324, 0.93566 and 

0.9207, respectively). Correlation graphs, coefficients and statistical assessment were performed using Origin 

software (OriginLab). 
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Figure S12. Quantification of the number of aggregates per area unit in specific regions of the 

nervous system revealed that IIS and HSF-1 pathways also modify aggregation. Similar to changes in 

the total body aggregation, in the neurons of the C. elegans head, nerve ring, processes of the head and VNC, 

daf-2 and age-1 mutations caused a tendency towards a reduction in aggregation, whereas the absence of DAF-

16 and HSF-1significantly increased it (*, p<0.05).  
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Supplemental Methods: 

Immunobloting analysis. For determination of the steady-state protein levels of ATXN3, 25 individual young 

adult animals were picked from indicated strains, boiled for 15 min in SDS sample buffer (in order to destroy all 

the aggregates) and resolved on a 10% SDS gel, as previously described (S1). Immunoblots were probed with 

anti-ATXN3 rabbit (S2) and anti-tubulin mouse antibodies (DSHB, USA); and detected with horseradish 

peroxidase-coupled secondary antibodies and chemiluminescence (ECL western-blotting detecting reagents, 

Amersham Pharmacia). Quantification of the ATXN3 signal, normalized to tubulin was performed using Image J 

software (NIH, USA). 

 

mRNA levels. Total RNA was extracted from transgenic C. elegans using TRIzol reagent (Invitrogen) according 

to the manufacturer’s instructions, with the following modifications: for extrachromosomal arrays, we selected at 

least 200 fluorescent worms, washed the worms with M9 buffer to remove bacteria and added 500 µL of TRIzol. 

We froze/thawed the samples 5x to break down the animals’ cuticles. For integrated C. elegans lines, we 

washed off the animals from a 50-mm NGM-rich plate. The isolated RNA was treated with RQ1 RNase-free 

Dnase I (Promega): 0.5 µg of total RNA in a 20 µL reaction. Single-stranded cDNAs were synthesised using the 

iScript cDNA Synthesis Kit (Biorad). Primers were designed using Primer3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi), and the qRT-PCR reaction was performed using the SYBR green PCR kit 

(Applied Biosystems). We quantified YFP mRNA relative levels in all generated lines and used actin-1 (act-1) as 

an internal control, as previously described (S3). 

 

Immunostaining. Fixed animals were incubated with 2 µg/mL DAPI in PBS for 30 min and rinsed 3x in PBS 

containing 0.1% of Tween 20, as previously described (S4). 

 

Lifespan. Assays were performed at 20⁰C as previously described (S5). Approximately 10 hermaphrodites were 

cultured on each Petri dish and were transferred to fresh plates every 1-2 days until the cessation of progeny 

production, and about every 3 days thereafter. Animals were scored as dead if they showed no spontaneous 

movement or response when prodded. Dead animals that displayed internally hatched progeny, extruded gonad 

or desiccation were excluded. Statistical analysis was performed using GraphPad Prism version 4 (Kaplan-Meyer 

analysis). 

 

Population Chemotaxis Assays. Chemotaxis assays were performed as previously described (S6). Well-fed 

adult animals (day 4) were washed three times in S-Basal (S7) and once in water to remove bacteria and placed 

in the centre of a 10-cm Petri plate equidistant from the attractant (isoamyl alcohol 10-1, Sigma) and the 

counterattractant (ethanol). The chemotaxis index (Ci) was calculated after 60 min as: (number of animals at 

attractant - number of animals at counterattractant)/total number of animals in the assay. 
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Abstract 

Protein aggregation became a widely accepted marker of many polyQ disorders, 
including Machado-Joseph disease (MJD), and is often used as readout for disease 
progression and development of therapeutic strategies. The lack of good platforms 
to rapidly quantify protein aggregates in a wide range of disease animal models 
prompted us to generate a novel image processing application that automatically 
identifies and quantifies the aggregates in a standardized and operator-independent 
manner. We propose here a novel image processing tool to quantify the protein 
aggregates in a Caenorhabditis elegans (C. elegans) model of MJD. Confocal 
microscopy images were obtained from animals of different genetic conditions. 
The image processing application was developed using MeVisLab as a platform to 
process, analyse and visualize the images obtained from those animals. All 
segmentation algorithms were based on intensity pixel levels.The quantification of 
area or numbers of aggregates per total body area, as well as the number of aggre-
gates per animal were shown to be reliable and reproducible measures of protein 
aggregation in C. elegans. The results obtained were consistent with the levels of 
aggregation observed in the images. In conclusion, this novel imaging processing 
application allows the non-biased, reliable and high throughput quantification of 
protein aggregates in a C. elegans model of MJD, which may contribute to a sig-
nificant improvement on the prognosis of treatment effectiveness for this group of 
disorders. 
 
Keywords— C. elegans, image processing, quantification of aggregates 
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Introduction 

Machado-Joseph disease (MJD) is a neurodegenerative disorder caused by the 
expansion of a polyglutamine (polyQ) tract within the C-terminal of the ataxin-3 
protein [1]. The leading hypothesis concerning the pathogenesis of polyQ diseases 
is that the expanded polyQ tract confers a toxic gain-of-function to the mutant 
proteins. These disease proteins acquire the ability to self associate and form 
aggregates, which ultimately constitute nuclear and cytoplasmic inclusion bodies. 
The presence of protein aggregates in specific affected regions of the patient’s 
brain and of the majority of animal and cell disease models is a common feature of 
many polyQ disorders, including MJD. So, protein aggregation became a widely 
accepted disease marker and is often used as readout for the development of 
therapeutic strategies for this group of disorders.  

Until now authors have been studying aggregation phenotypes based on 
qualitative observations [2], by counting aggregates manually on a limited cell 
sample or neuronal subtypes [3-5]; or recreating diseases through mutant proteins 
expression in non-neuronal tissues to simplify quantification [6, 7]. To improve 
productivity and diagnostic ability, from precise, fast, repeatable and objective 
measurements, image processing techniques could play an important role in the 
biological domain. There are several strategies for segmenting and quantifying 
images in literature. Ta et al. [8] presented a framework of graph-based tools for 
the segmentation of electron microscopic cellular images, which rely on a general 
formulation of discrete functional regularization on weighted graphs of arbitrary 
topology. Yu and Tan [9] used an object density-based image segmentation me-
thodology, which incorporates segmentation techniques based on intensity, edge 
and texture. The object of interest was segmented by a watershed algorithm. A 
marker-controlled algorithm is used to avoid over segmentation results.  

The lack of reliable platforms, to rapidly quantify aggregates in a wide range 
of disease animal models, prompted us to develop a novel image processing 
application (Fig. 1) that simultaneously identifies and quantifies the protein 
aggregates (number and total area). Recent data from our lab has shown that MJD 
can be properly modelled in Caenorhabditis elegans (C. elegans). In our animal 
model, expression of ataxin-3 in all 302 neuronal cells, with different Q-lengths, 
results in a consistent pattern of neuronal cell-type specific aggregation. Next, we 
have studied the impact of aging and of reprogramming animals’ survival in our 
model. It was found that disrupting key genes of the insulin signalling (daf-16) 
and of the heat-shock response (hsf-1) pathways led to a significant aggravation in 
motor neuron dysfunction of these animals (Teixeira-Castro, in preparation). 
Here, we have developed a novel image processing application, using MeVisLab 
[10] as a platform to process, analyse and quantify the images obtained from those 
animals. All segmentation algorithms were based on intensity pixel levels. The 
quantification of the aggregates in the C. elegans model was shown to be reliable 
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and reproducible. Furthermore, using this application, we have found that the 
motor defect presented by the animals correlated with a significant aggravation of 
the aggregation phenotype.  

In conclusion, we have generated a tool that permits a non-biased 
quantification of protein aggregates in many animal models of conformational 
disorders and that may facilitate high-throughput studies in the search for 
modifiers of protein aggregation.  

 

 

 

Methods 

This section briefly presents how MeVisLab is being used as a platform for 
process, analysis and visualization of the described strategy. 

The perimeter and area of C. elegans and its aggregates were determined by 
linking several MeVisLab modules (MM). An overview of the different method 
stages is given in Fig. 2: a) noise reduction and automatic selection of the region 
of interest (ROI); b) C. elegans outer perimeter determination; c) aggregates seg-
mentation and delimitation; and, d) aggregates quantification. 

Noise Reduction and Automatic Selection of ROI  

The aims of this section were: reduction of the image noise contamination, 
image enhancement and automatic ROI selection for further processing. Due to 
the emission and detection of light in confocal microscopy image creation, noise is 
always present. The meaningful information of an image object can be lost if noise 
level is too high compared with object intensity.  

All C. elegans images were acquired with an Olympus FV1000 confocal 
microscope (Japan) in RGB format. These input images were firstly converted to 
grayscale values using the OrthoProjectionMM. The grayscale image was input to 
ConstrainedConnectionCost MM that calculates 2D connection cost of image 
pixels. This algorithm fills all the local valleys in grayscale input image, 

 

Figure 1 - Overview of the quantification of aggregates in C. elegans: (A) Image of the C. elegans
acquired by confocal microscopy; (B) C. elegans outside perimeter (red) and segmented aggregates 
(yellow); and, (C) detail of the aggregates segmentation (yellow) area. 

Aggregates
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producing uniformity in the output image intensity. Such output was used for ROI 
selection, by removing the existing noise around the C. elegans. The automatic 
ROI selection was achieved with the following steps: 

a) Image enhancement with four image morphological transformations (two 
erosions followed by two dilations, using 3x3 and 5x5 kernel masks) 
through Morphology MM; 

b) Estimation of neighbourhood relation between foreground (protein ag-
gregates) and background using the ConnectedComponents MM;  

c) Automatic calculation of a bounding box (using the BoundingBox MM) 
that groups all pixels within a given grey level interval. Therefore, it was 
created a bounding box around the C. elegans object; 

d) ROI assessment, using the DimensionSliceClone and 
MergeRegionsMMs, creates an output image with the same world 
coordinates as in the input image from the bounding box. 

A Gaussian filter was implemented as a new MM to reduce the ROI noise 
[11].  

 

 
Figure 2 - Block diagram of the C. elegans image processing algorithm. 

C. elegans Outer Perimeter Determination 

Outcome of ROI is input to a threshold algorithm in order to determine the 
outer C. elegans perimeter and inner area. The output of these steps is a binary 
image, where the entire C. elegans object is represented at white and the 
remaining image as black. 

Then, the external contour was performed through the application of a 
contour-based shape representation and description, using an 8-connectivity 
derivative Freeman Chain Code [12]. This method is based on the fact that an 
arbitrary curve is represented by a sequence of small unit length vectors and by a 
predefined set of possible directions. The chain code uses a numbered sequence 
that represents relative directions of boundary points selected in a counter-
clockwise 45º direction changes. The application of Freeman Chain Code result is 
a two dimensional space organized boundary of the segmented image. 

The developed application also allows manual sub-ROI delimitation. This op-
tion allows the user to select smaller portions of the C. elegans for more specific 
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analysis (see Fig. 2).This is optional, and is applied immediately before the steps 
of the algorithm described in this section. 

Aggregates Segmentation and Delimitation 

The aggregates have higher levels of intensity than soluble protein and of 
potential auto-fluorescence arising from the C. elegans gut. So the method chosen 
for its segmentation was based on intensity levels. Therefore, the ROI outcome is 
input to a Morphology and Mask MM. These modules allow a sub-region selection 
by applying a binary mask (fluorescent protein in the C. elegans nervous system is 
represented in white and the remaining image appears black). It avoids undesirable 
artefacts in the segmentation, caused by surrounding spot noise. This sub-region is 
input to a CSOIsoGenerator MM that determines all protein contours based on an 
iso value. This value is controlled in the user interface. The output of this module 
is an image with the aggregates in white, contours at yellow and the remaining 
image in black. 

The CSOIsoGenerator MM was linked to CSOManager MM module, which 
stores the CSOIsoGenerator MM contours information. The numerical 
quantification of the contours, such as contours (aggregates) number, perimeter 
and area of each contour, is determined by CSOInfoMM that acquires all the 
information from the CSOManager MM output. 

Aggregates Quantification 

The quantification of protein aggregates in C. elegans is performed through 
the following indicators:  

• Percentage of aggregates area on animal area- PAgAn����: 

PAgAn���� �
∑ 
�������

�_���������
���


����
�100  

 
Where, �_�  !" �#"$ is the number of aggregates, % �����&� is the area of 
aggregate and %����� is the animal area. 

 
• Percentage of the number of aggregates on animal area - PNAgAnarea: 
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User Interface 

A user interface was developed to enable fast modification of computing 
parameters. This interface allows the user to: 

• Navigate through a list of image files with different formats from the 
contents of a specified directory;  

• Select a square subarea of interest from an input image;  
• Control all computed parameters as the aggregates threshold level; 
• Select the ROI of protein aggregates 
• Edit contours of the object of interest by moving, copying, pasting and 

performing undo/redo operations; 
• Visualize and save to a data file all the segmentation results. 

Results 

In order to evaluate genes with potential to modify protein aggregation, we 
have analysed at least six confocal input images of each genotype in our novel C. 
elegans image processing application. Analysis of day 1 animals, showed that the 
absence of hsf-1 significantly increased (i) the area of aggregates divided by the 
total area of each animal, (ii ) the number of aggregates per total area and also (iii ) 
the absolute number of aggregates; whereas mutation in daf-16 had a milder 
impact in the mutant ataxin-3 aggregation. A Kolmogorov-Smirnov normality test 
was applied on the three quantification variables and their results suggest non-
significant differences to normality at 95% confidence (p=0,63; p=0,36; p=0,64). 

Specifically, hsf-1 mutation caused a statistical significant increase in the mean 
ratio of area of aggregates (inner area of the user interface) to the total area (outer 
area of the user interface) (Bonferroni mean comparison test, p=2,02×10-4) (Fig. 
3a). Similarly, there was a significant increase in mean ratio of the number of 
aggregates to the total area and in the absolute number of aggregates (number of 
elements of the user interface) (Bonferroni test, p=9,3×10-5 and p=3,14×10-5, 
respectively) (Fig. 3b, c). The results were in agreement with our previous 
qualitative image observations (Teixeira-Castro, A. in preparation). Equally, 
knockout of daf-16 gene caused a significant increase in the number of aggregates 
per unit area and in the absolute number of aggregates (Bonferroni test, p=0,03 
and p=0,01, respectively), when compared with control AT3q130 animals (Fig. 
3b, c). Although there is a tendency to an increase in the mean ratio of aggregates’ 
area to the total area of the animal, this did not reach statistical significance. This 
result is in accordance with our previous qualitative observations that showed that 
daf-16 has a mild impact in aggregation, especially in early stages of the disease. 
Additionally, the genotypes seem to be better differentiated by combining to 
aggregation measures: number of aggregates and the ratio of aggregates’ area to 
the total animal area (Fig. 4). It is of great importance to highlight that, at day 1, 
number of aggregates and aggregates’ area per unit area seem to present a linear 
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correlation (Fig. 4). We expect that further protein accumulation, as seen in older 
animals, will result in an increase of area of aggregates without significant further 
increase in the absolute number of aggregates.  

 
a)                                     b)                                      c) 

 
Figure 3 – Genotypes comparison according to a) the mean ratio of protein aggregates’ area to the total 
animal area, b) the mean ratio of the number of protein aggregates to the total animal area, and c) the 
absolute number of protein aggregates. * indicates significant mean difference between either 
hsf-1;AT3q130 or daf-16;AT3q130 and AT3q130 genotype; # indicates significant difference between 
hsf-1;AT3q130 and daf-16;AT3q130 (applying Bonferroni correction with 95% confidence intervals). 

hsf-1 mutation caused a major aggravation of the ataxin-3 aggregation profile, 
since this transcription factor is the main regulator of protein folding and 
proteotoxic stress in cells. daf-16 is primarily involved in other stress types. 
Accordingly, quantification of the aggregates showed a statistical significant 
difference between the impact of the absence of hsf-1 and daf-16 on ataxin-3 
aggregation profile, being the hsf-1; AT3q130 animals severely affected 
(Boferroni Test, #, p=0,017 (a), p=0.030 (b), p=0.032 (c)). 

 
 

 
 
 
 
 
 
 
 

Conclusions 

Whether protein aggregates are a cause or a result of cellular degeneration is 
still a controversial issue.  In either case, quantification of these protein aggregates 
is used to evaluate the effect of gene and drug therapies for many conformational 
disorders, such as MJD. As so, this novel imaging processing application, which 
allows non-biased, reliable and high throughput quantification of protein aggre-
gates, may contribute to a significant improvement on the prognosis of treatment 
effectiveness for these group of disorders.  

Figure 4 – Scatter plot of the 
number of aggregates and the mean 
ratio aggregates’ area to the total 
animal area for all animals. 
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The aggregates quantification was standardized by selecting a threshold level 
(the same value for all the animals analyzed) avoiding the manual counting of all 
aggregates. Moreover, it was also possible to select some image sub-regions to 
quantify the C. elegans outer contour. 

The newly developed application proves to be a valuable tool by decreasing the 
total number of decisions, time-consumption and user dependence, while increas-
ing the segmentation’s efficiency and robustness.  
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Abstract  

In Caenorhabditis elegans mutations reducing Insulin/IGF-1-like signaling ameliorate aberrant protein 

aggregation and neuronal dysfunction, associated with numerous neurodegenerative diseases, including 

Machado-Joseph disease. To understand how cellular mutations associated with increased longevity protect 

against disease, we employed C. elegans ataxin-3 aggregation models. Here, we found that distinct aging-related 

pathways exhibited opposing effects. Dietary restriction-induced longevity had no major effect against 

proteotoxicity in the neuronal cells. In turn, mutations leading to altered mitochondrial function showed 

heterogeneous effects: deletion of clk-1, which encodes a mitochondrial hydroxylase that is necessary for the 

biosynthesis of ubiquinone, aggravated the disease phenotype, whereas mutation in the mitochondrial complex 

III subunit gene isp-1 led to a clear protection. Our data suggests that, although globally improving organism 

survival, manipulation of aging-related pathways may not always impact positively in the context of a 

neurodegenerative disease. 
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Introduction 

Late onset human neurodegenerative diseases including Parkinson’s, Alzheimer’s and Huntington’s 

disease and several spinocerebellar ataxias are associated with abnormal protein folding, aggregation and 

toxicity (1-3). In Spinocerebellar ataxia type 3 or Machado-Joseph disease (MJD), the formation of mutant ataxin-

3 (ATXN3) aggregates is associated to disease through an unknown mechanism (reviewed in (3). In fact, the 

pathogenic mechanism(s) are not clear for any of afore mentioned conformational disorders. However, several 

commonalities have been identified. For example, all diseases cause cellular dysfunction and degeneration; all 

are associated with protein misfolding and aggregation. Most of the diseases have hereditary and sporadic forms 

and all show delayed onset, with symptoms appearing usually late in adulthood. Thus, aging has been suggested 

as a major risk factor for the development of these diseases and mitochondria were proposed to have a central 

contribution through the accumulation of mitochondrial DNA mutations and increased production of reactive 

oxygen species (ROS) (4, 5).  Moreover, longevity genes appeared in several genetic screens as modulators of 

age-at-onset and disease progression (6-8). 

Perhaps the most relevant pathway that controls longevity in worms, flies and mammals is the 

Insulin/insulin growth factor (IGF)-1-like signaling (IIS) pathway. In C. elegans the binding of an as yet 

unidentified ligand to DAF-2 (9), the sole IGF-1 receptor, activates IIS. DAF-2 dimerization and self-

phosphorylation leads to AGE-1 recruitment and to the activation of the AKT family of kinases (10). This pathway 

culminates in DAF-16 (11-13) phosphorylation, preventing its translocation into the nucleus, where it would 

otherwise activate the expression of its target genes that regulate youthfulness, longevity and stress resistance 

(14). Mutation in age-1 increases C. elegans lifespan in 65% and the animals show increased thermotolerance 

(15) and resistance to oxidative stress (16).  

The transcription regulator heat shock factor-1 (HSF-1) is also critical for the longevity functions of IIS, 

and increased HSF-1 expression extends worms’ lifespan in a daf-16 dependent manner. HSF-1 regulates the 

expression of many molecular chaperones, which assist protein conformation and stability during synthesis, 

folding, translocation, protein complex assembly and degradation (17-19). Under stress conditions, such as heat 

shock, heat shock proteins (HSPs) become more abundant and counteract the deleterious effects of protein 

misfolding. Intriguingly, chronic expression of aggregation-prone proteins seems to not consistently activate the 

heat shock response in affected cells (20-22), even though modifications in the chaperone network were shown 

to be beneficial to disease progression (23-26).  

Other gerontogenes were, however, identified that regulate lifespan (27). Interestingly, reduced dietary 

intake or altered mitochondrial function can also increase longevity via signaling mechanisms that are genetically 

regulated and autonomous (reviewed in (27). These pathways have been found to regulate longevity in C. 

elegans and in mice, suggesting an evolutionary conserved mechanism for lifespan determination.   

Dietary restriction (DR) was the first metabolic treatment found to extend lifespan of an organism (28). 

When the available food is below the ad libitum amount (typically 40% less) lifespan increases. Recent studies 
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performed in C. elegans revealed that the transcription factors PHA-4 (29) and SKN-1 (30) have critical roles in 

enabling DR to mediate longevity. In addition, it was found that altering mitochondrial function and proper control 

of ROS production could substantially increase longevity. Decreasing the activity of the electron transporter chain 

(ETC) with RNA interference directed to the ETC complexes I, III, IV and V resulted in ~40% life extension (31-

33). 

Aggregation and toxicity of disease-associated misfolded prone proteins, such as huntingtin and Aβ 

peptide, is enhanced during aging. Downregulation of the IIS pathway and DR increase lifespan and suppress 

proteotoxicity of polyQ expansion proteins and Aβ peptides in the C. elegans body wall muscle cells and in mice 

(34-38). However, the molecular mechanisms underlying this protection remain unclear. 

Our recent data reveals that the IIS and HSF-1 pathways suppress mutant ATXN3-mediated phenotypes 

in C. elegans neuronal cells (39). Here, we have studied the impact of other aging-related pathways in our model 

for ATXN3 pathogenesis. Our preliminary results show that genetically increasing lifespan in worms may have 

opposing effects in disease progression, depending on the aging-related pathway that is being targeted. 
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Results 

Reduced dietary intake had limited effect in mutant ataxin-3-mediated neuronal toxicity 

To gain further insight into how extended longevity reduces aberrant protein aggregation, we inquired 

whether other aging-related pathways, independent of the IIS pathway, would impact positively to retard or 

prevent neurodegenerative diseases. We tested the effects of dietary restriction (DR) by employing a genetic 

model. For that we crossed AT3q130 (39) expressing animals into a loss-of-function allele (ad1113) of eat-2. eat-

2 mutants have defects in pharyngeal pumping and an adult lifespan 29-57% longer than wild-type animals (40). 

However, we saw no major differences regarding AT3q130 aggregation (Fig. 1A) in live neuronal cells or in motor 

dysfunction (Fig. 1B), when food intake was reduced (eat-2; AT3q130). Thus, the pathogenesis caused by 

mutant ATXN3 expression in C. elegans is not rescued by DR-induced longevity, when the toxic ATXN3 proteins 

are expressed in neuronal cells.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Genetic model of dietary restriction (eat-2) did not influence mutant ataxin-3-mediated 

pathogenesis in the C. elegans nervous system. eat-2 mutation did not modulate aggregation (A) or locomotion 

defects (B) of AT3q130 animals at day 4 post-hatching.  Flattened Z-stacks of AT3q130 and eat-2; AT3q130 animal heads. 
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Scale bar, 50 µm. Pictures were obtained using an Olympus FV1000 confocal microscope (A). Motility data (B) is the mean 

± SD, at least 200 animals per data point. Student’s t-test, p=0.59 (eat-2; AT3q130 vs. AT3q130). 

 

 

 

Opposing effects of isp-1 and clk-1 –mediated increased longevity on ataxin-3 pathogenesis 

 Next, we tested whether mutations that alter mitochondrial function and increase C. elegans lifespan 

ameliorated ATXN3 pathogenesis. isp-1(qm150) mutants carry a missense mutation in the “Rieske” iron sulfur 

protein of complex III of the mitochondria ETC that leads to a large decrease in oxygen consumption and a 

significant increase in longevity (41). isp-1 animals show slow development and behaviors, which precluded the 

assessment of neuronally regulated motility defects. However, mutation in the ISP-1 gene highly suppressed 

AT3q130 aggregation in the C. elegans nervous system over a 4-day period (Fig. 2A, B). Since isp-1 animals 

showed a clear developmental delay when compared to AT3q130 animals in a WT background, we have 

compared both day 4 post-hatching animals and young adult staged AT3q130 and isp-1(qm150); AT3q130 

animals. In the background of the isp-1 mutation, AT3q130 animals took ~2.5 days longer to reach adulthood at 

20⁰C, and there was a clear suppression in the aggregation phenotype (data not shown).  

clk-1 encodes an enzyme that is required for the biosynthesis of ubiquinone (UQ), a natural antioxidant 

that functions as a redox cofactor in the mitochondrial ETC and in the cytoplasm of cells (42-46). When clk-1 is 

absent, worms become long lived probably due to a reduction in endogenous ROS production, mediated by the 

accumulation of demethoxyubiquinone (DMQ), a biosynthetic precursor and analog that functionally replaces 

UQ. Unexpectedly, the strong deletion qm30 allele, which consists in a 590-base pair deletion encompassing the 

entire last exon of CLK-1 (47, 48), caused a great enhancement of mutant ATXN3 aggregation (Fig. 2A, C).  
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Figure 2. Mutations in ISP-1 and CLK-1 genes that increase life span modulated mutant ataxin-3-mediated proteotoxicity in C. elegans. Flattened z-stacks of AT3q130 (A), 

isp-1; AT3q130 (B) and clk-1; ATq130 animals were grown at 20°C for 4 days. The mutation isp-1(qm150) clearly reduced AT3q130-mediated aggregation, whereas in the background of clk-

1(qm130) deletion there was an increase in aggregation of the AT3q130 animals. For both mutations, changes in aggregation were detected since early stages of development and occurred 

throughout the nervous system. Scale bar, 50 µm. All pictures were obtained using an Olympus FV1000 confocal microscope. 
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Next, we tested whether isp-1 and clk-1 mutations extended the life span of AT3q130 worms. isp-1; 

AT3q130 and clk-1; AT3q130 animals, grown at 20⁰C, exhibited increased life spans compared with AT3q130 

(Fig. 3), similar to previous results with WT C. elegans (41, 47) (Fig. S1).    

These findings suggest that direct modulation of aging-related pathways, that increase organism 

survival, may not always impact positively in aging-associated neurodegenerative processes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. isp-1 and clk-1 mutations increased lifespan of AT3q130 animals. Lifespan measurements of wild-type 

(N2), mutant (isp-1 and clk-1), transgenic (AT3q130) and double mutant (isp-1; AT3q130, clk-1; AT3q130) grown at 20°C. 

isp-1; AT3q130 and clk-1; AT3q130 animals showed increased survival when compared to AT3q130 (p=0.0001 and 

p<0.0001, respectively; Kaplan-Meyer analysis) and WT N2 worms (p<0.0001 for both  comparisons, Kaplan-Meyer 

analysis). Two independent trials gave similar results (N>75, per experiment). 
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Discussion 

Increased longevity has been associated with prevention of a wide array of diseases, aging-dependent 

deterioration and stress resistance. Here, we addressed the impact of aging as a major risk factor for 

neurodegenerative diseases, using a C. elegans model for ATXN3 pathogenesis. Our initial observations led us to 

the surprising finding that mutations that augment individual survival may have opposing effects on disease 

progression in C. elegans. This study provides the fist in vivo evidence for the fact that creating therapeutics that 

target aging-related pathways to circumvent the aging process, may not always impact positively in age-related 

conformational disorders.  

 

The IIS pathway modulates many forms of toxic protein aggregation, such as the aggregation of Aβ 

peptides (35, 37), polyQ-alone, ataxin-3 and huntingtin proteins (34, 39, 49, 50), suggesting that this pathway 

may be a well conserved and non-specific detoxifying mechanism acting on the cell environment. daf-2 and age-

1 adult animals exhibit extreme longevity phenotypes (10, 51), and resistance to stress. They are specifically 

resistant to hyperoxia and paraquat (52), as well as UV (53) and thermal stress (15). The increased 

thermotolerance of age-1 animals is thought to be due to increased activation of the heat-sock response and 

higher accumulation of HSP16 (15). Additionally, it has been shown that a small disturbance in proper protein-

folding homeostasis has a great impact on individual integrity (54), demonstrating that the protective 

mechanisms regulated by IIS pathway may link survival to proteostasis.  A recent study added the fact that a 

general failure in protein homeostasis occurs at early stages of adulthood in C. elegans, and overlaps with a 

severe reduction on the ability of cells to activate the heat-shock and unfolded protein responses (55).  This 

proteostasis collapse represents an early molecular event in aging that may potentiate the onset of many 

heritable age-dependent diseases (55).   

Based in all these evidence and in our MJD studies in C. elegans, we propose a model for the effect of 

the distinct longevity pathways in neurodegenerative diseases: among the manipulations that improve general 

organism survival, only those that improve the folding capacity in cells may have a positive impact in age-

associated conformational disorders (Fig. 4).  

DAF-16 and HSF-1 regulated transcriptomes result in the expression of numerous chaperones (49, 56), 

and in fact we saw that both genes are potent suppressors of mutant ATXN3 aggregation and neuronal 

dysfunction (39).  

