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Abstract: The properties of mixed-phase (nanocrystalline/amorphous) silicon layers produced by 

reactive RF-sputtering are described. The chemical composition and nanostructure [i.e. nanocrystal 

(NC) size and volume fraction] of the films were studied by Rutherford backscattering spectroscopy 

(RBS) and micro-Raman spectroscopy, respectively. Samples with different fractions of the 

nanocrystalline phase and NC mean size were produced by changing the deposition parameters, 

without post-growth annealing. The electrical conductivity of the films, measured as function of 

temperature, is discussed in relation to their nanostructure. 
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1. INTRODUCTION  

Intrinsic and Er-doped nanocrystalline silicon (nc-Si) have been attracting high interest of researchers 

as promising candidates for the realization of Si-based visible and infrared light sources, in particular, 

for optical communication systems [1]. This interest has been increased by the recent development of 

all-Si Raman laser [2] and the observation of strong enhancement of the Raman scattering intensity in 

nc-Si as compared to the bulk material [3]. For any device application, the electrical properties of the 

produced material are of utmost importance and there is a need of developing an inexpensive 

technology of fabrication of nc-Si with controlled optical and electrical properties. 
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Hydrogenated nanocrystalline silicon (nc-Si:H) possesses higher electrical conductivity, compared to 

amorphous silicon (a-Si), while its preparation, in the form of thin films, is still inexpensive. It is 

known that the electrical conductivity [4], as well as other physical properties relevant for many 

applications [5], is strongly influenced by the film’s nanostructure, but from physical point of view, 

many questions remain unclear [6]. In this paper we describe the results of experiments performed in 

order to obtain new data concerning the influence of the nanostructure (namely, nanocrystal mean size 

and volume fraction of the crystalline phase) and chemical composition (hydrogen content) of nc-Si:H 

films produced by RF magnetron sputtering on their electrical properties.  

 
2. EXPERIMENTAL DETAILS 

Nc-Si:H films were grown by reactive magnetron sputtering of Si targets in an Ar/H2 atmosphere and 

deposited onto glass substrates at a fixed RF sputtering power of 80W. Details of the growth procedure 

have been described in Ref. [7]. Samples with different nanostructures and hydrogen contents were 

obtained by changing deposition parameters, namely, the substrate temperature (Tg) and the hydrogen 

flow rate in the deposition chamber during the films growth process, the latter defined as 
2HR  = 

F(H2)/[F(H2) + F(Ar)]  100%, where the F designates the corresponding gas-flow rates. The growth 

parameters for all the samples produced and studied in this work are presented in Table I. The typical 

thickness of the films was 500nm. 

The chemical composition of the films was determined by a combination of the Rutherford 

Backscattering Spectroscopy (RBS) and Elastic Recoil Detection (ERD) techniques. The hydrogen 

contents in the samples are presented in Table I. Samples #28, #33 and #34 were grown in a hydrogen-

rich atmosphere and the RBS/ERD analysis indeed indicates a high amount of hydrogen in the films 

(20 at %). Samples #48, #07 and #11 were grown in a low hydrogen atmosphere and are 
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characterised by a lower hydrogen content (around 2.5 at %). Two more samples (#26 and #32) were 

produced under intermediate hydrogen dilution in argon. 

 
Table I – Growth conditions, hydrogen atomic concentration, nanostructure parameters, RT 

conductivity, and parameters of the temperature dependence of the conductivity for the 

samples produced and studied in this work. 

 

 

Our previous Transmission Electron Microscopy (TEM) studies [8] have shown that silicon films 

contain both nanocrystalline and amorphous phases. In this work, the nanocrystal (NC) size, D, and the 

volume fraction, c, were determined from micro-Raman spectra recorded under excitation with the 

514.5 nm line of an Ar+ laser, through the analysis of the characteristic phonon modes. For the (dark) 

conductivity measurements, thermally evaporated coplanar Al contacts were used, with a gap of 0.5 

mm between the electrodes. The measurements were performed in vacuum at temperatures ranging 

from 200 to 300 K. These results are presented and discussed below.  