According to the free radical theory of aging, macromolecules damage from ROS is the cause of aging 

and perhaps of many aging-related pathologies (57, 58). In MJD, it was proposed that increased oxidative stress, 

as a consequence of aging, increases mutant ataxin-3 nuclear localization and pathology (59). This theory of 

aging has been extensively tested in many organisms and because of that there have been many experiments 

that support it, but there are also data which challenge the notion that molecular damage leads to aging 

(reviewed in (60). 
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  Proper control of ROS production, via modulation of mitochondrial activity, has also been shown to 

increase lifespan in C. elegans. In fact, isp-1 and clk-1 mutants show increased longevity through mechanism(s) 

that are still not well understood (61). Nevertheless, both mutants are characterized by slow development, slow 

defecation rate and decreased brood size (41, 47, 62), which is characteristic of altered mitochondrial function. 

Specifically, mutation in ISP-1 was shown to lead to a decrease in oxygen consumption and severe reduction in 

electron transport (41), without affecting ATP levels (63). Several of the phenotypes that accompany increased 

longevity in isp-1 (but not lifespan or electron transport) were shown to be significantly suppressed by a mutation 

in the cytochrome b1 of complex III (ctb-1(qm189)). This compensatory effect suggests that increased longevity 

is a direct cause of slow electron transport and not a consequence of slow development or reduced fertility. clk-1 

mutants have also decreased complex I-dependent oxidative phosphorylation (64). Surprisingly, the abnormal 

pool of quinones in clk-1 mutants did not affect complex II-dependent respiration. Regarding oxidative stress 

resistance, both mutants are more resistant to paraquat damage that wild-type animals (65), in spite of the 

reportedly variable levels of detoxifying enzymes (41, 66). In isp-1 animals sod-3 levels are increased (41), 

whereas in clk-1 mutants SOD activity is decreased, when compared to WT controls. Catalase levels are 

increased in clk-1 mutants. Carbonylated groups, as a measure of protein damage, are decreased in clk-1 and 

isp-1 young adult animals (65). In fact, lower levels of endogenous ROS could explain the increased resistance to 

oxidative stress, since increased production of ROS induced by exogenous agents will be better tolerated if 

endogenous ROS production is low (61). However, recent studies suggest that damage from oxidative stress is 

not the cause of aging (62, 65). Increasing oxidative damage in isp-1 mutants to the levels of wild-type animals 

did not shorten their lifespan (65). Moreover, relative protein damage of aged animals is not different between 

wild-type and isp-1 (65).  

In spite of this increased resistance to oxidative damage, it is not clear if there is also an increase in 

thermal stress resistance and increased cellular folding capacity in isp-1 and clk-1 mutants. The expression of 

genes enconding mitochondrial heat shock proteins and HSF-1 was found to be increased in isp-1(RNAi) but not 

in mutant animals (isp-1(qm150)) (63). However, it is still not known what happens in a condition of proteotoxic 

stress. Similarly, an increase in autophagy was only found in the isp-1(RNAi) condition (63).  

Based on our data, we suggest that isp-1 animals may have an increased capacity to activate the stress 

machinery, while clk-1 mutants may not. In fact, it is known that silencing of the C. elegans homolog of 

mitochondrial Heat shock protein 70, Hsp-6, caused a reduction in the CLK-1 protein levels (67). The 

mechanism underlying this reduction is not known, however, it is possible that Hsp-6 levels are reduced in clk-1 

mutants as well.  

Based on this, we propose that the increase in aggregation of mutant ATXN3 proteins, in the 

background of clk-1 loss-of-function, may be due to a decrease in chaperone levels. Whereas the proteotoxic 

stress caused by chronic expression of mutant ATXN3 in C. elegans neurons may activate cellular detoxifying 

mechanisms in isp-1 animals and confer protection against disease in our model, further experiments will be 
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required to clarify this hypothesis. RNAi of sod-2 caused a decrease in longevity of isp-1 in opposition to 

increased longevity of clk-1 animals (62). This finding supports distinct mechanisms of longevity for these 

mutants that may reflect upon distinct effects on proteotoxicity.   

Recently, links were found between autophagy, as a mechanism that helps to eliminate cellular and 

protein damaged components, and lifespan extension in worms (68) and aging in mice (69).  At least part of the 

lifespan extension caused by DR requires activation of autophagy.  Mutations in eat-2 improve organism survival 

and potentiate SOD and catalase activities (70). Unlike other DR models, these mutants are as resistant to heat 

stress as wild-type animals (71). This data suggested that eat-2 animals may cope with proteotoxicity similarly to 

wild-type animals, which could explain why we did see no effect in mutant ATXN3 pathogenesis in C. elegans 

neuronal cells in the background of eat-2 loss-of-function. In this perspective, it may seem puzzling that in 

muscle cells eat-2 dramatically suppresses age-associated paralysis in two nematode models of proteotoxicity 

(36); however, increased lifespan in a diet-restricted worm depends on a cell non-autonomous signaling 

(mediated by SKN-1) from central neuronal cells (the ASIs) to non-neuronal body tissues, including body wall 

muscle cells (30). Moreover, the effects of DR-mediated improved proteotoxicity were highly dependent on HSF-1 

(36), sustaining our hypothesis of the importance of the folding capacity of long lived mutants in order to protect 

against proteotoxic stress.   

Although extension of longevity by single genes mutation was first reported many years ago, the precise 

mechanism(s) underlying this effect remains unsolved. Here, we propose regulation of proteostasis as an 

important link between longevity and aging-related disorders, not only for the IIS pathway, but for other 

pathways. 
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Figure 4. Proposed model relating longevity pathways and age-related conformational disorders. Mutants of the IIS pathway have improved survival and confer protection 

against proteotoxicity probably through the activation of DAF-16 and HSF-1 transcription factors that regulate proteostasis (A). Mutations that caused alterations in mitocondrial function show 

opposing effects: isp-1 mutation improves aggregation of mutant ATXN3, whereas clk-1 is sensitive to proteotoxic stress (B), possibly through differential activation of components of the 

proteostasis network. Dietary restriction-mediated improved survival also confers protection to conformational disorders in target non-neuronal tissues (C). 
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Final considerations 

 Further experiments are required to complete the initial observations described in this Chapter, that 

may confirm or reject our hypothesis. A list of future experiments follows: 

- Quantify mutant ATXN3 protein levels in the background of clk-1, isp-1 and eat-2 mutations; 

- Verify if the increase in aggregation of mutant ATXN3 is maintained in other clk-1 deletion alleles; 

- Perform clk-1 and isp-1 RNAi and measure ATXN3 aggregation; 

- Rescue ATXN3 aggregation phenotype with the WT CLK-1 gene; 

- Determine the mitochondrial (and others) chaperone levels, catalase and SOD activities in all single and 

double mutants;  

- Check activation of Hsp-6::GFP, Hsp-60::GFP, Hsp-4::GFP, Hsp-70::GFP and myo-3::GFPmit reporters 

in the isp-1 and clk-1 mutants/RNAi (always using IIS mutants to compare); 

- Evaluate thermotolerance, resistance to paraquat and to tunicamycin of all strains; 

- Evaluate levels of ROS in all strains;  

- Test other DR protocols; 

- Test effect of DR when mutant ATXN3 proteins are expressed in non-neuronal tissues; 

- Make use of ts mutations to assess folding state in these animals; 

- cross ctb-1(qm189); isp-1(q150) into mutant AT3q130 background to assess toxicity and aggregation; 

- Test other gerontogenes: sod-2, nuo-6, mev-1, irs-2, etc.  

- Perform Hsf-1 RNAi in isp-1;AT3q130 animals 

- Perform O/E of HSF-1 in clk-1;AT3q130 

- Test clk-1, isp-1 and eat-2 in C. elegans models for A-β, tau, Htt, polyQ-alone, SOD1.  
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Materials and Methods  

Nematode strains and general methods. For a list of stains used in this work see Table S1. Nematodes 

were grown on NGM plates seeded with Escherichia coli OP50 strain at 20⁰C, according to standard methods 

(72). Populations were synchronized either by treating young adult animals with alkaline hypochlorite solution 

(0.5 M NaHO, ~2.6% NaClO) for 7 min (73) or by collecting embryos laid by adult animals within a 3-h period. 

All animals were scored at the same chronological age, unless stated otherwise. During the reproductive period, 

animals were moved every day to avoid progeny contamination. Experiments were repeated three to four times. 

All assays were performed blind. 

 

Confocal imaging. All images were captured either on an Olympus FV1000 (Japan) confocal microscope, 

under 60x oil objective. One- to four-days-old animals were immobilized with 2 mM levamisole and mounted on a 

3% agarose pad. Z-series imaging was taken of all the C. elegans lines generated using 514nm laser excitation 

for YFP fusion proteins. The pinhole was adjusted to 1.0 Airy unit of optical slice and a scan was taken every 

~0.5 μm along the Z-axis.  

 

Lifespan. Assays were performed at 20 ⁰C as previously described (56). Approximately 10 hermaphrodites 

were culture on each petri dish and were transferred to fresh plates every 1-2 days until the cessation of progeny 

production and about every 3 days thereafter. Animals were scored as dead if they showed no spontaneous 

movement or response when prodded. Dead animals that displayed internally hatched progeny, extruded gonad 

or desiccation were excluded. Statistical analysis was performed using GraphPad Prism version 4 (Kaplan-Meyer 

analysis).  

 

Motility assay. All assays were performed at room temperature (~22 ºC) on synchronized animals grown at 

20⁰C. Five 4-days old animals were placed simultaneously in the middle of a freshly seeded plate, equilibrated at 

20⁰C. Animals remaining inside a one cm circle after 1 min were scored as locomotion defective. A total of 150 

animals were scored in at least three independent assays for each strain, and the statistical significance was 

assessed by Student’s t-test, as described previously (54). 
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Figure S1. isp-1 and clk-1 mutations caused similar lifespan extension in AT3q130 and in WT N2 animals. 

Lifespan measurements of wild-type (N2), mutant (isp-1 and clk-1), transgenic (AT3q130) and double mutant (isp-1; 

AT3q130, clk-1; AT3q130) animals grown at 20°C. Graph (A) shows all the strains: daf-16 and daf-2 strains were used as 

experimental controls. Graphs (B) and (C) highlight data subsets. isp-1 and clk-1 mutations increase life span of WT N2 

animals (B) and of AT3q130 expressing animals (C) similarly.    
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Abstract 

The role of the wild-type proteins in the pathology of polyglutamine diseases remains unclear. There are 

conflicting reports on whether the expression of the wild-type proteins should be increased, maintained or 

abolished in the disease context for therapeutic means. To gain insight into this issue, we have used novel C. 

elegans models that allowed us to simultaneously study the aggregation dynamics of both wild-type and 

pathological forms of ataxin-3 proteins in vivo, as well as its toxic outcomes at the behavioral level of the 

organism.  We show that (i) recruitment of ataxin-3 into polyQ-containing cellular aggregates is polyQ length-

dependent, (ii) that wild-type ataxin-3 sequestration worsens motor behavior of affected polyQ-expressing animals 

and that (iii) endogenous ataxin-3 knock-out did not aggravate aggregation or motor neuron dysfunction in a C. 

elegans model of ataxin-3 pathogenesis. Our findings support the idea that wild-type ataxin-3 is unlikely to play a 

neuroprotective role in MJD.   
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Introduction 

At least nine human neurodegenerative diseases are caused by the expansion of CAG repeats within the 

coding region of otherwise unrelated genes. Among these diseases, Machado-Joseph disease (MJD), also known 

as Spinocerebellar ataxia type 3 (SCA3), is the most common dominantly inherited ataxia worldwide (1-8) and is 

caused by an expansion of a polyglutamine (polyQ) segment in the corresponding protein ataxin-3 (ATXN3). In 

healthy individuals, ATXN3 has 12 to 47 glutamine (Q) units in the protein repetitive segment; but when this 

segment expands beyond 55 Qs it becomes pathogenic (reviewed in (9). The physiological role of ATXN3 is still 

poorly understood, although its involvement in the ubiquitin-proteasome system (UPS), as a deubiquitylating 

enzyme (DUB) it has been strongly suggested (10-13). ATXN3 ortholog proteins in C. elegans and mice display 

conserved DUB activity at least in vitro (14, 15). Other ATXN3 functions are known but have been less explored 

(16-19).  

The ambiguity regarding the normal function of polyQ proteins underlies a crucial question regarding 

the influence of the wild-type (WT) non-expanded allele to modulate polyQ pathology. Since the leading 

hypothesis concerning the pathogenesis of polyQ diseases is that the expanded polyQ tract confers a gain-of-

function to the mutant proteins, less attention has been dedicated to the normal function of these proteins, 

particularly in the context of the nervous system. More recently, however, for proteins such as huntingtin 

(involved in Huntington disease, HD) and the androgen receptor (involved in Spinobulbar muscular atrophy, 

SBMA) evidence has been obtained suggesting that there is also partial loss-of-function in cells and animals 

expressing the mutant proteins, and that this loss-of-function may be of relevance for the disease. In the case of 

huntingtin, for instance, the excessive sequestration of huntingtin into inclusions may affect its normal 

neuroprotective role, thought to be linked to its ability to regulate BDNF expression (20). Cell culture studies also 

show that aggregation of mutant huntingtin promotes fibrillogenesis of the WT protein (21).  In a mouse model of 

SBMA, loss of the endogenous androgen receptor was proven to significantly worsen the disease phenotype 

(22). For ataxin-1 (involved in SCA1) opposing effects of the polyQ expansion have been reported in regards to 

the formation of native protein complexes in cells (23). Apparently mutant ataxin-1 maintains the usual 

molecular partners, but the polyQ tract expansion strengthens interactions whithin some protein complexes 

(RBM17) and attenuates them in others (CIC), perhaps contributing to SCA1 through gain- and loss-of-function 

mechanisms, respectively.  The finding that there are shared gene expression changes on cerebellar RNA from 

Atxn1−/− and Atxn1154Q/+ mice further supports the hypothesis (24).  

Studies using double-transgenic mice (25) and Drosophila models (26) suggested beneficial effects of 

the non-expanded ATXN3 allele in MJD. However, more recent works failed to support these findings (27, 28). 

These conflicting data urge for a model system that allows simultaneously monitoring of the fate of non-

expanded and expanded ataxin-3 in neurons, in a progressive disease background, and evaluation of its toxic 

outcome at the organism level.    
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In the present study, we generated and characterized pan-neuronal C. elegans models in which we 

could follow WT and pathological forms of ataxin-3 being recruited into polyQ cellular aggregates. The dynamics 

of aggregation of normal ataxin-3 was followed in vivo (and through age), in parallel with its impact on motor 

neuron dysfunction of these animals. We show that wild-type ataxin-3 fails to display a neuroprotective role 

during disease progression and that loss-of-function of endogenous ataxin-3 has limited effect on polyQ 

pathogenesis.   
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Results 

Full-length ATXN3 is recruited into polyQ aggregates in C. elegans neuronal cells in a polyQ 

length-dependent manner 

To study the contribution of WT ATXN3 protein in MJD pathology, we used a recently developed C. elegans 

model (29). In this model, expression of WT ATXN3 in fusion with yellow fluorescent proteins (AT3q14::YFP) and 

of a pathological sub-threshold AT3q75::YFP protein did not cause aggregation or neuronal toxicity (29).    

To assess the dynamics of WT ATXN3 recruitment process in vivo, we crossed C. elegans strains 

expressing human WT or mutant sub-threshold ATXN3 with animals expressing Q67::CFP proteins, which 

aggregate throughout the C. elegans nervous system (30). The two fluorochromes (YFP-tagged ATXN3 and CFP 

labeling polyQ aggregated “seeds”) allowed monitoring of the different species in vivo.     

Co-expression of AT3q75 with Q67 proteins (30) (Fig. 1A, panel 2), caused a dramatic alteration in 

ATXN3 cellular distribution, into the Q67 cellular inclusions (Fig. 1A, panel 3). At day 4, virtually all AT3q75 

molecules, that were diffuse when expressed alone (Fig. 1A, panel 1), co-localized into Q67 aggregates (Fig. 1A, 

panel 5) forming punctated-looking structures (for a magnified image see panel 6). Strikingly, WT ATXN3 was 

also significantly recruited in C. elegans neuronal cells. However, AT3q14 proteins were only partially localized 

within cell aggregates, appearing both with a diffuse localization and within foci (Fig. 1B, panels 5 and 6). 

Conversely, when we co-expressed AT3q75 with Q40 proteins (Q40 is an intermediate polyQ-length, near 

threshold for aggregation and neurotoxicity) (30), co-aggregation appeared only in specific neuronal-subtypes 

(29). These data suggested that the efficiency of protein recruitment may be Q-length dependent.  

The co-expression of mutant AT3q75 with Q19::CFP (Fig. S1, panels 1 and 3) showed a similar 

localization pattern to the one observed with the single expression of AT3q75 proteins. This indicates that ATXN3 

co-aggregation may be caused not by the presence of a second over-expressed polyQ protein in neuronal cells, 

but only by the co-expression with misfolding- or aggregation-prone species capable of shifting the cell’s protein 

homeostasis (proteostasis) through nucleation events or accumulation of polyQ ubiquitylated species that ATXN3 

binds to.  
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Figure 1. Ataxin-3 is recruited into polyQ cellular aggregates in a polyQ dependent manner. Flattened Z-stacks of the C. elegans head co-expressing Q67::CFP with either 

AT3q75::YFP (A) or AT3q14::YFP (B) proteins. (A) The diffuse expression of AT3q75 (panel 1) was altered when co-expressed with an expanded Q tract (panel 3) and mutant ATXN3 co-

localized with Q67 inclusions (panel 5 and 6, for a magnified region). (B) When expressed alone, AT3q14 displayed a diffuse expression pattern (panel 1) that was altered in the presence of 

Q67 proteins (panel 3), forming foci-like structures; only a subset of AT3q14 co-localized with Q67::CFP aggregates (panel 5 and 6, for a magnified region). Co-expression with mutant (A, 

panels 2 and 4) and wild-type AT3 (B, panels 2 and 4) did not cause an alteration on Q67 protein distribution. Scale bar= 50 µm. White boxes are indicative of magnified regions, shown in 

panels 6.  
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In order to determine if the polyQ tract has a single dominant effect in the recruitment of ATXN3 into 

the polyQ aggregates or if the other ATXN3 domains influence it, we generated a C. elegans strain expressing an 

ATXN3 polyQ deletion mutant (AT3q1), containing only one glutamine at the place of the polyQ tract. Similar to 

WT ATXN3, AT3q1 proteins were diffusely expressed throughout the C. elegans nervous system (Figure 2A, 

panel 1). Interestingly, co-expression of AT3q1 and Q67 proteins resulted in AT3q1 sequestration and in the 

formation of foci-like structures in a limited number of neurons (Fig. 2A, panels 1 and 3 square), whereas YFP-

alone (Q0) proteins were not significantly recruited into the polyQ aggregates (Fig. 2B, panel 3 square). In spite 

of AT3q1 being sequestrated to a lesser extent when compared to AT3q14 proteins, our data suggest that 

ATXN3 recruitment into cellular aggregates may not be exclusively mediated by the polyQ-tract of ataxin-3. 

The co- expression of mutant ATXN3 (AT3q75, Fig. 1A, panels 2 and 4), WT ATXN3 (AT3q14, Figure 

1B, panels 2 and 4) and AT3q1 (Figure 2A, panel2 and 4) with the Q67 proteins did not alter the cellular 

localization of the latter. 

Our data suggests that ATXN3 sequestration into cellular aggregates is a dynamic process strongly, but 

not exclusively, dependent on the presence of a polyQ-tract in this protein.  
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Figure 2. Q-less ATXN3 (AT3q1) proteins are recruited into the Q67 aggregates in a limited number of cells. (A) Flattened Z-stacks of C. elegans heads co- expressing At3q1 

and Q67 proteins showed recruited in a subset of neuronal cells (A, panels 1 and 3), whereas YFP-alone protein distribution (Q0) was not significantly affected by the presence Q67 aggregates 

within the same cells (B, panels 1 and 3). Scale bar= 50µm. White squares of panels 3 show regions where levels of AT3q1and Q0 proteins should be compared. 
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ATXN3 recruitment into polyQ aggregates aggravates with age  

We observed that the ATXN3 distribution pattern, in the background of the polyQ expressing lines, was 

variable as the animals aged. Animals expressing ATXN3 proteins showed clearly delineated cell bodies and 

processes, throughout their life span. This soluble distribution pattern could be observed even at day 8 (post-

hatching), namely in the neurons of the head, where it was possible to identify the neuroanatomy of  the sensory 

processes (Fig. 3B, panel 1 arrow) and the circumpharyngeal nerve ring (Fig. 3B, panel 1 arrowhead) (31). As 

shown before, at day 4 the co-expression of AT3q75 with threshold-length polyQ proteins (Q40) resulted in foci 

formation in specific affected neurons, namely in sensory processes of the head and in certain ventral and dorsal 

nerve cord (VNC and DNC) neurons (29). Interestingly, when we analyzed younger animals (day 2 post-hatching) 

no foci were yet formed (Fig. 3A). These animals were again observed at 8 days of age and we could observe an 

increase in the number of foci. These observations were consistent between all animals analyzed (Fig. 3B, 

panels 3 and 4). AT3q75 and Q40 proteins co-localized within these foci-like structures (Fig. 3B, panels 5 (thin 

arrows) and 6). In contrast, co-expression of AT3q14 with Q40-alone proteins did not cause the formation of 

punctated structures in the sensory processes of the animals head even at day 8 (Fig. S2). However, AT3q14 

proteins were recruited into Q40 aggregates located at certain VNC neurons (data not shown).  
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Figure 3. The formation of foci-like structures in AT3q75Q40 animals increased as the animals  aged. Flattened Z-stacks of C. elegans head co-expressing Q40::CFP with 

AT3q75::YFP proteins. At day 2, animals expressing both mutant ATXN3 and Q40 proteins showed diffuse protein expression (A, panels 3 and 4); whereas at day 8, the formation of foci-

looking structures was visible in the sensory processes of the head neurons (B, panels 3 and 4); no inclusions were observed in animals expressing AT3q75 and Q40 proteins alone (B, panels 

1 and 2). Within these foci AT3q75 and Q40 proteins co-localized (B, panel 5, thin arrow). Scale bar= 50 µm. White boxes are indicative of magnified pictures, shown in panel 6. 
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Since the efficiency of ATXN3 recruitment into cellular aggregates is Q-length dependent, we anticipated 

that the sequestration of ATXN3, in a Q67 background, could occur at earlier stages of the worm development. 

In fact, at day 2 animals co-expressing WT ATXN3 and Q67 proteins displayed AT3q14 with a generally diffuse 

pattern, except for a few foci that were already visible in the sensory processes of the head (Fig. 4A, panel 3, 

arrow); whereas at day 8, WT AT3 appeared to be mostly recruited into the Q67 aggregates, the chemosensory 

processes being no longer visible in these animals (Fig. 4B, panel 5). Strikingly, AT3q75 was recruited into the 

Q67 aggregates already at early stages of the animal’s development (Fig. S3). In summary, ATXN3 recruitment 

into cellular aggregates aggravates as the animals age in a Q length-dependent manner. 
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Figure 4. Wild-type ATXN3 sequestration into the Q67 aggregates increases as the animals age. Day 2 (A) and day 8 (B) flattened Z-stacks of C. elegans head co-expressing 

AT3q14::YFP and Q67::CFP proteins. At day 2 (A), AT3q14 was recruited into the Q67 aggregates mainly in the sensory processes of the head (panel 3, arrows), while in the neurons of the 

nerve ring ATXN3 showed a diffuse distribution. In contrast, at day 8 (B) wild-type ATXN3 was fully sequestered into the Q67 aggregates: AT3q14 formed inclusions in all neurons of the head, 

the shape of the neuronal chemosensory processes being no longer visible. In the neurons of the nerve ring (panel 6, open arrow) AT3q14 also showed a punctated-like shape co-localizing with 

Q67 proteins. Scale bar= 50 µm.  
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ATXN3 recruited into polyQ aggregates acquired properties of highly immobile protein  

The cellular distribution pattern of ATXN3 in a polyQ aggregated background [AT3q(n);Q(n)] is visually 

distinct from the one observed when ATXN3 is expressed alone. To assess whether the visual changes in protein 

distribution and the formation of foci-like structures corresponded to changes in protein solubility, and to 

determine how dynamic the recruitment process is, we performed fluorescence recovery after photobleaching 

(FRAP) analysis. In agreement with previous reports (30) the FRAP analysis performed on polyQ, CFP-tagged 

proteins, showed that co- expression with ATXN3 proteins did not alter the polyQ-alone mobility pattern (data not 

shown). 

FRAP analysis of AT3q75(;Q40) animals at day 4 showed that the foci-like structures, not detected in 

neurons of the head of Q40-alone expressing lines, corresponded to immobile, aggregated protein (Fig. 5A, 

AT3q75;Q40(a)). We could also find soluble mutant ATXN3 protein, namely in the lateral neurons (Fig. 5A, 

AT3q75;Q40(s)) of the same animals. Moreover, extensive FRAP testing within the VNC neurons revealed that 

AT3Q75 protein could exist either in a rapid recovery (soluble) state or completely immobile. A similar differential 

solubility pattern was found in 8 days old animals for ATXN3 (Fig. 5B). 

In a Q40 background, WT ATXN3 did not lead to foci formation (Fig. 2B and S3). In fact, Q40 protein 

was found in an highly soluble state in the chemosensory processes of C. elegans, even at day 8 (Fig. 5A and B, 

AT3q14;Q40). These results point out that WT ATXN3 does not exacerbate the aggregation phenotype of Q40 

animals by leading to the formation of new aggregates, being only recruited into the already formed Q40 

aggregates. 
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Figure 5. ATXN3 recruited into cellular aggregates acquired properties of immobile amd aggregated 

protein. Panels A and B show ATXN3 aggregation dynamics in the background of Q40 proteins. At day 4, FRAP of neurons 

expressing AT3q75;Q40 protein-containing foci-like structures, showed that protein within the foci was immobile, 

corresponding to aggregated protein (AT3Q74;Q75(a)) (A). Certain DNC and lateral neurons displayed highly mobile, soluble 

AT3q75 protein (AT3Q74;Q75(s)). (B) At day 8, the mobility rates of these proteins showed a similar pattern with 

aggregation of AT3q75 protein within the foci and soluble protein in the lateral neurons (AT3q75;Q40(s)). Wild-type ATXN3, 

in a Q40 background, had rapid recovery rates after photobleaching, corresponding to soluble protein, both in day 4 (A) and 

day 8 (B) animals (AT3q14;Q40). AT3q14 recruited into Q40 aggregates corresponded to aggregated protein, showing low 

recovery rates after photobleaching (data not shown).  Panels C and D show ATXN3 aggregation dynamics in the 

background of Q67 proteins. (C) FRAP analysis on AT3q75, in the background of Q67 protein showed reduced recovery 

after photobleaching, indicating that mutant ATXN3 was co-aggregating with Q67 proteins, both at day 4 (A) and day 8 (B) 

(AT3q75;Q67). Wild-type ATNX3 was partially recruited into the Q67 aggregates and both (C) soluble (AT3q14;Q67(s)) and 

aggregated (AT3q14;Q67(a)) protein could be found at day 4. (D) At day 8, no highly soluble AT3q14 protein was found 

indicating that more wild-type protein became sequestered into the Q67 aggregates (AT3Q14;Q67). Quantification (A, B, C 

and D) was performed in eight or more experiments, and is represented as the mean ± SEM. Scale Bar, 5 µm. RFI, Relative 

fluorescence intensity.  

 

FRAP analysis on AT3q75 in the background of Q67 protein (AT3q75(;Q67)) revealed almost no 

recovery after laser photobleaching, showing that the protein is mostly immobile. This is a strong indication that 

protein aggregates have formed (Fig. 5C, AT3q75;Q67(a)). As expected, when the solubility pattern of mutant 

ATXN3 was also assessed at day 8, no differences were found (Fig. 5D, AT3q75;Q67(a)). Immobile proteins 

were present in nearly all neurons FRAPed, suggesting that nascent AT3q75 is being sequestered into the Q67 

aggregates, either co- or post-translationally. In fact, Western-blot analysis (Fig. 6) showed that when ATXN3 is 

recruited into cellular inclusions it is SDS resistant (2% SDS treatment), a know biochemical property of the 
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polyQ aggregates (32, 33). Likewise, extracts of AT3q75; Q67 day 4 animals contained SDS-resistant 

aggregates, whereas we were unable to detect SDS-resistant AT3q75(;Q40) proteins (Fig. 6).  

At day 4, WT ATXN3 was also recruited, although only partially, into the Q67 aggregates. In some DNC 

and VNC neurons ATXN3 displayed fast recovery after photobleaching, indicating that soluble protein was also 

present in those neurons (Fig. 5C, AT3q14;Q67(s)). Interestingly, at day 8 no highly soluble AT3q14 was found 

in the neurons of these animals, despite the extensive FRAP testing (Fig. 5D). In accordance with our microscopy 

results (Fig. 4), FRAP analysis suggested that, as the animals age, more protein is being recruited into the Q67 

aggregates, becoming less mobile. This aggravation of the aggregation profile may be a result of kinetics of the 

aggregation process or of a decline of the cells’ quality control machinery. 