 
 
 
 
 

Sample CTg ,  %,
2HR  %at,H  nm,D  %,c   K300d , 

11cm  

11
0 cm,   eV,aE 

#07 350 17 2.2 7 40 4.6·10-8 5.31 0.48 

#11 350 37 3 8 60 2.6·10-1 18.1 0.11 

#26 350 47 7.5 8 70 1.4·10-3 - - 

#28 350 63 20 7 40 4.7·10-8 - - 

#32 300 47 7.5 8 70 2.5·10-2 - - 

#33 25 63 27.5 <3 <20 1.6·10-11 3.14·105 0.97 

#34 50 63 25.8 <3 <20 1.0·10-10 - - 

#48 300 37 3 6 30 7.9·10-7 2.80 0.39 
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3. RESULTS AND DISCUSSION 
 
3.1 Crystalline fraction characterisation by Raman spectroscopy 

Figure 1 shows several Raman spectra measured for the studied samples. Curve A was obtained for 

samples #33 and #34; curve B for sample #48, curve C represents samples #11, #26 and #32 and curve 

D is characteristic of samples #07 and #28. The broad band around 480 cm-1 is related to the 

amorphous silicon matrix and is present in all the spectra of Fig. 1. The presence of Si nanocrystals is 

visible in the Raman spectra B, C and D by the relatively narrow peak in the vicinity of 520 cm-1. This 

asymmetric peak is related to the transverse-longitudinal optical (TO-LO) confined phonon modes of 

nanocrystalline silicon. Within a model considering phonon confinement in a crystalline nanoparticle, 

the peak position (ω0) shifts to smaller wave numbers for decreasing NC size and the asymmetry 

(associated with the contribution of the confined phonon overtones) increases [9]. Such models have 

been proved to work quite well for NCs embedded in a foreign matrix, e.g. CdSe in glass [9] where a 

well defined barrier for optical phonons exists. It is perhaps less obvious that strong confinement 

models can apply to systems like nc-Si/a-Si where barriers between the crystalline core and the matrix 

are random, however, the sufficiently large difference that exists between the peaks of the phonon 

densities of states for c-Si (521 cm-1) and a-Si (480 cm-1, see [10] for recent calculated results) makes it 

reasonable to assume that the relative displacement of two Si atoms vanishes at the NC matrix 

interface, at least for the first quantified phonon modes. Considering the perfect confinement of the 

optical phonon in a spherical shape1 NC, the mean diameter can be evaluated from the relation [9, 11], 

 

   2/1
012 

  LOLOTOD       (1) 

 

                                                             
1 The approximately spherical shape of the NCs was confirmed by our previous TEM studies. 
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where 49.41   is the first root of the spherical Bessel function 1j , TOLO  is the bulk TO-LO phonon 

frequency and LO  is the curvature parameter of the LO phonon branch of bulk c-Si2. Unfortunately, 

for NCs larger than ≈ 6 nm, the shift  0 LOTO  is too small to be reliably determined from the 

experimental spectra and the use of Eq. (1) is hardly possible. Still, one can estimate the NC size from 

the peak asymmetry, although this is more involving since it requires modelling of the lineshape and 

the broadening is not only due to the contribution of phonon overtones in each NC but also because of 

the NC size dispersion. Nevertheless, it is possible to obtain reasonably good fits to the nc-Si peak 

using the model explained in Ref. [11] (taking into account only the short-range part of the electron-

phonon interaction) as shown in Fig. 2. This way we determined the NC mean size for the (most 

crystalline) samples #07 and #28.     

100 200 300 400 500 600 700 800 900

800

1000

1200

1400

1600

1800

2000 521 cm-1

R
am

an
 In

te
ns

ity
, a

.u
.

Shift, cm-1

A

B

C

D

480 cm-1

 

Figure1: Raman spectra of the nc-Si/a-Si samples listed in Table I (A = #33, 34; B = #48; C = #11, 26, 
32; D = #07, 28). 