As expected, both mutant and WT ATNX3 showed properties of mobile protein, i.e., they were highly 

soluble, when co-expressed with Q19::CFP (data not shown), showing solubility properties close to ATXN3-alone 

proteins (29). In summary, the visual changes in neuronal ATNX3 protein distribution into cellular aggregates 

correlated with the alterations in protein solubility detected by FRAP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Biochemical analysis AT3q75;Q67 proteins revealed that when recruited into Q67 aggregates, 

AT3q75 proteins became insoluble and resistant to SDS-treatment.  AT3q75;Q(n) C. elegans lines show the 

expression of the full-length AT3q75 proteins with normal and expanded Q-stretches (Q19; Q40 and Q67). Total protein 

extracts from animals expressing YFP/CFP fusion proteins were treated with 2% SDS, separated by SDS-PAGE and 

immunoblotted with anti-GFP, anti-MJDv1-1 and anti-tubulin antibodies. In accordance to our FRAP results, when co-

expressed with Q67 proteins, mutant ATXN3 became insoluble. 
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Wild-type ATXN3 recruitment into cellular aggregates increased neuronal dysfunction 

Several C. elegans neurons enervate muscle cells and dysfunction of these neurons may result in lack 

of coordination or even lack of ability to crawl (34). To determine the effect of WT and of mutant subthreshold 

ATXN3 recruitment into cellular aggregates on neurotoxicity of these animals, we have performed motility assays 

to assess potential alterations in locomotion. WT and AT3q75 protein expression did not cause overt neuronal 

toxicity when compared with animals expressing YFP alone (Q0) (Fig. 7A); whereas animals expressing expanded 

polyQ-alone proteins (Q40 and Q67) showed dramatic defects on motility (Fig. 7) when compared with animals 

expressing a non-pathogenic Q-stretch (Q19) (p=0.0002 and p=8.7x10-6, respectively). This is consistent with 

what has been previously described using similar behavioral assays (30). Interestingly, WT ATXN3 co-expression 

significantly enhanced motor neuron dysfunction of Q67 animals (*, p= 0.0061), and the locomotion defect was 

even more striking when Q67 proteins were co-expressed with AT3q75 proteins (*, p=0.0009) (Fig. 7A). The 

data suggests that recruitment of the WT ATXN3 into aggregates can have deleterious effects to the neuronal 

cells. Moreover, the accelerated dynamics of sequestration shown by mutant ATXN3 (in comparison with WT 

ATXN3) correlate with increased neuronal dysfunction in our C. elegans model (*, p=0.04, AT3q14;Q67 vs. 

AT3q75;Q67). In the background of Q19 proteins, the phenotype displayed by AT3q(n);Q19 animals was mainly 

due to the expression of the human ATXN3 protein and it was not significantly different from animals expressing 

full-length ATXN3 alone (Fig. 7A).   
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Figure 7. Wild-type ATXN3 recruitment into Q67 aggregates increases motor neuron-dysfunction. (A) The 

presence of ATXN3 increases the locomotion defects of Q67-alone expressing animals (*, ** p<0.05). More than 90% of the 

AT3q75; Q67 animals tested presented defects in motility (#, p< 0.05, compared with AT3q14; Q67), whereas the 

percentage of locomotion defective animals is identical in normal and expanded ATXN3-alone expressing animals. Behavior 

analysis was performed in 4 days-old animals. (B) At day 4, co-aggregation of Q40 with AT3q75 proteins (and not with 

AT3q14) significantly enhanced the animals’ locomotion defects (p<0.05), whereas at day 8, expression of mutant ATXN3 

significantly increased motor neuron dysfunction relatively to normal ATXN3.  At least 150 animals were tested. Statistical 

significance was assessed by t-Student test. 

 

At day 4, we observed that co-aggregation of Q40 with pathological sub-threshold AT3q75 proteins (and 

not with AT3q14) significantly enhanced motor neuron dysfunction (*, p=0.0082). At day 8, there was a general 

increase in the percentage of locomotion-defective animals (Fig. 7B) probably also due to the animals’ normal 

aging process. However, when we compared WT and mutant ATXN3 expressing animals, there was a significant 

increase in toxicity (p=0.004) that was not seen at day 4. This result is in accordance with the aggregation 

profile, since at day 8 there is a clear increase in the number of foci in AT3q75;Q40 animals and not in 

AT3q14;Q40 (Fig. 3 and S2).  
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In summary, we found that AT3q14 overexpression aggravated motor neuron dysfunction of the 

animals, when recruited into the Q67 aggregates and not into the Q40 proteins.  

 

Absence of endogenous ATX3 had no effect on mutant ATXN3-mediated pathogenesis 

One of the important conclusions of our co-expression experiments was that overexpression of WT ATXN3 did not 

protect against aggregation-mediated toxicity in C. elegans neuronal cells. Next, we asked whether the absence 

of endogenous ataxin-3 in neuronal cells would suppress human ATXN3 pathogenesis in C. elegans. For that 

purpose, we crossed animals expressing full-length ataxin-3 proteins containing 130 Qs (AT3q130) and 

endogenous ATX-3 knock-out animals (atx-3), previously characterized by us (29). AT3q130 animals display, 

among other features, neuronal sub-type specific aggregation and motor neuron dysfunction (14, 29, 35). Of 

notice, C. elegans ATX-3 presents deubiquitylating activity in vitro, analogous to the human ortholog (14) and atx-

3 animals showed no overt phenotype at 20⁰C. In our atx-3; AT3q130 model, loss of endogenous atx-3 did not 

alter significantly the disease phenotype, both at the aggregation and motor neuron dysfunction levels (Fig. 8A). 

However, recent studies have shown that atx-3 knock-out animals have an improved stress response and 

express increased levels of molecular chaperones when grown at 25⁰C (35). Based on this, we grew atx-3; 

AT3q130 animals at higher temperature. Even at 25⁰C, atx-3 loss-of-function failed to modulate the disease 

phenotype (Fig. 8B). Our data suggests that loss-of-function of WT ataxin-3 may have limited effects on MJD 

pathogenesis.  
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Figure 8. Absence of endogenous ATX-3 did not modulate pathological ATXN3-mediated proteotoxicity. The mutation atx-3(gk193) did not significantly change the AT3q130-

mediated aggregation at day 4 (post-hatching) at 20°C (A). Motility analysis showed no differences in motor neuron dysfunction of atx-3; AT3q130 animals when compared to AT3q130 

transgenics (A). At 25°C, adult atx-3; AT3q130 animals (2.5 days post-hatching) showed similar aggregation pattern and locomotion defects to the AT3q130 transgenics (B). 
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Discussion 

The role of the WT ataxin-3 in MJD pathogenesis remains unclear, particularly, the cross-talk between 

the cellular fate of the normal protein in a disease context (i. e. recruitment into aggregated species), and its 

effect on the pathogenic cascade. The relevance of this question it is not only academic, since the decision of 

making use of gene therapy or pharmacologic strategies to manipulate levels of the mutant and WT protein in 

the clinic depends on further clarification of these aspects. In this work, we investigated the potential 

neuroprotective role of normal ataxin-3 by overexpressing or silencing it in a disease context. In our model, we 

analyzed (i) the sequestration profile of wild-type ataxin-3 into cellular aggregates (Q-length and age-dependency), 

and (ii) the impact of co-aggregation on motor neuron dysfunction of these animals. Finally, (iii) we addressed 

the effect of knocking-out endogenous ATX-3 in a C. elegans model of MJD pathogenesis. 

 

Wild-type ATXN3 is recruited into cellular aggregates  

MJD homozygous patients develop the disease at early ages and show a more severe and progressive 

neurological phenotype than heterozygous individuals (36-38). Is this due to the absence of a functional non-

expanded ataxin-3 allele or from an increased load of the mutant ataxin-3? or from a combination of gain and 

loss-of-function?  

It was known from previous work that WT ataxin-3 had the ability to interact and co-localize with cleaved 

C-terminal fragments or truncated forms of expanded ataxin-3 (39).  We crossed C. elegans strains expressing 

wild-type and mutant subthreshold ATXN-3 proteins (YFP-fused) into animals expressing expanded polyQ-

stretches (CFP-fused). This model recreates many features of MJD, since we have previously shown that, at the 

aggregation threshold (AT3q75; Q40), the neuronal cell type-specific susceptibility is comparable to that of 

animals expressing full-length AT3q130 proteins and C-terminal 257cAT3q75 (29). The use of different 

fluorophores allowed tracking the two species in vivo in the neuronal cells. One question that remained 

unanswered from previous studies was if the recruited ATXN3 molecules became immobile in the cell or if 

instead they were able to keep their solubility and, perhaps, intact function. Indeed, it has been described that 

molecular chaperones are recruited and interact with polyQ aggregates in a dynamic way, exhibiting rapid 

association and dissociation rates (40). In contrast, we show that wild-type ATXN3 molecules are sequestered 

into cellular aggregates and acquire properties of immobile proteins. Additional studies will be required to 

evaluate ATXN3 function in vivo in these cellular aggregates.  

The efficiency of ATXN3 recruitment is polyQ-length dependent. Increased ATXN3 Q-length potentiates 

sequestration into pan-neuronal aggregates (Q67 model). At day 4, AT3q75 proteins completely co-localize with 

Q67 aggregates, whereas a proportion of WT AT3q14 proteins was still soluble. Interestingly, however, the 

deletion of the Q-tract (AT3q1) did not totally prevent ATXN3 recruitment, suggesting that ATXN3 protein 

domains other than the Q-stretch may contribute to this interaction. FRAP analysis further supported this finding, 

since we found that a proportion of AT3q1 proteins presented reduced mobility/solubility in the neuronal cells 
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(data not shown). In fact, WT ATXN3 was also found in non-polyQ intranuclear cellular aggregates in neuronal 

intranuclear hyaline inclusion disease (NIHID) (41). Co-localization of AT3 with cellular aggregates can be related 

with its DUB function. Cellular studies show that endogenous AT3 colocalizes with aggresomes and pre-

aggresome particles of the misfolded cystic fibrosis transmembrane regulator (CFTR) mutant CFTRDeltaF508 

and associates with histone deacetylase 6 and dynein, proteins required for aggresome formation and transport 

of misfolded protein (42).    

One of the great advantages of using C. elegans as a model system is that one can add the dimension 

time/age to investigate several hypothesis at the level of the neuronal circuit. In our worm, WT ATXN3 

recruitment was also shown to be modulated by age. As the animals grew older, more ATXN3 proteins became 

trapped into the Q67 and Q40 aggregates. Particularly, in the Q67 background, AT3q14 proteins passed from a 

more soluble condition to a totally aggregated state, as monitored by FRAP analysis.  In agreement, previous 

studies in mouse and rat models showed a comparable tendency to an increase in the total number of 

aggregates when WT ATXN3 proteins were co-expressed with the expanded allele (27, 28).  

Interestingly, AT3q75; Q40 animals also showed a clear increase in the number and size of aggregates 

through age, which was mainly due to the formation of new aggregates. In fact, in the Q40 model WT and 

mutant subthreshold ATq75 proteins showed differential effects in the aggregation pattern of the animals. 

AT3q14 proteins were recruited into Q40 aggregates of the VNC, whereas AT3q75, besides that, formed new 

aggregates in cells that weren’t affected when Q40 species were expressed alone (29). 

The aggravation of the ATXN3 recruitment phenotype as the animals got older could be due to the 

kinetics of the co-aggregation process or to a decline of proteostasis function in cells or both. We found no 

significant differences in the co-aggregation profile of AT3q(n); Q(n) in the background of the long lived strain daf-

2 (data not shown), suggesting that  kinetics may have a major effect on recruitment.  

 

Differential impact of wild-type ATXN3 recruitment on motor dysfunction  

Importantly, Cemal et al. (2002) reported that the co-expression of ATXN3 with 84 CAG repeats and 

ATXN3 with 22 CAGs proteins in a mouse model resulted in a mild phenotype, comparable to that of a line 

expressing ATXN3 with 72Qs (25). The neuronal loss, number of inclusions and gliosis presented by the 

MJD22.1/84.1 line was considerable reduced when compared with MJD84.2 line. Studies in Drosophila 

reinforced the concept of a protective role of WT ATXN3 in MJD pathogenesis. Warrick and collaborators 

reported that wild-type and functionally active ATXN3 suppressed polyQ-induced neuropathology and behavioral 

defects (26). Recently, however, studies in rodents failed to support these findings (27, 28). Double transgenic 

mice did not show any behavioral rescue or death delay (27). In rats, a larger DARPP-32-depleted region was 

associated with co-expression of mutant and wild-type alleles of ataxin3, suggesting increased toxicity (28).  

We observed a differential impact on C. elegans behavior depending on the length of the expanded 

allele, which was not dependent on the animals’ age. Specifically, WT ATXN3 was recruited into high Q-length 
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polyQ aggregates (Q67), causing an aggravation on locomotion defects of the animals. In contrast, when AT3q14 

was sequestered into polyQ-expanded, near aggregation threshold Q40 aggregates it had no phenotypic effect, 

even in older animals (day 8). Our data provides experimental evidence that for MJD, the effect of the WT protein 

may depend on level of disease severity and degree of progression, as well as on the type of aggregated 

structures formed.       

 

Loss-of-function of ATXN3 has limited effect in the modulation of pathogenesis 

Loss of endogenous function of several polyQ proteins was shown to have a negative impact on 

pathogenesis (22, 23). Particularly, in SCA1, pathogenesis involves changes in other regions of ataxin-1protein in 

addition to the polyQ tract (43, 44). In MJD, silencing of endogenous rat ATXN3 was found to have no effect on 

the total number of ubiquitin-positive cells as well as in the mutant ATXN3-induced brain lesion (DARRPP-32 

staining) (28), suggesting that probably the behavior of the animals was also not affected. Here, we show that 

the absence of C. elegans atx-3 had limited effect both on the aggregation pattern of pathogenic human ATXN3 

and on the motor function of the animals. 

 

Our data suggests that WT ATXN3 overexpression in a disease context may have differential effects 

depending on the Q-length of the disease causing allele. However, we failed to find a neuroprotective role for 

normal ATXN3 as well as beneficial effects on the animals’ behavior resulting from its overexpression. The 

absence of normal ATXN3 function also did not modulate MJD pathogenesis. Thus, manipulation of WT ATXN3 

levels as a therapeutic intervention to prevent neurological phenotypes in MJD is unlikely to lead to beneficial 

results.   
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Materials and methods 

Plasmid construct. Pan-neuronal ATXN3 expression was achieved by cloning AT3var1-1 cDNA into the 

PF25B3.3Q0::YFP plasmid (30), as previously described (29). Full-length AT3q1 cDNA with different polyQ- lengths 

was generated by PCR using oligonucleotides containing restriction sites for BamH I and pGEM-7Zf(+)::MJD1-

1q1 as templates. AT3q1 amplicons were then digested and ligated into the BamH I sites of PF25B3.3Q0::YFP 

generating PF25B3.3AT3v1-1q1::YFP. Sequencing confirmed the AT3q1 sequence, YFP and the promoter region.  

 

C. elegans methods. Standard methods were used for culturing and observing C. elegans (45). For generation 

of transgenic neuronal animals, 50 ng.µL-1 of DNA encoding PF25B3.3AT3q1 was microinjected into the gonads of 

adult hermaphrodite N2 animals. Transgenic F1 progeny were selected on the basis of neuronal fluorescence. At 

least three independent stable lines for each transgene were isolated and analyzed with similar results. 

Transgenic lines were frozen immediately after they were generated. Populations were synchronized either by 

treating young adult animals with alkaline hypochlorite solution (0.5 M NaHO, ~2.6% NaClO) for 7 min (46) or 

by collecting embryos laid by adult animals within a 3-h period.  

 

C. elegans strains generated. All strains used the F25B3.3 promoter with full-length AT3q(n) fused to YFP. 

ATXN3 full-length lines included the following: (AT3q1) AM649 rmEx285, AM650 rmEx286; (AT3q14) AM491 

rmEx228, AM500 rmEx232; and (AT3q75) AM489 rmEx227, AM495 rmEx231. Dual-colored lines generated for 

imaging and FRAP included the following (AT3q75;Q(67)) AM502 rmEx227[PF25B3.3::AT3v1-

1q75::YFP];rmIs190[PF25B3.3::Q67::CFP]; (AT3q75;Q(40)) AM508 rmEx227[PF25B3.3::AT3v1-

1q75::YFP];rmIs167[PF25B3.3::Q40::CFP]; (AT3q75;Q(19)) AM502 rmEx227[PF25B3.3::AT3v1-

1q75::YFP];rmIs172[PF25B3.3::Q19::CFP]; (AT3q14;Q(67)) AM504 rmEx232[PF25B3.3::AT3v1-

1q14::YFP];rmIs190[PF25B3.3::Q67::CFP]; (AT3q14;Q(40)) AM505 rmEx228[PF25B3.3::AT3v1-

1q14::YFP];rmIs167[PF25B3.3::Q40::CFP]; (AT3q14;Q(19)) AM507 rmEx228[PF25B3.3::AT3v1-

1q14::YFP];rmIs172[PF25B3.3::Q19::CFP]; (AT3q1;Q(67)) AM672 rmEx285[PF25B3.3::AT3v1-

1q1::YFP];rmIs190[PF25B3.3::Q67::CFP]; (Q0;Q67) AM655  rmIs182[PF25B3.3::Q0::YFP];rmIs190[PF25B3.3::Q67::CFP]. 

All strains expressing variable Q lengths were generated previously (30) and were either used as controls or to 

cross with ATXN3 full-length lines. CFP lines included: (Q19) AM282 rmIs172, (Q40) AM305 rmIs167, (Q67) 

AM308 rmIs190. YFP lines included: (Q0) AM52 rmIs182.  

 

Immunobloting analysis. Nematodes were collected, washed with M9 buffer and frozen in liquid nitrogen. 

Worm pellets were sonicated for ~2 min in lysis buffer (20 mM Tris pH7.4, 10% glycerol, 5 mM MgCl2, 0.5% 

Triton X-100, 0.2 mM PMSF, 1 µg/ml leukopeptin, protease inhibitor cocktail (Roche)). Protein concentration 

was determined using the Bradford assay (Biorad). Ten micrograms of total protein, previously treated with 2% 

SDS, were separated by SDS-PAGE and analyzed by immunobloting with IRDye 800 Conjugated affinity purified 
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anti- GFP [goat IgG] (Rockland), anti-alpha-tubulin mouse (Sigma) and AlexaFluor 680 goat anti-mouse 

(Molecular Probes). Images were captured using Odyssey Infrared Imaging System. All membranes were re-

probed with anti-MJD1-1 antibody (19) and detected with horseradish peroxidase-coupled secondary antibody 

and chemiluminescence (ECL western-blotting detecting reagents, Amersham Pharmacia). 

 

Confocal imaging. All images were captured on a Zeiss LSM510 META confocal microscope (Oberkochen, 

Germany) under a 63x water objective. Animals were immobilized with 1.5 mM levamisole and mounted on a 3% 

agarose pad. Z-series imaging was taken of all the C. elegans lines generated using 514 nm laser excitation for 

YFP and 458 nm for CFP. The pinhole was adjusted to 1.0 µm of optical slice and a scan was taken every ~0.5 

µm along the Z-axis. Immobilized 4- or 8-d-old animals were subjected to Fluorescence Recovery After 

Photobleaching (FRAP) as described (47) with the following modifications: imaging on full-length AT3 and 

AT3;Q(n) animals was performed at 5% power of a 514 nm laser line with bleaching power of 100 % and 25 

iterations. Relative fluorescence intensity (RFI) was determined using the following equation: 

RFI=(Tt/Ct)/(T0/C0), in which T0 is the total intensity of the region of interest (ROI) prior to photobleaching and 

Ct is the intensity of the same area at a given time after bleaching. The intensities were normalized against a 

nonbleached ROI within the same cell (C0, intensity of the control area prior to bleaching and T0 at any time 

after) as a control for general photobleaching and background fluorescence (47).  

 

Motility assay. All assays were performed at room temperature (~20°C) using synchronised animals grown at 

20°C or 25°C. Five animals (2.5, 4- or 8-day-old) were placed simultaneously in the middle of a freshly seeded 

plate, equilibrated at 20°C. Animals remaining inside a 1-cm circle after one min were scored as locomotion 

defective. More than 101 animals were scored in at least three independent assays for each strain, and the 

statistical significance was assessed by Student’s t-test, as described previously (48). 
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Figure S1. Flattened Z-stacks of C. elegans heads showed that co- expression of mutant subthreshold ATXN3 and Q19 

proteins (panels 3 and 4) did not cause an alteration in protein distribution compared with animals expressing AT3q75 

(panel 1) and Q19 (panel 2) proteins-alone even at day 8. Panel 5 shows the merged image. Scale bar= 50 µm.  

 

 

 

 

Figure S2. Flattened Z-stacks of C. elegans head co- expression of wild-type ATXN3 with Q40 proteins did not cause the 

formation of foci-like structures in the sensory processes even at day 8. Scale bar= 50 µm. White box is indicative of 

magnified picture, shown in panel 6.  

 

 

 

 

Figure S3. Flattened Z-stacks of C. elegans head expressing AT3q75::YFP with Q67::CFP proteins at day 2. AT3q75 was 

distributed into the Q67 aggregates and foci localization was visible along with the formation of the Q67 aggregates, 

indicating that mutant ATXN3 recruitment occurred earlier in the animals’ development when compared with the 

recruitment dynamics of the wild-type protein.  Panels one and two show expression of AT3q75 and of Q67 proteins, 

respectively. Panels three, four and five show an animal co-expressing AT3q75 and Q67 proteins. Scale bar= 50 µm.  
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Abstract  

Machado-Joseph disease (MJD) is a late-onset neurodegenerative disorder, characterized by ataxia, 

ophthalmoplegia and spasticity. Its late-onset and slowly progressive nature increases both the time and cost of 

testing potential therapeutic compounds in mammalian models. An alternative is to initially assess the efficacy of 

compounds in invertebrate models, reducing the time of testing from months to days while still allowing the 

assessment of the compound’s effectiveness at the organism level. We screened five candidate compounds 

previously identified as having therapeutic effect in cell culture/animal studies of several polyglutamine (polyQ) 

diseases in a C. elegans model of MJD and found that four drugs, lithium chloride, CCI-779 (an analog of 

rapamycin), SAHA and Resveratrol, reduced neuronal dysfunction. These compounds, however, had differential 

effects in mutant ATXN3 aggregation. The results suggest that the manipulation of distinct pathways thought to 

be involved in polyQ-induced degeneration could impact positively in MJD pathogenesis. The drug-testing assays 

presented here will be useful for rapid and inexpensive high-throughput testing of large number of small 

molecules with potential therapeutic significance for MJD, and for elucidating drug targets and pathogenic 

pathways associated with disease. Additionally, the neuroprotection conferred by the drugs, two of which are 

FDA-approved, suggests that they may be useful for MJD therapy, prompting us to test them in mouse models to 

validate these findings. 
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Introduction 

 Notwithstanding the prevalence of neurodegenerative diseases, effective therapies for protein misfolding 

disorders are lacking (1-3). Specifically for polyglutamine (polyQ) disorders, although in the majority of the cases 

the normal function of each disease-associated protein and its pathogenic effect when mutated are not clear, 

there seem to be common pathways that could be explored in the development of therapeutics. Also, since most 

of the polyQ proteins cannot be held as a tractable drug target it became common to look for downstream targets 

that might be involved in pathophysiology. Examples include the use of transglutaminase inhibitors, Hsp90 

inhibitors and rapamycin to interfere with protein misfolding, aggregation and clearance (4-6); the application of 

creatine and ubiquinone to fight oxidative stress and restore mitochondrial electron transport chain activity (7, 8); 

the use of sodium butyrate (SB) and other histone deacetylase (HDAC) inhibitors to rescue transcriptional 

repression (9-11); the introduction of caspase inhibitors to prevent neuronal cell death and proteolysis of 

huntingtin (12); and administration of various compounds that restore neuronal excitability and 

neurotransmission alterations (13).  

Importantly, the pathogenic mechanisms themselves have been used as assay readouts for the 

identification of novel, effective and disease-specific small molecules for drug discovery in Huntington’s disease 

(HD) (14), Parkinson’s (15), amyotrophic lateral sclerosis (ALS) (16), tauopathies (17) and in spinal bulbar 

muscular atrophy (SBMA) (18). Many of the primary screens for the identification of suitable small molecules 

have been based on in vitro aggregation assays (19, 20). Stable amyloid-like aggregates, formed when the 

glutathione S-transferase (GST) tag of a GST-Huntingtin (Htt) E. coli fusion protein was removed proteolytically, 

were used to screen for molecules that inhibited Htt aggregation (20). The authors developed a simple filter 

retardation assay and measured concentration-response values for several aggregation inhibitors like Congo red 

and thioflavine S (21). Cell-based aggregation assays have also been developed, using yeast cells (22), 

hippocampal brain slice cultures from transgenic mice (23) and Förster resonance energy transfer (FRET)-based 

mammalian cell assays (18, 24). Rapid advances are being made to develop automated high throughput image 

analysis algorithms that quantify protein aggregates in cell cultures, in order to identify potential aggregation 

inhibitors (25, 26). An alternative approach was the search for compounds that instead are able to increase the 

cellular degradation of soluble or aggregated forms of the mutated proteins, like autophagy-modulating molecules 

(27). 

It is important to notice that the development of therapeutics has been less explored in MJD, an 

exception being the study by Chen and collaborators which relied on the administration of dantrolene, a known 

clinical relevant stabilizer of intracellular Ca2+ concentration, that improved motor performance and prevented 

neuronal cell loss in pontine nuclei and substantia nigra brain regions of the transgenic mouse model SCA3-YAC-

84 (28). In another study, daily intraperitoneal administration of HDAC inhibitor SB significantly reversed ataxin-3-

Q79-induced histone hypoacetylation and transcriptional downregulation in the cerebellum of SCA3 transgenic 
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mice. SB treatment also delayed the onset of ataxic symptoms, ameliorated neurological phenotypes and 

improved the mice survival rate (29). Induction of autophagy was also shown to reduce mutant ataxin-3 levels 

and toxicity in yet another mouse model of MJD, but this effect was less robust (30). In line with this finding, 

gene therapy studies in MJD, using a lentivirus-based rat model of MJD, suggested that overexpression of beclin-

1, a crucial protein in the early nucleation step of autophagy, led to the stimulation of the autophagic flux and 

mutant ataxin-3 clearance (31). Moreover, it has been shown that shutting down the expression of the mutant 

protein (and of the wild-type allele) would have a positive impact on disease pathogenesis (32, 33). However, 

modulation of ATXN3 gene expression is still hard to translate into the clinical practice.   

The challenge of treating neurodegenerative disorders arises from an insufficient knowledge about the 

contribution of multiple pathways to disease pathogenesis. Furthermore, given the fact that the disease 

symptoms appear, in the majority of the cases, in aged populations, testing the therapeutic value of small 

molecules in vertebrate disease models requires time-consuming experimental designs. The development of 

rapid and inexpensive in vivo strategies is therefore of paramount importance. The usage of mammalian cell 

culture models is, as explained above, a good alternative, however, these systems lack non-cell-autonomous 

effect and the environment context of the organism. This is particularly relevant in the case of the nervous 

system, in which cells function in circuits that are continuously modulated by exposure to stimuli and result in 

outcomes such as behaviors, aspects that are absent in cell culture paradigms.   

Recent data from our lab have shown that many aspects of MJD can be properly modeled in the round 

worm Caenorhabditis elegans (34), and others have shown that it can provide a suitable platform for both the 

discovery of new bioactive compounds and target identification (35). Furthermore, several years of 

neurobiological and anti-parasitic drug studies in C. elegans provide a strong foundation for the use of this 

organism in therapeutic compound identification (36-38). The present work was based on the idea that the 

finding of effective drugs can be accomplished by looking simultaneously at protein aggregation (conformational 

disorder) in the live neuronal cells, and on its impact on neuron-regulated behavior of the whole-animal 

(neurodegenerative disorder). Using a candidate drug approach, we tested compounds that have been previously 

shown to be effective in various model systems for other polyQ disorders. In addition to confirming the 

therapeutic effect of four of these compounds, we were able to validate our C. elegans model of MJD 

pathogenesis as a useful tool to be used in high-throughput testing of therapeutic small molecules and to identify 

promising drugs for treatment of MJD.   
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Results 

Determination of compound concentration range for drug screening in C. elegans  

 We chose to test a collection of five compounds that have demonstrated therapeutic efficacy, in either 

cell culture and/or animal models of polyQ pathogenesis, in our C. elegans MJD model (34) (Fig. 1). These 

candidates represent compounds that may protect against mutant ATXN3-mediated pathogenesis by modulating 

a variety of cellular pathways, namely autophagy, mitochondrial function and transcription. We first employed a 

systematic method, previously described by Voisine and collaborators (39), for selecting optimal drug 

concentrations to be assessed in C. elegans. A drug dosage was considered non-toxic to wild-type (WT) animals, 

if did not affect growth, survival and fertility. All compounds were tested in a dose dilution series in the food 

clearance assay, starting with the highest soluble concentration. Compounds were monitored by measuring the 

rate at which the food (OP50 bacteria suspension) was consumed. Optical density was measured every day (from 

day 1 to day 8) at 595 nm (OD595) (Fig. 1). At 20°C, after 4 days the OD of the wells without compound decreased 

significantly. Any drug concentration that was toxic to the animals resulted in a dose-dependent reduction of the 

rate at which food was cleared (Fig. 2). The highest concentration tolerated by C. elegans for each drug is 

depicted in Table 1. For all the compounds that showed decreased solubility in water, toxicity of the solvent 

(Ethanol for the Rapamycin analog, CCi-779 and DMSO for Suberoylanilide hydroxamic acid (SAHA) and 

Resveratrol) was previously determined in a similar manner (data not shown). Creatine showed very low solubility 

in any of the solvents tested (data not shown), so we supplemented the food source with Creatine powder and 

grew the animals on standard solid media. For this drug, we also assessed survival, fertility and growth to 

determine the highest non-toxic concentration (Table 1 and Fig. 3). In summary, we determined the 

concentration range to test in our C. elegans model for MJD pathogenesis for each of the candidate therapeutic 

compounds.   
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Figure 1. Experimental design for screening potential therapeutic compounds for MJD pathogenesis in C. 

elegans. The first step is to determine the range of safe concentrations for each compound, using the food clearance 

assay. The rate at which the food source is consumed by WT animals is a good indication of normal growth, survival and 

fecundity. Next, mutant ATXN3 animals are grown with different concentrations of each small molecule and assayed for 

locomotion defects and aggregation profile. Compounds that cause rescue of locomotion impairment and also a reduction of 

the aggregation load in AT3q130 animals, are considered good candidates for testing in higher model organisms.    
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Figure 2. Concentration of compounds was assessed using a food clearance assay. The OD of E. coli is reported daily for each concentration of LiCl (A), CCI-779 (B), SAHA (C) 

and Resveratrol (D). The mean OD is calculated for each day from triplicate samples and plotted over time. Highest safe concentrations were established for each compound: <12.5mM for 

LiCl; ≤100μM for CCI-779;and  < 100μM for SAHA and Resveratrol.    
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Figure 3. Wild-type animals were grown in NGM media seeded with OP50 supplemented with Creatine at 

the indicated concentrations. When treated with 3% creatine animals showed developmental delay and reduced brood 

size. Highest safe concentration was set as <2% for creatine-supplemented media. Pictures show day 4 (post-hatching) age-

synchronized animals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Screening for compounds that rescued mutant ATXN3-mediated motor dysfunction 

  We evaluated compound efficacy to rescue neuronal dysfunction in our C. elegans model for MJD 

pathogenesis (Fig. 1) (34). Expression of mutant ATXN3 (AT3q130) in all C. elegans neuronal cells resulted in 

neuronal-cell type specific aggregation that correlated with toxicity. AT3q130 animals grown in liquid medium 

with or without drug for four days, and then tested for defects in locomotion, by employing a motility assay (40). 

Animals treated with lithium chloride (LiCl) and with CCi-779, treatments thought to activate autophagy in a 

mTOR-independent and dependent manner, respectively, resulted in a partial rescue of locomotion impairment 

(Fig. 4A, left and middle panels). Next, we evaluated the potential combinatorial effects of both compounds on 

motor dysfunction and found no further improvement in locomotion when the co-treatment was explored (Fig. 

4A, right panel). 

Table 1. Compounds screened in C. elegans  MJD model for rescue of neuronal dysfunction and aggregation.

Compounds Putative cell pathway Conc. Tested Effect in AT3q130

LICl GSK-3β inhibitor 5- 10 mM reduction of locomotion impairment

↑Autophagy  mild reduction in the aggregation load

CCI-779 mTOR inhibitor 1- 100 µM reduction of locomotion impairment

↑Autophagy mild reduction in the aggregation load

Creatine Mitochondria stabilization 0.5- 2 % no effect

↓Oxidative stress

SAHA HDAC inhibitor 1- 200 µM reduction of locomotion impairment

↑Transcription reduction in the aggregation load

Resveratrol Sirtuin activator 1- 200 µM reduction of locomotion impairment

Anti-oxidant effect mild reduction in the aggregation load

↓Transcription; ↓Oxidative stress
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 Creatine was shown to be neuroprotective in several in vitro and in vivo models of Alzheimer’s, 

Huntigton’s, Parkinson’s disease and of amyotrophic lateral sclerosis (ALS) (41) and to target mitochondria and 

stabilize it. However, in our model creatine food supplementation had no effect in mutant ATXN3-mediated 

neuronal dysfunction (Fig. 4B) at all concentrations tested, not even after three generations (data not shown).  

 SAHA and Resveratrol modulate transcription in opposing directions through binding histone 

deacetylases (HDAC) targets in the cells. SAHA is a HDAC inhibitor (42), whereas Resveratrol is thought to be a 

sirtuin activator (43). AT3q130 animals treated with both drugs independently, showed a significant amelioration 

of motility defects in our C. elegans model (Fig. 4C).  

 Based on these results, we suggest autophagy and transcription modulation as promising therapeutic 

strategies also in MJD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. AT3q130 animals treatment with the small molecules targeting autophagy (A), mitochondrial 

toxicity (B) and transcription dysregulation (C). Animals treated with 5 and 7.5mM of LiCl showed a significant 

reduction in mutant AT3q130-mediated motility impairment (A, left panel). CCI-779 at 1 μM also caused a significant 

reduction in locomotion defects (A, middle panel). However, the combination of both drugs, which potentially would activate 

autophagy through independent cellular targets, did not further ameliorate motility defects of the transgenic animals. 

Creatine treatment showed no significant rescue of motor dysfunction (B). SAHA and resveratrol treated animals showed 

improvement in motor function. Data are the mean ± SD, at least 150 animals per data point. Student’s t-test, ∗< P , 0.05. 
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Screening for compounds that rescued mutant ATXN3-mediated aggregation  

 To determine if the effects of the small molecules on motor dysfunction were coupled with potential 

alterations in mutant-ATXN3 aggregation profile in the animals, we performed live confocal imaging assays in day 

4 treated and non-treated animals (Fig. 1 and 5). Aggregate quantification (44) of animals treated with LiCl and 

CCi779 revealed that both compounds caused a mild reduction of the aggregation load (Fig. 5A). As expected, 

AT3q130 animals fed with bacteria supplemented with creatine did not shown any significant differences in 

aggregation (Fig. 5B). SAHA treatment caused a significant reduction in aggregation, whereas resveratrol showed 

a milder effect (Fig. 5C). 

 Taken together, the results suggest that, like reduction in locomotion impairment, aggregation is also 

diminished upon drug treatment, with some drugs being more efficient than others. Ongoing experiments aim to 

determine the effect of the different compounds in total mutant ATXN3 protein levels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Pharmacologic treatment of mutant ATXN3 animals with LiCl, CCI-779, SAHA and resveratrol 

caused a significant reduction of the number of aggregates per area unit.  LiCl-treated AT3q130 animals 

showed a reduction in the aggregation phenotype at day 4 of adulthood, more significant than the effect of CCI-779. 

Creatine at 1.5 % resulted in a tendency to a reduction in aggregation that did not reach statistical significance. SAHA and 

resveratrol also rescued mutant-ATXN3 aggregation, with SHA showing a stronger effect. Quantification of number of 

aggregates per area was performed using our novel imaging processing application for aggregates quantification in C. 

elegans, and values are the mean ± SD of six or more animals per group. ANOVA, * , p<0.05. 
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Discussion 

 In this study, we have started to develop strategies for efficiently assessing efficacy of compounds in our 

C. elegans MJD model (Fig. 1). The methods employed take advantage of the strengths of C. elegans for drug 

identification, namely (i) the small-scale liquid cultures that significantly reduce the amount of drug required, (ii) 

the visualization of fluorescently tagged proteins in live neuronal cells, and (iii) the ability to test drug impact on 

animals’ behavior. With this work, we have validated our C. elegans model and approach for therapeutic value in 

MJD, using a candidate-drug strategy. In the near future, we aim to find new bioactive compounds using a 

hypothesis-free approach (see Appendix 2).  

  All cellular pathways and components are under continuous surveillance by intracellular quality control 

mechanisms. The major players involved in these quality control mechanisms are molecular chaperones, which 

detect abnormal proteins; and proteases, that eliminate them from the cells. Malfunctioning of cellular 

surveillance systems inevitably leads to cell toxicity and disease. As so, it is intuitive to think that these cell 

surveillance pathways and “escort” systems modulate the majority of diseases that highly rely on aggregation-

prone proteins. Therefore, targeting the autophagic system may be a valuable strategy for the treatment of many 

neurodegenerative disorders. Since the first discovery of autophagic clearance of mutant huntingtin by 

rapamycin was reported (45), studies have identified novel autophagy-inducing pathways/drugs. Increased 

mutant ATXN3 clearance, due to rapamycin-analog CCI-779-treatment or overexpression of beclin-1, also 

ameliorated neurological symptoms and pathology in transgenic mice and rats, respectively (30, 31). In C. 

elegans, knockout of  UNC-51, homolog of yeast ATG-1, enhanced polyQ aggregation (46). Here, we show that 

chronic treatment with CCI-779 in C. elegans reduced mutant ATXN3 mediated locomotion impairment and 

aggregation. However, it is important to notice that the treatment was only effective at very low dosages, which is 

consistent with the fact that mTOR controls several cellular processes besides autophagy, probably contributing 

to complications seen in long term usage of mTOR-dependent autophagy activators ((47) and Duarte-Silva, S., 

unpublished observations).  

 The usage of free Inositol-lowering agents (IMPase inhibitors), which in turn cause a depletion of 

inositol-1,4,5-trisphosphate levels, like lithium chloride, also reduced the proportion of cells with mutant 

huntingtin aggregates (48, 49).and in mutant huntingtin-mediated toxicity (39). The autophagy-inducing property 

of lithium has recently been suggested to contribute to its protective effects in ALS patients and mouse models, 

where the drug treatment increased survival and delayed disease progression (50). When treated with lithium, 

AT3q130 animals also show reduced pathogenesis. However, combination of lithium and CCI-779 showed no 

additive effect on mutant ATXN3-mediated neuronal dysfunction, which suggests that some level of toxicity in the 

dosages used may be occurring. Indeed, the combination of 5mM LiCl with 1μM of the rapamycin analog did 

not significantly reduce locomotion impairment of AT3q130 animals, in opposition to the results obtained when 

the compounds were used alone. This is a very surprising result since one would expect a triple protection 
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achieved by this co-treatment: activation of autophagy through two independent pathways and the 

neuroprotective effects caused by lithium-mediated glycogen synthase kinase-3β (GSK-3β) inhibition, due to 

activation of β-catenin-Tcf pathway, as has been suggested in HD (51). In fact, lithium may also be mediating its 

effects via autophagy-independent pathways. In C. elegans, lithium exposure at clinically relevant concentrations 

resulted in extended lifespan (52). Increased longevity is dependent on gsk-3β and results in reduced expression 

of a histone demethylase LSD-1, suggesting that Li+ regulates survival by modulating histone methylation and 

chromatin structure (52). Pharmacogenetic approaches are ongoing in our study to implicate specific cellular 

pathways in each compound’s mechanism of action.     

 The assumption that there are common pathophysiologic pathways that underlie many of these 

conformational disorders can, however, be misleading. There is a extensive body of literature, which has 

demonstrated that creatine has neuroprotective effects both in vitro and in vivo in Alzheimer’s disease (AD), PD, 

HD and ALS (reviewed in (41), by improving overall cellular bioenergetics. Creatine was shown to protect against 

excitotoxic lesions produced by N-methyl-D-aspartate and to be neuroprotective against lesions produced by the 

toxins malonate and 3-nitropropionic acid (3-NP), which are reversible and irreversible inhibitors of succinate 

dehydrogenase, respectively. Creatine also produced dose-dependent neuroprotective effects against MPTP 

toxicity reducing the loss of dopamine within the striatum and the loss of dopaminergic neurons in the substantia 

nigra (53). In transgenic mice, creatine produced an extension of survival, improved motor performance, and a 

reduction in loss of motor neurons in a transgenic mouse model of ALS (54). Similar results were obtained in the 

R6/2 and the N-171-82Q transgenic mouse models of HD, even when its administration was delayed until the 

onset of disease symptoms (55). The neuroprotective effects of creatine in HD and PD were potentiated when in 

combination with coenzyme Q10 (CoQ10) (56). CoQ10 co-treatment produced additive neuroprotection against 

both MPTP and 3-NP toxicity, and reduced the appearance of alpha-synuclein aggregates (56). In the R6/2 

transgenic mouse model of HD, the combination of CoQ and creatine produced additive effects in terms of 

improving survival. Creatine may stabilize mitochondrial creatine kinase, and prevent activation of the 

mitochondrial permeability transition. Administration of creatine increases the brain levels of creatine and 

phosphocreatine. Due to its neuroprotective effects, creatine is now in clinical trials for the treatment of PD and 

HD (41). However, we were not able to reproduce this neuroprotection in our C. elegans MJD model. 

 Despite differences in disease etiology and cellular properties of affected neurons in various types of 

neurodegenerative disorders, loss of acetylation homeostasis appears also to represent a critical mechanism 

commonly underlying neuronal dysfunction and degeneration. General loss of acetylating agents along with 

parallel gain of histone deacetylase (HDAC) activity may be the primary cause. The fine-tuning of the altered 

histone acetyl transferase (HAT)–HDAC balance can be achieved by using general HDAC inhibitors to reestablish 

the acetylation threshold in degenerating neurons (reviewed in (57)). Manipulative strategies aimed at restoring 

the acetylation homeostasis by rebating excess HDAC activity. Indeed, HDAC inhibitors like Trichostatin A (TSA), 
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SAHA and SB showed encouraging results from yeast to mouse models of expanded polyQ proteins (9, 10, 39, 

58-60). TSA and SAHA treatment of a C. elegans model for Htt neurotoxicity caused a significant reduction in 

neurodegeneration (39, 60). Interestingly, the last study involving a preclinical application of HDAC inhibitor, 

SAHA showed encouraging results. SAHA increased acetylation globally in the brain and enhanced motor 

function significantly. Although SAHA does not appreciably penetrate brain barriers by itself, it does so when in 

complex with 2-hydroxypropyl-β-cyclodextrin in solution. Thus, a solution of this complex in drinking water can 

make SAHA a cost-effective pharmacological candidate that could be administered by unsophisticated means 

(57). Also in mutant ATXN3-expressing worms, SAHA treatment resulted in important improvements in motor 

function. There was also a significant reduction in aggregation, although at this point we still don’t know what are 

the key protein effectors underlying this amelioration.  

 The usage of Sirtuin inhibitors was also found to have therapeutic value. Genetic inhibition of SIRT2 via 

small interfering RNA rescued α-synuclein toxicity. Furthermore, the inhibitors protected against dopaminergic 

cell death both in vitro and in a Drosophila model of Parkinson’s disease (15). 

 The Sirtuin family of proteins is thought to play a role in aging. In C. elegans, overexpression of sir2.1 

extends lifespan (61) and chemical activation of SIR2.1 rescues mutant huntingtin-mediated neuronal toxicity in 

C. elegans and mouse (62). Although this result is conceptually in contrast with the usage of HDAC inhibitors, 

the effect of the sirtuin activators may be through other mechanisms that are associated with increased longevity 

and improving mitochondrial function (reviewed in (63). Resveratrol treatment had a mild effect in our MJD 

pathogenesis model and we will perform pharmacogenetic studies to determine if the effect is mediated by 

longevity determinating pathways.      

 Taken together, which of the small molecules tested will be promising candidates for rescuing neuronal 

dysfunction? Selection of a molecule for future drug development is based on detailed assessment of its 

biological potency, safety and pharmacotoxicity. Thorough determination of drug targets is also very important. 

So, C. elegans disease models should be valuable tools for rapid identification of potential therapeutic 

compounds for aging related human diseases and cellular pathway elucidation. 

 Finally, the strategy that we set up for these studies opens the door to higher-throughput approaches, to 

test thousands of compounds in the search for a suitable therapy for MJD. 
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Material and Methods 

Nematode strains and general methods. C. elegans N2[wild-type] and E. coli food source OP50 were 

obtained from the Caenorhabditis elegans Genetics Center. AT3q130 expressing strains were previously 

described (34). Standard methods were used for culturing and observing C. elegans, unless otherwise noted 

(64). Nematodes were grown on NGM plates seeded with OP50 strain at 20°C. Populations were synchronised 

either by treating young adult animals with alkaline hypochlorite solution (0.5 M NaOH, ~2.6% NaClO) for 7 min 

(65) or by collecting embryos laid by adult animals within a 3-h period. All animals were scored at the same 

chronological age. Experiments were repeated at least three times. All assays were performed blind. 

 

C. elegans treatment with small molecules. Drug assays were performed in 96-well plates in liquid culture, 

as previously described (39, 66), with the following modifications: each well contained a final volume of 60 µL, 

including 20–25 animals in egg stage, drug at the appropriate concentration and OP50 bacteria to a final OD of 

0.8 measured in the microplate reader (Bio-Rad microplate reader 680). Animals and bacteria were 

resuspended in S-medium supplemented with streptomycin, penicillin and nystatin (Sigma). Worms were grown 

with continuous shaking at 180 rpm at 20°C. Compound preparation: Stock solution of 200 mM LiCl (1.05679-

0100, Merck) was prepared in water. CCi779 (T8040, LC-laboratories) 48.5 mM stock solution was prepared in 

EtOH. Stock solutions of 2.4 mM SAHA (Varinostat, V-8477, LC-laboratories) and Resveratrol (43007500, 

ACROS Organic) were prepared in DMSO. The effect of compounds on C. elegans physiology is monitored by the 

rate at which the E. coli food suspension was consumed, as a read out for C. elegans growth, survival or 

fecundity. The absorbance (OD 595nm) was measured daily in the microplate reader. We used N2 animals 

when determining compound concentration and AT3q130 animals for all the other assays. At day 4, AT3q130-

drug treated and control animals were imaged using a confocal microscope (Olympus FV1000) and tested for 

motility defects.  

 

Creatine treatment. Creatine treatment was performed in regular NGM plates (64). OP50 cultures were 

supplemented with Creatine powder obtained from Sigma (C0780, St. Louis, MO, USA), at the indicated 

percentages. Plates were seeded with 200 μL of OP50/Creatine and left at RT to dry. Animals were always 

grown on Creatine plates at least one generation prior to the beginning of the assays. For the toxicity screen, 

animals were observed every day and growth rates, fertility and survival parameters were evaluated. After 

determination of the safe toxicity range for Creatine, synchronized day 4 animals were scored for motility defects 

and alteration in the aggregation profile.  

 

Motility assay. All assays were performed at room temperature (~20°C) using synchronised animals grown at 

20°C. Five animals 4-day-old were placed simultaneously in the middle of a freshly seeded plate, equilibrated at 
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20°C. Animals remaining inside a 1-cm circle after one min were scored as locomotion defective. A total of 150 

animals were scored in at least three independent assays for each condition, and the statistical significance was 

assessed by Student’s t-test, as described previously (40). 

 

Confocal imaging. All images were captured on an Olympus FV1000 (Japan) confocal microscope, under a 

60x oil objective. Animals were immobilised with 2 mM levamisole and mounted on a 3% agarose pad. Z-series 

imaging was taken of all vehicle- and compound-treated animals, using a 515 nm laser excitation for YFP fusion 

proteins. The pinhole was adjusted to 1.0 Airy unit of optical slice, and a scan was taken every ~0.5 µm along 

the Z-axis.  

 

Quantification of the aggregates. C. elegans fluorescent images were acquired using the Olympus FV1000 

confocal microscope. Confocal microscope parameters were set using Hi-Lo pallet, such that protein foci and not 

diffuse fluorescent areas of the animals nervous system presented pixel intensity higher than 255. The z-stack 

was collapsed and the aggregate load of each animal (per area unit) was calculated on an imaging processing 

application using MeVisLab as a platform. Details on the application and on the segmentation algorithms were 

described elsewhere (44). At least six images were analyzed per genotype and statistical assessment was 

performed using Origin software (OriginLab) (ANOVA and Bonferroni mean correction test for multiple 

comparisons). 
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Chapter 6 
Genetic reduction of HSF-1 fails to aggravate MJD 

pathogenesis in mice 
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Abstract  

Perturbations in neuronal protein homeostasis likely contribute to disease pathogenesis in 

polyglutamine (polyQ) neurodegenerative diseases. The heat shock factor 1 (HSF-1) is a major regulator of the 

heat shock response in cells and a central component to the maintenance of the homeostatic mechanisms 

counteracting the effect of toxic polyQ proteins in the brain. However, genetic reduction of HSF-1 did not further 

aggravate disease in transgenic mice expressing polyQ-expanded ataxin-3, the pathogenic protein involved in 

Machado-Joseph disease (MJD). Half of HSF-1 levels resulted in the appearance of neurological symptoms at the 

age of 2-3 months, which is comparable to the MJD transgenic mouse with normal levels of HSF1 gene, and did 

not significantly change mutant ATXN3 subcellular localization, and aggregation pattern or brain pathology, in 

spite of an apparent increase in ATXN3 protein levels. Our results suggest that one copy of the HSF-1 gene is 

sufficient to cope with mutant ATXN3-mediated proteotoxic stress in mice and open a discussion for a potential 

compensatory role of other cell factor(s) in a state of HSF-1 reduction. 
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Introduction 

Folding in the cell’s crowded environment is highly challenging. Intermolecular interactions between the 

hydrophobic residues of non-native polypeptides become strongly favored due to the macromolecular crowding 

effect and can compete with the folding of proteins to a native state (1). An imbalance in protein homeostasis, 

whether caused by aging, cell stress or chronic expression of mutant aggregation-prone proteins, results in the 

appearance of alternative protein conformational states that can self-associate to form protein aggregates. The 

cell has developed a highly efficient protein misfolding quality control machinery to regulate proteostasis and to 

ensure that misfolded proteins do not accumulate (2-4). However, under several pathological conditions, the 

capacity of the protein quality control machinery is exceeded and misfolded proteins may accumulate to 

deleterious levels. In the brain, the importance of proteostasis is highlighted by various neurodegenerative 

diseases such as Parkinson’s, Alzheimer’s and the polyglutamine (polyQ) diseases (5-7). Particularly in 

Machado-Joseph disease (MJD) or Spinocerebellar Ataxia type 3 (SCA3), expansion of the polyQ domain in the 

ataxin-3 (ATXN3) protein promotes amyloid-like aggregate formation (8-10). Although protein aggregation occurs 

in all these diseases is uncertain how misfolding and aggregation damages the neuronal cells.   

The heat shock response (HSR) and heat shock proteins (Hsps) have been implicated in many of these 

diseases mainly based on the association of chaperones with intracellular aggregates. Cell imaging experiments 

show that Hsp70 associates transiently with polyQ aggregates, with association-dissociation rates identical to 

chaperone interactions with unfolded subtracts (11). Moreover, overexpression of the Hsp70 chaperone network 

suppresses aggregate formation and cellular toxicity. Specifically in MJD, Hsp40 and (less frequently) Hsp70 

proteins were found to co-localize into ATXN3 inclusions in the ventral pons of patients (12).  In cellular and mice 

models for ATXN3 pathogenesis, a dynamic pattern of expression of several molecular chaperones (Hsp27, -40, 

-70 and -105), has been described, as the disease progresses (13-17). Overexpression of DNAJ-1 chaperone 

suppresses ATXN3-mediated aggregation and/or toxicity in cell culture and flies (12, 18, 19), whereas genetic 

reduction or absence of C-terminus Hsp70 interacting protein (CHIP) accelerates disease (20). Collectively, these 

observations have led to the hypothesis that the levels of heat shock proteins modulate aggregate formation and 

cellular degeneration.  

The heat shock factor 1 (HSF-1) is the master stress-inducible regulator of molecular chaperones and 

proteostasis in cells (21).  Expression of an active form of HSF1 significantly suppressed polyQ aggregate 

formation in cellular and mouse models (22). This suppression was found to be more significant than any 

combination of Hsps in cell lines (22). The lack of HSF1 expression in a Familial amyloidotic polyneuropathy 

(FAP) mouse model led to extensive transthyretin (TTR) deposition in the peripheral nervous system and at early 

ages (23). In C. elegans, genetic ablation of HSF-1 in a model of neuronal ATXN3 pathogenesis resulted in an 

aggravation of the aggregation pattern and motor neuron dysfunction, whereas pharmacological activation of the 

HSR partially rescued mutant ATXN3-mediated pathogenesis (24). Here, we used measures of chaperone 

analysis and genetic crossings of transgenic mice expressing full-length expanded ATXN3 (25) to define the role 
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of the HSR and of HSF-1 in ATXN3 pathogenesis in mice. We found that, although there was a decrease of 

Hsp60 and -70 in affected areas of the CMVMJD94 mice brain, half of the levels of HSF-1 did not further 

aggravate motor coordination or aggregation of mutant ATXN3. This model suggests that half of the HSF-1 levels 

are sufficient to maintain the cellular folding capacity, even in the context of the expression of an aggregation-

prone protein like expanded ataxin-3.  
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Results 

Decreased protein levels of Hsp60 and Hsp70 in affected brain regions of CMVMJD94 mice 

 Differential expression of specific molecular chaperones has been reported in animal models of polyQ 

pathogenesis during disease progression (reviewed in (26). Here, we determined the levels of the major classes 

of Hsps (Hsp105, Hsp70, Hsp60, Hsp40 and Hsp27) in the cerebellum and brainstem (two affected regions) of 

CMVMJD94+/- transgenic mice (25). These mice overexpress human expanded, full-length ATXN3 with 94 

glutamine repeats, which is in the pathological range of Q-length for MJD patients (25). At early symptomatic 

ages (16-weeks) no differences were found in Hsp expression levels (data not shown) between hemizygous 

(CMVMJD94+/-) and wild-type (WT) (CMVMJD94-/-) mice, whereas 100-103 weeks old animals showed decreased 

expression of specific Hsps. Namely, Hsp60 levels were diminished in the cerebellum and brainstem, while 

Hsp70 was significantly decreased in the cerebellum of the CMVMJD+/- mice (Fig. 1).  We also determined the 

levels of Hsps in the forebrain of these mice (including mostly regions not involved in the disease) and found no 

differences (data not shown).  

These results imply the reduction of molecular chaperones and the HSR in the pathogenesis of ataxin-3 

mice but only at late stages of the disease process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Reduced Hsp60 and Hsp70 protein levels in the cerebellum and brainstem of CMVMJD94+/-. Representative Western-blots of heat shock proteins in the cerebellum and 

brainstem regions of CMVMJD94+/- mice brains (A). Comparable levels of Hsp105, Hsp40 and Hsp27 were found in both regions of the brain, whereas Hsp70 and Hsp60 were decreased in 

the cerebellum. In the brainstem Hsp60 was also decreased in CMVMJD94+/- animals when compared with WT littermates. Blot signals were quantified with ImageJ, the mean optical density 

for each genotype (n=6) was normalized to tubulin (B). *, p<0.05.        

 



 

 

Absence of HSF-1 increased ATXN3 protein levels but did not alter its localization or aggregation 

pattern 

 Because HSF1 has been shown to regulate polyQ toxicity, we hypothesized that reducing Hsf-1 would 

exacerbate the phenotype of CMVMJD94+/- mice. Hemizygous CMVMJD94 mice were crossed with Hsf-1-deficient 

mice (27) to generate CMVMJD94+/- animals with one (Hsf1+/-) or two copies (Hsf1+/+) of Hsf-1 gene. All mice 

(CMVMJD94-/-; Hsf1+/- , CMVMJD94+/-; Hsf1+/+ , CMVMJD94+/-; Hsf1+/-) were phenotypically indistinguishable from 

WT mice (CMVMJD94-/-; Hsf1+/+), which was consistent with previous reports of ATXN3 transgenic (25) and of 

Hsf-1 heterozygous knock-out mice (27).  

 We first characterized CMVMJD94+/- and CMVMJD94+/-; Hsf1+/- animals regarding the size of the CAG 

repeat and mutant ATXN3 protein levels. CAG repeat length was similar in both groups (mean of 94.64± 1.52 

and 96.00± 1.16 for MJD transgenic and double mutant mice, respectively), whereas human ATXN3 protein 

levels were increased in the brainstem region of the CMVMJD94+/-; Hsf1+/- mouse brains when compared with the 

CMVMJD94+/- mice (Fig. 2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Half of the levels of HSF1 caused an increase in mutant ATXN3 protein levels in the 

brainstem of transgenic mice. Western-blot analysis of human ATXN3 total protein levels in the brainstem 

region of hemi CMVMJD94 and CMVMJD94+/-; Hsf1+/- mice with approximately 100 weeks of age. Genetic 

reduction of HSF1 resulted in an increase in mutant ATXN3 protein levels without the appearance of insoluble 

protein in the stacking gel nor the presence of ATXN3 fragments. 
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HSF-1 is known to regulate the expression of several molecular chaperones in the cellular environment 

and to modulate misfolding and aggregation of polyQ proteins. Moreover, genetic reduction of Hsf-1 caused an 

increase in mutant ATXN3 levels in MJD transgenic mice. Based on this, we determined if Hsf-1 reduction would 

modify ATXN3 aggregation or subcellular localization. Anti- ataxin-3 IHC analysis revealed that mutant ATXN3 

was detected in several brain regions of CMVMJD94+/-; Hsf1+/- mice, including areas involved in MJD, namely in 

dentate nuclei of the cerebellum, pontine nuclei, locus coeruleus and in the substantia nigra (Fig. 3), as 

described for MJD transgenic mouse. Surprisingly, genetic reduction of Hsf-1 did not cause any significant 

alteration regarding subcellular localization of ATXN3 and no intranuclear aggregates were detected in all the 

brain regions analyzed (Fig. 3). However, consistent with the Western-blot data, half of the Hsf-1 levels resulted 

in an increase in ATXN3 staining in the dentate nuclei and pontine nuclei (Fig. 3). 
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Figure 3. HSF1 deficiency did not alter mutant ATXN3 subcellular localization in transgenic mice. Anti- 

ataxin-3 IHC analysis showed no differences in ATXN3 subcellular localization and distribution pattern in several brain 

regions of CMVMJD94+/-; Hsf1+/- and CMVMJD94+/- mice at late disease stages (100 weeks). Scale bar: 10 μm. 
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Reduction of HSF1 did not alter motor behavior deficits of CMVMJD94 transgenic mice 

Next, we searched for quantifiable motor deficits, using the rotarod apparatus. CMVMJD94+/-  

(CMVMJD94+/-; Hsf1+/+) mice showed a motor coordination impairment beginning at 8-16 weeks of age, as 

previously described (Fig. 4 and (25) and Hsf1+/- (CMVMJD94-/-; Hsf1+/-) animals displayed similar latency to fall 

when compared to WT littermates. CMVMJD94+/-; Hsf1+/- double mutant mice did not significantly aggravate the 

motor uncoordination phenotype of ATXN3 transgenic mice, not even at 84-weeks of age (Fig. 4). Similarly to 

CMVMJD94-/- animals, CMVMJD94+/-; Hsf1+/- double mutant mice maintained a slow progression disease rate with 

aging.  