                                                             
2 The curvature parameter was calculated using a parabolic approximation of the LO phonon dispersion curve, with the 
Brillouin zone centre (edge) value of 521 cm-1 (375 cm-1). 
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Figure2: Fitting of the Raman spectrum of the sample #07 (curve D in Fig. 1) with model of Ref. [11] 
using the NC mean size of 8 nm and standard deviation of 10% plus a Gaussian with 80cm-1 of FWHM 
and centred at 480 cm-1 representing the a-Si contribution. 
 
The Raman spectra of samples #33 and #34 (curve A in Fig. 1), grown at low temperature, almost do 

not show the crystalline peak and are dominated by the broad amorphous band. We used a Gaussian 

function to model this band. As it is known, the maximum position and the width of the band depend 

on the hydrogen concentration and other growth conditions and the typical values are 470 - 480 cm-1 

and 80 - 100 cm-1, respectively [12]. Our fitted Gaussian parameters also fall in these ranges.  

The relative weight of the amorphous and crystalline bands in the Raman spectra is commonly used in 

order to estimate the volume fraction of the crystalline phase, c , through the following 

phenomenological relation [13 - 15]: 

 
 acc yIIIc        (2) 

 
where cI  and aI  are the integrated intensities of the bands produced by the crystalline and amorphous 

phases, respectively, and y  is an empirical parameter of the order of unity. Although the values of y  
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that have been used for mixed-phase silicon vary considerably, the most recent data indicate that 

21  y  [14, 15]. In this work we used 7.1y  [15]. The obtained values of D  and c  are presented 

in Table I. For samples #33 and #34, the NC size and the volume fraction of the crystalline phase were 

estimated from TEM images.  

As one might expect, increasing the substrate temperature from 25-50oC to 300-350oC leads to the 

formation of larger crystallites with higher c  because the higher substrate temperature enhances the 

mobility of the sputtered atoms on the growing surface.  

 
3.2 Electrical conductivity 

The room temperature (RT) values of the conductivity ( d ) for all samples are shown in Table I. We 

obtained d  ranging from 1111 cm106.1    (which is a typical value for a-Si:H) to 

111 cm106.2    (a typical value for nanocrystalline silicon [16]). The lowest conductivity was 

measured for the samples with few (c<20%) and small size (D<3nm) crystallites (Raman spectrum A 

in Fig. 1). The highest d  values were obtained for the samples that show the Raman curve D 

(samples #26, #11 and #32), i.e. those with high c  and large D . Figure 3 shows the variation (namely, 

the increase) of the RT conductivity with the degree of crystallinity of the sample. So, is it only the 

material’s nanostructure that determines the behaviour of RT dark conductivity or does the hydrogen 

content also play a role? 

Samples #48 and #11 with practically the same chemical composition show substantially different d  

values. The main difference between these samples is the crystalline volume fraction and the average 

NC size. Furthermore, the d  values of samples #07 and #28 with similar microstructure parameters 

( c  and D ) but quite different hydrogen contents are similar. Thus, the nanostructure seems to be the 

key factor to determine the RT conductivity. However, if we compare samples #26 and #11 with 
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approximately the same NC size and crystalline volume fraction, they have rather different d  values. 

The difference between these two samples is mostly the hydrogen content, and, for these samples the 

conductivity value increases when the hydrogen content in the film decreases from 7.5 to 3 at%. The 

same tendency is observed for samples #34 and #33. Therefore we have to be cautious concerning the 

effect of hydrogen addition on the electrical transport in the mixed-phase films. Our results indicate 

that the nanostructure is the main factor influencing the dark conductivity but in certain cases the 

hydrogen content also seems to play an important role. It is well known that the hydrogen is essential 

for the growth of good quality amorphous silicon since it improves its optical and electrical properties 

by saturating the dangling bonds (DBs). According to our results, it can be concluded that a small 

amount of hydrogen (≈ 3 at %) is enough for the DB saturation (note the high d  value for sample #11 

in Table I). The extra hydrogen may form complexes that lead to the deterioration of the electrical 

conductivity by decreasing the carrier mobility. 
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Figure 3: Measured RT conductivity values versus volume fraction of the nanocrystalline phase in the 
sample as determined from the Raman spectra. 
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In order to understand the mechanism of the electrical conductivity in the mixed-phase Si films it is 