This data suggests that in mice (i) half of the levels of HSF1 are sufficient for the animals to cope with 

the mutant ATXN3-mediated proteotoxicity in mice; and/or (ii) that compensatory mechanism(s) could balance 

proteostasis in the mouse brain, in spite of the reduced Hsf-1 gene levels. 

 

 

Figure 4. Half of the levels of HSF-1 failed to aggravate motor coordination of CMVMJD94+/- mice. The 

rotarod test (n=10-11 for each tested group) demonstrated that hemi CMVMJD94 mice displayed a significant decrease in 

the latency to fall at 20 rpm (Mann-Whitney U-test; factor: genotype) in comparison with WT animals. Hsf1+/- mice behave 

similarly to WT animals and half of HSF-1 levels did not worsen transgenic CMVMJD94 mice performance in the rotarod 

paradigm, until 84 weeks of age. Only WT versus CMVCMJD94+/- and CMVCMJD94+/-;Hsf1+/-comparisons are statistical 

significant and * is represented when p<0.05.  

 

 

Histopathological observations of brain sections of CMVMJD94+/-;Hsf1+/- and hemi CMVMJD94 mice 

revealed the presence of scattered dark and shrunken cells in several brain regions. Specifically, in dentate 

nuclei and purkinje cells of CMVMJD94+/-;Hsf1+/- animals,  there was an increase in cresil violet staining and more 

abnormally shapped cells were found. In contrast, in the pontine nuclei, hemi CMVMJD94 mice contained more 
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pyknotic nuclei and a basophilic cytoplasm in comparison with double mutant mice. Brain regions like the 

striatum, not affected in the human disease, are also spared in our model (Fig. 5). 

 

In summary, reduction of Hsf-1 levels had no major effect in mutant ATXN3 aggregation and subcellular 

localization, and had a mild impact in pathology among the two groups, with no consequences at the motor 

level.   
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Figure 5. Neuropathology of CMVMJD94+/-; Hsf1+/- mice. Comparative sections stained with Cresil violet of hemi CMVMJD94 and 

CMVMJD94+/-; Hsf1+/- mice dentate nuclei, pukinje cells, pontine nuclei, substantia nigra and striatum at 100 weeks of age. CMVMJD94+/-; 

Hsf1+/- and CMVMJD94+/- mouse neurons in the dentate nuclei, purkinje cells and pontine nuclei were observed by Cresil violet staining as 

scattered dark, shrunken cells with pyknotic nuclei and a basophilic cytoplasm (arrows).  Dentate nuclei and purkinje cells were shown to 

be more affected in double mutant mice, whereas the pons of CMVMJD94+/- transgenics showed an increase in the presence of abnormal 

nuclei. Scale bar: 50 µm. 
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Discussion  

Many studies have pointed towards an important role of HSF-1 and Hsps as protective protein effectors 

against neurodegeneration. HSF-1 has an indirect effect, regulating the expression of molecular chaperones that 

directly interact with misfolded proteins to prevent aggregate formation. If the refolding process is not efficient, 

proteins may be targeted for degradation. Expression of Hsp70 has been shown to suppress neurodegeneration 

in cell culture and animal models of Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS) and of several 

polyQ diseases (28-31). On the other hand, the expression of a dominant negative Hsp70 exacerbated 

neurodegeneration in a PD Drosophila model (28). In a TTR transgenic mouse model, there was upregulation of 

Hsp70 and of an endoplasmic reticulum resident Hsp70, BiP, in tissues with TTR deposition (23, 32). The fact 

that TTR aggregates are able to activate the HSR in peripheral neuronal and non-neuronal tissues, supports the 

globally protective role for the proteostasis network in conformational disorders. In line with this argument, 

genetic ablation of HSF-1 in the TTR mouse model significantly aggravated TTR deposition, and the aggregates 

appeared at earlier disease stages (23). In contrast with the TTR results, however, in several chronic 

neurodegenerative diseases, the HSR seems to be attenuated. There is a higher threshold for the induction of 

the stress response in ALS motor neurons of the spinal cord, which was found to be associated with a failure in 

HSF1 activation (33). 

In general, HSF1 seems to be a key factor for the maintenance of a healthy proteome. HSF-1 knock-out 

mice exhibit a variety of phenotypes namely prenatal lethality, growth retardation, female infertility and aging-

related motor coordination defects (27, 34). At the pathological level, Hsf-1-/- mouse exhibit enlarged ventricles, 

astrogliosis, neurodegeneration and demyelination (34, 35). All these phenotypes were present in a much 

attenuated form in heterozygous mice. The classical HSR is eliminated in Hsf-1 homozygous and less robust in 

heterozygous animals. However, in basal conditions the expression of molecular chaperones is normal. HSF-1 

deficient mice also showed increased susceptibility to oxidative stress and increased accumulation of 

carbonylated and ubiquitylated proteins.    

Here, we described a novel MJD transgenic mouse model in which the levels of the major regulator of 

the HSR, HSF1 are reduced (CMVMJD94+/-; Hsf1+/-). We chose to reduce HSF-1 levels and not to completely 

ablate it mainly because it would still allow us to test for potential aggravation of motor performance of the MJD 

transgenic mice and of brain pathology, maintaining the increased susceptibility to oxidative stress and increased 

levels of damaged protein. Surprisingly, CMVMJD94+/-;Hsf1+/- animals developed neurological symptoms at the 

age of 2-3 months, comparable to the MJD transgenic mouse with normal levels of HSF1 gene. Consistently, 

mutant ATXN3 subcellular localization and aggregation was also not altered, even in old animals. Based on this 

data, we propose that either (i) half of the HSF-1 levels are sufficient to maintain proteostasis of MJD transgenic 

mice, and/or that (ii) other factors of the cellular environment may be compensating the lack of HSF-1, when the 

system is being challenged with chronic expression of an aggregation prone-protein. Additional experiments are 

required to elucidate the underlying mechanism(s).  
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In yeast, Drosophila and C. elegans there is a single HSF gene. Yeast HSF is an essential gene, 

whereas in Drosophila, HSF deficiency leads to defects during early development and lack of stress response 

(21, 36). Knockdown of HSF-1 in C. elegans caused a reduction in lifespan and increased age-related 

phenotypes (37, 38). HSF-1 was found in many genetic screens as a modifier gene of polyQ and alpha-synuclein 

invertebrate disease models (19, 24, 39, 40). We have recently shown that HSF-1 is a potent suppressor of 

mutant ATXN3-mediated neuronal-specific aggregation and motor dysfunction in the worm (24). In this model, 

half of the levels of HSF-1 also aggravated mutant ATXN3 aggregation, although into a lesser extent (our 

unpublished observations). Reduction of CHIP in vivo also aggravated neurological and aggregation symptoms of 

a different MJD transgenic mouse model, through a mechanism independent of heat shock protein levels (20). 

Therefore, it was surprising to observe no major effects of HSF-1 deficiency in the MJD transgenic mouse model, 

in spite of an increase in ataxin-3 levels in affected brain regions, possibly due to reduced UPS degradation. 

In mammalians, it is thought that there are four HSF (HSF-1, -2, -3 and -4) genes (21, 36, 41). As 

mentioned before, HSF-1 activation is dependent on environmental stresses, such as elevated temperature, 

oxidative stress, or conditions that increase protein misfolding in the cells. HSF2 and HSF4 participate in similar 

processes through activation of perhaps the same target genes, but the modes of their activation are less well 

defined. In fact, HSF-2 activity has been shown to be required during radial glial migration and development of 

reproductive organs (42-44). In addition, a part of HSF2 associates with HSF-1 in the nucleus and modulates 

expression of the classical heat-shock genes (45, 46) and of a nonclassical heat-shock gene, satellite III DNA 

(47). HSF2 also modulates HSF-1-mediated regulation of Hsp genes, such as Hsp110, Hsp70, Hsp40 and 

Hsp25, during heat shock and proteasome inhibition, clearly demonstrating a functional role of HSF2 in the 

proteotoxic stress response. The DNA binding ability of HSF2 is also modified by HSF-1, suggesting a close 

functional relationship for these two well conserved transcription factors. HSF-4 activity has been demonstrated 

during lens fiber cell differentiation (48, 49). Recently, a semicomprehensive analysis revealed that HSF4 binds 

to various genomic regions, and substantial numbers of genes (33%) in and near the HSF4- binding regions are 

nonclassical heat-shock genes (50). Remarkably, HSF4 is required for the expression of half of these genes, 

implying that not only HSF1, but also other HSF family members, play significant roles in the induction of 

nonclassical and classical genes in response to heat shock. Finally, HSF-3 that was recently identified in mice, 

restores the expression of specific non-classical heat shock genes in the absence of HSF-1 and in response to 

detrimental stresses (41). Thus, it is possible that in addition to HSF1, perhaps HSF2 and other factors may be 

important regulators in diseases such as cancer and neurodegeneration, where dysregulation of molecular 

chaperones are evident. We will test this hypothesis in MJD.  
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Materials and Methods  

Generation of CMVMJD; HSF-1 mice, genotyping and molecular analysis of the (CAG)n repeat. 

HSF1 KO mice, which were kindly provided by Dr. Ivor Beijamin to M.J.S. (27), were backcrossed with C57BI/6 

mice (Harlan Iberican, Barcelona, Spain) for eight generations. We cross matted HSF-1 KO mice with transgenic 

mice for human ATXN3, expressing the cDNA ATXN3c variant containing 94 glutamine repeats, under the 

regulation of the cytomegalovirus promoter (pCMV) (25). CMVMJD94-/-; Hsf1+/- , CMVMJD94+/-; Hsf1+/+ , 

CMVMJD94+/-; Hsf1+/-  CMVMJD94 animals and wild-type littermates (CMVMJD94-/-; Hsf1+/+) were obtained from 

colony inbreeding and mice genotyping was performed as previously described (25, 27). CAG repeat-length was 

also monitored  in these mice (25). 

 

Animals. All animals were housed and maintained under standard animal facility conditions as previously 

described (25). Mice health was monitored according to FELASA guidelines (51). All experimental protocols, 

people involved with animals handling and animal facilities were in accordance with European regulations (EU 

directive 86/609/EEC), with local Animal Ethics Committees (at ICVS, University of Minho and IBMC) and 

certified by the Direcção Geral de Veterinária (the Portuguese regulatory entity).     

 

Molecular analysis of the (CAG)n repeat size. DNA extraction from tail biopsies of CMVMJD94-/- and 

CMVMJD94+/-; Hsf1+/- animals was performed using the Puragene DNA isolation kit (Gentra systems). The relative 

(CAG)n size was determined by PCR amplification, using a 6-FAM fluorescently labeled primer, and products 

were sequenced in an ABI 310 automated DNA sequencer (Applied Biosystems, Foster City, CA), as previously 

described (25).  

 

Phenotype analysis. Behavioral analysis was performed during diurnal period of CMVMJD94-/-; Hsf1+/- , 

CMVMJD94+/-; Hsf1+/+ , CMVMJD94+/-; Hsf1+/- animals and wild-type littermates (CMVMJD94-/-; Hsf1+/+) (n= 12 per 

genotype). In order to evaluate motor performance, animals were tested in the rotarod apparatus (TSA, Bad 

Homburg, Germany) according to the protocol previously described (25). Mice were evaluated at constant 

speeds (8, 15, 20, 24 and 31 rpm); and at 4, 8, 12, 16, 24, 48 and 84 weeks of age.   

 

Immunoblotting analysis. Mice were anesthetized (misture of ketamine hydrochloride (150mg/kg) and 

medetomidine (0.3 mg/kg)) (n=6 per group) and sacrificed by transcardial perfusion with PBS, brain tissue was 

collected, regions of interest (cerebellum, brainstem and fore brain) were macrodissected, frozen in dry ice and 

stored at -80°C. For protein isolation, brain tissues were homogenized in 5 volumes of cold resuspension buffer 

(0.1 M Tris-HCl, pH7.5, 0.1 M EDTA pH 8,0.4 mM PMSF and protease inhibitors cocktail (Roche, Indianopolis, 

IN)). Preparation of total protein extracts, quantification and western-blot were performed as previously reported 

(25). Immunoblots were probed with the following antibodies: anti-ataxin-3 (kindly provided by Dr. H. Paulson) 
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(1:10, 000); anti-MJD1-1 (1: 2000) (52); anti- Hsp105 (1: 750) (58F12, Novocastra); anti- Hsp90 (1: 2000) 

(SPA-835; Stressgen); anti- Hsp70 (1: 2000) (SPA-810; Stressgen); anti- Hsp60 (1: 500) (SPA-828; Stressgen); 

anti- Hsp40 (1: 10, 000) (SPA-400; Stressgen); anti- Hsp27 (1: 500) (M20; Santa Cruz) and anti-tubulin (1:100) 

(DSBH, USA). Bond primary antibodies were detected with horseradish peroxidase-coupled secondary antibodies 

and chemiluminescence (ECL western-blotting detecting reagents, Amersham Pharmacia). Quantification of the 

ATXN3 and hsps signal was performed using Image J software (NIH, USA) and normalized to tubulin.    

 

Immunohistochemistry. CMVMJD94+/-; Hsf1+/+ , CMVMJD94+/-; Hsf1+/- and control WT littermate mice (n=3 for 

each group) at different ages (16 and 100 weeks) were deeply anaesthetized and transcardially perfused with 

PBS followed by 4% paraformaldehyde (PFA) in PBS. Brains were post-fixed overnight in fixative solution and 

embedded in paraffin. Slides with 4-µm-thick paraffin sections were steamed for antigen retrieval and then 

incubated with rabbit anti-MJD1.1 (52) (1:40). A biotinylated secondary antibody was applied, followed by ABC 

coupled to horseradish peroxidase (DAKO) and DAB substrate (Vector Laboratories Inc., Burlingame, CA, USA). 

The slides were counterstained with hematoxylin according to standard procedures and analyzed with an optical 

microscope (Olympus, Hamburg, Germany). For morphological brain analysis, we performed cresyl violet 

staining. 

 

Statistical Analysis. Rotarod data was analyzed using the non-parametric Mann-Whitney U-test when variables 

were non-continuous or did not present a normal distribution (Kolmodorov-Smirnov test p< 0.05). Continuous 

variables with normal distributions were analyzed through Student t-test or ANOVA. All statistical analyses were 

performed using SPSS 16.0 (SPSS Inc., Chicago, IL) or Excel. Results were considered statistical significant for 

p<0.05.       
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General Discussion 

 

Considerable effort has been employed in understanding how protein folding is regulated and in the 

identification of components involved in this process. Particular emphasis has been given to the role played by 

molecular chaperones and more recently, to the cellular degradation machinery, including the ubiquitin 

proteasome system and autophagy, in refolding and actively clearing misfolded proteins from the cell. Although 

there is now a considerable knowledge of these processes, it has also become clear that the full extent of 

proteins that constitute the network regulating protein homeostasis has not been uncovered. 

Misfolding and the formation of protein aggregates are hallmarks of a broad and increasing number of 

diseases, most of which are age-dependent. These comprise Alzheimer’s disease, Parkinson’s disease, 

amyotrophic lateral sclerosis, polyglutamine expansion disorders, and many others (1). As human life 

expectancy increases, understanding the mechanism underlying misfolding and aggregation and the interaction 

of the misfolded species with the neuron cell-type-specific proteome represents a critical challenge for a 

continuously aging population. 

 In this work, we have developed a novel model system in C. elegans, which mimics many aspects of 

Machado-Joseph disease (MJD), namely neuron cell-type specific aggregation, which correlated with the 

appearance of neuronal dysfunction (Chapter 2). We also developed tools that allowed quantification of these 

phenotypes (Chapter 2.1). The fact that there was a great contribution of aging into the modulation of the 

phenotype of the mutant ATXN3-expressing animals, allowed for the first time the study of the influence of aging-

related pathways in the pathogenesis of MJD (Chapters 2 and 3). We have also studied the impact of the wild-

type (WT) ataxin-3 in pathogenesis (Chapter 4). Moreover, the validation of the model for the identification of 

therapeutic small molecules for MJD (Chapter 5) may be of great value for future treatment development in 

MJD.       

Looking at the data gathered over these years, we certainly learned more about ATXN3 pathogenesis, 

although this work has also led to a number of questions that remained unanswered, which will be discussed in 

the following section. 

 

A journey through the pathogenesis of MJD: the establishment of a new model in Caenorhabditis 

elegans  

 Since we started this work many model systems have become available that recapitulate many aspects 

of MJD. Expression of WT and expanded ATXN3 in cell culture allowed the visualization of the proteins in vivo, 

the evaluation of the subcellular localization and formation of aggregates, as well as addressing mutant ATXN3-

mediated cytotoxicity (2-8). Microarray analysis of a cell culture model of ATXN3 pathogenesis gave a good 
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contribution for understanding both normal function and pathogenesis of ATXN3 (9). These models would be 

extremely useful platforms to perform genome-wide screens for modifiers of ATXN3 aggregation and toxicity and 

similar readouts could be employed in high-throughput drug testing. However, in these cell culture models, there 

is no integration of the cells behavior at the organism level, as happens in the human disease. In fact, although 

ATXN3 is ubiquitously expressed it seems that only specific neuronal subtypes are affected, suggesting that 

clonal cells may not mimic the disease context. Studies in Drosophila (10-12) also gave important insight into 

the further understanding of the disease, complementing the studies in cell culture by allowing behavioral 

testing. However, subcellular localization and aggregation states of mutant ATXN3 were, in this model, only 

possible to analyze in fixated tissue. Disease models in higher organisms like mice (4, 13-19) and rat (20-22) 

allow a greater variety of behavioral tests, with many aspects of behavior resembling that in humans; the basic 

cellular pathways are highly conserved, as well as the organization of the nervous system.  However, when 

performing pharmacologic or gene therapy, the experimental designs can became very time-consuming and 

costly.  

 Based on this, we decided to generate a disease model in Caenorhabditis elegans, because it would 

give us the opportunity to simultaneously: (i) follow the aggregation dynamics of ATXN3 in vivo; (ii) distinguish 

differential neuronal susceptibility to the expression of the disease protein; and (iii) determine the impact of toxic 

protein aggregation in the animals’ behavior. Later on, this invertebrate model would allow fast and inexpensive 

testing of modifiers genes of ATXN3 aggregation and neuronal toxicity and also could constitute good platforms 

for drug testing (23). 

 With this in mind, we have generated and extensively characterized a novel C. elegans model for MD 

pathogenesis, regarding protein expression levels, biophysical properties of the mutant proteins in the live 

animals and performed behavioral characterization of the animals (Chapter 2). Expression of full-length and C-

terminal truncated ATXN3 proteins in all C. elegans neuronal cells caused polyQ length-dependent aggregation in 

specific neurons, suggesting differential neuronal susceptibility to the presence of mutant ataxin-3. This 

aggregation correlated with locomotion defects in these animals. Neuronal-specific aggregation and neuronal 

dysfunction were used as readouts for determination of genetic modifiers of the disease and for the identification 

of potential therapeutic agents.  

One way of studying genetic modifiers of the disease is to employ reverse genetics and choose 

candidate genes and pathways to test. Aging is a major risk factor of the majority of the neurodegenerative 

diseases and here we found that longevity pathway genes as specific modifiers of MJD pathogenesis in C. 

elegans (Chapters 2 and 3). One of the major limitations in finding modifiers of protein aggregation in C. elegans 

was the lack of good platforms to quantify protein aggregates. Many studies would qualitatively describe 

modifiers of protein aggregation (24, 25) or would perform manual counting of the aggregates (26). In our case 

counting aggregates in small neuronal cells would be very time-consuming and extremely dependent on the 



211 

 

operator. Thus, we developed an imaging processing application that allowed us to automatically quantify the 

number and area of aggregates in the animals’ neuronal cells per total area of the animal (Chaper 2.1). We were 

also able to quantify aggregates in specific areas of the C. elegans nervous system and establish correlations 

between changes in aggregation (due to a particular modifier gene or drug treatment) in the entire nervous 

system versus specific regions. We are currently customizing our imaging processing application in order to be 

able to start quantifying aggregates in 3 dimensions. Quantification of volume of the aggregates through a 3D 

reconstruction of confocal microscopy images will give better and more reliable information of the aggregation 

phenotype in animal models for diseases of protein aggregation.  

We have also quantified defects in locomotion in these animals, although using a low-throughput 

approach. Automation of motor function evaluation is being performed by using a video-based assay. The 

Tracker software (Goodman Laboratory, Stanford school of Medicine) analyzes videos of the animals crawling in 

NGM plates and measures locomotion speed, quantifies the number of tracks (paralyzed and normal), and 

determines the fraction of paralyzed animals. We are also collaborating with Noldus Information Technology to 

develop a system that will allow tracking of the animals, when grown in liquid 96-well plate cultures.           

In summary, we were able to develop a new animal model of MJD and important tools to pursue our 

goals.                  

 

The mystery of the neuronal-specificity in polyQ diseases 

 Each of the polyQ disorders shows a characteristic pathological signature, even though the mutant 

proteins are ubiquitously expressed (27). The neuronal-specific susceptibility derived from the expression of 

aggregation-prone proteins is possibly determined by: (i) the protein context in which the polyQ-segment is 

expressed and by (ii) specific factors of the neuronal cellular environment. In fact, the interaction between the 

misfolded proteins and the neuron cell-specific proteome may direct neuronal vulnerability to aggregation, 

toxicity and ultimately death.  

As discussed in Chapter 2, mutant ATXN3 aggregation in C. elegans neuronal cells was not stochastic, 

but there was a specific aggregation pattern, observed in multiple animals of independent transgenic lines. 

Moreover, the aggregation and toxicity profiles found were very consistent when comparing full-length and C-

terminal ATXN3 models. This was a very intriguing result mainly because the C-terminal fragment of the protein 

does not contain the N-terminal Josephin domain (JD) of ATXN3, and one would expect that many protein 

interactions between ATXN3 and cellular components would be JD-dependent. ATXN3 being a deubiquitylating 

(DUB) enzyme, whose catalytic domain is located in the N-terminus of ATXN3, many ATXN3 protein interactions 

with the substrates may not be occurring in the C-terminus protein. The outcome(s) can be either a loss-of-

function due to an inexistent interaction; or a gain of toxic function caused by accumulation of a DUB substrate, 

or an increased tendency to aggregate, leading to aggregation at a lower threshold of Q-length.  
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As an example, ATXN3 was shown to interact and to have hydrolase activity towards the neural 

precursor cell expressed developmentally downregulated 8 (NeDD8) proteins. This interaction is solely 

dependent on the JD of ATXN3, at least in vitro, and when the catalytic cysteine is mutated the two proteins are 

still able to bind but the mutation averts cleavage of a fluorogenic NEDD8 substrate (28).      

Valosin-containing protein (VCP/p97) is a known molecular partner of ATXN3. VCP is not a substrate of 

ATXN3, but associates with ATXN3 and Rad23 to translocate ubiquitylated proteins into the proteasome (29). 

When ATXN3 shows no catalytic activity, by mutation of the cysteine-14, the interaction VCP-ATXN3C14A 

becomes weaker (30). In contrast, VCP and ATXN3 co-immunoprecipitation was found to be potentiated 

(increased affinity) when ATXN3 contained an expanded Q-tract (31). The physiological impact of this differential 

interaction with the WT versus expanded ATXN3 needs to be further explored. However, it is known that ATXN3 

binding to VCP regulates translocation of endoplasmic reticulum-associated degradation (ERAD) substrates (32). 

For instance, ATXN3 increases the level of CD3delta by decreasing its degradation; pathogenic ATXN3 decreases 

degradation to a greater extent than the normal protein. Knock-down of endogenous ATXN3 decreases levels of 

CD3delta, suggesting that a normal function of ATXN3 is to regulate levels of ERAD substrates, which become 

altered in the presence of the expanded Q-tract. VCP is a very abundant protein in the brain and reduction of 

VCP levels stimulates ATXN3 fibrillogenesis in vitro and in Drosophila models of MJD pathogenesis (32). Indeed, 

also in C. elegans we found that absence of the VCP homolog CDC-48.2 aggravated mutant ATXN3-mediated 

pathogenesis (data not shown).  Importantly, VCP and C-terminal ATXN3 are still able to interact, since the 

Arg/Lys rich motif of ATXN3 is maintained in our C-terminal ATXN3 animals. The usage of more neuron subtype-

specific markers in our model (similar to CHE-13 promoter but for other types of neurons) would allow further 

definition of potential differences between the full-length and C-terminal ATXN3 pathogenesis model. 

Taken together, these results suggest that differential affinity between WT and mutant ATXN3 and the 

molecular partners/substrates may have an impact in their levels and/or cause changes in ATXN3 aggregation. 

These effects can differ among distinct neurons according to their proteome, which might underlie the 

specificity.  

One good example is the work by Subramaniam and collaborators that shows that the small guanine 

nucleotide-binding protein Rhes, which is localized very selectively to the striatum, binds physiologically to 

mutant Htt (mHtt). In the presence of purified Rhes and Htt proteins, Rhes bound much more to mHtt than to 

WT Htt. Rhes induces sumoylation of mHtt, which leads to cytotoxicity (33). Thus, Rhes-mHtt interactions could 

account for the localized neuropathology of HD. One possible explanation for the problem of the neuron-specific 

susceptibility seen in each of the polyQ disorders can arise from novel/aberrant interactions between the mutant 

protein and certain cell constituents that do not occur in the normal situation.  

A variety of methods can be used for determining molecular partners of expanded ATXN3 in affected 

brain regions in mice, one of which is the use of a combination of pull-down and mass spectrometry assays. 
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Finding differentially interacting proteins whose expression was localized (or considerably more abundant) in the 

specific areas of MJD pathology could give new insight into the question: why is pathology restricted to specific 

brain regions in each disease? Resolving the neuron cell-type-specific proteome in the healthy brains versus 

disease brains would also be of great importance to clarify this aspect.            

 The protein flanking sequences in which the polyQ-segment is inserted direct protein function that may 

or may not be altered in the presence of the expanded Q-tract, but the degree of exposure of the Q-tract to the 

cellular environment also determines toxicity. When a polyQ stretch of 75 glutamines is expressed within full-

length ATXN3 flanking sequences in C. elegans neurons it does not cause neuronal toxicity or the formation of 

aggregates. In contrast, C-terminal ATXN3 proteins of similar polyQ length result in protein aggregation in certain 

neuronal cells, that correlated with the appearance of locomotion defects and decreased chemotaxis function 

(Chapter 2). Expression of Q67 proteins with no additional flanking sequence (under the regulation of the same 

promoter and comparable protein levels) resulted in aggregation in all C. elegans neurons and the animals 

showed a high degree of motor dysfunction, defects in pharyngeal pumping and reduced defecation rates (34). 

As discussed in Chapter 2, polyQ-alone and ATXN3 proteins caused distinct neuronal vulnerability in C. elegans 

at the threshold-length for aggregation. Mutant ATXN3 aggregates in several neuronal processes, including 

commissures, the DNC and sensory processes. In particular, the processes of certain CHE-13-positive sensory 

neurons contain protein foci only when the polyQ tract is expressed within ATXN3-flanking sequences and not 

when expressed alone (34). Although the cell bodies of certain lateral neurons contained soluble ATXN3 

proteins, even in very old animals, their processes often presented aggregates. By comparison, these processes 

were spared in Q40 animals. This neuronal specific pathogenesis validates both models as tools to find both 

common and protein-specific mechanism(s) of aggregation, neuronal dysfunction and neurodegeneration. 

Moreover, other disease models, for HD and SBMA, are currently being developed using the same promoter that 

will increase the power of comparative studies.  

 We predict that finding the molecular basis for neuronal cell-specific susceptibility to mutant ATXN3 

proteotoxicity can be challenging. However, determining the transcriptional profile of specific neuronal-subtypes 

can be achieved in C. elegans by employing a mRNA-tagging method (35, 36) in sub-types of neurons. The idea 

is to determine the transcriptomic signature of sensory and motor neurons (among others) and compare the 

profiles among the different neuron-subtypes in WT N2 animals. After having an idea about differentially 

expressed genes among distinct neurons, we could employ the same techniques in WT and mutant ATXN3-

expressing animals. This approach could give us good insight regarding the differentially expressed genes in 

affected and spared MJD neurons in C. elegans.     
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Gain and loss-of-function in MJD: role of the wild-type protein 

 The aberrant or novel protein-protein interactions due to the polyQ expansion (37-42) and the 

aggregation of mutated polyQ proteins with consequent sequestration of cellular components, suggest a toxic 

gain of function as the pathogenic mechanism underlying the polyQ disorders (43-47). However, more recently, 

it has been proposed that a combination of gain of novel properties and partial loss of the normal function 

modulates disease progression (39, 48).  

If loss-of-function of ATXN3 were to be the primary mechanism underlying disease, knock-out models 

would phenocopy mutant ATXN3 overexpression phenotype, which does not seem to be the case (49, 50), 

although both models in C. elegans show temperature-sensitive locomotion defects (51). In mice, ubiquitous 

expression of ATXN3 with 94Qs caused motor uncoordination, astrogliosis and neuronal atrophy (19), whereas 

inactivation of the mouse Atxn3 gene caused no gross morphological deficits or uncoordination, as assessed on 

the accelerating rotarod (50). However, these findings do not exclude a contribution of the (lack of) WT protein to 

disease. atx-3 knock-out models in C. elegans showed improved thermotolerance, when submitted to a noxious 

heat stress (52). This phenotype is fully dependent on DAF-16 and is rescued by silencing the expression of 

small heat shock proteins and by knocking-down inducible Hsp70 proteins. Interestingly, a recent study by 

Kuhlbrodt et al reported a synergistic cooperation between CDC-48 and ATX-3 in ubiquitin-mediated proteolysis 

and aging regulation (53). Double mutant cdc48; atx-3 animals demonstrated a significant increase in lifespan, 

via the IIS pathway. This phenotype was specifically dependent on the DUB activity of ATXN3 and suggests the 

involvement of C. elegans ATX-3 in proteostasis. Based on this, we evaluated the influence of the loss of 

endogenous ATX-3 in MJD pathogenesis in C. elegans and somehow surprisingly we found no major effect in 

mutant ATXN3 aggregation or motor dysfunction (Chapter 4). The influence of the double absence of ATX-3 and 

of CDC48 in disease remains unknown, although the cdc48 mutation by itself aggravates MJD pathogenesis in 

C. elegans (our own unpublished observations).   

Overexpression of WT ATXN3 in a C. elegans model of polyQ protein aggregation aggravated neuronal 

dysfunction, lacking the neuroprotective effect showed before in Drosophila and mice (11, 13) but supporting 

more recent observations in rats and in a distinct mouse model (21, 54). These controversial results lead us to 

conclude that beneficial, neutral or harmful effects of the normal ATXN3 in pathogenesis may depend on the 

cellular proteome and on the severity of the disease symptoms. Thus, caution needs to be taken when 

manipulation of the WT ATXN3 levels is considered as a therapeutic strategy in MJD.          

 

The therapy challenge: knowing the multiple targets 

 As discussed before, neurodegenerative diseases tend to have a growing impact on society as a larger 

percentage of the population is reaching older ages. What emerges from the examination of the literature is that 

the etiopathology of these diseases is extremely complex and heterogeneous. Moreover, many of the key 
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reactions in living organisms are essentially based on interactions of moderate affinities and selectivities. This 

principle is responsible for the enormous redundancy of cellular circuits (55) and increases the difficulty of drug 

design. The most striking evidence pointing to the complexity of these diseases is that to date no single drug has 

been developed that can prevent the degenerative process or restore viability of neurons that are dying. 

Pharmaceutical research has only been able to bring drugs to the market that can, at best, modulate symptoms 

in patients suffering from the diseases, which in many cases only feel beneficial effects for limited time periods. 

The lack of good neuroprotective/neurorestorative compounds can at least in part be attributed to a “one-

disease, one-target” paradigm that has been followed by most drug discovery laboratories (reviewed in (56, 57). 

The choice to develop selective compounds is driven by the observation that there likely exists an inverse 

relationship between drug target selectivity and side effects. Thus, by designing a highly selective compound 

which targets only one receptor or enzyme, the likelihood of side-effects resulting from cross-reactivity at other 

biological pathways is mitigated. 

During the past few decades, however, a multi-drug approach to therapy has gained recognition. Two 

examples of diseases that have been treated with a combination of drugs with divergent therapeutic targets 

include high blood pressure and asthma (58). More recently, a new paradigm that addresses disease etiological 

complexity by a multi-target approach has gained increasing acceptance (59). In this type of approach, the agent 

has more than one mechanism of action and the compounds should be named, as suggested by Morphy and 

Rankovic, “designed multiple ligands” (DMLs)-compounds that are specifically designed to target the multiple 

mechanisms underlying the etiology of a specific disease or group of diseases (56, 57). Fig. 1 shows the change 

in drug design strategy over the past years. 
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Figure 1. The drug discovery process for neurodegenerative disease and other complex pathologies have 

seen a significant change in the past few years. Traditional drug discovery focused on a specific target toward which 

the drug was designed to interact very potently. The rationale for this approach was primarily driven by the desire to 

minimize cross-reactivity with other cellular pathways, thereby resulting in fewer side-effects. Recently, more data show that 

multifunctional drugs targeting more than one disease pathway seemed to have better success at modulating complex 

diseases, with no demonstrable increase in side-effects reported in many cases. Adapted from (60, 61). 

  

Neurodegenerative diseases appear to be particularly amenable to drug therapy strategies in which 

multiple drug targets are affected, rather than focusing on a single target (reviewed in (62). As a general 

example, L-3-n-butylphthalide is an extract from the seed of Apiumgraveolens Linn (Chinese celery) and has 

been employed in the treatment of AD transgenic mice (3xTg-AD). These animals developed both plaques and 

tangles with aging, as well as cognitive deficits. In all measures, L- butylphthalide treated animals showed 

significantly improved outcomes (63). Of interest in the context of multi-target drugs is the fact that L-3-n-

butylphthalide markedly enhanced secretion of soluble amyloid precursor protein (α-APPs), alpha-secretase, and 

PKCα expression, but reportedly had no effect on steady-state full-length APP. L-3-n-butylphthalide also reduced 

glial activation and oxidative stress in these animals. It is therefore speculated that L-3-n-butylphthalide may 

direct APP processing toward a non-amyloidogenic pathway and in doing so, preclude Aβ formation in the 3xTg-

AD mouse (64).  

In fact, many of the small molecules are initially described to be targeting specific pathways in cells and 

years later other factors are implicated in the mode of action of the drugs. The geldanamycin analog, 17-AAG, is 

one such example. 17-AAG and derivatives are currently in clinical trials as anticancer drugs (65), that 

specifically bind to and inhibit Hsp90 and trigger the activation of a heat shock response in many model systems 
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(66-69). Recently, 17-AAG was also shown not only to cause upregulation of Hsps, but also to be an effective 

inducer of the autophagic pathway and thereby promoting the removal of prefibrillary α-synuclein aggregates 

(70) and of androgen receptor (71). Parallel to its role as an HDAC inhibitor, SAHA was also suggested to induce 

caspase-independent autophagic cell death by influencing mTOR pathway (72). Valproic acid acts primarily as an 

HDAC inhibitor, used in the clinics to treat bipolar disorders and epilepsy (73) but was found to increase 

longevity in C. elegans in a DAF-16-dependent manner (74).   

These data suggest, as has been discussed also in Chapter 5, that one single compound can act in 

several pathways, being crucial to apply pharmacogenetics to determine all the targets and predict eventual side 

effects. A multiple-target drug approach can indeed be promising in finding treatments for neurodegenerative 

diseases, including MJD.    

 

Longevity pathways and proteotoxicity 

 The discovery that the aging process can be slowed by reducing the activity of the insuIin/insulin 

growth factor-(IGF)-1-signaling (IIS) opened the way for researchers to address the question of whether aging-

related changes play a role in enabling protein aggregation to become toxic late in life. In C. elegans expressing a 

polyQ35-YFP chimera, aggregates were detectable by day 4 of adulthood. RNAi-mediated reduction of age-1 (a 

central IIS component whose reduction leads to extended lifespan) protected worm embryos from polyQ82-YFP 

aggregation in a DAF-16-dependent manner. Furthermore, age-1 RNAi treatment partially rescued the worms 

from motility impairments associated with the expression and aggregation of polyQ-YFP of different lengths (75). 

This seminal study indicated that slowing aging by reducing the activity of the IIS alleviates toxicity associated 

with polyQ aggregation and suggested that aging plays an active role in the temporal regulation of toxic protein 

aggregation. HSF-1 was also found to be required to enable IIS reduction to mediate protection from toxicity 

associated with polyQ-YFP aggregation (76). Expression and subsequent aggregation of the human Amyloid-β 

peptide in the body wall muscle cells of C. elegans caused progressive paralysis (77). In this model, daf-2 RNAi 

also protected worms from this toxic effect in DAF-16 and HSF-1 dependent manners (78). Here, we found that 

DAF-16 and HSF-1 are also potent suppressors of mutant ATXN3 proteotoxicity (79). 

 It is known that HSF-1 activity is required for IIS-mediated increased lifespan in C. elegans, but daf-16 

mutation does not further decrease hsf-1-mediated decrease in lifespan. This result suggests that likely HSF-1 

and DAF-16 may function in a common pathway to regulate longevity. How about their action in proteotoxicity? 

We found that in the absence of daf-16, 17-DMAG is still able to rescue mutant-ATXN3-mediated neuronal 

dysfunction (79). Moreover, late-life IIS reduction protects the worms from Aβ toxicity (80), when it can no longer 

affect lifespan (81). Taken together, these studies suggest that the counter-proteotoxic functions of IIS reduction 

can be uncoupled from its (more global) longevity effects, and that HSF-1 can be acting downstream of DAF-16 

in protecting against proteotoxic stress.  



218 

 

 Next, we asked if other aging-related pathways would also show this protective effect, like reduction of 

IIS. As discussed in Chapter 3, a genetic model of dietary restriction (DR) failed to rescue mutant ATXN3 

pathogenesis in neuronal cells, probably because diet-restricted animals depend on an endocrine signal from the 

ASI neurons (which are not affected in our ATXN3 model) to non-neuronal tissues (82). However, when polyQ or 

Aβ proteins were expressed in C. elegans body wall muscle cells, DR reduced aggregation and toxicity of the 

mutant proteins (83). Also in this model, the effects of DR-mediated improved proteotoxicity were fully dependent 

on HSF-1 activity (83). Effect of HSF-1 in ISP-1-mediated reduced ATXN3 aggregation still remains to be 

determined. 

Based on this, we propose a working model in which component(s) of the proteostasis network (e.g. 

HSF-1) are required for the protection against proteotoxicity provided by longevity-related pathways (Fig. 2). 

Future studies aim to complete this model.         

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A working model for the role of component(s) of the proteostasis network in mediating the 

protective role of longevity-related pathways in proteotoxicity. Three independent mechanisms have been found 

to be aging and lifespan regulators; the Insulin/IGF signaling (IIS) pathway; dietary restriction (DR) and altered mitochondrial 

function. Other pathways were less explored. Based on the work gathered by many laboratories, we suggest that HSF-1 

and/or other components of the proteostasis network are required for aging/longevity-related pathways-mediated improved 

proteotoxicity.   

 



219 

 

From C. elegans to the human disease: limitations and advantages 

 Although C. elegans has undoubtedly provided many insights into the underlying mechanisms of human 

diseases, many researchers still question whether C. elegans can really be used as a disease model and, if so, 

how relevant such a model can be. Does C. elegans demonstrate behaviors that could be linked to symptoms of 

MJD patients? The cerebellar ataxia is the most frequent clinical manifestation in patients and can be linked to 

alterations in locomotion in worms. However, other symptoms like limitations in ocular movement, which is very 

important in clinical differentiation from other polyQ diseases, are obviously difficult to model in C. elegans. 

Given that even mammalian models do not often reliably mimic disease in humans, it is, from a pre-clinical 

model perspective, improbable that an invertebrate model can, for instance, predict drug targets and safety in 

humans. Non-mammalian model organisms will be typically used in early steps of research to give fast answers 

to problems such as the discovery of a gene function in vivo, or pioneer medical research to identify novel 

therapeutic entry points, as we found in our work. Of such models, C. elegans is for sure the fastest and most 

amenable to cost-effective medium-/high-throughput technologies.   

 Although many neuronal subtypes are conserved, it is unrealistic to identify structures of the human 

brain in an invertebrate nervous system. Moreover, there are no descriptions of classical barriers between 

neurons and the fluid in the C. elegans body, which does not mimic the human condition. In spite of many 

differences, C. elegans neurons do interact with glial cells and besides their direct role in controlling neuronal 

activity, glia contribute to neuron function by ensuring that neurons attain their proper denditric shapes (reviewed 

in (84).  

In spite of the difficult correlation between the human brain and the C. elegans pan-neuronal system, 

which limits the efforts to understand neuron-cell type specific susceptibility in MJD, we believe that C. elegans 

can be a valuable disease model. If we consider that it is the molecular basis of a cell that defines morphological 

and functional diversity of cell types in the nervous system, previously described as “gene batteries” (85), and C. 

elegans can be instrumental in defining the (molecular) pathogenesis underlying a disease.   
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Main conclusions 

 

1. Pan-neuronal expression of mutant ATXN3 in C. elegans causes neuron-cell-type specific aggregation; 

2. Pathological ATXN3 aggregation correlates with neuronal dysfunction; 

3. Aging worsens ATXN3 aggregation and neuronal dysfunction in C. elegans; 

4. DAF-16 and HSF-1 are suppressors of mutant ATXN3 pathogenesis in C. elegans; 

5. Genetic reduction of HSF-1 in mouse had limited impact in MJD pathogenesis. 

6. Not all longevity-associated mutations impact positively in mutant ATXN3 aggregation and toxicity in C. 

elegans; 

7. Wild-type ATXN3 does not play a neuroprotective role in MJD pathogenesis in C. elegans;  

8. The novel C. elegans model we established is a useful tool for identification of potential therapeutic 

compounds for MJD; 

9. Activators of autophagy, activators of transcription, and inhibitors of IIS pathway/activators of the heat 

shock response are good candidates for testing in MJD model in higher organisms, such as mice. 
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Future Perspectives 

One of the advantages of establishing new model systems is related to the many exciting directions for 

future research. The disadvantage of developing and characterizing a new model is that not nearly enough time 

remains afterward to do all the exciting experiments envisioned at the outset of the project. Fortunately, our C. 

elegans model for ATXN3-mediated pathogenesis has attracted the interest of other researchers in the field. 

Parts of the work suggested in this prospectus will be and are currently being pursued in collaboration with other 

members of the Maciel lab.  

This work opened several questions that we aim to answer in the near future. 

  

Regarding the further understanding of the neuron cell-type-specific susceptibility to mutant ATXN3 in C. 

elegans, we intend to make use of neuronal fluorescent markers to label specific types of neurons, namely 

GABBAergic and dopaminergc neurons or neurons that express glutamate. This should allow us to map neuronal 

susceotibility to further detail. In order to continue studies began in Chapter 2, we also want to determine, in 

future studies, if HSF-1 and DAF-16 suppressor effects in mutant ATXN3 pathogenesis are cell-autonomous (i.e. 

neuron-regulated). For that purpose, we will overexpress HSF-1 and DAF-16 in neuronal cells only (motor 

neurons) and determine if there is rescue of the motility phenotype of hsf-1; AT3q130 and daf-16; AT3q130 

animals, respectively. 

In Chapter 2.1, we intend to further improve our image-processing application in order to be able to 

start the quantification of volume of the aggregates, which we believe will be a more reliable measure of the 

aggregation state of the animals. 

The major challenge that remains from this work, which we will pursue in the future, is to understand 

what are the underlying mechanisms of the opposing effects of distinct longevity/aging-related pathways in 

protection against disease-associated proteotoxicity. For that, we intend to: (i) measure expression levels of key 

components of the proteostasis network; (ii) determine if similar effects occur in models for other 

neurodegenerative diseases in C. elegans; and (iii) perform epistasis studies that will allow us to understand the 

role of the several components of the same pathway in modulating proteotoxicity, i.e. to further dissect the 

protective pathways; and (iv) evaluate resistance of transgenic animals to a variety of stresses. 

Regarding the limited effects in MJD pathogenesis caused by genetic reduction of HSF-1 in mice, we 

will investigate potential compensatory roles of other heat shock factor(s) in cells, namely HSF-2. We will 

measure the levels and activation state of HSF-2 and of downstream Hsp targets, in the Hsf-1 knockdown. 
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Finally, regarding the identification of potential therapeutic compounds for testing in animal models of 

MJD, we are currently performing pharmacogenetic studies to determine drug target(s) and to anticipate 

potential side effects that may happen. Moreover, we are currently running a screen of 1120 FDA-approved 

compounds for rescuing mutant ATXN3-mediated pathogenesis (Appendix 3). So far, we have found three 

promising drugs for testing in a mouse model of MJD, previously generated in our laboratory (19). 
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Capítulo 32 

Doenças de expansão de poliglutaminas – o paradigma das doenças de Huntington e de 
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Sumário 

As doenças de expansão de poliglutaminas são patologias neurodegenerativas hereditárias 

causadas pela expansão do trinucleótido citosina-adenina-guanina (CAG) na região 

codificante de diferentes genes, que codificam proteínas específicas. São conhecidas nove 

doenças de poliglutaminas que afectam diferentes áreas cerebrais. Neste capítulo resumem-se 

as principais características da doença de Huntington (DH) e da doença de Machado-Joseph 

(DMJ), as duas doenças poliglutamínicas mais comuns. Estas doenças incuráveis afectam, 

respectivamente, as proteínas huntingtina (Htt) e ataxina-3 (ATXN3), conduzindo ambas à 

formação de agregados proteicos intracelulares. Diferentes mecanismos celulares parecem 

contribuir para a patogénese destas doenças, o que tem permitido a identificação de alvos 

terapêuticos e o desenvolvimento de terapias neuroprotectoras. 
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1. Introdução 

A expansão de sequências repetitivas do trinucleótido citosina-adenina-guanina (CAG)1 na 

região codificante de genes, que codificam proteínas específicas, é uma característica comum 

das doenças de expansão de poliglutaminas. Foram até hoje identificadas nove doenças de 

poliglutaminas que incluem a doença de Huntington (DH), a DRPLA (do inglês 

dentatorubral-pallidoluysian atrophy), a doença de Kennedy ou SBMA (do inglês spinal 

bulbar muscular atrophy), e as ataxias espinocerebelosas (SCA, do inglês spinocerebellar 

ataxia) 1, 2, 3, 6, 7 e 17. A SCA3 é também designada doença de Machado-Joseph (DMJ) 

(Macedo-Ribeiro et al., 2007, para revisão). A primeira expansão de CAGs a ser identificada 

foi a mutação associada à SBMA, que afecta o receptor do androgénio; esta é uma doença 

recessiva ligada ao cromossoma X, e por esta razão afecta predominantemente indivíduos do 

sexo masculino. Com excepção da SBMA, todas as outras patologias de poliglutaminas são 

autossómicas dominantes. 

A mutação génica que ocorre nestas nove patologias afecta proteínas distintas, em termos de 

estrutura, sequência de aminoácidos e função biológica (de referir que a função da maior parte 

das proteínas é ainda desconhecida); por outro lado, para cada proteína, a expansão de 

poliglutaminas (poliQ) ocorre em diferentes locais da mesma, i.e., perto do terminal amínico, 

do terminal carboxílico ou a meio da sequência de aminoácidos. Em todas as doenças existe 

um limiar de repetições CAG a partir do qual os indivíduos apresentam sintomatologia, tal 

como exemplificado na Tabela I. Em geral, e considerando a amplitude das repetições CAG, 

existe uma correlação inversa entre o número de repetições CAG e a idade de início das 

patologias. Contudo, para determinadas repetições, a idade de início varia bastante, sugerindo 

que outros factores poderão contribuir para o aparecimento e progressão destas patologias. 

Um número de repetições CAG mais elevado está geralmente associado a formas raras, de 

aparecimento precoce (formas juvenis ou mesmo infantis), caracterizadas por uma maior 

(1) O codão CAG codifica para o aminoácido glutamina (Q). 
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gravidade e/ou o aparecimento de sintomas adicionais. Estes incluem, por exemplo, o 

aparecimento de retinite pigmentosa, tal como observado num caso infantil de SCA2 com 

mais de 200 repetições CAG, ou o aparecimento de epilepsia mioclónica progressiva num 

caso juvenil de DH (Bates e Benn, 2002, para revisão). 

Apesar da expressão ubíqua das proteínas afectadas, cada doença lesa de modo mais ou 

menos selectivo uma determinada região do sistema nervoso central (SNC) (Tabela I), e os 

padrões de lesão das regiões afectadas variam nas diferentes patologias. As nove doenças 

apresentam uma grande variedade de sintomas clínicos. Porém, a perda neuronal progressiva 

e um declínio das funções motoras e cognitivas são características comuns. Para além disso, 

nas formas mais frequentes, a sintomatologia surge na idade adulta, conduzindo à morte dos 

pacientes 10 a 30 anos após o aparecimento dos primeiros sintomas (Sequeiros e Coutinho, 

1993). 

Uma outra característica interessante destas doenças é o processo de “antecipação”. Todas as 

expansões patogénicas ou que se situam no limite dos valores normais podem apresentar 

instabilidade na transmissão de uma geração para a seguinte. Esta instabilidade é mais 

pronunciada na transmissão paterna, traduzindo-se por um aumento das expansões de poliQ e 

pelo aparecimento mais precoce da sintomatologia em gerações sucessivas. Esta alteração do 

número de repetições parece ser devido a uma maior instabilidade genética da sequência nos 

espermatozóides; contudo, também pode ocorrer instabilidade nos gâmetas femininos. A 

mutação associada à SCA7 exibe o maior grau de instabilidade (aumento até 18,5 repetições 

CAG, através da linha masculina) e desta forma o maior grau de antecipação. Por outro lado, 

também podem ocorrer reduções no número de repetições CAG, de uma geração para outra, 

mais frequentes na transmissão materna (Bates e Benn, 2002). A instabilidade das repetições 

CAG traduz-se ainda na forma de mosaicismo somático, particularmente entre diferentes 
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regiões cerebrais e/ou entre diferentes tipos de células do SNC (e.g. entre neurónios e células 

da glia) (Bates e Benn, 2002). 

A formação de agregados proteicos e inclusões ubiquitinados, presentes particularmente nos 

neurónios, e mais frequentes a nível nuclear (Tabela I), são outra característica das doenças 

de poliQ. A patogénese associada à expansão de poliQ tem sido associada a um ganho de 

função da proteína mutante e/ou a uma perda de função da proteína normal (wild-type). Um 

exemplo típico do ganho de função é a mutação do receptor do androgénio, que ocorre na 

SBMA. Nesta patologia, a mutação causa a degenerescência de neurónios motores, enquanto 

a perda de função daquele receptor causa efeitos feminizantes (Rego e de Almeida, 2005, para 

revisão). 

 

Apesar dos múltiplos estudos de investigação, não existe actualmente cura para estas doenças 

devastadoras. Contudo, várias terapias neuroprotectoras têm sido desenvolvidas nos últimos 

anos. Assim, neste capítulo resumem-se as principais características clínicas e patológicas da 

DH e da DMJ ou SCA3, os conceitos actuais sobre a patogénese, e as novas perspectivas 

terapêuticas para estas doenças. 

 

2. A Doença de Huntington e a Doença de Machado-Joseph 

2.1 Prevalência clínica  

A DH apresenta uma prevalência de 3 a 10 indivíduos afectados por cada 100.000 no 

oeste Europeu e América do Norte (Ho et al., 2001, para revisão), e uma prevalência idêntica 

em Portugal, entre 2 e 5 indivíduos por cada 100.000 (Costa et al., 2003). A DH foi 

inicialmente descrita em 1872 por George Huntington, que identificou não só as 

características clínicas da doença, mas também o seu padrão de transmissão familiar.  
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Por sua vez, a DMJ é, em muitas populações, a ataxia dominante mais comum, variando 

de cerca de 20% das famílias, na maioria das séries de doentes norte-americanos, até cerca de 

50% em famílias no Japão, Alemanha e China (Paulson e Subramony 2003). Em Portugal, a 

prevalência da DMJ foi estabelecida em 3.1: 100.000, tendo sido identificadas cerca de 108 

famílias com DMJ, oriundas das ilhas dos Açores e de Portugal continental (Coutinho, 1972;). 

Num estudo em que foram analisados 92 doentes com ataxia espinocerebelosa (não 

relacionados; 38% de origem portuguesa), verificou-se que 41% desses doentes tinham a 

mutação causadora da DMJ.  

 

2.2. Principais manifestações clínicas 

Cinicamente, existem alguns factores comuns a nível da sintomatologia descrita para as 

várias doenças de poliglutaminas, nomeadamente a perda de coordenação motora e de 

equilíbrio. Contudo, outros aspectos tornam cada uma destas doenças única. 

Classicamente, a DH era descrita como Coreia de Huntington (‘khorea’ é a palavra grega 

para dança). De facto, clinicamente, a DH caracteriza-se por coreia progressiva, declínio 

cognitivo e perturbações psiquiátricas. Numa fase precoce podem ser observadas alterações 

moderadas na execução dos movimentos, movimentos involuntários minor, dificuldades na 

resolução de problemas, irritabilidade e depressão. Os movimentos involuntários tornam-se 

mais graves e os doentes perdem gradualmente a capacidade de se mover e, eventualmente, de 

comunicar. Desenvolvem-se sintomas como a coreia, disartria, disfagia e defeitos cognitivos. 

As características cognitivas deterioram-se ao longo do tempo, pelo que os doentes de 

Huntington em fase tardia apresentam demência severa. Por outro lado, um comportamento 

maníaco-depressivo e alterações de personalidade (irritabilidade, apatia e distúrbios sexuais) 

fazem parte dos sintomas psiquiátricos que caracterizam a DH (Gil e Rego, 2008). 
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Nas formas mais avançadas da DH surge também bradicinésia, rigidez severa e demência. 

A morte dos doentes ocorre geralmente devido a doença cardiovascular ou complicação 

infecciosa respiratória. Nos doentes com formas juvenis da DH, a sintomatologia é diferente 

relativamente às formas adultas da doença, sendo caracterizada por bradicinésia, tremor, 

rigidez e distonia, e a coreia pode mesmo estar ausente. As crianças afectadas pela DH podem 

também apresentar epilepsia (Gil e Rego, 2008; Bates e Benn, 2002, para revisão). 

A maioria dos doentes sofre também de caquexia, com emaciação muscular e perda de 

peso, que surgem apesar de um consumo calórico constante. Alterações endócrinas têm sido 

também descritas em doentes de DH, incluindo um aumento dos níveis de corticosteróides e 

uma diminuição dos níveis de testosterona. Para além disso, cerca de 10-15% dos doentes de 

DH exibem diabetes mellitus (Gil e Rego, 2008, para revisão). A doença progride ao longo do 

tempo e torna-se fatal 15 a 20 anos após o aparecimento dos primeiros sintomas (Ho et al., 

2001). 

Foi em 1972 que apareceram as primeiras publicações clínicas sobre a DMJ, descrevendo 

duas das famílias “fundadoras”, invariavelmente citadas em todos os trabalhos sobre a doença 

e que irão dar o nome à mesma. A primeira publicação é de Nakano e colaboradores, que 

descrevem a “Doença de Machado, uma ataxia hereditária em emigrantes portugueses no 

Massachusetts”. No mesmo ano, Woods e Schaumburg publicam outra família, também 

açoriana e igualmente estabelecida no estado de Massachusetts. O membro mais antigo desta 

família conhecido como doente é José Tomás, e o seu nome americaniza-se entretanto dando 

origem ao nome da família: “A família Thomas”. Finalmente, em 1976, Rosenberg e 

colaboradores descreveram uma terceira família açoriana, a família Joseph, originaria da ilha 

das Flores e emigrada para a Califórnia. Em 1980 Coutinho e Sequeiros sugeriram pela 

primeira vez que os diferentes quadros clínicos descritos para estas doenças constituíam uma 
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mesma entidade genética com expressão fenotípica variável- a unificação da DMJ (Sequeiros 

& Coutinho, 1993, para revisão). 

No caso da DMJ, um factor muito importante no diagnóstico clínico no que diz respeito à 

exclusão de outras ataxias espinocerebelosas hereditárias cuja apresentação clínica é 

semelhante, é o facto da função cognitiva ser preservada nestes doentes. Os poucos casos 

descritos com declínio cognitivo são de natureza moderada. No que diz respeito a outros 

aspectos, o espectro clínico da DMJ é muito pleomórfico pelo que quatro subfenótipos foram 

sugeridos (Coutinho, 1992; Burk et al., 2003):  

 i) Tipo I: deficits extrapiramidais (maioritariamente distonia) e piramidais; início precoce 

da doença (entre os 5-30 anos);  

ii) Tipo II: deficits piramidais e cerebelosos; início da doença em idades intermédias (20-

50 anos); 

      iii) Tipo III: deficits cerebelosos e neuropatia periférica; início tardio (40-75 anos);     

      iv) Tipo IV (muito raro): neuropatia e parkinsonismo; o início da doença é variável. 

Outras características que não estão restritas a nenhum subtipo específico da DMJ incluem 

oftalmoplegia, visão dupla, fasciculação facial e da língua, perda de peso mas com 

preservação do apetite (tal como na DH), incontinência, e a síndrome de pernas inquietas (do 

inglês “restless legs”) (Coutinho e Andrade 1978; Sequeiros e Coutinho, 1993).  

Os doentes têm uma sobrevida média de 21 anos e normalmente a morte ocorre devido a 

incapacidade motora e a imobilidade prolongadas que originam, entre outras, complicações 

pulmonares graves (Coutinho, 1992). 

 

      2.3. Neuropatologia 

Neuropatologicamente, a DH caracteriza-se por atrofia gradual do estriado (núcleo 

caudado e putamen) e do córtex cerebral nos casos mais avançados da patologia; contudo, o 
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globo pálido, o tálamo, os núcleos subtalâmicos, a substantia nigra, a substância branca e o 

cerebelo também poderão estar afectados (Tabela I e Figura 1). Estudos mais recentes 

também apoiam a hipótese que o hipotálamo possa estar afectado em doentes de Huntington. 

Paralelamente, e de forma semelhante ao que acontece noutras patologias neurodegenerativas, 

a morte neuronal é acompanhada por gliose, i.e., pela proliferação de células da glia. Devido a 

uma atrofia cerebral generalizada, o peso cerebral pode diminuir até 40% nos casos mais 

graves da DH (e.g. Rego e de Almeida, 2005). 

Os neurónios mais afectados no estriado são os neurónios espinhosos médios, que 

correspondem a cerca de 95% do número total de neurónios estriatais. Estes neurónios são 

regulados por neurónios dopaminérgicos que partem da substantia nigra pars compacta e por 

neurónios glutamatérgicos do córtex cerebral. Por sua vez, os neurónios estriatais projectam 

para os segmentos interno e externo do globus pallidus e substantia nigra pars reticulata 

através das vias directa e indirecta; a última atravessa o segmento externo do globus pallidus e 

o núcleo subtalâmico. 