important to determine its temperature dependence. For all our samples the variation of d  with 

temperature (T ) can be approximated by the Arrhenius equation:  

 
    kTET ad  exp0       (3) 

 
where 0  is a constant, aE  is an activation energy, k  is the Boltzmann constant. Usually the 

interpretation of Eq. (3) for disordered materials is the following: aE  is equal to the energy difference 

between the mobility edge and the Fermi level at 0T  and the pre-factor 0  is characteristic of the 

carrier transport through the extended states. Applying Eq. (3) to our data we extracted the values of 

0  and aE  that are presented in Table I. Notice that the activation energy changes from 0.97 to 0.11 

eV when the RT conductivity changes by ten orders of magnitude (from 1111 cm106.1    to 

111 cm106.2   ). Since aE  and  K300d  vary in a correlated way (the activation energy is lower 

for samples with higher RT conductivity), we suggest that, among the samples #48, #07 and #11, this 

is just due to a different position of the Fermi level with respect to the bottom of the conduction band 

of the nanocrystalline phase. According to the considerably higher 0  and aE  values, the conductivity 

in the sample #33 occurred mainly through the amorphous phase. Figure 4 shows the comparison of 

the correlation between 0  and aE  obtained from our experimental data with the empirical Meyer-

Neldel rule [17, 18], 

 
 00 exp EEA a       (4) 

 
where A  and 0E  are some positive constants. Even though not well-understood, this relationship has 

been consistently verified for disordered semiconductors [19]. Meyer-Neldel parameters values of 
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0.035 eV for 0E  and 10-6 -1cm-1 for A  have been obtained by Monte Carlo simulations for a-Si:H 

[20]. For microcrystalline silicon, the values of 0E = 0.06 eV and A =10-2 -1cm-1 have been reported 

[21]. The parameters 0E  and A  of Eq. (4) are represented by the straight lines in Fig. 4, for both 

amorphous and microcrystalline materials. It can be seen from Fig. 4 that the experimental data obey 

the Meyer-Neldel rule except for the sample #11. It looks natural that the sample #33 containing a low 

fraction of small Si crystallites (Raman curve A) fits the line corresponding to a-Si. On the contrary, 

the samples #7 and #48 (with Raman curves B and C) follow the trend characteristic of 

microcrystalline Si.  This is compatible with the relatively high NC volume fraction in both samples, 

above the percolation threshold, so that the conductivity can occur through the crystalline phase and by 

hopping over (low) barriers formed on the grain boundaries.  The sample #11 (Raman curve D in Fig. 

1) is considerably above the line corresponding to microcrystalline Si, even though the conductivity of 

this sample must be completely dominated by the crystalline phase ( %60c ). One possible reason for 

this can be an unintentional doping of this sample, leading to the lower aE  and higher conductivity.  
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Figure 4: Meyer-Nelder plot of the conductivity activation energy versus pre-exponential factor (0) 
for several samples. Straight lines represent a-Si:H and c-Si:H according to the data from the 
literature [20, 21]. 
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4. Conclusion 

We have shown the ability to produce by RF-sputtering amorphous and nanocrystalline silicon layers, 

without the need to perform any high-temperature annealing in order to form Si NCs. The average size 

of NCs embedded in a matrix of amorphous Si and the volume fraction of the crystalline phase, have 

been determined using the Raman spectroscopy data. The films with high c  show high RT 

conductivity values, increasing with the NC volume fraction, and are characterized by small activation 

energies of the  Td  dependence. This findings support the idea that, in this kind of mixed-phase 

materials, the electrical transport is essentially due to the nanocrystalline component. When the 

crystalline phase fraction reaches 30-35 %, there is a sharp increase in the conductivity that can be 

associated with the geometrical percolation threshold. We have also shown that there is an optimum 

concentration of hydrogen in the gas chamber, approximately (25 ± 5) %. The excess of hydrogen 

leads to the formation of additional hydrogen complexes with a deterioration of the conductivity.  
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