Os neurónios espinhosos médios do estriado utilizam o neurotransmissor inibitório ácido 

γ-aminobutírico (GABA) e dinorfina, encefalina ou substância P como co-transmissores. Os 

neurónios da via directa contêm substância P e expressam receptores da dopamina (DA) do 

tipo D1 (estimulam a enzima adenilciclase), enquanto os neurónios da via indirecta contêm 

encefalina e expressam receptores do tipo D2 (inibem a enzima adenilciclase) (Gil e Rego, 

2008, para revisão). Uma vez que os neurónios estriatais exercem acção inibitória mediada 

por GABA, pensa-se que a perda desta esteja na base dos movimentos incontrolados 

característicos da DH. De facto, ambas as vias indirecta (GABA/encefalina) e directa 

(GABA/substância P) parecem ser precocemente afectadas durante o desenvolvimento da 

doença. Por outro lado, os interneurónios estriatais médios não-espinhosos (que marcam para 

somatostatina, neuropeptídeo Y ou NADPH-diaforase (ou sintetase do óxido nítrico (NOS)), 
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os interneurónios colinérgicos e os neurónios GABAérgicos que contêm parvalbumina são 

relativamente poupados nos cérebros dos doentes de Huntington (Gil e Rego, 2008). 

Anatomopatologicamente, a DMJ é caracterizada por uma degenerescência dos núcleos 

espinocerebelosos, denteados, pônticos e vestibulares, da substantia nigra, do locus coeruleus 

e do complexo palidoluisiano; por uma redução neuronal nos núcleos e atrofia dos nervos 

cranianos motores e dos cornos anteriores da medula, nos gânglios raquidianos e cordões 

posteriores (Tabela I e Figura 1). Apesar da forte degeneração e despigmentação observada 

na substantia nigra, muitos doentes nunca apresentam características de parkinsonismo. Em 

geral, estruturas como o córtex cerebral, o córtex cerebeloso e as olivas bulbares são 

preservadas (Coutinho e Andrade, 1978). Na maioria dos doentes com DMJ, tal como na DH, 

o peso do cérebro é inferior ao de indivíduos sem história clínica de doenças neurológicas 

(Riess et al., 2008, para revisão). 

 

2.4. Genética 

A expansão instável de repetições CAG na região codificante (exão 1) do gene DH 

(anteriormente designado por gene IT15, do inglês ‘Interesting Transcript 15’), que codifica 

para a proteína huntingtina (Htt, uma proteína com aproximadamente 350 kDa), foi 

descoberta em 1993 pelo The Huntington’s Disease Collaborative Research Group. O gene 

DH contém 67 exões e está localizado no braço curto do cromossoma 4 (4p16.3) (Rego e de 

Almeida, 2005). A mutação resulta numa expansão de resíduos de glutamina localizados no 

terminal amínico da Htt, 17 aminoácidos após a metionina iniciadora (Figura 2A). Tal como 

referido anteriormente, o alelo mutante é instável durante a meiose, alterando o seu 

comprimento na maioria das transmissões intergeracionais. Tal como referido anteriormente, 

as expansões maiores ocorrem nas transmissões paternas, reflectindo uma maior taxa de 
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mutação durante a espermatogénese (The Huntington’s Disease Collaborative Research 

Group, 1993). 

Normalmente, indivíduos assintomáticos possuem menos de 35 repetições CAG no gene 

DH (Figura 2A). A DH manifesta-se quando o número de repetições excede este limite. 

Alelos com 35 a 39 repetições CAG estão associados com as formas mais tardias da doença; 

porém, uma penetrância incompleta tem sido observada nalguns indivíduos que não 

apresentam sintomas ou sinais neuropatológicos. Alelos com 40 a 50 unidades dão origem à 

forma adulta, mais comum, da DH, enquanto repetições mais longas são responsáveis pelos 

casos juvenis e infantis (The Huntington’s Disease Collaborative Research Group, 1993) 

(Figura 2A). O número de repetições CAG parece afectar a progressão da doença, 

particularmente se considerarmos repetições superiores a cerca de 60 CAGs. De facto, um 

número elevado de repetições CAG conduz ao aparecimento dos primeiros sintomas muito 

precocemente, contudo estes casos são raros. 

Os estudos pioneiros demonstraram que a Htt é uma proteína essencial para o 

desenvolvimento embrionário normal. De forma interessante, a Htt mutante humana pode 

compensar a ausência de Htt endógena durante o desenvolvimento (Leavitt et al., 2001), 

sugerindo que a função da Htt durante o desenvolvimento embrionário é independente do 

comprimento da cauda de poliQ. De facto, apesar da Htt mutante ser expressa em todo o 

organismo ao longo de toda a vida de um indivíduo, na maioria dos casos, o aparecimento dos 

primeiros sintomas surge apenas na meia-idade, entre os 35 e os 50 anos. 

A mutação génica responsável pela DMJ foi identificada cerca de um ano mais tarde, em 

1994, por investigadores Japoneses (Kawaguchi et al., 1994). O gene ATXN3/MJD1 foi 

mapeado no braço longo do cromossoma 14, mais concretamente, na região 14q32.1 

(Kawaguchi et al., 1994), estando a expansão da repetição trinucleotídica (CAG)n localizada 

no exão 10 dos 11 exões que constituem o gene (Figura 2B). Um grande número de estudos 
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genéticos ao longo dos últimos anos estabeleceu aspectos importantes para uma melhor 

compreensão da DMJ: (i) um individuo normal pode ter até 47 repetições CAG. No entanto, 

(ii) foram identificados casos sintomáticos em que o tamanho do segmento de CAG variava 

entre 44 e 86 repetições. Esta sobreposição parcial entre os tamanhos normal e expandido do 

segmento de CAG tinha já sido mostrada para outras doenças (incluindo a DH), 

correspondendo na maioria das vezes a casos de penetrância reduzida. Outros estudos 

indicaram, como referido anteriormente para a DH, que (iii) o alelo expandido é muito 

instável, principalmente em casos de transmissão paterna; evidências apontam para a (iv) 

existência de mosaicismo somático em termos do tamanho da expansão (CAG)n e, finalmente, 

foi sugerido que, (v) para além do tamanho do segmento repetitivo CAG, outros factores 

genéticos poderão estar a determinar a idade de início da doença.     

 A proteína ataxina-3 (ATXN3) apresenta um peso molecular de aproximadamente 42 

kDa em indivíduos normais, que se torna significativamente maior em pacientes com DMJ- 

confirmando que a repetição CAG é traduzida numa expansão de poliQ. Foram identificadas 

várias isoformas da proteína que diferem no seu terminal carboxílico. A procura de 

motivos/domínios na proteína sugeriu que a ATXN3 é uma proteína de ligação à ubiquitina. 

Ensaios funcionais subsequentes mostraram que a ATXN3 tem maior afinidade para cadeias 

de tetra-ubiquitina do tipo Lisina-48 (K48), e que esta ligação é mediada por motivos de 

interacção com a ubiquitina (UIMs, do inglês ubiquitin interacting motifs), situados no C-

terminal da ATXN3, perto do domínio de poliQ (Figura 2B) (Riess et al., 2007, para revisão). 

O potencial envolvimento da ATXN3 em mecanismos de degradação proteica da célula via 

proteossoma foi reforçado pela identificação de vários parceiros moleculares, nomeadamente 

a Rad23 e a VCP (do inglês valosin-containing protein). As proteínas Rad23 por sua vez 

interactuam com a subunidade S5a do proteossoma, o que sugere um papel importante deste 

complexo na translocação de proteínas para degradação via proteossoma (Riess et al., 2007, 
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para revisão). Esta função é particularmente importante na degradação de proteínas do lúmen 

e membranares pela via de degradação proteica associada ao retículo endoplasmático (do 

inglês endoplasmic reticulum associated protein degradation, ERAD), processo este que 

depende grandemente da VCP. Assim, células transfectadas com ATXN3 apresentam 

especificamente níveis elevados de substratos dependentes de ERAD (CD3δ e TCRα), 

diminuindo a sua degradação. Os níveis de CD3δ são dependentes da interacção ATXN3-

VCP, pelo que a mutação do domínio de interacção da ATXN3 com a VCP reduz a 

acumulação de CD3δ . 

 

O mapeamento e clonagem dos genes associados a estas doenças, juntamente com o 

desenvolvimento de tecnologias genéticas, possibilitaram a criação de modelos celulares e 

animais que recriam a doença humana, mesmo quando estas doenças não ocorrem 

naturalmente nestes organismos. Estas tecnologias podem ser aplicadas em qualquer modelo 

animal, mas modelos em murganho (Mus musculus), peixe zebra (Danio rerio), mosca da 

fruta (Drosophila melanogaster) e nemátodes (Caenorhabditis elegans) são os mais usados. 

Em geral, são aplicadas duas abordagens principais que visam a alteração da constituição 

genética dos animais: a (i) primeira envolve a inserção de um gene mutado na linha 

germinativa; enquanto que a (ii) segunda envolve a alteração da expressão de gene(s) 

endógeno(s) por mutagénese (dirigida ou aleatória) ou silenciamento do gene por RNA de 

interferência. Na Tabela II e III , encontram-se sumariados alguns modelos animais da DH e 

da DMJ que têm contribuído grandemente para o conhecimento destas patologias.  

 

2.5. Agregados proteicos 

Outra consequência positiva da clonagem dos genes HTT e ATXN3 foi permitir a 

expressão de proteínas recombinantes, em sistemas heterólogos, o que possibilitou a criação 
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de anticorpos específicos que foram de extrema importância para o estudo da patologia destas 

doenças. De facto, sabe-se que a expansão da sequência de poliQ altera a estrutura das 

proteínas e o desenvolvimento de anticorpos que reconhecem especificamente a forma 

mutante da Htt, ATXN1, 2 e 3 sugeriu que a conformação das proteínas mutantes é distinta da 

conformação wild-type. Esta alteração na conformação nativa das proteínas resulta na 

capacidade anómala destas proteínas se associarem, formando espécies de maior peso 

molecular (oligómeros) que, finalmente, dão origem a agregados proteicos ou inclusões que 

acumulam de forma estável na célula, e que são reconhecidos quer por anticorpos contra a 

proteína específica quer por anticorpos contra a ubiquitina.  

A DH é caracterizada pela presença de inclusões neuronais intranucleares e por agregados 

proteicos em neurites distróficas de neurónios estriatais e corticais. Na DMJ as inclusões 

nucleares foram encontradas com maior frequência nos núcleos pônticos (ventrais) e também, 

embora em menor número, na substantia nigra, globo pálido, medula dorsal e núcleos 

denteados (Paulson e Subramony 2003). Adicionalmente, foram encontrados múltiplos 

agregados em axónios, localizados em fibras afectadas na DMJ (Seidel et al., 2010).  

Dois mecanismos principais têm sido sugeridos para explicar a formação dos agregados 

de Htt mutante e que são geralmente aceites para outras doenças de poliglutaminas: (i) O 

modelo ‘Polar Zipper’ (e.g. Perutz et al., 1994), que pressupõe a formação de estruturas em 

folha beta, em resultado da destabilização da conformação terciária da proteína, conduzindo 

ao estabelecimento de ligações de hidrogénio com outras proteínas; e (ii) O modelo da 

transglutaminase, pelo qual a enzima estabelece ligações cruzadas entre resíduos de 

glutamina. De acordo com este modelo, verificou-se um aumento da actividade das 

transglutaminases em cérebros de doentes de Huntington (e.g. Karpuj et al., 1999). 

Contudo, nestas doenças neurodegenerativas parece haver uma dissociação entre a 

agregação e a neurodegenerescência. De facto, no cérebro humano, os neurónios que possuem 
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inclusões não são os mais vulneráveis. Alguns interneurónios que são poupados durante a 

progressão da DH, por exemplo, também apresentam agregados, o que sugere que os 

agregados proteicos não sejam tóxicos. Assim, as inclusões poderão representar apenas um 

efeito secundário da disfunção celular ou mesmo exercer um efeito protector durante as fases 

iniciais da doença. É possível que as inclusões representem um meio da célula sequestrar 

fragmentos e oligómeros tóxicos formados por clivagem da Htt, da ATXN3 ou de outras 

proteínas cuja conformação normal esteja alterada. De acordo com esta hipótese, estudos in 

vitro têm demonstrado que a presença de inclusões nucleares não se correlaciona com a morte 

celular induzida pela proteína mutante. 

 

2.6. Mecanismos de neurodegenerescência 

A expansão de poliQ parece conferir um ganho de função tóxica às proteínas mutantes 

e/ou uma perda parcial da função normal, quer da Htt quer da ATXN3. Vários mecanismos 

celulares e moleculares parecem contribuir para a alteração da homeostase intracelular 

(Figura 3 e 4). De entre estes destacam-se: (i) O défice de mecanismos intracelulares que 

promovem a aquisição e manutenção da conformação nativa das proteínas e a diminuição da 

sua degradação, contribuindo para a formação de agregados proteicos e para a activação da 

autofagia; (ii) A disfunção da transcrição; (iii) A disfunção sináptica (e.g. sinapses cortico-

estriatais) e o processo de excitotoxicidade (mais relevante na DH), que conduz à alteração da 

homeostase intracelular do ião cálcio; (iv) A disfunção mitocondrial e a desregulação 

metabólica; (v) O stresse oxidativo; e (vi) A activação de caspases (que promove a apoptose) 

e de calpaínas, culminando na disfunção e morte neuronal. Estes mecanismos podem ocorrer 

paralelamente, de forma ‘silenciosa’, ao longo da vida de um indivíduo portador de uma 

mutação para as diferentes doenças de poliglutaminas, conduzindo inevitavelmente à 
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sintomatologia descrita na secção 2.2. Os mecanismos celulares e moleculares de 

neurodegenerescência na DH e na DMJ são detalhados seguidamente. 

 

2.6.1. Alteração da conformação e da degradação proteíca 

A expansão de poliQ altera a conformação normal das proteínas. Esta alteração 

conformacional está na base da interacção das proteínas mutantes com as proteínas de choque 

térmico (chaperones), envolvidas na aquisição e manutenção de uma conformação proteica 

normal. Contudo, ao serem sequestradas pelos agregados proteicos que contêm Htt ou 

ATXN3 mutantes, as proteínas de choque térmico deixam de exercer a sua função normal 

protectora, resultando numa alteração da proteostase celular (Ho et al., 2001, para revisão). 

O envolvimento do sistema ubiquitina-proteossoma (UPS) é uma das características das 

doenças de poliglutaminas, em que se verifica uma acumulação de cadeias poliubiquitina K48 

em extractos proteicos de cérebros de doentes e em modelos animais para a patogénese da 

doença. Particularmente, na DH foi sugerido que a proteína mutada com a expansão de poliQ 

pode bloquear fisicamente o proteossoma (Figura 3), prevenindo a entrada e consequente 

degradação no proteossoma da Htt ou de outras proteínas alvo de degradação por esta via. 

Apesar de na DMJ e noutras doenças de poliglutaminas ainda não ter sido claramente 

estabelecida uma disrupção global do UPS, a presença de ubiquitina nos agregados proteicos 

parece ser o resultado de uma tentativa mal sucedida da célula em marcar a proteína mutada 

(ou os fragmentos proteicos) e desta forma dirigi-la para o proteossoma. 

O processo autofágico representa também uma tentativa das células eliminarem a proteína 

mutada e removerem os agregados proteicos que se acumulam ao longo da progressão da 

doença (Figura 3). Cérebros de doentes com DH apresentam organelos 

endossomais/lisossomais, corpos multivesiculares, e a acumulação de lipofuscina, 

reminiscentes do processo autofágico, existindo uma correlação positiva entre o número de 
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vacúolos autofágicos e a expansão de poliQ em linfoblastos de DH (Gil e Rego, 2008). Vários 

estudos demonstraram também que a expressão de Htt mutante induz a actividade 

endossomal/lisossomal e o sequestro da proteína mTOR (do inglês mammalian target of 

rapamycin, uma proteína cinase envolvida na regulação do processo autofágico) nos 

agregados de Htt mutante, com a subsequente activação da autofagia (e.g. Ravikumar et al., 

2004). Resultados semelhantes foram obtidos na presença de rapamicina, um inibidor da via 

dependente de mTOR (que induz autofagia), promovendo a remoção dos fragmentos de Htt 

mutante e atenuando a sua toxicidade. Na DMJ, genes envolvidos na autofagia foram 

identificados como supressores de agregação mediada por fragmentos de ATXN3 mutada em 

C. elegans e o tratamento com análogos de rapamicina reverteu o fenótipo de descoordenação 

motora de murganhos transgénicos para a DMJ (Menzies et al., 2010).  

 

2.6.2. Disfunção da transcrição 

A Htt mutante interage directamente com vários factores de transcrição, recrutando-os 

nos agregados e inibindo a sua actividade transcricional (Figura 3). Estes incluem a TBP (do 

inglês thymine-adenine-thymine-adenine (TATA)-binding protein), a CBP [do inglês CREB 

(cyclic-adenosine monophosphate (cAMP) response element (CRE) binding protein)-binding 

protein], a Sp1 (do inglês specific protein-1), a TAFII130 (do inglês TBP associated factor) e 

o factor de transcrição pró-apoptótico p53 (Gil e Rego, 2008, para revisão). 

Na presença de Htt mutante, a CBP é recrutada para os agregados de Htt, levando a uma 

hipoacetilação das histonas e à inibição da transcrição mediada por CBP. Por outro lado, 

verificou-se, em modelos animais da DH e em doentes de Huntington, que a expressão da Htt 

mutante conduz a uma diminuição da expressão do PGC-1α (do inglês ‘peroxisome 

proliferator-activated receptor-γ coactivator-1α’) (e.g. Cui et al., 2006), um co-activador 
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transcricional que regula vários processos metabólicos, incluindo a biogénese mitocondrial e a 

respiração, em modelos animais para a DH ou nos doentes de Huntington. 

A Htt mutante perde também a capacidade de interagir com factores de transcrição que 

ligam ao elemento NRSE (do inglês neuron restrictive silencer element), regulados pela Htt 

wild-type, entre os quais se inclui o gene Bdnf, que codifica para o factor neurotrófico 

derivado do cérebro (BDNF, do inglês brain-derived neurotrophic factor) (Gil e Rego, 2008, 

para revisão) (Figura 3). Este é um dos exemplos em que a perda de função da Htt normal 

pode ter efeitos nocivos, conduzindo ao decréscimo dos níveis de BDNF, um importante 

factor de sobrevivência para os neurónios estriatais.  

Um cenário semelhante foi descrito para a ATXN3. Esta interage com a CBP e outras 

acetiltransferases, nomeadamente a p300 e o Factor Associado a p300/CBP (pCAF) e inibe a 

transcrição mediada por estes co-activadores. A ATXN3 contendo uma expansão de 

glutaminas liga-se aos referidos factores de transcrição com maior afinidade relativamente à 

proteína normal, pelo que a repressão transcricional foi sugerida como um possível 

mecanismo de patogénese também na DMJ. Por outro lado, foi demonstrado que a ATXN3 

normal se liga a locais específicos da cromatina, nomeadamente na região do promotor do 

gene da metaloproteinase-2 da matriz (MMP-2) e reprime a sua transcrição através do 

recrutamento da desacetilase das histonas 3 (HDAC3), do receptor nuclear co-repressor 

(NCoR), e através da desacetilação de histonas ligadas ao referido promotor. Neste caso, foi 

sugerido que a ATXN3 mutante activa a transcrição de forma aberrante através do seu 

domínio catalítico uma vez que perde a capacidade de formar um complexo repressor nestas 

regiões especificas da cromatina (Riess  et al., 2008, para revisão).  

Em suma, estes resultados sugerem que a expansão de poliQ nas proteínas poderá causar 

uma disfunção dos mecanismos de regulação dos processos transcricionais (Figuras 3 e 4), o 
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que está de acordo com os vários estudos de expressão de genes (análise de microarrays) no 

contexto destas doenças.   

 

2.6.3. Disfunção sináptica e excitotoxicidade 

A observação neuroimagiológica do cérebro de doentes de Huntington revelou uma 

degenerescência cortical sensorial e motora numa fase precoce da doença (Gil e Rego, 2008, 

para revisão), sugerindo que a disfunção cortico-estriatal contribui para a DH.  

A disfunção sináptica nesta via pode ser uma consequência directa da desregulação do 

transporte axonal e/ou de uma diminuição nos níveis das proteínas sinápticas devido à sua 

sequestração em inclusões de Htt mutante e/ou à alteração da transcrição. Alterações do 

transporte axonal de BDNF foram também observadas na DH, contribuindo para uma 

diminuição do suporte neurotrófico no estriado (Gil e Rego, 2008, para revisão). 

A Htt mutante também parece causar disfunção sináptica através da alteração da 

reciclagem, expressão e actividade de receptores pré- e pós-sinápticos para os 

neurotransmissores. De facto, os níveis do receptor metabotrópico do glutamato (mGluR)2 

(um receptor pré-sináptico que regula a libertação de glutamato) encontram-se diminuídos nos 

murganhos R6/2 (que expressam apenas o exão-1 da proteína humana, que contém a expansão 

de poliQ), contribuindo para um aumento da libertação de glutamato e, consequentemente, 

para o processo de excitotoxicidade. Um outro factor que poderá contribuir para aumentar os 

níveis extracelulares de glutamato é a diminuição da capacidade de remoção do glutamato da 

fenda sináptica pelas células da glia. De acordo com este pressuposto, foi observado um 

decréscimo da expressão do principal transportador de glutamato dos astrócitos no estriado e 

no córtex de murganhos R6/1 e R6/2, que poderá resultar da acumulação de Htt mutante nas 

células da glia (Gil e Rego, 2008, para revisão).  
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Neste contexto, é interessante referir que o ácido quinolínico [QA (do inglês quinolinic 

acid), um agonista dos receptores N-metil-D-aspartato (NMDA) do glutamato e um produto 

endógeno resultante da degradação do triptofano] foi inicialmente utilizado na criação de um 

dos modelos de DH, pois induzia a morte localizada de neurónios em ratos e em primatas. 

Uma vez que o estriado recebe input excitatório glutamatérgico de todo o córtex cerebral, 

uma maior vulnerabilidade dos neurónios estriatais na DH poderá também ser consequência 

dos subtipos de receptores glutamatérgicos presentes nos neurónios estriatais. A maioria dos 

neurónios estriatais GABAérgicos apresenta uma expressão elevada da subunidade NR2B do 

receptor NMDA e de mGluR5 (Figura 3). O envolvimento dos receptores mGluR5 e NR2B 

no processo excitotóxico associado à expressão de Htt mutante foi anteriormente descrito em 

neurónios do estriado derivados de murganhos YAC (do inglês yeast artificial chromosome), 

que expressam a Htt humana full-length ou completa (Gil e Rego, 2008, para revisão). Por 

outro lado, a Htt mutante aumenta a sensibilidade do receptor do inositol-(1,4,5)-trifosfato 

(InsP3R), do retículo endoplasmático, promovendo o aumento dos níveis de cálcio 

intracelular (Figura 3). Este aumento de sensibilidade do InsP3R1 parece não ser específico 

para a Htt uma vez que também a ATXN3 mutante se liga a este receptor, activando-o. A 

ATXN3 expandida facilita assim a libertação de cálcio intracelular mediada por InsP3R1, 

pelo que foi proposto que a disfunção da sinalização mediada por cálcio nas células neuronais 

poderá contribuir para a patogénese destas doenças (Figura 4).  

A expansão de poliQ também interfere com a capacidade da Htt (mutada e normal) em 

interagir com a proteína PSD-95 (do inglês postsynaptic density 95) (Figura 3), resultando 

numa maior sensibilização dos receptores NMDA e na promoção do processo excitotóxico. 

Em condições em que ocorre a activação crónica dos receptores NMDA, a concentração 

intracelular de cálcio aumenta, conduzindo à disfunção mitocondrial, à activação da isoforma 

neuronal da NOS (nNOS), à formação de espécies reactivas de oxigénio (ROS, do inglês 
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reactive oxygen species) (Figura 3) e de nitrogénio, à activação de proteases dependentes de 

cálcio como as calpaínas (Figura 3), e consequentemente, à morte neuronal (Rego e Oliveira, 

2003, para revisão).  

 

2.6.4. Disfunção metabólica e mitocondrial 

Estudos realizados em modelos celulares e animais da DH, em doentes de Huntington e 

em tecido post-mortem destes doentes permitiram observar várias alterações mitocondriais e 

metabólicas: (1) Uma diminuição da captação de glucose no córtex e no estriado de 

indivíduos assintomáticos e sintomáticos para a DH; (2) Uma diminuição da actividade da 

aconitase no estriado e no córtex cerebral; (3) Um decréscimo das actividades dos complexos 

II-III e IV no estriado; (4) Um aumento da concentração de lactato no estriado e córtex 

cerebral e no líquido cefalorraquidiano de doentes de Huntington; (5) Um decréscimo do rácio 

fosfocreatina/fosfato inorgânico no sistema músculo-esquelético; (6) Um decréscimo da 

formação de ATP mitocondrial; (7) Um decréscimo do potencial membranar mitocondrial em 

linfoblastos derivados de doentes de Huntington heterozigóticos e homozigóticos, ou em 

células estriatais derivadas de murganhos knock-in para a DH; e (8) Uma diminuição do 

contéudo e a presença de mutações no DNA mitocondrial em amostras de doentes com DH 

(e.g. Gil e Rego, 2008). 

A injecção sistémica do ácido 3-nitropropiónico (3-NP, um inibidor irreversível da 

succinato desidrogenase, que faz parte do complexo II mitocondrial) causa 

neurodegenerescência estriatal em ratos e primatas, corroborando a importância anteriormente 

descrita da disfunção mitocondrial e metabólica na DH. A neurodegenerescência estriatal 

induzida por 3-NP em modelos animais também parece estar relacionada com a alteração da 

permeabilidade da barreira hemato-encefálica, conduzindo à lesão aparentemente selectiva do 

estriado (e.g. Gil e Rego, 2008). 
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Na DMJ, os potenciais mecanismos de disfunção metabólica e mitocondrial têm sido 

menos explorados. Estudos em doentes descrevem que apesar de se verificarem níveis 

elevados de lactato e diminuição dos níveis de piruvato (com consequente aumento do rácio 

lactato/piruvato), esta alteração poderá não estar associada a alterações no metabolismo 

mitocondrial (Matsuishi et al., 1996). Contudo, estes estudos foram realizados num número 

reduzido de doentes pelo que serão necessários estudos adicionais. Outros estudos revelaram 

que doentes com DMJ apresentam hipometabolismo (redução no consumo de um derivado 

marcado de glucose) no córtex occipital, nos hemisférios cerebelosos, no vermis cerebeloso e 

no tronco cerebral (Soong et al., 1997). Estudos de espectroscopia magnética de protões, que 

permite a determinação de valores de metabolitos in vivo em tecidos humanos, revelaram uma 

diminuição do metabolito N-acetilaspartato na substância branca profunda de cérebros de 

doentes de DMJ (D’Abreu et al., 2009).  

 

2.6.5. Stresse oxidativo 

A disfunção mitocondrial contribui para a formação de radicais livres (Figura 3). Estes, 

associados à activação da nNOS mediada por estímulos excitotóxicos e ao metabolismo da 

DA, conduzem ao stresse oxidativo (e nitrativo) através da oxidação (e nitração) de proteínas, 

lípidos e/ou DNA. Estudos anteriores demonstraram a alteração da expressão e actividade da 

NOS, assim como da enzima antioxidante superóxido dismutase (SOD) em murganhos R6/1 e 

R6/2. Por outro lado, existem evidências de lesão oxidativa em tecido periférico de doentes de 

Huntington, nomeadamente um aumento dos níveis de 8-hidroxideoxiguanosina em 

leucócitos, um aumento de malonildialdeído, um decréscimo da actividade das enzimas 

antioxidantes Cu/Zn-SOD (SOD1) e glutatião peroxidase em eritrócitos, e um decréscimo de 

actividade da catalase em fibroblastos. Para além disso, a produção de ROS aumenta no 

estriado dos murganhos R6/1. A formação mitocondrial de ROS na DH pode estar relacionada 
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com a supressão de PGC-1α mediada pela Htt mutante, uma vez que este co-activador 

transcricional é requerido para a indução de Mn-SOD (SOD2) e de glutatião peroxidase (Gil e 

Rego, 2008). 

Na DMJ, modelos celulares mostraram igualmente um decréscimo significativo do rácio 

GSH/GSSH e de glutationa total quer em condições normais de crescimento quer quando as 

células foram sujeitas a um stresse oxidativo ligeiro. Adicionalmente, células que expressam 

ATXN3 mutante apresentam níveis diminuídos de varias enzimas antioxidantes 

nomeadamente a catalase, glutationa reductase e SOD quando comparadas com células com 

expressão da ATXN3 wild-type (Yu et al., 2009). Células de pacientes com DMJ 

apresentaram ainda um decréscimo no número de cópias e aumento de uma delecção 

(4,977bp) do DNA mitocondrial, factores indicativos de stresse oxidativo. 

Por outro lado, foi também descrito que a exposição a stresse oxidativo (peróxido de 

hidrogénio e 3-NP) induz a translocação da ataxin-3 do citoplasma para o núcleo (Reina et al., 

2009), pelo que estudos recentes têm vindo a sugerir o núcleo como um factor chave na 

patologia da DMJ.     

No caso específico da DH, e uma vez que o estriado recebe sinapses dopaminérgicas da 

substantia nigra pars compacta, a lesão do estriado compromete também a via nigro-estriatal 

(Gil e Rego, 2008, para revisão). Vários estudos demonstraram a degenerescência de 

projecções nigro-estriatais e uma atrofia dos neurónios dopaminérgicos na substantia nigra. 

Agregados de Htt mutante também foram encontrados nesta região cerebral. Por outro lado, a 

perda de receptores D2 poderá constituir um indicador sensível da disfunção neuronal precoce 

(pré-clínica) que ocorre nos portadores da mutação da DH. A DA pode também induzir 

stresse oxidativo a nível cerebral através da formação de peróxido de hidrogénio, por 

degradação da DA pela enzima mono-amino oxidase (mitocondrial), e da formação de 

quinonas ou semiquinonas de DA e peróxido de hidrogénio ou o anião superóxido, devido à 



 

 
255

auto-oxidação da DA. Adicionalmente, as vias de sinalização do glutamato e da DA podem 

actuar de modo sinergístico, induzindo uma elevação dos sinais de cálcio e a degeneração dos 

neurónios espinhosos médios do estriado, obtidos de murganhos YAC128 (e.g. Tang et al., 

2007). 

 

2.6.6. Activação de proteases e morte neuronal 

Apesar de controverso, a activação da morte celular por apoptose parece contribuir para o 

desenvolvimento da DH. A expansão de poliQ induz a activação da caspase-8, uma caspase 

iniciadora da via extrínseca da cascata apoptótica. Por outro lado, murganhos YAC que 

expressam Htt mutante full-length resistente à clivagem pela caspase-6 não desenvolvem 

neurodegenerescência estriatal e são resistentes à excitotoxicidade induzida pelo QA. Por 

outro lado, a mutação da Serina 536 (situada num domínio da proteína susceptível à 

proteólise) inibiu a clivagem mediada por calpaínas e diminuiu a toxicidade da Htt mutante. 

De facto, a Htt possui locais de clivagem pelas caspases 3 e 6 e pela calpaína (Gil e Rego, 

2008) (Figura 3). A proteólise tende a aumentar na presença de uma longa cauda de poliQ, 

produzindo fragmentos N-terminais mais tóxicos que agregam mais facilmente e difundem 

passivamente para o núcleo devido ao seu tamanho reduzido (Figura 3). Estes fragmentos 

podem, por sua vez, recrutar mais proteases para os agregados, favorecendo a sua activação e 

a morte neuronal. 

As mitocôndrias estão no centro do processo de activação de caspases e da apoptose. 

Estudos anteriores demonstraram que os fragmentos da Htt mutante podem associar-se à 

membrana mitocondrial externa e induzir a abertura do poro de permeabilidade transitória em 

mitocôndrias isoladas, um efeito acompanhado pela libertação de citocromo c (Figura 3). O 

3-NP, utilizado como modelo de disfunção mitocondrial na DH, induz também morte 



 

 
256

neuronal por apoptose dependente da mitocôndria através da libertação de citocromo c, e 

consequente activação de caspases (Rego e Oliveira, 2003). 

Igualmente para a DMJ, um dos mecanismos de patogénese sugeridos é a ocorrência de 

clivagem da ATXN3 expandida, muito provavelmente em estadios primários da doença. E é a 

formação desse fragmento tóxico C-terminal da ATXN3 (contendo a expansão de poliQ), que 

potencialmente dará origem aos agregados proteicos que contêm não só a proteína clivada 

mas também a ATXN3 total, normal e expandida (Figura 4). A formação do fragmento de 

ATXN3 ainda não foi inequivocamente mostrada in vivo; de facto a maioria dos estudos que 

sugerem que a clivagem da ATXN3 poderá ser mediada por caspases (Berke et al., 2004) ou 

calpaínas (Haacke et al., 2007) foram realizados in vitro. O hipotético fragmento da ATXN3 

expandida foi detectado em extractos proteicos totais obtidos de cérebro de pacientes post-

mortem e de um modelo da DMJ em murganho (Goti et al., 2004), mas não de um outro 

modelo de DMJ representativo de estadios mais precoces da doença (Silva-Fernandes et al., 

2010). 

Apesar da activação da morte neuronal por apoptose, mediada pela expressão da ATXN3 

ou Htt mutantes, parecer contribuir para a doença, este é ainda um assunto controverso, na 

medida em que estudos recentes sugerem a ocorrência de disfunção neuronal em detrimento 

de morte celular por apoptose (e.g. Silva-Fernandes et al., 2010). Contudo, foi observado que 

células neuronais que expressam ATXN3 mutante são mais sensíveis ao tratamento com 

staurosporina (composto indutor de apoptose), talvez devido a uma diminuição da expressão 

de factores anti-apoptóticos nestas células, como o Bcl-2. Os níveis de citocromo c libertados 

pela mitocôndria encontram-se também aumentados em células de doentes DMJ (Tsai et al., 

2004). A activação da morte celular programada em células DMJ poderá também ocorrer 

devido à activação da proteína pró-apoptótica Bax, mais concretamente via acetilação de ku70 
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(Li et al., 2007), pelo que a utilização de péptidos inibidores de Bax tem sido sugerida como 

uma estratégia terapêutica na DMJ. 

 

2.7. Estratégias terapêuticas e de Neuroprotecção 

O recente avanço no conhecimento sobre os diferentes mecanismos de disfunção 

neuronal e de neurodegenerescência envolvidos nas doenças de poliglutaminas, 

nomeadamente na DH e na DMJ, permitiu a identificação de diferentes alvos terapêuticos. 

Apesar dos tratamentos sintomáticos constituírem a base da terapia usada na prática clínica, 

vários tratamentos neuroprotectores têm vindo a ser testados em ensaios pré-clínicos e 

clínicos. Estas terapias neuroprotectoras visam prevenir ou protelar o aparecimento dos 

primeiros sintomas em portadores assintomáticos da mutação, e retardar a evolução da 

patologia ou mesmo prevenir o aparecimento de sintomas subsequentes em doentes 

sintomáticos.  

As terapias neuroprotectoras actuam a nível da: (i) modulação da transcrição, (ii) 

modulação da fosforilação (específico da Htt), (iii) inibição das transglutaminases, (iv) 

modulação dos receptores de neurotransmissores, (v) redução da disfunção metabólica e 

mitocondrial, (vi) prevenção ou bloqueio da formação de radicais livres, (vii) activação da 

autofagia, (viii) inibição da apoptose, e (ix) regeneração neuronal através da acção de factores 

(neuro)tróficos. Para além disso, o silenciamento da expressão do gene utilizando a tecnologia 

de RNA de interferência ou oligonucleótidos antisense, e a regeneração neuronal através da 

terapia celular constituem terapias curativas em fase de desenvolvimento, mas altamente 

promissoras. Refira-se, por exemplo, que é possível tirar partido da existência de SNPs (do 

inglês single nucleotide polymorphisms) para gerar siRNAs (do inglês small interfering RNA) 

que silenciam exclusivamente o alelo mutante, e que têm sido desenvolvidos oligonucleótidos 

antisense para o RNA mensageiro que interferem com a expressão da Htt mutante de forma 
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selectiva (e.g. Hu et al., 2009). Na DMJ, verificou-se ainda que o silenciamento do alelo 

normal da ATXN3 num modelo em rato, não agrava a patologia e que a utilização de siRNAs 

não específicos (que actuam sobre o alelo normal e expandido), poderá ser uma estratégia 

terapêutica eficaz e segura (Alves et al., 2010).  

A nível da terapia celular ou de substituição na DH, um estudo publicado após cerca de 

10 anos de transplantes em humanos descreve que, de dois doentes transplantados 

bilateralmente no estriado com tecido cerebral fetal, um deles demonstrou, pela primeira vez, 

um aumento da ligação a receptores D2 (detectado por tomografia de emissão de positrões) e 

melhoria clínica ao longo de 5 anos, sugerindo a sobrevivência do tecido transplantado e um 

benefício potencial dos transplantes estriatais na DH (Reuter et al., 2008). 

 

3. Conclusões 

Durante a última década, as doenças de poliglutaminas têm sido alvo de intensa 

investigação, particularmente após a identificação dos genes envolvidos e da mutação 

responsável pelas diferentes doenças e da subsequente produção de vários modelos in vivo.  

A nível neuronal, a perda de função normal das proteínas envolvidas e/ou o ganho de 

função tóxica conferida pela expansão de poliQ podem contribuir para a patologia associada a 

estas doenças. As alterações neuronais (e, eventualmente, das células da glia) induzidas pelas 

proteínas mutantes resultam na disfunção de importantes circuitos neuronais. Por outro lado, 

os mecanismos celulares e moleculares de neurodegenerescência desenvolvem-se lentamente 

nos portadores das expansões de poliQ, tornando-se mais evidentes nas fases mais avançadas 

da doença.  

Assim, a identificação de diferentes mecanismos neuropatológicos tem possibilitado a 

aplicação in vitro e in vivo de várias terapias na DH e DMJ. Se, por um lado, as terapias que 

visam suprimir a expressão das proteínas mutantes de forma selectiva (terapia génica), ou que 
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visam substituir os neurónios lesados e re-estabelecer os circuitos neuronais a nível cerebral 

(terapia celular ou de substituição, que pode estar associada à terapia génica) se encontram em 

fase de franco desenvolvimento, tendo como objectivo último a cura destas doenças, por outro 

lado, as terapias neuroprotectoras podem promover a qualidade de vida dos portadores da 

mutação. Assim, a protecção neuronal mediada por agentes farmacológicos permitirá não só 

retardar, como potencialmente prevenir o aparecimento dos sintomas da doença e da sua 

gravidade, prolongando o tempo de vida dos doentes. Os múltiplos mecanismos 

neuropatológicos discutidos acima podem ocorrer em paralelo e promover-se mutuamente, 

sugerindo que a combinação de diferentes terapias neuroprotectoras, que actuam em alvos 

moleculares distintos, possa ser mais eficaz no combate à lesão neuronal irreversível na DH e 

na DMJ, e possivelmente noutras doenças neurodegenerativas. 
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Lista de abreviaturas: 
 
3-NP, Ácido 3-nitropropiónico; 
ATXN3, Ataxina-3; 
BDNF, Factor neurotrófico derivado do cérebro (do inglês brain-derived neurotrophic factor) 
C. elegans, Caenorhabditis elegans; 
CAG, Citosina-adenina-guanina; 
CBP, do inglês CREB (cyclic-adenosine monophosphate (cAMP) response element (CRE) binding protein)-

binding protein; 
DA, Dopamina; 
DH, do inglês Huntington’s disease ou doença de Huntington;  
DMJ, do inglês Machado-Joseph disease; 
DNA, Ácido desoxirribonucleíco (do inglês deoxyribonucleic acid) 
DRPLA, do inglês dentatorubral-pallidoluysian atrophy;  
ERAD, do inglês endoplasmic reticulum associated protein degradation; 
FT, Factor de transcrição; 
GABA, Ácido γ-aminobutírico; 
HDAC3, Desacetilase das histonas 3; 
Htt, Huntingtina; 
InsP3R, Receptor do inositol-(1,4,5)-trifosfato; 
IT15, do inglês Interesting Transcript 15; 
mGluR, Receptor metabotrópico do glutamato 
MMP-2, Metaloproteinase 2 da matrix; 
mTOR, do inglês mammalian target of rapamycin; 
NCoR, Receptor nuclear co-repressor; 
NII, do inglês neuronal intranuclear inclusions 
NMDA, N-metil-D-aspartato 
nNOS, Isoforma neuronal da NOS 
NOS, Sintetase do óxico nítrico; 
NRSE, do inglês neuron restrictive silencer element; 
pCAF, Factor Associado a p300/CBP; 
PGC-1α, do inglês peroxisome proliferator-activated receptor-γ coactivator-1α; 
PoliQ, Poliglutaminas 
PSD-95, do inglês postsynaptic density 95 
QA, Ácido quinolínico (do inglês quinolinic acid) 
RNA, Ácido ribonucleíco (do inglês ribonucleic acid) 
ROS, Espécies reactivas de oxigénio (do inglês reactive oxygen species) 
SBMA, do inglês spinal bulbar muscular atrophy ou doença de Kennedy;  
SCA, Ataxias espinocerebelosas (do inglês spinocerebellar ataxias); 
siRNA, do inglês small interfering RNA 
SNC, Sistema nervoso central;  
SNPs, do inglês single nucleotide polymorphisms 
SOD, Superóxido dismutase 
Sp1, do inglês specific protein-1; 
TAFII130, do inglês TBP associated factor; 
TBP, do inglês thymine-adenine-thymine-adenine (TATA)-binding protein;  
UIMs, do inglês ubiquitin interacting motifs; 
UPS, do inglês ubiquitin proteasome system; 
VCP, do inglês valosin containing protein; 
YAC, do inglês yeast artificial chromosome; 
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GLOSSÁRIO: 
 

Bradicinésia- Dificuldade no iniciar e dar continuidade a movimentos, havendo também a 

impossibilidade de ajustar a posição do corpo. Habitualmente, aparece como sintoma de doenças 

neurológicas, particularmente na doença de Parkinson, mas poderá também ser resultante de efeitos 

secundários de determinados tipos de medicamentos. A palavra bradicinésia e derivada de duas 

palavras gregas: bradys, lento + kinesis, movimento= movimento lento. 

 

Caquexia- Desnutrição aguda associada a atrofia muscular, fadiga, fraqueza e perda de apetite. Pode 

ser um sinal médico de diversos distúrbios, nomeadamente cancro, doenças neurodegenerativas e 

algumas doenças infecciosas (como tuberculose, SIDA, Leishmaniose Visceral, lesões da parte lateral 

do hipotálamo, intoxicação por mercúrio e alguns distúrbios autoimunes). 

 

Coreia- Movimentos contínuos do corpo aparentemente coordenados e realizados intencionalmente, 

mas que na realidade são involuntários. A palavra chorea é derivada da palavra grega khorea que 

significa dança.  

 

Defeito cognitivo- Dificuldade no processo de aprendizagem e de aquisição de conhecimento. A 

cognição envolve atenção, percepção, memória, raciocínio, juízo, imaginação, pensamento e 

linguagem. A cognição é derivada da palavra latina cognitione, que significa a aquisição de um 

conhecimento através da percepção. 

 

Disartria- Discurso tipicamente lento e não claro, difícil de produzir e de ser entendido. Uma pessoa 

com disartria terá dificuldade em controlar o volume, o ritmo e qualidade da voz do seu discurso. 

Disartria é causada por paralisia, fraqueza ou incapacidade de coordenar os músculos da boca. 

Disartria pode ocorrer como uma incapacidade associada ao desenvolvimento e poderá ser um sinal de 

doença neuromuscular.  

 

Disfagia- Dificuldade em engolir, que ocorre frequentemente após um acidente vascular cerebral. E 

associada a problemas de controlo nervoso ou muscular. A disfagia afecta a nutrição e hidratação do 

indivíduo e poderá levar ao aparecimento de pneumonias e desidratação. Do grego, Phagein significa 

comer, ter dificuldade em comer.  

 

Distonia- Doença associada ao movimento, na qual há contração muscular continua, causando voltas e 

movimentos repetitivos e posturas anormais. Os movimentos involuntários podem ser dolorosos e 

podem afectar um único músculo ou um grupo de músculos (braços, pernas ou pescoço) ou mesmo o 

corpo inteiro.    
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Fasciculação- Pequena contracção involuntária, localizada e descoordenada de músculos, 

normalmente visível sob a pele, e advinda de uma descarga espontânea de um feixe de fibras 

musculares esqueléticas (fascículo muscular). As fasciculações podem ter uma variedade de 

causas, a maioria das quais é benigna, mas também podem ser resultado de doenças neuro-

musculares. 

 

Mosaicismo somático– Presença de populações geneticamente distintas de células somáticas (não 

germinativas) num dado organismo. É muitas vezes mascarado, mas também pode resultar em grandes 

alterações fenotípicas e revelar a expressão de mutações genéticas que seriam letais. O mosaicismo 

pode ser causado por mutações ou alterações epigenéticas no DNA, anormalidades cromossómicas e 

pela reversão espontânea de mutações hereditárias.  

 

Oftalmoplegia- Paralisia dos músculos do olho. Muitas vezes causada pela mononeuropatia 

diabética pela lesão no terceiro par craniano (óculo-motor). Pode também ser originada por 

falta de vitamina B1, como acontece nas hepatites e cirroses hepática. Também está verificada 

como sintoma de patologias neurodegenerativas do Sistema Nervoso Central, nomeadamente 

a Esclerose Múltipla. 
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Legendas das Figuras: 

 

Figura 1- Representação esquemática das principais regiões cerebrais afectadas na  DH e 

DMJ. Vermelho é indicativo de regiões grandemente afectadas e perda neuronal selectiva; 

Laranja indica perda neuronal variável e moderada. Legenda: CB, córtex cerebeloso; C/P, 

caudado/putamen; Ctx, córtex cerebral; DN, núcleo denteado; GP, globus pallidus; LCN, 

núcleo cuneato lateral; PN, núcleos pônticos; RN, núcleo rubro; SN, substantia nigra; STN, 

núcleos subtalâmicos; VL, núcleos ventrolaterais do tálamo. (Adaptado de Ross, 1995) 

 

Figura 2- Representação do gene da huntingtina (HTT) e da ataxina-3 (ATXN3) e da 

influência da expansão do trinucleótido CAG no início dos sintomas da DH (A) e da DMJ 

(B). Repetições CAG entre 8 e 29 são normais; repetições CAG entre 29 e 35 considera-se 

uma pré-mutação, pois é instável e susceptível de expandir; expansões acima das 36 poderão 

causar a mutação numa idade mais tardia (penetrância incompleta); se existirem expansões 

entre 40 e 50, a DH surge invariavelmente na meia-idade; repetições CAG acima das 60 estão 

associadas às formas juvenis da DH, em que os sintomas geralmente surgem antes dos 20 

anos de idade (A). Na DMJ, o tamanho do trinucleótido CAG é altamente polimórfico em 

indivíduos normais variando de 10-51 repetições. Cerca de 90% dos alelos normais 

apresentam menos de 31 repetições. O aparecimento de sintomas encontra-se associado a 

expansões acima das 55 repetições CAG (B). Baseado em Rego e de Almeida, 2005. PoliQ, 

poliglutaminas; N, Normal; D, Doente. 

 

Figura 3- Mecanismos moleculares neuropatológicos na DH. A huntingtina mutante (mHtt) 

interfere com vários factores de transcrição (FT), alterando a expressão de BDNF a nível 

cortical. A mHtt também afecta o transporte axonal, repercutindo-se numa diminuição do 

BDNF libertado pelos neurónios corticais. Por outro lado, a mHtt induz disfunção sináptica 

(e.g. sinapses cortico-estriatais) e o processo de excitotoxicidade, o aumento da concentração 

de cálcio intracelular (proveniente da activação do receptor NMDA e/ou do receptor do InsP3 

no retículo endoplasmático (ER), em resultado da activação dos receptores metabotrópicos 

para o glutamato do tipo mGluR5), a disfunção mitocondrial, a desregulação metabólica e o 

stresse oxidativo; paralelamente, ao interferir com os níveis intracelulares de cálcio e com a 

mitocôndria, a mHtt promove a activação de calpaínas e de caspases, que clivam a mHtt, 

potenciando o processo neurodegenerativo; deste modo, a clivagem da proteína promove a 

formação de fragmentos que mais facilmente atravessam a membrana nuclear e formam 
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agregados proteicos; este podem ser marcados com moléculas de ubiquitina (Ub) para serem 

degradados mas, geralmente, o proteossoma é inibido; adicionalmente, o processo autofágico 

é activado de modo a remover os agregados proteicos. 

 

Figura 4- Mecanismos moleculares neuropatológicos na DMJ. O processo patológico inicia-

se provavelmente com a síntese da ataxina-3 (ATXN3) mutante, que contém uma sequência 

expandida de poliQ, e que altera a conformação nativa da proteína, modelada pela presença de 

chaperones. Uma parte das proteínas com conformação anormal (misfolded) será 

potencialmente degradada a nível do lisossoma, enquanto que a outra porção será marcada 

com moléculas de ubiquitina (Ub) e degradada a nível do proteossoma. A ATXN3 mutante 

tem a capacidade de se auto-associar facilitando assim a formação de espécies oligoméricas e 

agregados insolúveis. Um mecanismo alternativo, é a potencial clivagem da ATXN3 mutante 

e a formação de um fragmento tóxico que amplifica o processo de agregação e patogénese. 

Todas as espécies intermédias formadas ao longo do processo de agregação poderão originar a 

ocorrência de interacções proteicas anormais no ambiente celular facilitando também deste 

modo a patogénese da DMJ. Não é claro se estas espécies terão a capacidade de inibir o 

proteossoma, activar caspases e/ou alterar a função mitocondrial. Intermediários do processo 

de agregação são translocados para o núcleo, onde recrutam factores nucleares como factores 

de transcrição (FT), co-activadores e co-repressores, inibindo a sua função normal, resultando 

numa alteração do processo transcricional. 
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Figura 2B 
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Tabela I – Características das doenças de expansão de poliglutaminas. 

Doença 
 
(abreviatura) 

Repetição 
CAG 

patogénica 

Gene Proteína afectada Localização intracelular 
dos agregados proteicos 

Área(s) cerebral(is) predominantemente 
afectada(s) 

DH  36-121 4p16.3 Huntingtina Nuclear/ citoplasmática Núcleo caudado e putamen (estriado), segmento 
externo do globo pálido, córtex cerebral, alguns 
neurónios do hipotálamo 

SBMA 38-65 Xq11-12 Receptor do 
androgénio 

Nuclear Neurónios motores do corno anterior da medula 
espinhal e tronco cerebral 

DRPLA 49-88 12p13.31 Atrofina-1 Nuclear Cerebelo (núcleo denteado), núcleo rubro, 
segmento externo do globo pálido, núcleos 
subtalâmicos 

SCA1 39-83 6p23 Ataxina-1 Nuclear Cerebelo, núcleo rubro, oliva inferior, ponte ou 
protuberância, corno anterior da medula espinhal e 
via piramidal 

SCA2 32-77 12q24.1 Ataxina-2 Nuclear/citoplasmática Cerebelo, núcleo rubro, oliva inferior, ponte, 
corno anterior da medula espinhal e via piramidal 

SCA3 55-89 14q32.1 Ataxina-3 Nuclear/ 
Axonal 

Cerebelo (núcleo denteado), gânglios da base, 
tronco cerebral, medula espinhal 

SCA6 20-33 19p13.1 CACNA1A Nuclear/citoplasmática Cerebelo (células de Purkinje, núcleo denteado), 
oliva inferior 

SCA7 37-306 3p12-13 Ataxina-7 Nuclear Cerebelo, tronco cerebral, córtex visual, mácula  
SCA17 47-63 6q27 TBP Nuclear Cerebelo, córtex (atrofia difusa), núcleo caudado e 

putamen. 
 
 
CACNA1A– Subunidade α1A do canal de cálcio sensível à voltagem do tipo P/Q; DRPLA- do inglês dentatorubral-pallidoluysian atrophy; DH–doença de 
Huntington; SBMA– do inglês spinal bulbar muscular atrophy ou doença de Kennedy; SCA– do inglês spinocerebellar ataxias ou ataxias espinocerebelosas; 
TBP– do inglês thymine-adenine-thymine-adenine (TATA) -binding protein.  
Adaptado de: Macedo-Ribeiro et al., 2007; Rego e de Almeida, 2005. 
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 Tabela III. Principais modelos animais da doença de Machado-Joseph.

Doença de Machado-Joseph

Organismo Transgene Promotor
Tamanho da repetição 

CAG
Padrão de 
expressão

Agregados Neurodegeneração Início da doença Fenótipo

C. elegans

e.g. Khan et al. , 2006
MJD1a cDNA 

total e C-
terminal 

unc-119 17, 19, 63, 127 e 130 ubíquo sim não ND desccordenação motora

Drosophila

e.g. Warrick et al., 
2005

MJD1a cDNA 
total e C-
terminal 

gmr-/ elav-GAL4 27,78 e 84 olho e sistema nervoso sim sim ND
disrupção da morfologia do olho; disrupção 

do fotoreceptor; morte prematura 

Mus musculus

Ikeda et al., 1997
MJD1a cDNA 

total e C-
terminal 

L7(Células de Purkinje) 79 Células de Purkinje não sim 4 semanas
ataxia; distúrbio da marcha; ausência de 

elevação das patas anteriores

Cemal et al., 2002
YAC com 
ATXN3 ATXN3 

64, 67, 72, 76 e 84 ubíquo sim sim 4 semanas
perda de peso; pélvis baixa; hipotonia; 
tremor; deficite na geotaxia negativa

Goti et al., 2004 cDNA MJD1a PrP 71 ubíquo sim
↓ número de neurónios TH 

positivos na SN
8 semanas

descoordenação motora; perda de peso; 
perda de força nos membros 

Bichelmeier U et al., 
2007

cDNA MJD1-1
PrP

15, 70 e 148 ubíquo sim ND 6 semanas
perda de peso, base alargada das patas 

posteriores; actividade reduzida; 

Chou et al., 2007
MJD1a CDNA 

total e C-
terminal PrP

79 ubíquo sim não 5 semanas
descoordenação motora; hipoactividade; 

ataxia; perda de peso; redução da elevação 
pélvica

Boy J et al.,  2009 cDNA MJD1-1 PrP/Tet-Off 77 ubíquo sim células de purkinje 9 semanas 
ansiedade reduzida, hiperactividade, 

descoordenação motora, menor aumento de 
peso

Boy et al., 2010 cDNA MJD1-1 huntingtina de rato 148 ubíquo não células de purkinje 48 semanas

hiperactividade em estadios precoces da 
doença, descordenação motora e alteração 

na aprendizagem motora em estadios 
avançados da doença

Silva-Fernandes et al., 
2010

cDNA MJD1-1 CMV 83 e 94 ubíquo sim astrogliose e atrofia neuronal 16 semanas descoordenação motora

Rattus norvegicus

e.g. Alves et al., 2008 cDNA MJD1a Lentivirus (PGK) 27 e 72

Córtex cerebeloso 
ou estriado ou 

Substantia nigra 
(injecção)

sim
↓ do número de neurónios TH 
positivos na SN, degeneração 

no estriado, morte celular
ND ND

Legenda: ND- não determinado
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“Screening of therapeutic compounds in a C. elegans model of Machado-

Joseph disease” 

 

Summary of the research project 

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is a neurodegenerative 

disorder caused by the expansion of a polyglutamine (polyQ) tract within the C-terminal of the ataxin-3 protein. 

Ataxin-3 is known to interact with polyubiquitin chains and to have a deubiquitylase (DUB) activity in vitro, 

however the cellular and physiological role(s) of this protein remain unknown. 

The leading hypothesis concerning the pathogenesis of polyQ diseases is that the expanded polyQ tract 

confers a toxic gain of function to the mutant proteins. These acquire the ability to self associate and form 

aggregates both with themselves and with other proteins, and form large nuclear and cytoplasmatic inclusions. 

There are conflicting reports on whether these large inclusions mediate subsequent neuronal dysfunction or if 

they are rather cytoprotective, being the result of a mechanism by which the cell protects itself against the 

production of soluble toxic oligomers. In any case, the presence of the expanded ataxin-3 (and potential 

formation of polyQ-containing fragments) has several pathophysiological consequences for the affected neurons. 

However, mutated ataxin-3 cannot be considered as a tractable drug target for small molecules itself, mainly due 

to a lack of knowledge of its in vivo functional activity, unsolved structure, absence of known relevant binding 

sites for small molecules and ubiquitous expression in many cell types. Alternative approaches using RNAi and 

intrabodies have shown recent promise in preventing the production of mutant ataxin-3, but toxicity effects have 

not been sufficiently tested, and delivery to the central nervous system remains an issue. The lack of therapeutic 

strategies that effectively prevent neurodegeneration in MJD patients prompted us to search for compounds that 

modulate mutant ataxin-3-related neurological dysfunction. For this purpose, our group has previously generated 

a transgenic mouse model of MJD which is currently being used by us to test selected compounds as 

therapeutic approaches to MJD, targeting three main biochemical pathways: inhibition of histone deacetylase 

activities, activation of Hsp70 and reduction of oxidative stress. Although these mice provide an excellent 

mammalian system to pre-clinically validate pharmacological strategies for the treatment of human disorders, 

they are hardly amenable to large-scale drug screenings that could allow the exploration of a much larger 

number of therapeutical possibilities. In this sense, cell lines are often used as a first-line approach, allowing the 

screening of libraries of compounds in a hypothesis-free manner, leading to the pre-selection of a smaller 

number of molecules to be tested in vivo, often in rodent and then primate models of a given disorder. In spite of 

the great advantages of this strategy, it faces the limitations that cell lines often display very specific 

characteristics, different from the cells they are meant to model – this is particularly true for neurons, which are 
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highly differentiated cells, that function as part of a network and require permanent interaction with other cellular 

types for their function. 

Recent data from our lab have shown that many aspects of MJD can be properly modeled in the round 

worm Caenorhabditis elegans, and others have shown that it can provide a suitable platform for both the 

discovery of new bioactive compounds and target identification. This project is based on the idea that the 

transgenic C. elegans MJD model we generated can be used to perform large-scale drug screenings, in which 

the identification of effective drugs can be accomplished by looking simultaneously at protein aggregation 

(conformational disorder) in the live neuronal cells, and on its impact on neuron regulated behavior of the whole-

animal (neurodegenerative disorder). Our specific goal at this stage is to screen a library of FDA-approved out-of-

patent drug molecules for their ability to prevent or delay the formation of fluorescent mutant ataxin-3 aggregates 

by feeding them to our MJD C. elegans model. Additionally, we will address their effect on motor neuron 

dysfunction by performing an automated motility analysis. 

We should be able to identify a number of efficacious compounds that can be tested in higher 

organisms, including our transgenic mouse model, and eventually enter clinical development. Our work can also 

contribute to the better understanding of MJD pathogenesis, as we can in the future identify, at the cellular level, 

the targets of these hit compound(s). 
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